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Abstract: Non-and semi-parametric models have flourished during the last twenty

five years. They have been applied widely and their theoretical properties have

been studied extensively. We briefly review some of their development and list a few

questions that we would like to see addressed. We develop an answer to one of these

questions by formulating a ‘calculus’ similar to that of the i.i.d. case that enables

us to analyze the efficiency of procedures in general semiparametric models when a

nonparametric model has been defined. Our approach is illustrated by applying it

to regression models, counting process models in survival analysis and submodels

of Markov chains, which traditionally require elaborate special arguments. In the

examples, the calculus lets us easily read off the structure of efficient estimators

and check if a candidate estimator is efficient.
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1. Introduction

Statistical inference necessarily is based on statistical models for data. Dur-
ing most of the history of the subject, these have been parametric; the mechanism
generating the data could be identified by specifying a few real parameters. Non-
parametric models, ones in which “as little as possible” was assumed, were not
seriously considered for several reasons, as follows.
(a) Fitting them to the data was computationally intractable.
(b) The parameters of parametric models such as centers, measures of spread,

measures of dependence, were readily interpretable as opposed to the curve
needed to specify the mechanism in the nonparametric case.

(c) The performance or approximate performance of methods such as estimation,
confidence bounds and testing could be computed, and relative optimality (as
measured, say, by the Fisher information matrix) could be understood more
easily in parametric models than in nonparametric ones.
During the last twenty-five years nonparametric and semiparametric models

have flourished. The main reason has, of course, been the rise of computing power
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permitting the fitting of such models to large data sets showing the inadequa-
cies of parametric models. The deficiency in interpretability of nonparametric
models was filled by the development of semiparametric models, ones partly but
not fully characterized by some interpretable Euclidean parameters. Examples
include the Cox proportional hazards model in survival analysis, econometric in-
dex models, the more classical additive models with non-Gaussian errors and a
plethora of others described, for instance, in Bickel, Klaassen, Ritov and Wellner
(1993)[BKRW]. We refer to BKRW as a general reference throughout. This is
no way to be interpreted as slighting other general works such as Ibragimov and
Has’minskii (1981) and Pfanzagl (1980), or works covering more specialized sub-
areas such as Andersen, Borgan, Gill, and Keiding (1995)[ABGK] or the slightly
abstract but almost all-encompassing and seminal work of Le Cam (see Le Cam
and Yang (1990)). We also note a more recent comprehensive treatment in the
spirit of our approach by van der Vaart (2000).

The main focus of research in this area has been the construction of such
models and corresponding statistical procedures in response to particular types
of data arising in various disciplines, primarily biostatistics and econometrics. In
particular, situations in which the data one ideally wishes to observe is necessarily
partly hidden through censoring (right, left, double, interval, etc.), truncation
and other forms of coarsening at random.

The focus has been mainly on the i.i.d. case (see BKRW for a review) or
a counting process framework (see ABGK), although many important examples
involving dependence may be found in Ibragimov and Has’minskii (1981). Some
important features have been these.
(i) There has been the development of “likelihood” based fitting procedures such

as maximum nonparametric likelihood, partial likelihood, profile likelihood,
etc., as well as less efficient but often more robust methods based on what are
referred to variously as generalized M or moment or estimating equations.

(ii) Algorithms have been constructed to implement these procedures, often in-
cluding some elements of the E-M algorithms (Dempster, Laird, and Rubin
(1977)).

(iii)Assessment of variability/confidence regions is possible using the generalized
delta method, or the nonparametric (Efron) bootstrap (see Efron and Tib-
shirani (1993)). Foolproof bootstraps (m out of n) have been proposed by
Politis and Romano (1994) (see also Bickel, Götze and van Zwet (1996) and
Politis, Romano and Wolf (1999)).
Corresponding theory has established the asymptotic behavior of the es-
timates of (i) and the confidence regions of (iii), and provided occasional
proofs of convergence for the algorithms of (ii).
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(iv) Asymptotic optimality theory has been developed to parallel that in para-
metric models using the ideas of L. LeCam and C. Stein (see Ibragimov and
Has’minskii (1981) and Pfanzagl (1982) for the earliest general statements
of such results). The focus is on procedures which converge uniformly to the
same limit over shrinking neighborhoods of a fixed member of the model.
In the i.i.d. case, a geometrically based “calculus” has been developed en-
abling us to read off optimality and degree of suboptimality of estimation
procedures proposed in semiparametric models (see BKRW).
There have, of course, been many developments in the construction of esti-

mates of objects like densities and regression functions which cannot be estimated
at the classic n−1/2 rate but for which minimax rates of convergence over vari-
ous large models can be established (Donoho, Johnstone, and Picard (1995) for
instance). The relation between these results and the optimality theory for reg-
ularly estimable objects of the type we discuss is subtle (see Bickel and Ritov
(2000a) for one point of view).

Semiparametric models and fitting procedures are increasingly proposed for
a wide varieties of non-i.i.d. data types, including independent non-identically
distributed observations, time series, spatial and spatio-temporal data. We single
out some questions that we find interesting and important and which remain to
be addressed in the i.i.d. case and/or have to be re-addressed in general. These
are far from exhaustive and are proposed to spur discussion. It is only the third
one (C) which we develop further in this paper.

(A) It is already apparent in the i.i.d. case (adaptive estimation, Bickel (1982))
and for bivariate censoring (van der Laan (1996), for example) that in many
situations efficient estimates have to be based on intermediate estimates of
an object such as a density or derivative of a density which cannot be
estimated at the n−1/2 rate over the model of interest. Even worse, there
are models, e.g., so-called partial spline regression (Engle, Granger, Rice,
and Weiss (1986)), where it may be impossible to estimate parameters of
interest at any rate without estimation of “irregular” parameters as above.
It is possible to take the position (see Robins and Ritov (1997) and Bickel
and Ritov (2000b)) that one should only consider parameters for which
there are estimates which converge uniformly over bounded neighborhoods
and redefine the notion of efficiency.

Alternatively if one is willing to postulate models in which irregular pa-
rameters converge at specified rates, and most people are, and we can, in
principle, estimate regular parameters efficiently, we are left with the ques-
tion always present in estimation of irregular parameters: how do we select
bandwidth or some other regularization parameter? Some initial discussion



866 PETER J. BICKEL AND JAIMYOUNG KWON

is in Bickel and Ritov (2000b). Choices of procedures when plug-in is de-
sired to produce both good minimax rates and efficiency for estimates of
regular parameters is another area—see Bickel and Ritov (2000a).

(B) The theory of the nonparametric bootstrap has been extended to station-
ary time series by Hall (1995), Carlstein (1986), Künsch (1989), via var-
ious versions of the “blockwise” bootstrap (see also Politis, Romano and
Wolf (1999)). Semiparametric versions have been proposed by Kreiss and
Franke (1992), Bickel and Bühlmann (1999), Rajarshi (1990), Paparoditis
and Politis (1997), and others. A “nonparametric” alternative is being stud-
ied by Kwon (2000). All of these approaches involve the choice of several
“bandwidth” parameters. These are usually selected through some stan-
dard model selection criterion, often AIC. As in (A), what the appropriate
selection criterion is when one is interested in (say) variance of estimates
of Euclidean parameters which may or may not themselves be regularly
estimable is unclear.

(C) If we leave the i.i.d. world and consider asymptotics for regression models,
time series and the like, it is possible to establish efficiency of procedures for
important special cases, e.g., regression models, diffusions (Ibragimov and
Has’minskii (1981)), Markov chains (Greenwood and Wefelmeyer (1995)),
time series models (Drost, Klaassen and Werker (1994)) and counting pro-
cess models (ABGK). However, each case requires elaborate special argu-
ments.

Bickel (1993) proposed an approach, based on ideas of Levit (1978), to a
calculus similar to that available in the i.i.d. case for situations where we
have the analogue of a largest “nonparametric” model. In Section 3 we
develop this approach further, linking it to the existence of an efficient es-
timate for an appropriate representation or “parametrization” of the “non-
parametric” model, and we show how it suggests connections between the
i.i.d. and counting process formulation of models and some generalizations
of estimating equations. Our examples are drawn from the i.i.d. case with
a new representation and from non- and semiparametric Markov models.
Extension to semiparametric stationary ergodic models is suggested, but
evidently difficult.

(D) Semiparametric models have been written down in the i.i.d. case and, more
generally, with little more justification than convenience and interpretabil-
ity of parameters if the models are valid. There seems to have been little
attention given to goodness-of-fit tests and diagnostics and/or these have
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been proposed in an ad hoc manner, e.g., tests based on martingale residu-
als in survival analysis (see ABGK for instance). Of course, this is true even
for goodness-of-fit of parametric models in the i.i.d. case. There has been
a resurgence of interest in goodness-of-fit tests in the i.i.d. case (see, e.g.,
Rayner and Best (1989), Kallenberg and Ledwina (1995) and Fan (1996)).
Bickel, Ritov and Stoker (1998) propose a unified framework for test con-
struction in the i.i.d. case. Development and extension of these notions to
the non-i.i.d. world seems worthwhile.

(E) Although there has been a huge amount of work on algorithms (MCMC)
for Bayesian non- and semiparametric inference, the relations to frequen-
tist inference are only poorly understood. There are negative results—see
Freedman (1963, 1965, 1999) on consistency, and Cox(1993) on some higher
order phenomena. But consistency rates and Bernstein-von Mises theorems,
outside the nonparametric Dirichlet process domain for regular parameters,
are only now being considered and much more is needed—see Wasserman
(1998) and Ghosal, Ghosh, and van der Vaart (2000) and references therein.

In summary, we have indicated five areas in which we believe further theoret-
ical understanding of inference in semiparametric models is needed. We develop
some notions and results fully for one of these, (C), in Section 3, after introduc-
ing some general definitions and reviewing the i.i.d. case in Section 2. We leave
consideration of other areas to the references and the future.

2. Basic Notions and Review of the i.i.d. Case

Disclaimer: We do not mention σ fields or questions of measurability in what
follows, though these issues have to be taken into account by a careful treatment.
We refer to van der Vaart and Wellner (1996), for example, for the additional
assumptions, definitions and results needed to render our statements rigorous
and, instead, focus on what we view as the essential conceptual issues.

In a very general sense we view a model as a set P of probabilities on the set
X in which the total data X, usually a vector of numbers coding for an object
(e.g., a bit map, a time series, etc.) takes its values. We write X ∼ P ∈ P.

A parametric model is one where the set P is smoothly describable as the
image of a nice set Θ in Rd by a map θ → Pθ, where smooth means (say)
continuously differentiable in the Hellinger metric on P. A nonparametric model
is the set of all probabilities that we think the data could possibly have been
generated under—or at least a dense subset of these. Since the set of all possible
probability distributions on X is too large for discrimination on the basis of
observation X, the nonparametric models we consider are themselves subsets of
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the set of all probability distributions, and parametrizable by b ∈ M which we
take to be a subset of a Banach space B. Semiparametric models are everything
in between.

In all that follows we are interested in asymptotics, as n → ∞, so that
X = X (n) and P = P (n), where n is the sample size, the numbers of independent
observations taken in a particular design, the length of time series observed, etc.
However, the representing parameter space M and B ⊃ M are fixed. A submodel
P of the nonparametric model is then identified with a subset of M. When we
refer to elements of P as b, b corresponds to P (n)

b .
We illustrate with the i.i.d. case. Here X = (X1, . . . ,Xn) and the Xi ∈ X1

are i.i.d. P (1) ∈ P(1) so that X = X (n) = X1 × . . . ×X1, P = {P (1) × . . .× P (1) :
P (1) ∈ P(1)}. Nonparametric models are usually parametrized by P (1) viewed as
an element of the Banach space of finite signed measures on X1 and M is the set
of all probabilities on X1, or all absolutely continuous probabilities with respect
to some σ-finite measure µ.

A parameter θ on P is a map from P to T which we take to be Euclidean or,
more generally, Banach space. Thus, parameters to focus on are real, θ : P → R,
and B-valued, θ : P → B, so θ(P (n)

b ) = b.
The theory of efficient estimation in i.i.d. models can be thought of as follows.

We identify b with P (1). Let P̂n be the empirical distribution.

(A) If P = M = {all P (1)} then P̂n is an efficient estimate of P (1), at least in
the sense that for all (continuous, linear) θ(P (1)) =

∫
ωdP (1), ω bounded,

the linear estimate,

θ(P̂n) =
∫
ωdP̂n =

1
n

n∑
i=1

ω(Xi)

is “asymptotically efficient”.

(B) If θ(·) is smoothly differentiable, i.e., locally approximable by a continu-
ous linear parameter, the optimality of estimation holds for θ(P̂n) and is
characterized by its local linear approximations.

(C) Optimality of θ(P̂n) extends to suitable Euclidean- or Banach-valued pa-
rameters θ(P ) by viewing them as collections of real parameters.

(D) If P is a submodel of M, a calculus is developed for geometrically char-
acterizing a local linear approximation that an efficient estimate of θ must
have.
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In Section 3 we argue that, in general, given how to efficiently estimate
θ(b) = b in M, conclusions (B), (C) and particularly (D) extend quite generally.

We next make all these notions more precise in the i.i.d. case.
A regular parametric one dimensional model (or curve) through P0 is defined

as Q = {Pt : |t| < 1} where:
(i) t→ Pt is 1 − 1.
(ii) Pt � µ for a σ-finite µ for all t, and if p(·, t) ≡ dPt/dµ then the map

r0 : (−1, 1) → L2(P0) defined by r0(t) = 2
(
(p(·, t)/p(·, 0))1/2 − 1

)
1(p(·, 0) >

0) is continuously differentiable at 0, and its derivative l̇(·, 0) ∈ L2(P0) is
nonzero.

The notation l̇ reflects that, “pointwise”, l̇(x, 0) = ∂l/∂t(x, 0) where l(x, t) =
log p(x, t) and ‖l̇(X1, 0)‖2

0, the squared norm of l̇ in L2(P0), is the Fisher infor-
mation.

The tangent space Ṗ(P0) at P0 ∈ P is the closed linear span of Ṗ0(P0) ≡
{h ∈ L2(P0) : h = l̇(·, 0) for some curve Q ⊂ P}.

The tangent space of a nonparametric model is L0
2(P0) := {h ∈ L2(P0) :∫

hdP0 = 0} itself. An estimate θ̂n of a real parameter θ(P ) is regular at P0 ∈ P
if for every curve Q through P0, Ltn(

√
n(θ̂n − θ(Ptn))) → L0. Here Lt denotes

distribution under Pt ∈ Q and |tn| ≤ Mn−1/2 for some M < ∞ with L0 not
dependent on {tn}. Note that regularity is implied by uniform convergence of
Lt(

√
n(θ̂n − θ(Pt))) on some compact neighborhood of θ. An estimate θ̂n of θ(P )

real is asymptotically linear at P0 if

θ̂n = θ(P0) +
∫
ψ(x, P0)dP̂n(x) + oP0(n

−1/2),

where ψ(·, P0) ∈ L0
2(P0). Then ψ(·, P0) is called the influence function of θ̂n. It is

necessarily unique. A regular asymptotically linear estimate θ̂∗n which minimizes
the asymptotic variance of

√
nθ̂n (which is just

∫
ψ2(x, P0)dP0(x)) among all

regular asymptotically linear estimates at P0 is called efficient at P0. One way
of framing the basic optimality theorem of estimation in semiparametric models
in the i.i.d. case is as follows.

Theorem 1.
(a) Suppose a regular asymptotically linear estimate θ̂∗n of θ(P ) real exists, with

influence function ψ∗(·, P0) which is efficient at P0, then ψ∗ ∈ Ṗ(P0). Con-
versely, if a regular asymptotically linear estimate θ̂n has influence function
ψ∗(·, P0) belonging to Ṗ(P0), then θ̂n is efficient at P0.

(b) If ψ is the influence function of any regular asymptotically linear estimate,
then ψ∗(·, P0) = Π0(ψ(·, P0) | Ṗ(P0)), where Π0(· | L) denotes projection in
L0

2(P0) on L ⊂ L0
2(P0).
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Note that, since Ṁ(P0) = L0
2(P0), it follows that if θ(P ) =

∫
ωdP is contin-

uous linear then θ(P̂n) is regular asymptotically linear and hence efficient at all
P0 ∈ M, the basic property of P̂n described in (A).

These results are a subset of those obtained in Theorem 3.3.2 and Proposition
3.3.1 of BKRW, although we avoid the definition of pathwise differentiability of
parameters and consideration of general regular estimates here.

More generally, θ̂∗n is more concentrated around θ(P0) under P0 than any
other regular estimate (Hájek–LeCam Theorem), and has asymptotic minimax
properties as well (see BKRW).

Result (a) enables us to quickly check if a candidate estimate is efficient
by determining if its influence function belongs to Ṗ(P0), since characterizing
“dense” subsets of Ṗ(P0) is usually simple.

Estimates of d-dimensional parameters θ(·), and even parameters θ(·) taking
values in a Banach space T , can be viewed as the collection of estimates of
all continuous linear functionals b∗(θ(·)), b∗ ∈ T ∗, the dual space of T . Now
asymptotically linearity becomes a requirement for b∗(θ̂n), for all b∗ in a large
subset T̃ ∗ of T ∗. Theorem 1 then applies directly. If {b∗(θ̂n) : b∗ ∈ T̃ ∗} possesses
tightness properties as a stochastic process on T̃ ∗, then efficiency of θ̂∗n also holds
for plug-in estimates q(θ̂∗n) of certain real-valued q(θ(P )), where q is non-linear.
These issues are further discussed in BKRW, Chapters 5–7.

3. The Information Calculus

Our goal in this section is to develop a framework introduced in Bickel (1993)
through which, once one has characterized the analogue of efficient influence
functions in largest models (e.g., the nonparametric model for Markov chains),
one can read off influence functions for submodels of interest geometrically as in
the theorem. We illustrate these techniques in a variety of examples.

As in Section 2 suppose we have X(n) ∼ P
(n)
b , b ∈ M ⊂ B, a Banach space

as our “nonparametric model”. Let B∗ be the dual space of B, i.e., all continuous
linear functionals b∗ on B endowed with the operator norm. Let rn ↓ 0 at some
rate (n−1/2, in the examples we discuss).

We make the following assumptions, see also Levit (1978).
(A1) There is a sequence of estimates b̂(n) of b in M such that, for all b∗ ∈ B∗

0 ⊂ B∗

where B∗
0 is a linear space,

r−1
n (b∗(b̂(n)) − b∗(b)) ⇒ N (0, σ2(b∗, b)) (3.1)

under P (n)
b .

(A2) For each b ∈ M there is a Hilbert space Hb with inner product 〈·, ·〉b,
norm ‖ · ‖b, and a mapping T : B∗

0 → Hb with the following properties. If
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r−1
n (b∗n(b̂(n)) − b∗n(b)) ⇒ N (0, τ2) for a sequence {b∗n}, then ‖Tb∗n − h‖b → 0

for some h ∈ H and τ2 = ‖h‖2
b . In particular, in (3.1), σ2(b∗, b) = ‖h‖2

b

where h = Tb∗.

Definition 1. Let Q ≡ {bη ∈ M : |η| < 1} be a parametric submodel of M
containing b0. Then Q is regular at b0 iff there exist b∗n ∈ B∗

0 and l̇ ∈ Hb0 such
that ‖Tb∗n − l̇‖b0 → 0, and if tn → t,

log(dP (n)
brntn

/dP
(n)
b0

)(X(n)) = tr−1
n (b∗n(b̂(n)) − b∗n(b0)) −

t2‖l̇‖2
b0

2
+ op(1). (3.2)

In view of (3.1), (3.2) implies that log(dP (n)
brntn

/dP
(n)
b0

)(X(n)) ⇒ N (− t2

2 ‖l̇‖2
b0

,

t2‖l̇‖2
b0

) under P (n)
b0

, which implies that the model {P (n)
b : b ∈ Q} has the LAN

property (LeCam and Yang (1990)).

Definition 2. For any submodel P ⊂ M, b0 ∈ M, let Ṗ0(b0)(⊂ Hb0), the
tangent set of P at b0, be the set of all l̇ ∈ Hb0 corresponding to one-dimensional
submodels of P regular at b0. Let Ṗ(b0), the tangent space of P at b0, be the
linear closure in Hb0 of Ṗ0(b0).

(A3) Ṁ(b0) = Hb0 for all b0 ∈ M.

Definition 2, (A2) and (A3) characterize M as the “nonparametric model”
corresponding to Hilbert space Hb0 , as in Levit (1978).

Note that if X(n) = (X1, . . . ,Xn), Xi i.i.d. P , if X is a complete sepa-
rable metric space, and if we identify b with P viewed as an element of the
Banach space of signed measures on X1, then we can make the following cor-
respondences if M is the set of all probabilities on X1: b̂(n) = P̂n; B∗

0 = B∗ =
{Continuous bounded functions on X}; b∗(b) =

∫
b∗(x)db(x); Hb0 = L0

2(b0). The
mapping T is given by Tb∗ = b∗ − Eb0b

∗. Finally, the definition of tangent set
and space given in Section 2 agree with the ones we have given more generally
here provided only that we note that Hb0 is the closure of TB∗

0.
We now can extend the notion of real parameter and regular asymptotically

linear estimates directly. A real parameter θ on P just maps P to R. An
estimate θ̂n(X(n)) of θ is regular at b0 iff Lbrntn

(r−1
n (θ̂n−θ(brntn))) ⇒ L0 for some

L0 independent of {tn}, whenever {Pbη : |η| < 1} is a regular one-dimensional
submodel of P and |tn| ≤ M < ∞ for all n, some M < ∞. The estimate θ̂n is
asymptotically linear at b0 iff

r−1
n (θ̂n − θ(b0)) = r−1

n b∗n(b̂(n) − b0) + op(1), (3.3)

where ‖Tb∗n − ψ(·, b0)‖b0
P→ 0 for ψ(·, b0) ∈ Hb0 (under P (n)

b0
). If θ̂n is asymptoti-

cally linear, it follows from (A1) and (A2) that r−1
n (θ̂n−θ(b0))⇒N (0, ‖ψ(·, b0)‖2

b0
).
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In complete agreement with Section 2 we call ψ(·, b0) the influence function or
representer of θ̂n at b0.

Theorem 1 of Section 2 still applies since no special properties of the i.i.d. case
are used. In particular, note that if b∗(b̂) is a regular estimate of b∗(b) on M,
then b∗(b̂) is the asymptotically unique efficient estimate of b∗(b). Even further,
l̇ of (3.2) can be called the “score function” since it is related to the efficient
influence function ψ(·) for estimates of the parameter η of the model Q via
the relation ψ = l̇/‖l̇‖2

b0
. In fact, since the theory developed in Section 3.4 of

BKRW that is based Section 3.3 there depends only on the geometry of L0
2(P0),

Theorem 3.4.1 of BKRW generalizes directly as well, as do the other definitions
and propositions of that section. Extensions of Theorem 1 to vector and Banach-
valued parameters that are proved in Chapters 3 and 5 of BKRW carry over as
well, though formulation of regularity conditions undoubtedly requires work.

Finally, we note that the calculus also suggests what kind of representers we
need to look for in estimates which are only locally efficient in the sense of Robins
and Ritov (1995), i.e.,

√
n-consistent at most Pb and efficient on a parametric

subfamily (see also BKRW, especially Example 7.7.2). Specifically, given l̇10(θ),
the score function of a parametric submodel Q = {Pθ : θ ∈ Θ ⊂ Rd}, we look for
estimates with representer l∗0(·, b) = l̇10(θ)−Πb(l̇10(θ) | Ṗ1(b)) where Ṗ1(b) is the
tangent space of the full model. We expect these estimates to be

√
n-consistent

on P and efficient at all members of Q under suitable regularity conditions.
We now show that these notions apply to a number of interesting situations,

and show that various estimates of important parameters in particular submodels
are efficient.

Example 1. The d sample problem. Suppose X(n) = {Xij : 1 ≤ i ≤ nj, j =
1, . . . , d} where Xij ∈ X are i.i.d. P (j) for j = 1, . . . , d,

∑d
j=1 nj = N . Suppose

π̂j ≡ nj

N → πj > 0, 0 < πj < 1, 1 ≤ j ≤ d. We can now take b(P ) =
(P (1), . . . , P (d)) ∈ B1 × . . . × B1 where B1 ≡ {Finite signed measures on X}. If
M = {b : P (j) � µ, 1 ≤ j ≤ d}, then b̂ = (P̂ (1)

n , . . . , P̂
(d)
n ) where P̂ (j) is the

empirical measure of {Xij : 1 ≤ i ≤ nj}.
It is easy to see that if we take rN = N−1/2, B∗

0 = {∑d
j=1 b

∗
j(xj) : b∗j bounded

continuous on X , 1 ≤ j ≤ d} and Hb0 = {∑d
j=1 hj(xj) : hj ∈ L0

2(P
(j)
0 )} for

b0 ↔ (P (1)
0 , . . . , P

(d)
0 ) and∥∥∥∥∥∥

d∑
j=1

hj

∥∥∥∥∥∥
2

=
d∑

j=1

πj

∫
h2

j (x)dP
(j)
0 (x), (3.4)

then (A1)–(A3) hold.
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The space Hb0 with norm (3.4) is the same as the tangent space at P0 for the
model (Zi, Yi), i.i.d. P ∈ P, where P [Z = zj ] = πj known, Z = {z1, . . . , zd}, and
Y | Z = zj has distribution P (j). Evidently tangent spaces of submodels also
coincide given the correspondence between (P (1), . . . , P (d)) in the two models just
given. We can, for instance, consider the regression submodel for this example:

Xij = θ1 + θ2zj + εij , (3.5)

where the εij ∈ R are i.i.d. F with density f such that I(F ) =
∫
((f ′)2/f)(x)dx <

∞. As in Example 4.2.2 of BKRW, the tangent space at b0 ↔ (θ1, θ2, F ) is

Ṗ (b0) =
{ d∑

j=1

hj(xj) : hj(xj) = (c1 + c2zj)
f ′

f
(εj), c1, c2 ∈ R

}
.

The MLE of θ2 for f known is regular and has expansion

θ̂2 = θ2 +
1
N

d∑
j=1

nj∑
i=1

−(zj − z̄N )
σ2

N

f ′

f
(εij) + op(N−1/2),

where z̄N =
∑d

j=1 π̂jzj , σ2
N =

∑d
j=1(zj − z̄)2. It is efficient since its influence

function belongs to the tangent space. Since Koul and Susarla’s (1983) estimate
is regular and has the same influence function, it is adaptive. There is nothing
special about this argument and it is clear that treating the Z as fixed or random
when their distribution is known, or is independent of the parameters governing
the P (j), makes no difference in the construction of efficient estimates.

Next, we show how our framework relates to the counting process repre-
sentations in the i.i.d. case which are of great importance in the formulation
of models in survival analysis — see ABGK. Our approach can be viewed as, in
part, putting results of Ritov and Wellner (1987) and Efron and Johnstone (1990)
in our context. It is related to that of Greenwood and Wefelmeyer (1990) and
Heyde (1988). The model we consider is less general than that of Greenwood and
Wefelmeyer but permits us to link directly to Levit’s very general Hilbert space
representation. Heyde’s approach corresponds to the treatment of Chapter 5 of
BKRW generalized to the case of dependent variables, but deals with parame-
ters defined by estimating equations rather than models and is tied to likelihood
formulations. Our formulation enables us to read off efficiency properties which
otherwise have to be shown by tediously going from elegant counting process rep-
resentations to less elegant influence function (of the usual type) representations
— See Example 3.4.2 of BKRW for instance.

Example 2. Counting process representation for i.i.d. and d-sample models.
Let (Zi, Yi) be i.i.d. P ∈ M, where we suppose Z has fixed distribution H0
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with finite support {z1, . . . , zd}, and Y ∈ R has conditional density p(· | z)
with respect to Lebesgue measure and hazard rate λ(· | z) ≡ p(· | z)P̄−1(· | z),
where P̄ ≡ 1 − P , P (y | z) ≡

∫ y
−∞ p(t | z)dt. We are interested in estimating

parameters (P (1), . . . , P (d)) where P (j) ↔ p(·|zj). To begin with, we suppose that
πj = P [Z = zj ] are known and that b := (π1P

(1), . . . , πdP
(d)) determines P . Not

surprisingly, it will turn out that, as far as estimation relating to (P (1), . . . , P (d))
is concerned, knowing the πj or not is irrelevant.

Let B be as in Example 1, and let B = B1 × · · · × B1 be the space of d-
tuples of finite signed measures on R with measures P of M corresponding to
(π1P

(1), . . . , πdP
(d)), rather than (P (1), . . . , P (d)) as in Example 1. Then, B∗ =

{∑d
j=1 b

∗
j : b∗j ∈ B∗

1, b
∗
j (bj) =

∫
b∗jdbj}, and b∗j are bounded continuous. Moreover,

b̂ = (π1P̂
(1)
n , · · · , πdP̂

(d)
n ) where P̂ (j)

n is the conditional empirical distribution given
Z = zj , that is P̂ (j)

n (A) = 1
Nj

∑n
i=1 1(Z = zj)1(Yi ∈ A), Nj =

∑n
i=1 1(Z = zj).

For h ∈ L0
2(P ), define

Rjh(·) = h(·) − P̄−1
j (·)

∫ ∞

·
h(s)dPj(s). (3.6)

Represent

b∗(b̂) − b∗(P ) =
d∑

j=1

πj

∫
b̄∗j (x)dP̂

(j)
n (x), (3.7)

where b̄∗j = b∗j −
∫
b∗jdPj . Now∫

b̄∗jdP̂
(j)
n =

∫
Rj(b̄∗j)d(P̂

(j)
n − Λ̂(j)

n ) (3.8)

Λ̂(j)
n (u) =

n∑
i=1

1(Zi = zj)
∫ Yi∧u

−∞
λ(t | zj)dt. (3.9)

This is relation (3.15) of Ritov and Wellner (1988) and can readily be established
by integration by parts. The process Λ̂(j)

n is just the compensator of njP̂
(j)
n (·).

From (3.7), (3.8) and Martingale theory (Proposition 2.1(iv) of Ritov and Wellner
(1988))

√
n(b∗(b̂) − b∗(P )) ⇒ N

(
0,

d∑
j=1

πj

∫
R2

j (b̄
∗
j )dP

(j)
)
. (3.10)

Note that Rj(b∗j ) = Rj(b∗j + c).
We therefore can embed B∗

0 into L2(P ) via Tb∗ =
∑d

j=1 1(Z = zj)(Rjb
∗
j)(Y ).

(A1) and (A2) follow from the i.i.d. case. Moreover, (A3) holds since
∑d

j=1 1(Z =
zj)(Rjb

∗
j)(Y ) is dense in L0

2(P ). To see this let, for hj ∈ L2(P (j)),

Ljhj(·) = hj(·) −
∫ ·

−∞
hj(y)λ(y | zj)dy. (3.11)



INFERENCE FOR SEMIPARAMETRIC MODELS 875

By Ritov and Wellner (1988), Lj maps L2(Pj) onto L0
2(Pj). If b∗j = Ljhj, where

hj is continuous for j = 1, . . . , d, then b∗ =
∑d

j=1 b
∗
j ∈ B∗

0. Since the set of all
such hj is dense in Hb = L2(P (j)), (A3) follows.

Lastly we note the following representation (Efron and Johnstone (1990)).
If Q is a regular one-dimensional parametric submodel with conditional density
q(· | z, θ) and conditional hazard rate λ(· | z, θ), then for 1 ≤ j ≤ d, if λ(· |
zj , θ) ∈ L2(P (j)),

Lj
∂

∂θ
log λ(· | zj , θ) =

∂

∂θ
log q(· | zj , θ). (3.12)

Thus the score function in the classical sense, ∂
∂θ log q(· | Z, θ) ∈ L0

2(P ), is now
represented by ∂

∂θ log λ(· | Z, θ) ∈ L2(P ). As we noted in Example 1, this analysis
carries over directly to the d-sample model. Our approach from this point on
evades intermediate calculations, such as in Ritov and Wellner ((1988), pp. 208-
212). We note that the approach we have just given can carry over to the censored
and truncated data case in many ways parallel to the presentation in Chapter 8 of
ABGK. However, as in BKRW, our point of view makes calculations of efficiency
more transparent.

We apply the representation to three examples.
(a) Cox proportional hazard model. Suppose P = {P ∈ M : λ(t | z, θ) =

r(z, θ)λ(t), λ arbitrary}. For simplicity take λ = 1. If λ is fixed, the “score
function” for θ is

l̇1 =
∂

∂θ
log λ(t | z, θ) =

∂

∂θ
log r(z, θ). (3.13)

On the other hand, the “tangent space” with respect to the nuisance pa-
rameter λ(·) is clearly {h(Y ) :

∫
h2dP < ∞}. Therefore, by the general-

ization of Theorem 3.4.1 of BKRW, the “efficient score function” for θ is
l∗1 = l̇1 − E(l̇1 | Y ). Specializing to the usual Cox case, r(z, θ) = eθz, we
obtain

l∗1 = Z − E(Z | Y ). (3.14)

This is in agreement with equation (4.15) in Ritov and Wellner (1988). Since
l∗1/‖l∗1‖2 is just the “influence function” of the Cox estimate we can conclude
its efficiency without going through the tedious calculations needed to com-
pute its influence function in the ordinary representation. (Of course, we still
require Z to have finite support and ∂λ/∂θ to be continuous, but we remove
these contingencies below.)

(b) The model of Nielsen, Linton and Bickel (1998). Here λ(t | z, θ) = ω(z)λθ(t)
where ω is arbitrary. The argument given above yields the “efficient score
function”

l∗1 =
∂

∂θ
log λθ(Y ) − E

(
∂

∂θ
log λθ(Y ) | Z

)
, (3.15)
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and again efficiency of the type of estimate proposed by these authors follows.
Admittedly Nielsen et al. assumed the distribution of Z absolutely continuous
unknown, but again we dispense with this below.

(c) A model of Chen and Wang (2000). Consider the “accelerated hazard” model
with λ(y | z, θ) = λ0(r(z, θ)y), r > 0, θ and λ0 arbitrary. The score function
for λ0 fixed is

l̇1 = [log λ0]′(r(Z, θ)Y )
∂

∂θ
r(Z, θ)Y. (3.16)

The tangent space for θ fixed is just {h(r(Z, θ)Y ) : h(r(Z, θ)Y ) ∈ L2(P )},
and the “efficient score function” for θ is

l∗ = [log λ0]′(r(Z, θ)Y )
(
∂

∂θ
r(Z, θ)Y − E

(
∂

∂θ
r(Z, θ)Y | r(Z, θ)Y

))
(3.17)

Chen and Wang construct a regular estimate on ad hoc grounds, but easily
seen to be locally efficient at the Weibull family for r(z, θ) = ezθ, z = 0 or 1,
the two-sample model. In this case λ0(t) = (α+ 1)tα, t > 0, α > −1, and

l̇1(Z, Y, θ) = αZ, (3.18)

l∗(Z, Y, θ) = α(Z − E(Z | Y eZθ)), (3.19)

yielding asymptotic variance in the uncensored case of α−2E Var(Z −E(Z |
Y eZθ)). The agreement with the expression in their Theorem 1 is not obvious,
but follows from our discussion on estimating equations below, and their
estimating equation (8).

Extensions

Admittedly, in all of these examples as originally dealt with, covariates were
not limited to be finite-valued and often were time-varying. Time variation within
a (Z, Y ) observation clearly does not affect our general approach. Extension of
the argument to arbitrary covariates is also possible. It is not necessary in the
“nonparametric” case to efficiently estimate the function π(·)p(· | z), but only
linear functionals

∫
b∗(z, y)dP (z, y) with b∗(·, ·) ∈ L2(P ) by

∫
b∗(z, y)dPn(z, y).

These estimates have representers LZ(b∗(·,Z)) in L2(P ), where LZ is defined as
in (3.12). In the same way, continuity of ∂λ/∂θ is unnecessary. Only membership
in L2(P ) is needed. The rest of the development of tangent spaces and efficient
score and influence functions is unchanged. Also note that the case of fixed
covariates is covered by combining Examples 1 and 2.

Censoring, Truncation

We can more generally consider i.i.d. observations Xi = (Zi, Li,∆i, Yi), i =
1, . . . , n, where Li corresponds to left truncation and ∆i is the censoring indicator.
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That is, C, T and L are independent given Z with Y = max{L, T ∧ C} and
∆ = 1(T ≤ C). Suppose the marginals of Z and L are fixed. If we now represent
the data by the marked point processes

Ni(t) = 1(Li ≤ Yi ≤ ·) =

1(Li ≤ Ti ≤ ·), if ∆ = 1

1(Li ≤ Ci ≤ ·), if ∆ = 0,

we are led via the usual argument to the representation of a one-dimensional
regular model via

l̇1(Z, L,∆, Y1) =
[
∆
∂

∂θ
log λ1(Y | Z, θ) + (1 − ∆)

∂

∂θ
log λ0(Y | Z, θ)

]
1(Y ≥ L),

(3.20)
where λ0, λ1 are the hazard rates of the censoring time C and lifetime T , re-
spectively. Again, the nonparametric model corresponds to the possibility of
arbitrary conditional hazard rates for T and C subject to truncation by L. Now
Ṁ = {h(Z, Y,∆)1(Y ≥ L) ∈ L2(P )} and the tangent space of the Cox model is
just

Ṗ =
{
h(Z, Y,∆) =

[
∆
( ∂
∂θ

log r(Z, θ) + h1(Y )
)

+ h2(Z, Y )
]
1(Y ≥ L)

}
,

where h1(Y ) and h2(Z, Y ) range freely over members of LZ(P ) of the appropriate
form. The efficient score function is just

l∗ = ∆
( ∂
∂θ
r(Z, Y, θ) − E

( ∂
∂θ
r(Z, Y, θ)

∣∣∣∣Y ))
1(Y ≥ L),

in agreement with Ritov and Wellner (1988), since the second term in (3.20)
is projected out and it is easy to see that the first term has projection on the
orthocomplement of Ṗ as above.

Estimating Equations

As in the i.i.d. case the representer l∗ suggests estimating equations but
not linear ones. The compensator Λ(· | z) depends on P and can be estimated
empirically if Z has finite support (and more generally — see ABGK Chapter 7).
For instance, in the uncensored and untruncated finite valued Z case dΛ̂(j)

n (t) =

dP̂
(j)
n (t)/ ¯̂

P
(j)

n (t−) estimates dΛ̂(j)
n (·). We have, even ignoring the necessity of

proving adequate behavior for the Λ̂(j)
n , the further problem of estimating the l∗

which themselves in all our examples depend on conditional expectations. That
is, say in the uncensored case, we look for estimates l̂∗(y, z, θ) of l∗(y, z, θ, P ) and
then try to solve ∑

j=1

πj

∫
l̂∗(y, z, θ)d(P̂ (j)

n − Λ̂(j)
n )(y) = 0. (3.21)
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The dependence on πj is illusory for parameters depending on (P (1), . . . , P (d))
only. In the Cox model, estimating l̂∗ appears to require the estimation of
E(Z | Y ). This is easier than expected once one notices

E(Z | Y = y) =
E(r(Z, θ)Z1(Y ≥ y))
E(r(Z, θ)1(Y ≥ y))

, (3.22)

as in Ritov and Wellner ((1988), equation (4.15)). The natural (empirical) es-
timate of E(Z | Y = y) is now just the Cox partial likelihood estimate. In the
Nielsen, Linton, Bickel model, if Z is discrete, everything is readily estimable
empirically. If Z is continuous, however, kernel estimation is required and we are
led to the procedure suggested by Nielsen et al.

In the Chen–Wang model it appears that
(i) To adapt, obtain full efficiency always, one must estimate λ′0/λ0 and this

requires density estimation.
(ii) Computing the conditional expectation given Y requires further density es-

timation.
This is unnecessary if (a) one is satisfied with local efficiency at λ0, and

(b) chooses λ0(t) = (α + 1)tα corresponding to a Weibull distribution, so that
l̇1(Z, Y, θ) is a function of Z only.

This is the Chen–Wang approach which works because, as in the Cox model,
for any function ω(Z, θ), E(ω(Z, θ) | Y r(Z, θ) = u) = S̃1(u)

S̃0(u)
where, for j = 0, 1,

S̃j(u) = E
(
ωj(Z, θ)1(r(Z, θ)Y ≥ u)

)
. Of course, proving that estimates based on

such equations behave as we expect them to do requires extensive conditions as
soon as one permits censoring and truncation—see Chen and Wang (2000), and
more generally ABGK. However, the information calculus makes it clear which
l∗ or l̇10 − Π(l̇10 | Ṗ1) we need to estimate.

As is noted in BKRW and by Ritov and Wellner (1988), in connection with
the Cox model, we can obtain locally efficient estimates in the following way.
Start with the hazard rate representer of the score function of a “fixed shape”
model, project on the orthocomplement of the tangent space in the representer
space, and then solve an equation like (3.21). This principle, which we make
explicit for a large class of examples, can be generalized. We do not pursue this
here, but see the development in Chapter 6 of ABGK.

Example 3. Real-valued Markov chains. Suppose X(n) ≡ (X1, . . . ,Xn) ∼ P
(n)
b ,

the n-dimensional marginal of P (∞)
b , the distribution of a real-valued stationary

Markov chain with transition kernel corresponding to b, a probability measure
on R×R with equal marginals, i.e., (X1,X2) ∼ b. Take B to be the space of all
signed measures on R2 endowed with the total variation norm, and M to be the
set of all b corresponding to a Markov chain obeying a Doeblin condition: for
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some r > 1, the conditional distribution of Xr given X1 is dominated by some
σ-finite µ, and if p(r)

b (y | x) is the conditional density with respect to µ then

p
(r)
b (Xr | X1) ≥

dν

dµ
(Xr) ≥ 0 a.s. (3.23)

for a measure ν such that ν(R) > 0. The natural estimate of b is b̂(n) ≡ P̂
(2)
n , the

empirical distribution of (Xi,Xi+1), 1 ≤ i ≤ n−1. Take B∗
0 = B∗, represented as

all continuous functions on R2 via b∗(b) =
∫
b∗(x1, x2)db(x1, x2). By (3.23) and

the geometric ϕ mixing (see Doukhan (1994) for instance),

n1/2(b∗(b̂(n)) − b∗(b)) = n−1/2
n−1∑
i=1

(b∗(Xi,Xi+1) − b∗(b)) ⇒ N (0, σ2(b∗)),

where

σ2(b∗) = Varb(b∗(X1,X2)) + 2
∞∑

k=1

Covb(b∗(X1,X2), b∗(Xk+1,Xk+2)). (3.24)

Evidently, if

b∗1(x1, x2) = b∗2(x1, x2) + a(x2) − a(x1) + c (3.25)

for some fixed c and a bounded a.s. (x1, x2), then b∗1(b̂(n)) and b∗2(b̂(n)) have the
same limiting distribution. We thus, as in Bickel (1993) and Künsch (1984),
define a mapping T on L2(P0) by Tb∗(x1, x2) = b∗(x1, x2) + a(x2)− a(x1) where

a(x) =
∞∑

k=0

Eb(c∗(Xk+1) | X1 = x), (3.26)

c∗(x) = Eb(b̄∗(X1,X2) | X1 = x) with b̄∗ = b∗ − Eb∗.
Note that (3.23) implies that a(x) =

∑∞
k=0(Eb(c∗(Xk+1) | X1 = x) −

Eb(c∗(X1))) exists and has |a(x)| ≤ M
∑∞

k=0 ϕ
k, where M is the L∞ norm of

b∗ and |ϕ| < 1 is the mixing coefficient. It is easy to verify that Tb∗ satisfies

Eb(Tb∗(X1,X2) | X1) = 0 (3.27)

and, moreover, that
σ2(Tb∗) = Varb(Tb∗(X1,X2)). (3.28)

Take H0 = {h(X1,X2) : Eb(h2(X1,X2)) < ∞, Eb(h(X1,X2) | X1) = 0 a.s.}
endowed with the L2(P

(2)
b ) norm. Clearly, T maps L2(P0) into Hb0 and (A1)

and (A2) hold for B∗
0 as defined. Finally, note that if h ∈ H0, h continuous

bounded and b is given, we can define a one-dimensional parameter submodel
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Q ≡ {Qη : |η| < 1} through Pb whose transition probability is dominated by that
of P (2)

b and given by

dQη(x2 | x1)
dPb(x2 | x1)

= exp{ηh(x1, x2) −A(η, x1)},

with A(η, x1) the appropriate normalizing constant. Evidently the Doeblin con-
dition holds for each η and the µ corresponding to Pb. The model Q is also clearly
regular with score function h. Since continuous bounded h ∈ H0 are dense in
H0, (A3) follows.

The basic result of Greenwood and Wefelmeyer (1995) now follows: b∗(P̂ (2)
n )

is an efficient estimate of b∗(P (2)) for b∗ ∈ B∗
0. More generally, plug-in works

for parameters
∫
hdP

(2)
b , b ∈ P = {b ∈ M :

∫
h2dP

(2)
b < ∞}, and smooth

parameters v(P (2)
b ) having linear derivatives

∫
hdP

(2)
b in weak metrics on M, such

as Kolmogorov–Smirnov. On the other hand, it is clear that parameters such as∫
ψ(x1, x2, x3)dP

(3)
b (x), ψ genuinely a nonlinear function of three variables, are

not efficiently estimated by
∫
ψ(x1, x2, x3)dP̂

(3)
n (x), since there is no function

h(X1,X2) with h(X1,X2) ≡ ψ(X1,X2,X3). Schick and Wefelmeyer (1999) used
a sample splitting idea for construction of efficient estimators of such parameters,
and Schick (2001) has recently shown how that idea may be extended to general
semiparametric models. Kwon (2000) shows how to construct an estimator for the
current situation which does not use an unrealistic sample splitting mechanism.
The idea, suggested in Bickel (1993) and carried out by Kwon (2000), is to write

θ(b) ≡ Ebψ(X1,X2,X3) =
∫
Eb{ψ(x1,X2,X3) | X2 = x2}dP (2)

b (x1, x2)

and use an empirical kernel or other estimate p̂(x2 | x1) of the transition den-
sity pb(x2 | x1) to estimate Eb{ψ(x1,X2,X3) | X2 = x2} by

∫
ψ(x1, x2, x3)p̂(x3 |

x2)dx3, ending with θ̂ = 1
n−1

∑n−1
i=1

∫
ψ(Xi,Xi+1, x3)p̂(x3 | Xi+1)dx3. More gen-

erally (say) the lag k autocovariance θk ≡ cov(X1,Xk+1), k > 1, when EX0 = 0,
can be estimated by θ̂k = 1

n

∑n
i=1Xi

∫
xp̂(k)(x|Xi)dx, where p̂(k) is defined recur-

sively by

p̂(j)(z|x) =
∫
p̂(z|y)p̂(j−1)(y|x)dy, j = 3, . . . , k, (3.29)

and p̂(2)(·|·) is the kernel estimate of the transition density based on (Xi,Xi+1):
1 ≤ i ≤ n− 1. In practice, rather than computing p̂(k), one would use a Markov
bootstrap (Kwon (2000)).

Semiparametric submodels of M
In this example we initially proceed more formally and permit chains which

do not necessarily obey Doeblin conditions.
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(a) The nonlinear autoregressive model
Let P be the submodel Xi+1 = g(Xi) + εi+1, 1 ≤ i ≤ n, where g is unknown

and εi are i.i.d. E(ε21) <∞, E(ε1) = 0. Then {Xi, i = 1, 2, . . .} is a Markov chain.
Suppose the εi are Gaussian. Then it is easy to see that

Ṗ = {ε2h(X1) : h ∈ L2(P (1))} (3.30)

(see Section 4.3 of BKRW). Since these functions automatically satisfy (3.27), we
only need estimates with “influence functions” in this space. In fact, it is easy
to see that if we do not specify the distribution of the εi, but simply require that
E(ε1) = 0, (3.30) still holds since then

Ṗ ⊃ {h(X1,X2) : E(h(X1,X2) | X1) = 0, E(h(X1,X2)ε2) = 0} ⊕
[
f ′

f
(ε2)

]
where [ ] denotes linear span.

It is evident that now the empirical distribution of (Xi,Xi+1), 1 ≤ i ≤ n−1,
does not yield influence functions in Ṗ . It is reasonable to conjecture, and not
hard to verify (Kwon (2000)), that if g is sufficiently smooth then a “smoother”
estimate ĝ of g(·) based on the (Xi,Xi+1), 1 ≤ i ≤ n, will yield efficient estimates
of smooth parameters based on g only. For instance, if λ(·) is bounded and
vanishes off compacts,

∫
ĝ(t)λ(t)dt is an efficient estimate of

∫
g(t)λ(t)dt. If the

density f of ε is known, if a stationary density p exists and there is appropriate
mixing, one would expect that p̂ solving p(t) =

∫
f(t−ĝ(s))p(s)ds, combined with

f(· − ĝ(·)), can be expected to yield efficient estimates of smooth parameters of
the joint distribution of (X1,X2). It is fairly straightforward, using the delta
method, to argue that formally all of these estimates have influence functions
belonging to Ṗ .

Note that, even though the Doeblin assumptions needed to justify the for-
mulation does not hold in this instance, specifying a “least favorable” model
is fairly routine once the form of the influence functions is identified. If the
density of f is unknown and estimation of functionals such as

∫
a(t)f(t)dt is of

interest, Ṗ now contains all L2(P (2)) functions a(ε1). Then, if g were known,
n−1 ∑n−1

i=1 a(Xi+1 − g(Xi)) would have influence function a(ε1) which belongs to
the tangent space. Wefelmeyer (1994) shows that under suitable conditions, es-
timating εi by ε̂i = Xi+1 − ĝ(Xi) yields an estimate that has the above influence
function. Especially, one can use

1
n

∑
i∈Sn

(ĝ(Xi) − g(Xi)) = oP (n−1/2) (3.31)

for suitable ĝ, Sn ⊂ {1, . . . , n}, e.g., using an initial stretch of length nε to
estimate ĝ and then summing only over Xi with i ≥ n2ε.
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Drost, Klaassen, and Werker (1994) show that in this example, and many
others, if f is estimable then g can be estimated adaptively. Since this is a convex
problem in the sense of Bickel (1982) it is clear that locally efficient estimates of
g also exist.

(b) Fixing the stationary distribution
Kessler, Schick, and Wefelmeyer (2000) consider the possibly unrealistic

model {P ∈ M : P has a stationary distribution with density p0} and give
a “sample splitting” best efficient estimator. We derive the expected form of
efficient influence functions which immediately suggests a natural estimate. For-
mally, Ṗ = {h(X1,X2) : E(h(X1,X2) | X1) = 0, E(h(X1,X2)(b(X2) − E(b(X2) |
X1))) = 0 for all b ∈ L2(P )}. This follows since the side condition on members
h ∈ H0 required for membership in Ṗ is E(h(X1,X2)(a(X1) + b(X2))) = 0 for
all a(X1) + b(X2) ∈ H0. We claim that the projection of h ∈ H0 onto Ṗ is
h− a0(X1) − b0(X2), where a0(X1) + b0(X2) is the projection of h on the space
S of all functions of the form a(X1) + b(X2) ∈ L2(P ), called ACE(h | X1,X2)
in BKRW, p. 440. This follows since ACE requires 0 = E(h(X1,X2) | X1 =
a0(X1)+E(b0(X2) | X1)). Now if v(X1,X2) is bounded then, by our basic result,
the influence function of the efficient estimate under M is v(X1,X2) − q(X1) +
q(X2), where q is of the form (3.26). But v(X1,X2)− q(X1) + q(X2)−ACE(v−
qπ1 + qπ2|X1,X2) = v −ACE(v), where πj, j = 1, 2 is the projection on the j’th
coordinate. Therefore, we expect an efficient estimate of θ ≡ E(v(X1,X2)) to be
given by

θ̂ ≡ 1
n− 1

n−1∑
i=1

(v(Xi,Xi+1) − ÂCE(v | Xi,Xi+1)

+
∫

ÂCE(v|x1, x2)p0(x1)p0(x2)dx1dx2), (3.32)

where ÂCE is the projection of v on the sum space according to the (smoothed)
empirical distribution of (Xi,Xi+1) (see Breiman and Friedman (1985)) and p0

is the known stationary density. Note that this estimate is the natural analogue
of the one for estimating a bivariate distribution subject to fixed marginals in
BKRW.

Example 4. The general stationary case. Suppose M corresponds to the set of
stationary geometrically ϕ-mixing probabilities on R∞ and b = (P (1), P (2), . . .).
Here the score and influence functions are at least formally approximable by
functions ψ(. . . , x−1, x0) such that the linear approximations are

θ̂ = θ(P ) +
1
n

n∑
i=1

ψ(Xi
−∞) + op(n−1/2), (3.33)
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where Xi−∞ = (. . . ,X0,X1, . . . ,Xi), i.e., the i-shifted vector X0−∞, where

EP (ψ(Xi
−∞) | Xi−1

−∞) = 0 (3.34)

for all i. The natural space H0 is the subspace {ψ(X1−∞) : ψ ∈ L2(P ),
EP (ψ(Xi−∞) | Xi−1

−∞) = 0, i ≤ 1}. In this context the Markov model corresponds
to the subspace where ψ(X0−∞) = ψ(X−1,X0). It is possible to make this formal-
ism more rigorous by, for instance, strengthening the definition of regularity to
require uniform convergence on much larger sets. A conclusion is that, not very
surprisingly, smooth functionals v(P (k)) are efficiently estimated by v(P̂ (k)

n ) or,
going further such as in Ibragimov and Has’minskii (1981), that the usual empir-
ical estimate of the spectral distribution function is efficient. However, studying
what happens for, say, the semiparametric submodel obtained by adding Gaus-
sian white noise to a nonparametric stationary sequence seems very difficult, and
is left as a challenge.

4. Conclusion

An information calculus based on an appropriate definition of nonparamet-
rics can be developed for semiparametric models in non-i.i.d. cases. In this paper
we have discussed examples involving point processes representations in the i.i.d.
case and stationary Markov processes. A full understanding of the utility of this
calculus and extensions to the general stationary random field case, etc., remain
open.
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COMMENTS

Jianqing Fan

Chinese University of Hong Kong and University of North Carolina

Bickel and Kwon are to be congratulated for this neat, insightful and stim-
ulating paper on the general theory of semiparametric efficiency and for their
successfully posing several important and challenge questions on semiparametric
inferences. Semiparametric parametric models arise frequently in many applica-
tions. The interest in estimating certain principal parameters while imposing few
assumptions on nuisance parameters gives rise to semiparametric models. The
parameters of interest usually admit similar interpretations to those in paramet-
ric models. Most work focuses on efficient inferences on parameters of interest
when semiparametric models are correctly specified. The question arises natu-
rally how to validate whether a semiparametric model fits a given set of data, as
asked by Bickel and Kwon. I welcome the opportunity to make a few comments
and to provide additional insights.

1. Generalized Likelihood Ratio Test

One of the most celebrated methods in parametric inferences is the maximum
likelihood ratio test. It is intuitive and easily applicable due to the Wilks type
of results. An effort toward extending the scope of the likelihood ratio tests is
empirical likelihood (Owen (1988)) and its various extensions. Yet, they cannot
be directly applied to hypothesis testing problems in multivariate semiparametric
and nonparametric models.

In an effort to derive a generally applicable testing procedure for multivari-
ate nonparametric models, Fan, Zhang and Zhang (2001) propose a generalized
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likelihood ratio test. The work is motivated by the fact that the nonparamet-
ric maximum likelihood ratio test may not exist. Further, even if it exists, it
is not optimal even in the simplest nonparametric regression setting (see Fan
et al. (2001)). Generalized likelihood ratio statistics, obtained by replacing un-
known functions by reasonable nonparametric estimators, rather than MLE as
in parametric models, enjoy several nice properties to be outlined below.

As an illustration, consider the varying-coefficient model

Y = a1(U)X1 + · · · + ap(U)Xp + ε, (1)

where Y is the response variable, (U,X1, · · · ,Xp) is the covariate vector indepen-
dent of the random noise ε. Consider the problem of testing homogeneity

H0 : a1(·) = θ1, · · · , ap(·) = θp. (2)

For simplicity, assume further ε ∼ N(0, σ2) (As demonstrated in Fan et al. (2001),
the normality assumption is only used to motivate the procedure). Given a ran-
dom sample of size n, the likelihood under the null hypothesis can easily be
obtained with parameters {θj} replaced by their MLE. Let �n(H0) denote the
log-likelihood under the null model. Under the more general model (1), the co-
efficient functions a1(·), · · · , ap(·) can easily be estimated by using, for example,
a kernel method or local linear regression (Carroll, Ruppert and Welsh (1998),
Hoover, Rice, Wu and Yang (1998), Fan and Zhang (1999)). Using these es-
timated functions, one can easily form the likelihood under the general model
(1), though it does not maximize the nonparametric likelihood. Let �n(H1, h)
denote the log-likelihood, where h is the bandwidth used in the local linear re-
gression estimate of functions a1(·), . . . , ap(·). Then, the generalized likelihood
ratio statistic is simply

Tn(h) = �(H1, h) − �(H0). (3)

This generalized likelihood ratio test admits the same intuitive interpretation as
the classical likelihood ratio test.

Fan et al. (2001) unveil the following Wilks phenomenon: the asymptotic null
distribution of Tn(h) is independent of nuisance parameters in the model under
the null hypothesis, and follows a χ2-distribution (in a generalized sense) for
testing homogeneity (2) versus (1). Thus, the P-values can easily be computed by
either using the asymptotic distribution, or through simulations with parameter
values taken to be the MLE under the null hypothesis. Further, they show that
the resulting tests are asymptotically optimal in the sense of Ingster (1993).

The above Wilks phenomenon holds not only for testing parametric versus
nonparametric hypotheses, but also for testing a nonparametric null hypothesis
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versus a nonparametric alternative hypothesis. As an example, Fan et al. (2001)
consider the problem of testing significance of variables

H0 : a1(·) = a2(·) = · · · = am(·) = 0(m ≤ p).

The null hypothesis is still nonparametric because it involves nuisance functions
am+1(·), · · · , ap(·). Nevertheless, they show that the Wilks type of result contin-
ues to hold: the asymptotic null distribution is independent of these nuisance
functions. Thus, the P-values can easily be computed by either using the asymp-
totic distributions or using simulations via fixing nuisance functions under the
null hypothesis at their estimated values. These results are also extended to
various other models.

The idea of the above generalized likelihood ratio method is widely applica-
ble. It is easy to use because of the Wilks phenomenon, and is powerful as it
achieves the optimal rates for hypothesis testing. This encourages me to propose
the generalized likelihood ratio test as a possible tool to the open question (D)
posed by Bickel and Kwon.

2. Validating Semiparametric Models

To fix the idea, consider the test against the partially linear model

H0 : Y = g(U) +X1β1 + · · · +Xpβp + ε. (4)

Again, for simplicity, we assume that ε ∼ N(0, σ2). Let ĝ and β̂1, · · · , β̂p be the
estimates based on a sample of size n, using for example the profile likelihood
approach (see e.g., Speckman (1988), Severini and Wong (1992), and Carroll, Fan,
Gijbels and Wand (1997)). The profile likelihood gives semiparametric efficient
estimators for parameters β1, . . . , βp and an optimal estimator for function g.
With this, one can form the log-likelihood function under the null hypothesis,
denoted by �n(H0, h), where h is the bandwidth.

To test whether this model holds for a given data set, we need an alternative.
Depending on the degree of prior belief on the model, one may consider the
following possible alternative models.

1. An additive model: H11 : Y = f0(U) + f1(X1) + · · · + fp(Xp) + ε.

2. A varying-coefficient model: H12 : Y = f0(U) + f1(U)X1 + · · · +
fp(U)Xp + ε.

3. A full nonparametric model: H13 : Y = f(U,X1, · · · ,Xp) + ε.
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The unknown nonparametric functions in the above models can easily be esti-
mated, using for example kernel and local linear estimators with bandwidth h (for
the additive model, one can use the backfitting algorithm as in Hastie and Tib-
shirani (1990)). Using the estimated nonparametric functions, one can form the
nonparametric log-likelihood �n(H1j, h) (j = 1, 2, 3) as in Section 1, and the gen-
eralized likelihood ratio statistics Tn,j(h) = �n(H1,j, h) − �n(H0, h), j = 1, 2, 3.
These form the generalized likelihood ratio test statistics for testing the semi-
parametric model (4) against the three nonparametric alternative models.

A few questions arise naturally. First of all, are the asymptotic null dis-
tributions for the test statistics independent of nuisance parameters in the null
hypothesis? Secondly, do these test statistics achieve the optimal rates for hy-
pothesis testing in the sense of Ingster (1993) and Spokoiny (1996)? Thirdly,
what are the optimal rates for these three different alternatives?

In the additive model, Stone (1986) shows that one can estimate each addi-
tive component at the one-dimensional rate. Fan, Härdle and Mammen (1998)
strengthen the result further in that one can estimate each additive component
as well as if other components were known. The question then arises naturally
if these kinds of results hold for hypothesis testing against the semiparametric
model with the additive model as the alternative hypothesis.

3. Tests within Semiparametric Models

Suppose we have validated a semiparametric model. Various inference prob-
lems arise within the semiparametric model. For example, under the partially
linear model, one may wish to test if certain variables are statistically significant,
say

H0 : β1 = · · · = βm = 0.

More generally, one may consider the linear hypothesis:

H0 : Aβ = 0, (5)

where A is a given matrix and β=(β1, · · · , βp). This is a semiparametric null hy-
pothesis versus a semiparametric alternative hypothesis. The testing problem is
usually handled by using the Wald-type statistic, Wn(h)= β̂

T
AT (AΣ̂hAT )−1Aβ̂,

where Σ̂h is the estimated covariance matrix of β, which involves estimated non-
parametric function ĝ and depends on a certain smoothing parameter h.

Note that under the null hypothesis (5), the problem is still a partially linear
model. Hence, its parameters can be estimated by using the profile likelihood
approach as in (4). The generalized likelihood ratio statistics can be computed
by substituting the semiparametric estimators under both null and alternative
hypotheses into the likelihood function, using the same bandwidth. Let the
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resulting estimator be Tn(h). The question then arises if the Wilks type of result
holds. Between the two approaches Wn(h) and Tn(h), it remains to be seen
which method is more powerful and which method gives a better approximation
in terms of the size of the test.

For the partially linear model (1), one naive and simple approach is to use
the partially linear structure to reduce the testing problem (5) to an approximate
linear model. Let (Yi, Ui,Xi1, · · · ,Xip) be the random sample ordered according
to the variable U . Then, by model (4),

Y2i+1 − Y2i = g(U2i+1) − g(U2i) + β1(X2i+1,1 −X2i,1) + · · ·
+βp(X2i+1,p −X2i,p) + ε2i+1 − ε2i

≈ θ0 + θ1(U2i+1 − U2i) + β1(X2i+1,1 −X2i,1) + · · ·
+βp(X2i+1,p −X2i,p) + ε2i+1 − ε2i. (6)

Note that the maximum distance between the spacing U2i+1 and U2i is of order
O(n−1 log n), when the density of U has a bounded support. Thus, the coeffi-
cients θ0 and θ1 in (6) can be taken to be zero 0. However, we keep these two
parameters in the model to make the approximation more accurate. This kind of
idea appears independently in Yatchew (1997) and Fan and Huang (2001). By
using the approximate linear model (6), (5) becomes a linear hypothesis under
the approximate linear model (6), and F-test statistics can be employed. One
naturally asks how effective this simple and naive method is, compared with
the more sophisticated Wald-test and the generalized likelihood ratio test. Note
that we lose the information contained in the data {Y2i+1 + Y2i}, which itself
approximately follows (4). The data {Y2i+1 + Y2i} does not contain nearly as
much information about β as Y2i+1 − Y2i, since the former involves the nuisance
function g. Thus, the efficiency based on (6) should, intuitively, be at least 50%.

Note that the above test can be regarded as a generalized likelihood ratio
test with a very rough estimate of g. In fact, for given β, one estimates g by
taking the average of two neighboring points:

ĝ(u) = 2−1{Y2i+1 + Y2i − β1(X2i+1,1 +X2i,1) + · · ·
+βp(X2i+1,p +X2i,p)}, for u ∈ (U2i−1+U2i

2 , U2i+1+U2i+2

2 ].

Substituting ĝ into the models on Y2i+1, we obtain

Y2i+1 − Y2i = β1(X2i+1,1 −X2i,1) + · · · + βp(X2i+1,p −X2i,p) + 2ε2i+1.

A similar equation is obtained by substituting ĝ into the model on Y2i:

Y2i+1 − Y2i = β1(X2i+1,1 −X2i,1) + · · · + βp(X2i+1,p −X2i,p) − 2ε2i.
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The above two equations contain basically the same information as the model (6).
Note that the estimator ĝ here is significantly undersmoothed, but nonetheless
gives reasonable inferences on the parametric component. It is consistent with a
point hinted at in the paper by Bickel and Kwon.

After obtaining nonparametric estimate ĝ, researchers frequently ask if cer-
tain parametric model fits the nonparametric component. Namely, one wishes
to test H0 : g(u) = g(u, θ). Again, the generalized likelihood statistics can be
constructed and its sampling properties need to be studied.

4. Choice of Bandwidth

Bickel and Kwon raise the question how to select bandwidths for semipara-
metric models. If the primary interest focuses on parametric components, the
selected bandwidth should not create excessive biases in the estimation of non-
parametric components. The reason is that the biases in the estimation of non-
parametric components cannot be averaged out in the process of estimating para-
metric components, yet the variance in nonparametric estimates can be averaged
out. This is evidenced in the approximate linear model (6), where g is estimated
by the average of two neighboring points. If one wishes to choose a bandwidth
that works well for parametric and nonparametric components simultaneously, a
profile likelihood approach is needed, as demonstrated by Carroll et al. (1997).
However, in semiparametric estimation problems, such as the partially linear
model (4), one can also employ a two-step estimation scheme: choose a small
bandwidth that efficiently estimates the parametric component, then treat the
parametric component as if it were known and apply a nonparametric technique,
with an optimally chosen bandwidth, to estimate the nonparametric component.

The problem of choosing an appropriate smoothing parameter arises also
in the hypothesis testing problem. For each given bandwidth parameter h, one
can regard the generalized likelihood test Tn(h) (see e.g., (3)) as a proper test
statistic. The question then becomes how to choose a good smoothing parameter
that maximizes the power. The multi-scale test proposed in Fan (1996) appears
to achieve good asymptotic power, as shown in Fan (1996) and Fan et al. (2001),
though his formulation is in the frequency domain. The idea can simply be
translated into the current setting. We refer to Zhang (2000) for some related
work.

I have no intension to advocate using only the generalized likelihood ratio
statistics for semiparametric and nonparametric inference. In fact, very few prop-
erties are known about the generalized likelihood ratio statistics. Even worse, the
generalized likelihood statistics do not suggest any fixed procedure for estimat-
ing nonparametric components. Much more additional work is needed beyond
the work in Fan et al. (2001). In light of no generally applicable guideline for
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nonparametric and semiparametric testing problems, I outline some ideas, rather
than some solutions, here in an attempt to address the model validation question
raised by Bickel and Kwon, and to stimulate some further research in this area.
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In their thought-provoking essay, Bickel and Kwon (briefly, BK) touch on
many important questions of semiparametric inference. We comment on only a
few. Our Sections 1 to 4 concern BK’s information calculus as applied to Markov
chain models. In the first, we recall what BK call the traditional approach.
The next two sections try to extract what we see as two essential points of
the new information calculus in Markov chain models. The second of these
points shows how to calculate efficient influence functions for Markov chains from
corresponding bivariate i.i.d. models; this is particularly useful when the model
and the parameter of interest are described in terms of the stationary law rather
than the transition distribution. Section 4 is an aside on the converse: applying
Markov chain results to bivariate i.i.d. models. Sections 5 to 7 discuss models
more suited to the traditional approach: autoregression, conditional constraints,
MCMC. Section 8 is on plugging kernel estimators into smooth functionals and
into empirical estimators. Sections 9 and 10 briefly mention extensions of the
traditional approach to continuous-time processes and to random fields.
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1. The Traditional Approach.

In order to illustrate the power of BK’s approach, we compare it with the
traditional approach, which we recall first. For a review see Wefelmeyer (1999).
Let X(n) = (X1, . . . ,Xn) be observations from a stationary Markov chain with
values in some state space E. (Here the state space may be arbitrary.) The
natural parameter is the transition distribution, call it q(x, dy). Let π(dx),
b(dx, dy), and P (n) denote the laws of X1, (X1,X2), and X(n), respectively. We
have b(dx, dy) = π(dx)q(x, dy). Consider (Hellinger differentiable) perturbations
qnh(x, dy) .= q(x, dy)(1+n−1/2h(x, y)) of q. For qnh to be a transition distribution,
we must restrict h to H0 = {h ∈ L2(b) : qxh = 0}, where qxh =

∫
h(x, y)q(x, dy)

denotes conditional expectation. The space H0 is the tangent space of the full
nonparametric model. It is well known that we have local asymptotic normality
at q,

log
dP

(n)
nh

dP (n)
= n−1/2

n−1∑
i=1

h(Xi,Xi+1) −
1
2

∫
h2 db+ op(1). (1)

(We do not need the stronger form of local asymptotic normality used in BK,
with perturbations involving factors tn converging to some t.)

Consider now a submodel. It is given by a subset of transition distributions.
Its tangent space at q is a subset of H0, say Hs

0, which we take to be linear. Con-
sider a real-valued functional ϑ(q) on the submodel. Assume it is differentiable
at q with respect to the inner product induced by local asymptotic normality,
with gradient g ∈ H0,

n1/2(ϑ(qnh) − ϑ(q)) →
∫
hg db for all h ∈ Hs

0. (2)

The canonical gradient is the projection gs of g onto (the closure of) Hs
0.

An estimator ϑ̂ of ϑ(q) is regular at q with limit L if L is a random variable
such that

n1/2(ϑ̂− ϑ(qnh)) ⇒ L under P (n)
nh for all h ∈ Hs

0. (3)

The convolution theorem says that L =
(∫
g2
s db

)1/2 ·N +M in distribution, with
N standard Gaussian and M independent of N . This justifies calling a regular
estimator ϑ̂ efficient for ϑ(q) if

n1/2(ϑ̂− ϑ(q)) ⇒
(∫

g2
s db

)1/2

·N under P (n).

An estimator ϑ̂ is asymptotically linear at q with influence function f if f ∈ H0

and

n1/2(ϑ̂− ϑ(q)) = n−1/2
n−1∑
i=1

f(Xi,Xi+1) + op(1). (4)
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It is well known that an asymptotically linear estimator is regular if and only if its
influence function is a gradient, and that a (regular) estimator is efficient if and
only if it is asymptotically linear with influence function equal to the canonical
gradient.

Example 1. Let us illustrate the traditional approach with a simple exam-
ple, estimating a linear functional ϑ(q) =

∫
k db, with k ∈ L2(b), in the full

nonparametric model, with tangent space H0. For h ∈ H0 let bnh(dx, dy) =
πnh(dx)qnh(x, dy). By a perturbation expansion (see e.g., Kartashov (1985),
(1996)) we have

n1/2
(∫

w dbnh −
∫
w db

)
→

∫
h · Tw db for all w ∈ L2(b), (5)

where the operator T : L2(b) → H0 is Tw(x, y) = w(x, y) − qxw +
∑∞

j=1(q
j
yw −

qj+1
x w). This operator is a projection, T = T 2. It can also be written, as in BK,
Tw(x, y) = w(x, y) − ∑∞

j=1 q
j
xw +

∑∞
j=1 q

j
yw, where w(x, y) = w(x, y) −

∫
w db

denotes centering. Relation (5), applied to w = k, says that the functional
∫
k db

has canonical gradient Tk in the sense of (2).
By a martingale approximation we have, for w ∈ L2(b),

n−1/2
n−1∑
i=1

(w(Xi,Xi+1) − Tw(Xi,Xi+1)) = op(1). (6)

(Relation (6) is called martingale approximation because Tw(Xi,Xi+1) are
martingale increments. This approximation has been found independently by
many authors, e.g., Gordin (1969), Maigret (1978), Dürr and Goldstein (1986)
and Greenwood and Wefelmeyer (1995). See also Bradley (1988a,b) and Meyn
and Tweedie (1993, Section 17.4). BK refer to Bickel (1993) and Künsch (1984)).

By the martingale approximation (6), applied to w = k, the empirical esti-
mator ϑ̂ =

∫
k db̂ = 1

n−1

∑n−1
i=1 k(Xi,Xi+1) satisfies

n1/2
(∫

k db̂−
∫
k db

)
= n−1/2

n−1∑
i=1

Tk(Xi,Xi+1) + op(1).

Hence the influence function, in the sense of (4), of the empirical estimator is
Tk, the canonical gradient, and the estimator is regular and efficient by the two
characterizations above.

2. An Equivalence Relation

The first point of BK on information calculus for Markov chains can be
phrased as follows. Call w, z ∈ L2(b) equivalent if Tw = Tz. Then by the
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martingale approximation (6), n−1/2 ∑n−1
i=1 (w(Xi,Xi+1) − z(Xi,Xi+1)) = op(1).

Now parametrize locally with equivalence classes in L2(b) rather than their rep-
resentatives in H0. Then for h = Tw, local asymptotic normality (1) can be
written

log
dP

(n)
nh

dP (n)
= n−1/2

n−1∑
i=1

w(Xi,Xi+1) −
1
2

∫
(Tw)2 db+ op(1).

This is local asymptotic normality in the sense of Definition 1 of BK. Extend
differentiability (2) of ϑ(q) correspondingly, calling m gradient of ϑ(q) if m ∈
L2(b) and

n1/2(ϑ(qnh) − ϑ(q)) →
∫
h · Tmdb for all h ∈ Hs

0. (7)

Any gradient m with Tm in (the closure of) Hs
0 may then be called canonical.

Extend asymptotic linearity (4) of ϑ̂, calling m influence function of ϑ̂ if m ∈
L2(b) and

n1/2(ϑ̂− ϑ(q)) = n−1/2
n−1∑
i=1

m(Xi,Xi+1) + op(1). (8)

Then appropriate versions of the characterizations of regular and efficient esti-
mators continue to hold.

Example 2. BK apply their approach in particular to the simple example above,
estimating ϑ(q) =

∫
k db in the full nonparametric model, with tangent space H0.

Write

n1/2
(∫

k db̂−
∫
k db

)
= n−1/2

n−1∑
i=1

k(Xi,Xi+1) + op(1).

We have Tk ∈ H0. Hence k is a canonical gradient in the extended sense (7),
and efficiency of the empirical estimator follows.

This proof is much shorter than the traditional one. Note, however, that
the martingale approximation is also used here, namely for extending influence
functions to equivalence classes. Efficiency of the empirical estimator was shown
first by Penev (1990, 1991); he uses the perturbation expansion but circumvents
the martingale approximation. Greenwood and Wefelmeyer (1995) show that the
perturbation expansion follows from the martingale approximation.

3. From Bivariate Models to Markov Chains

The second point of BK in their information calculus applied to Markov
chains is that canonical gradients can be obtained as in bivariate models, with
i.i.d. observations (Xi, Yi). This is extremely useful, especially for models and
functionals which are more easily described in terms of the joint law b than of
the transition distribution q.
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Parametrize the Markov chain by the law b of (X1,X2) rather than by q.
Then b must have equal marginals π:

∫
v(x) b(dx, dy) =

∫
v(y) b(dx, dy) for

all v ∈ L2(π). Consider (Hellinger differentiable) perturbations bnw(dx, dy) .=
b(dx, dy)(1 + n−1/2w(x, y)). For bnw to be a probability measure, we must have∫
w db = 0. Since bnw must also have equal marginals, we get∫

v(x)w(x, y) b(dx, dy) =
∫
v(y)w(x, y) b(dx, dy) for all v ∈ L2(π).

Hence the tangent space at b, say H, is defined by having the following orthogonal
complement in L2(b): H⊥ = {v(x) − v(y) : v ∈ L2(π)}.

Locally, the parameters b and q are related as follows. To go from b to q,
factor bnw as bnw(dx, dy) = πnw(dx)qnw(x, dy). Then πnw is perturbed as

πnw(dx) = bnw(dx,E) .= π(dx)(1 + n−1/2qxw). (9)

Hence qnw(x, dy) .= q(x, dy)(1 + n−1/2w0(x, y)), where w0(x, y) = w(x, y) − qxw

denotes conditional centering. In particular, H0 = {w0 : w ∈ H}. To go from
q to b, start from a perturbation qnh(x, dy) .= q(x, dy)(1 + n−1/2h(x, y)) with
h ∈ H0. Write bnh(dx, dy) = πnh(dx)qnh(x, dy). For w ∈ L2(b) and h ∈ H0 write∫

h · Tw db =
∫
Sh · w db, (10)

with an operator S : H0 → H which we may call the adjoint of T . We do not
need the explicit form of S; see Greenwood and Wefelmeyer (1999) for it. From
(10) and the perturbation expansion (5) we obtain the perturbation

bnh(dx, dy) .= b(dx, dy)(1 + n−1/2Sh(x, y)). (11)

In particular, H = {Sh : h ∈ H0}. An analogous local parameter change, between
densities and hazard functions, is described in Ritov and Wellner (1988).

Now consider a submodel described by some set of joint laws of (X1,X2). Its
tangent space at b is a subset of H, say Hs, which we take to be linear. Consider
a real-valued functional ϑ(b) on the submodel. Call it differentiable with gradient
m if m ∈ L2(b) and

n1/2(ϑ(bnw) − ϑ(b)) →
∫
wmdb for all w ∈ Hs. (12)

The canonical gradient is the projection ms of m onto (the closure of) Hs. Writ-
ing w = Sh and using (10), we can characterize ms as the function in (the closure
of) Hs which fulfills

0 =
∫
Sh · (m−ms) db =

∫
h · (Tm− Tms) db for all h ∈ H0.
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This means that Tms is the canonical gradient, in the traditional sense (2),
in the Markov chain model. This is essentially Theorem 1 in Greenwood and
Wefelmeyer (1999a). BK’s second point is the following interpretation of this
result. Suppose we have i.i.d. observations (Xi, Yi). Consider a bivariate model
of distributions b(dx, dy), with equal marginals, and a real-valued differentiable
functional ϑ(b) on this model. Calculate its canonical gradient ms in the sense
of (12). The canonical gradient of the corresponding Markov chain model is then
Tms. Hence, using BK’s first point, any function z ∈ L2(b) with Tz = Tms,
in particular ms itself, is a canonical gradient and efficient influence function in
their extended sense.

Example 3. BK illustrate their second point with their Example 3b, a Markov
chain model with known marginal distribution π. Then we must have πnw(dx) =
π(dx) and hence qxw = 0 by (9), and similarly π(dy) = πnw(dy) .= π(dy)(1 +
n−1/2q−y w). Here q− is the transition distribution of the reversed chain, defined by
π(dx)q(x, dy) = π(dy)q−(y, dx), and q−y w =

∫
q−(y, dx)w(x, y) is the conditional

expectation under q−, acting on the first argument of w. Hence the tangent
space is Hs = {w ∈ L0

2(b) : qw = q−w = 0}. Following BK, for w ∈ L0
2(b) we can

write qw = q−w = 0 as
∫
(u(x) + v(y))w(x, y) b(dx, dy) = 0 for all u, v ∈ L2(π).

In words: w is orthogonal to functions of the form u(x) + v(y). Now let ϑ(b) be
differentiable, in the sense (12) of the bivariate model, with gradient m ∈ L2(b),
say. As BK note, the canonical gradient in this sense can be obtained from
Bickel, Klaassen, Ritov and Wellner ((1998), p. 440) as ms = m − ACE(m),
where ACE(m) is the projection of m onto the space of functions u(x) + v(y).
For w ∈ Hs we have qw = 0, i.e., w(x, y) = w(x, y)− qxw = w0(x, y). The model
is therefore degenerate: Hs = Hs

0. Hence ms is also the traditional canonical
gradient and efficient influence function in the sense (2).

Example 4. We agree that the Markov chain model with known marginals is
possibly unrealistic. It is, however, not, as BK suggest, the model considered by
Kessler, Schick and Wefelmeyer (2001). The latter assume not that the marginal
is fixed but that it belongs to some parametric family πϑ, with ϑ one-dimensional,
and they construct an efficient estimator for ϑ. The justification for such models
comes from financial time series in which the marginal can be modeled more
convincingly than the dynamics, especially when one has discrete observations
from a continuous-time process. The efficient estimator is a complicated one-step
improvement. We will consider elsewhere the possibility of finding a conceptually
simpler estimator using BK’s approach.

Example 5. Here is another application of BK’s approach. Greenwood and
Wefelmeyer (1999a) consider the model of all reversible Markov chains. This



898 PETER J. BICKEL AND JAIMYOUNG KWON

means that b is symmetric, b(dx, dy) = b(dy, dx), or equivalently, q = q−. They
prove that the symmetrized empirical estimator

ϑ̂s =
1

2(n − 1)

n−1∑
i=1

(k(Xi,Xi+1) + k(Xi+1,Xi))

is efficient for
∫
k db. The proof is also based on their Theorem 1 used above. For

a more elegant version of this proof we follow BK and parametrize with b. The
tangent space of the bivariate model is Hs = {w ∈ L0

2(b) : w(x, y) = w(y, x)}.
Consider a real-valued functional ϑ(b) which is differentiable, in the sense (12),
with gradient m ∈ L0

2(b). The canonical gradient in the bivariate model is the
symmetrized ms(x, y) = 1

2 (m(x, y) +m(y, x)). Hence the canonical gradient in
the Markov chain model is Tms. Hence, by BK’s first point, ms is also an
efficient influence function in the Markov chain model. This proves that if ϑ̂ is
asymptotically linear with influence function m in the Markov chain model, then
its symmetrization ϑ̂s = 1

2 (ϑ̂(X1, . . . ,Xn)+ϑ̂(Xn, . . . ,X1)) is regular and efficient
in the model of all reversible Markov chains. In particular, the symmetrized
empirical estimator is efficient.

Example 6. Müller, Schick and Wefelmeyer (2001b) consider the nonparametric
Markov chain model with linear constraint

∫
z db = 0 for some d-dimensional

vector z ∈ L2(b)d. They construct efficient estimators for linear functionals
∫
k db,

following the traditional approach and Levit (1975), who considers the i.i.d. case.

The canonical gradient is Tk − c�∗ Tz with c∗ =
(∫

Tz · Tz� db
)−1 ∫

Tz · Tk db.
Let us derive this result using BK’s approach. Parametrize by b. We have
n1/2 (

∫
z dbnw −

∫
z db) →

∫
zw db. Because of the constraints

∫
z db =

∫
z dbnw =

0 we must have
∫
zw db = 0. Hence the tangent space of the corresponding

bivariate model is Hs = {w ∈ H :
∫
zw db = 0}. By Example 2, k is a gradient

of
∫
k db in the extended sense (7). Write wH for the projection of a function

w ∈ L2(b) onto H. In the bivariate model, because of the constraint
∫
z db = 0, all

functions k−a�z with a ∈ R are gradients, and hence all functions kH−a�zH are
gradients in H. The canonical gradient is the projection of any of these gradients
onto Hs. It must minimize

∫
(kH − a�zH)2 db in a, call it a∗. By BK’s second

point, kH − a�∗ zH is also a canonical gradient in the constrained Markov chain
model, in their extended sense (7).

Of course, kH−a�∗ zH must be equivalent to the traditional canonical gradient
Tk − c�∗ Tz in the bivariate model. This follows from two observations.

1. If w ∈ L2(b) and wH is its projection onto H, then w −wH is in H⊥, i.e.,
of the form v(x) − v(y). Such functions are annihilated by T . Hence w and wH
are equivalent: Tw = TwH. In particular, kH−a�∗ zH is equivalent to Tk−a�∗ Tz.
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2. The operator ST is a projection onto H. Hence we obtain, using (10),∫
Tw · Tmdb =

∫
w · STmdb =

∫
wmdb for all w,m ∈ H.

In particular, a∗ = c∗.
An efficient estimator for

∫
k db under the constraint

∫
z db = 0 is the im-

proved empirical estimator

1
n− 1

n−1∑
i=1

(k(Xi,Xi+1) − â�∗ z(Xi,Xi+1)).

It requires a consistent estimator â∗ for a∗. Such an estimator is constructed in
Müller, Schick and Wefelmeyer (2001b). It is based on an explicit representation
of a∗. Calculating a∗ requires calculating the projections of z and k onto H.
Example 7 shows how projections wH of functions w ∈ L2(b) onto H are obtained,
via the traditional approach, as wH = STw. One checks that by (10) this gives
again a∗ = c∗.

This example shows that even if the model and functional of interest are in
terms of the joint law b rather than the transition distribution q, the traditional
approach is not necessarily more awkward than the approach via the bivariate
model. One reason is the following. The traditional approach parametrizes by
q and uses an unpleasant local parameter space H0, equipped however with the
natural norm

∫
w2 db. If we introduce equivalence classes as suggested in BK’s

first point, then we end up with a simple local parameter space L2(b), but now
equipped with the unpleasant semi-norm

∫
(Tw)2 db. On the other hand, if we

parametrize by b as suggested in BK’s second point, then we end up with the
natural norm but with an unpleasant local parameter space H.

4. From Markov Chains to Bivariate Models

We have seen in Section 3 how canonical gradients in Markov chain models
can be obtained from canonical gradients in bivariate models. The converse is of
course also possible and, more surprisingly, sometimes useful.

Consider a Markov chain model described by some set of transition distribu-
tions. Its tangent space at q is a subset Hs

0 of H0, taken to be linear. Let ϑ(q) be
a real-valued functional which is differentiable, in the (traditional) sense (2), with
canonical gradient gs ∈ Hs

0. Set h = Tw and use (10) to rewrite differentiability
(2) as

n1/2(ϑ(qnh) − ϑ(q)) →
∫
Tw · gs db =

∫
w · Sgs db for all w ∈ Hs.

This is differentiability in the sense (12) of the bivariate model. Hence Sgs is the
canonical gradient of ϑ(q), viewed as functional on the bivariate model.
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Example 7. This is already useful in the simplest example, estimating the linear
functional ϑ(q) =

∫
k db, with k ∈ L2(b), in the full nonparametric Markov chain

model. Its (canonical) gradient is g = Tk. The corresponding bivariate model
is the model with equal marginals. It follows that Sg = STk is the canonical
gradient in this model. The explicit form of ST can be obtained from results
for Markov chain models, see Greenwood and Wefelmeyer (1999a). An efficient
estimator in the bivariate i.i.d. model with equal marginals is constructed in Peng
and Schick (2001). It does not use the explicit form of the canonical gradient.

5. Regression and Autoregression

An important class of Markov chain models are autoregressive modelsXi+1 =
r(Xi)+εi+1, where the innovations εi are i.i.d. with mean zero and finite variance
σ2 and have an absolutely continuous and positive density f with finite Fisher
information J =

∫
�2 dF for location, where � = −f ′/f and F is the distribution

function of f . For convenience we consider only first-order autoregression. For
the model to be ergodic, the autoregression function r must satisfy some growth
conditions; see e.g., Bhattacharya and Lee (1995). BK consider the nonparamet-
ric model, with r unknown. Submodels are the linear model, with r(x) = ϑx,
and nonlinear models with parametric families rϑ(x) of autoregression functions.
Here it suggests itself to follow the traditional approach and describe the model
by its transition distribution q(x, dy) = f(y − r(x)) dy.

The information calculus of Section 3 would suggest looking at the bivariate
i.i.d. model described by the joint law b(dx, dy) = π(dx)q(x, dy) of (X1,X2).
Perturbation of q would, however, result in a complicated perturbation of π, see
(11), and in a complicated tangent space of the bivariate model.

Nevertheless, it pays to look at an i.i.d. model analogous to the Markov
chain model, namely regression Yi = r(Xi) + εi, with εi as before, and i.i.d.
covariates Xi, independent of the εi, with known law c(dx), say. The joint law of
(X1, Y1) is c(dx)f(y − r(x)) dy. Tangent spaces and gradients for autoregression
are therefore the same as for regression. Schick (1993) considers functionals of
(c, r); for extensions to heteroscedastic regression see Schick (1994).

Following the traditional approach to autoregression, see Koul and Schick
(1997), consider (Hellinger differentiable) perturbations fnv

.= f(1 + n−1/2v).
Since the innovations are assumed to have mean zero, the local parameters v
must be in the orthogonal complement V in L2(F ) of the polynomials of degree
at most one,

V = {v ∈ L2(F ) :
∫
v(ε) dF (ε) =

∫
εv(ε) dF (ε) = 0}.

The model also specifies a family of autoregression functions. Consider (π-
square-differentiable) perturbations rnu

.= r + n−1/2u. The model restricts u
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to some subset of L2(π), say U , which we take to be (closed and) linear. The
transition density determined by fnv and rnu is fnv(y − rnu(x)) .= f(ε)(1 +
n−1/2(u(x)�(ε) + v(ε))). Hence the tangent space of the autoregressive model
is H0(U) = {u(x)�(ε) + v(ε) : u ∈ U, v ∈ V }. The tangent space is the sum
of the tangent spaces {u(x)�(ε) : u ∈ U} for known f , and {v(ε) : v ∈ V } for
known r. It is well known that one can estimate (all smooth functionals of) f
and r adaptively with respect to each other if and only if these two spaces are
orthogonal.

Example 8. Schick and Wefelmeyer (2001b) obtain efficient estimators for∫
a dF when the autoregression functions are restricted to a parametric fam-

ily rϑ. For simplicity, we take ϑ one-dimensional here. Then U is the linear
span [ṙϑ] of the derivative of rϑ with respect to ϑ, and the tangent space is
H0([ṙϑ]) = {tṙϑ(x)�(ε) + v(ε) : t ∈ R, v ∈ V }. Unless

∫
ṙϑ dπ = 0, the tangent

space is not an orthogonal sum, and f and r cannot be estimated adaptively with
respect to each other. A natural estimator of

∫
a dF is the empirical estimator

1
n−1

∑n−1
i=1 a(ε̂i+1) based on estimated innovations ε̂i+1 = Xi+1 − rϑ̂(Xi). It can

be improved using that the innovations have mean zero,

Â =
1

n− 1

n−1∑
i=1

(a(ε̂i+1) − ĉε̂i+1), (13)

with ĉ a consistent estimator for the optimal constant

c = σ−2
∫
εa(ε) dF (ε). (14)

An obvious choice is ĉ =
∑n−1

i=1 ε̂i+1a(ε̂i+1)/
∑n−1

i=1 ε̂
2
i+1. The influence function

of Â requires some notation, and we do not give it here. In the non-adaptive
situation, with

∫
ṙϑ dπ not zero, for Â to be efficient we must estimate εi+1 =

Xi+1 − rϑ(Xi) using an efficient estimator for ϑ.
Plug-in of finite-dimensional estimators in not necessarily adaptive situa-

tions is studied in Klaassen and Putter (1997, 2000) for i.i.d. models, and more
generally in Müller, Schick and Wefelmeyer (2001a).

Example 9. In their Example 3a, BK consider estimating
∫
a dF in the nonpara-

metric autoregressive model, with r unknown except for mean zero. Then U =
L2(π), and the tangent space is H0(L2(π)) = {u(x)�(ε)+v(ε) : u ∈ L2(π), v ∈ V }.
This is not an orthogonal sum. Hence f and r cannot be estimated adaptively
with respect to each other. (BK state that the tangent space equals that with
Gaussian innovation distribution with known variance, their (3.30), and later
that it contains all functions v(ε) with v ∈ L2(π). These statements are not con-
sistent with each other and with the tangent space obtained here.) The canon-
ical gradient for

∫
a dF is the same as in the corresponding regression model,



902 PETER J. BICKEL AND JAIMYOUNG KWON

Müller, Schick and Wefelmeyer (2001c), namely a(ε)−
∫
a� dF · ε. One can show

that the empirical estimator 1
n−1

∑n−1
i=1 a(ε̂i+1) based on estimated innovations

ε̂i+1 = Xi+1 − r̂(Xi) has this influence function. To check that this function is
indeed in the tangent space H0(L2(π)), rewrite it as

a(ε) −
∫
a� dF · ε = −σ2

∫
a�V dF · �(ε) + aV (ε) + σ2

∫
a�V dF · �V (ε),

where aV and �V are the projections of a and � onto V , aV (ε) = a(ε) − cε,
�V (ε) = �(ε) − σ−2ε. We note that in this non-adaptive model, the canonical
gradient for known regression function r is indeed different: it is just the projec-
tion aV of a onto V , and an efficient estimator is the improved empirical estimator

1
n−1

∑n−1
i=1 (a(εi+1) − ĉεi+1) based on true innovations. Compare also Example 8

on parametric autoregression functions rϑ.
These results are not consistent with the statements of BK that the empirical

estimators with true and estimated innovations are asymptotically equivalent,
that their influence function is a(ε), and that this function is in the tangent space,
which would imply that 1

n−1

∑n−1
i=1 a(Xi+1 − r̂(Xi)) is adaptive with respect to r.

Example 10. BK ascribe their statements about 1
n−1

∑n−1
i=1 a(Xi+1 − r̂(Xi))

in nonparametric autoregression to Wefelmeyer (1994). But the latter treats
only linear autoregression Xi+1 = ϑXi + εi+1, and proves that the improved
empirical estimator Â, now with innovations estimated by ε̂i+1 = Xi+1 − ϑ̂Xi,
is efficient. Linear autoregression is a special case of the nonlinear model above,
with rϑ(x) = ϑx and ṙϑ(x) = x. The tangent space is therefore Hs

0 = {tx�(ε) +
v(ε) : t ∈ R, v ∈ V }. Since the innovations have mean zero, so has the stationary
law π. This implies that the tangent space is an orthogonal sum, and ϑ and
f can be estimated adaptively with respect to each other. In particular, Â is
efficient for

∫
a dF even when an inefficient estimator ϑ̂ is used in the estimated

innovations ε̂i+1 = Xi+1 − ϑ̂Xi.

Example 11. Another adaptive example is nonparametric autoregression with
innovations that are symmetric about zero. The tangent space is Hs

0 = {u(x)�(ε)+
v(ε) : u ∈ L2(π), v ∈ L2(F ) symmetric about zero}. Here �(ε) = −�(−ε). Hence∫
v� dF = 0 for all v that are symmetric about zero, and the tangent space is

an orthogonal sum. Koshevnik (1996) shows that the symmetrized empirical
distribution function based on estimated innovations is efficient.

Example 12. Kwon (2000) and BK also consider estimating
∫
r(x)λ(x) dx in

the nonparametric autoregression model with mean zero innovations. Here λ is
known and has compact support. They suggest that an efficient estimator is
obtained by plugging in a suitable (kernel) estimator r̂ for r. Kwon (2000) shows
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that the estimator
∫
r̂(x)λ(x) dx has influence function ελ(x)/f(x). From Schick

((1993), (3.5)), the canonical gradient of
∫
r(x)λ(x) dx is obtained as(λ(x)

f(x)
−
∫
λ(y) dy

) �(ε)
J

+
∫
λ(y) dy · ε,

with J the Fisher information for location of the innovation distribution. This
is the influence function of BK’s estimator only if the innovation distribution is
Gaussian, so their estimator is efficient only if the true innovation distribution
happens to be Gaussian.

The traditional approach has also been used in more complicated autore-
gressive models. For example, Schick (1999a) treats the semiparametric model
Xi+1 = ϑXi + r(Xi−1) + εi+1. Maercker (1997) and Schick (2001) treat the het-
eroscedastic autoregressive model Xi+1 = ϑXi+s(Xi)εi+1 with symmetric errors,
while Schick (1999b) considers it with arbitrary errors. Efficient estimation in
invertible linear processes is treated in Schick and Wefelmeyer (2001c).

6. Conditional Constraints

Another class of submodels described through transition distributions rather
than joint laws are models with constraints E(vϑ(X1,X2)|X1) = 0 for some d-
dimensional vector vϑ ∈ L2(b). These comprise quasi-likelihood models, with
parametric models for conditional mean and variance of the Markov chain:

E(X2|X1) = rϑ(X1),

E((X2 − rϑ(X1))2|X1) = s2ϑ(X1).

Here vϑ(x, y) has components y − rϑ(x) and (y − rϑ(x))2 − s2ϑ(x). The quasi-
maximum-likelihood estimator solves an estimating equation of the form

n−1∑
i=1

wϑ(Xi,Xi+1)(Xi+1 − rϑ(Xi)) = 0,

with weights wϑ chosen to minimize the asymptotic variance. It does not use the
information in the specification of the conditional variance and is not efficient.
Efficient estimating equations are constructed in Wefelmeyer (1996). For similar
regression models with i.i.d. observations, quite different efficient estimators are
introduced in Li (2000) and (2001). Efficient estimation of invariant laws in such
models is discussed in Schick and Wefelmeyer (1999).

7. MCMC

A third class of submodels described by transition distributions are Monte
Carlo Markov chains. Here one starts with a distribution π(dx) which is in
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principle known, and constructs a transition distribution q(x, dy) with π as in-
variant law. Then one runs the corresponding Markov chain and approximates,
e.g.,

∫
a(x)π(dx) by the empirical estimator

∑n
i=1 a(Xi). Greenwood, McKeague

and Wefelmeyer (1998) calculate the information in the knowledge that a Gibbs
sampler was used. A review is Greenwood and Wefelmeyer (2001).

8. Plug-in Estimators

As BK point out, n1/2-consistent and even efficient estimators can often
be obtained by plugging density estimators or regression function estimators
into smooth functionals or into “empirical estimators” involving such functions.
BK’s estimators for

∫
r(x)λ(x) dx and

∫
a dF in nonparametric autoregression are

examples of plug-in into a smooth functional and into an empirical estimator.
For i.i.d. observations with density f , smooth functionals of f can be

estimated efficiently by plugging in (undersmoothed) kernel estimators; see
Abramson and Goldstein (1991), Goldstein and Messer (1992) and Goldstein
and Khas’minskii (1995).

For expectations of functions of more than two arguments, e.g., Eψ(X1,X2,
X3), the empirical estimator based on Markov chain observations is not effi-
cient in the nonparametric Markov chain model. Writing Eψ(X1,X2,X3) =∫
ψ(x, y, z) b(dx, dy)q(y, dz), one sees that for discrete state space a better esti-

mator is obtained by replacing b and q by their empirical estimators. For general
state space, Schick and Wefelmeyer (2001a) construct a complicated efficient es-
timator as one-step improvement of the empirical estimator. Bickel (1993) has
suggested a conceptually simpler estimator, using the empirical estimator for b
as before, and plugging in a nonparametric estimator q̂ for the transition density.
Kwon (2000) treats a modification of this idea, writing the density of the joint
law of (X1,X2,X3) as p(x, y)p(y, z)/g(y) with g and p the densities of X1 and
(X1,X2), respectively, and replacing these densities by kernel estimators.

Example 13. Here is another application of plug-in. For moving average pro-
cesses Xi+1 = εi+1−ϑεi, the density g(x) of Xi+1 can be written as convolution of
the density f of εi+1 and the density of ϑεi, g(x) =

∫
f(x+ ϑy)f(y)dy. Saavedra

and Cao (1999) and (2000) propose plugging in (undersmoothed) kernel estima-
tors f̂(z) = 1

n

∑n
i=1Kc(z − ε̂i), where Kc(u) = K(u/c)/c and ε̂i are estimated

innovations. They obtain n1/2-consistency of their estimator
∫
f̂(x+ ϑ̂y)f̂(y)dy.

Schick and Wefelmeyer (2001e) propose the asymptotically equivalent, but sim-
pler, U-statistic

ĝ(x) =
1

n(n− 1)

n∑
i,j=1
i�=j

Kc(x− ε̂i + ϑ̂ε̂j)
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and prove that it is efficient. The estimator can be written (approximately) as
the plug-in estimator 1

n

∑n
i=1 f̂(x+ ϑ̂ε̂i).

We note that estimators based on U-statistics have many applications in
semiparametric inference. For example, U-statistics with fixed kernel are used
in Schick and Wefelmeyer (2001d) to estimate expectations under the stationary
law of invertible linear processes.

9. Continuous-time Processes

The traditional approach generalizes immediately to continuous-time pro-
cesses Xt, t ≥ 0, observed on an increasing time interval [0, n], say. For counting
processes, the intensity plays the role of the transition distribution as natural pa-
rameter; diffusion processes Xt = r(Xt)dt + s(Xt)dBt are parametrized by drift
r and diffusion coefficient s. More generally, semimartingales are parametrized
by their predictable characteristics, Jacod and Shiryaev (1987) is the standard
reference for structure theory and limit theorems. Other types of asymptotics
are also possible. For counting processes we may let the intensity increase. For
diffusion processes, we may let the diffusion coefficient decrease, see Kutoyants
(1994). In survival analysis one usually considers an increasing number of paths,
a comprehensive reference including non- and semiparametric efficiency results
is Andersen, Borgan, Gill and Keiding (1993).

Efficient plug-in estimators for the stationary density of diffusion processes
are obtained in Kutoyants (1997), (1998) and (1999). Empirical estimators are
shown to be efficient in nonparametric Markov step process and semi-Markov
process models by Greenwood and Wefelmeyer (1994a) and (1996), and in non-
parametric multivariate point process models by Greenwood and Wefelmeyer
(1994b). It seems possible to use versions of BK’s approach in such models.

10. Random Fields

The traditional approach also generalizes to homogeneous random fields on
lattices, where the transition distribution is replaced by the local characteristic,
the conditional distribution at a site given the rest of the configuration. For ran-
dom fields with local interactions, Greenwood and Wefelmeyer (1999b) determine
which empirical estimators are efficient.
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COMMENTS

Chris A. J. Klaassen

University of Amsterdam

This paper is very challenging. Peter Bickel and Jaimyoung Kwon put semi-
parametric inference in perspective by describing the historical development from
parametric to semiparametric statistics. They also sketch the important features
of this development for the i.i.d. case. This leads them to formulating a list of
five research questions. In fact, each of these questions depicts a whole area of
interesting and indeed challenging problems, which undoubtedly will stimulate
research in semiparametrics. The authors are to be congratulated for their well-
organized, clearly written, and useful presentation, in which they elaborate on
one of the research problems on their list, namely the generalization of semipara-
metric theory to the non-i.i.d. world.

To me, the crucial idea in their approach to this problem is their general-
ization of the concept of asymptotic linearity of estimators. The authors view
the average of the influence function at the i.i.d. observations as the expectation
of this influence function under the empirical and replace the empirical by an
appropriate estimator of the ‘core’ distribution in the non-parametric version of
the non-i.i.d. model under study; cf. (A1), (3.1), and (3.3). This is a simple but
attractive idea, which works well in the many special cases studied in the paper.

Asymptotics is by far the most frequently used approach to mathematical
statistical problems, and so the authors focus in their future research questions on
this approach. Taking limits typically simplifies the mathematical problems and
hopefully yields good approximations to the finite sample size truth. In this vein
asymptotic normality is quite relevant. However, asymptotic consistency, and
to a lesser extent asymptotic

√
n-consistency and regularity are more difficult

to interpret at the level of finite sample sizes; most of all because uniformity
issues are not considered, typically. Therefore, we should have an eye to finite
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sample sizes, and I would like to suggest to add the ultimate question (Z) to
the list (A) – (E) of Bickel and Kwon about the main goal—in my opinion—of
all semiparametric research, namely the problem of finite sample size (optimal)
behavior of inference procedures in semiparametric models.

Within the context of the semiparametric symmetric location problem an
early attempt to construct bounds to the finite sample size performance of esti-
mators may be found in Section 3.2 of Klaassen (1980). These bounds imply that
the convergence to normality of adaptive location estimators cannot be uniform
at all (see also Klaassen (1979)).

In question (A) Bickel and Kwon note that in many semiparametric models
estimation of irregular parameters, such as densities and their derivatives, seems
necessary in order to estimate the parameter of interest efficiently. They suggest
to study the selection of bandwidth and other regularization parameters for these
problems, in particular for those models in which these irregular parameters can
be estimated at specified rates. In fact, it has been proved that in general,
efficient estimation of the parameter of interest is possible if and only if its efficient
influence function can be estimated consistently by a

√
n-unbiased estimator; see

Klaassen (1987). To me this suggests that rates of convergence for estimators
of the influence function, an irregular parameter, are related to the amount of
uniformity that can be attained in the convergence of an efficient estimator of
the parameter of interest.

Another point I would like to raise is about quite a curious phenomenon.
Typically, in semiparametric models the Euclidean parameter of interest is iden-
tifiable and has positive semiparametric Fisher information. Some of these mod-
els can be extended in such a way that the Euclidean parameter of interest is still
identifiable, but has vanishing semiparametric Fisher information at all distribu-
tions in the model. Lenstra (1998) has shown this for the regression parameter
in the mixed proportional hazards model, which extends the Cox proportional
hazards model via a nonparametric unobservable random frailty factor; see also
Klaassen and Lenstra (2000). This vanishing Fisher information is bound to
have serious consequences both asymptotically and for finite sample sizes. It
might well be that this interesting phenomenon could occur more easily in the
non-i.i.d. cases that Bickel and Kwon stimulate us to study.

Finally, I would like to comment on a minor but cute point. As the authors
mention in Example 3, quite often constructions of efficient semiparametric pro-
cedures use the technique of splitting up the sample in independent parts, thus
simplifying the proof of efficiency. As far as I know, the first paper constructing
an efficient, adaptive semiparametric procedure is by Hájek (1962) for the linear
regression problem. He applies this sample splitting technique in that he uses a
vanishingly small part of the sample to estimate the score function for location
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and subsequently applies this estimate in a testing procedure for the hypothesis
of a vanishing regression function based on the remaining part of the sample.
For nonadaptive cases the sample has to be split up in at least two substantial
parts, in the sense that they may not be vanishingly small; see Schick (1986)
and Klaassen (1987) for the first papers using this type of sample splitting. At
first sight, sample splitting seems unnatural or unrealistic, as the authors say
in Example 3. However, for nonadaptive situations the crux of sample splitting
is that an average is taken of estimators essentially based on the independent
parts in which the sample is split up. Since averaging is intimately related to
normality and since efficient estimators are to be asymptotically normal, sample
splitting might well be reasonable and even quite natural. To support this claim
we present the following result on Edgeworth expansions.

Proposition 1. Let X1, . . . ,Xn be i.i.d. random variables and let Tn = tn(X1,
. . . ,Xn) be a one-dimensional statistic such that

√
nTn has distribution function

Fn(·) and Edgeworth expansion

F̃n(x) = Φ(x) − ϕ(x)
{
c1√
n

(x2 − 1) +
c2
n

(x3 − 3x)

+
1
2
c21
n

(x5 − 10x3 + 15x)
}
, x ∈ R, (1)

for some constants c1 and c2 with

sup
x
n|Fn(x) − F̃n(x)| → 0, as n→ ∞. (2)

Split the sample into two parts, X1, . . . ,Xm and Xm+1, . . . ,Xn respectively. Let
T1,m = tm(X1, . . . ,Xm) be the statistic based on the first part and T2,n−m =
tn−m(Xm+1, . . . ,Xn) the statistic based on the second part. Define the sample
splitting statistic as

T̃n =
m

n
T1,m +

n−m

n
T2,n−m. (3)

If
0 < lim inf

n→∞
m

n
≤ lim sup

n→∞
m

n
< 1 (4)

holds, then
√
nT̃n has the same Edgeworth expansion (1) as

√
nTn.

Proof. Uniformly in z ∈ R we have

P (
√
nT̃n ≤ z) =

∫
Fm

(√
n

m
(z − y)

)
dFn−m

(√
n

n−m
y

)
=
∫
F̃m

(√
n

m
(z − y)

)
dFn−m

(√
n

n−m
y

)
+ o

(
1
n

)
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=
∫
Fn−m

(√
n

n−m
(z − y)

)
dF̃m

(√
n

m
y

)
+ o

(
1
n

)
=
∫
F̃n−m

(√
n

n−m
(z − y)

)
dF̃m

(√
n

m
y

)
+ o

(
1
n

)
. (5)

If Tn = n−1 ∑n
i=1Xi is the sample mean with EXi = 0, then T̃n = Tn and (5)

shows ∫
F̃n−m

(√
n

n−m
(z − y)

)
dF̃m

(√
n

m
y

)
= F̃n(z) + o

(
1
n

)
, (6)

uniformly in z ∈ R. In our general case F̃n has the same structure (cf. Theorem
VI.3.1, p.159, of Petrov (1975)) and hence (6) holds for F̃n from (1). Equations
(5) and (6) imply, uniformly in z ∈ R,

P (
√
nT̃n ≤ z) = F̃n(z) + o

(
1
n

)
. (7)

Straightforward but lengthy computations also prove (7) in the general case.

Remark 1. Pearson’s inequality on the skewness κ3 and the kurtosis κ4 of a
random variable states (cf. Klaassen, Mokveld and Van Es (2000))

κ2
3 − κ4 ≤ 2. (8)

For the coefficients c1 and c2 in the Edgeworth expansion (1) of the sample mean,
this means

c2 ≥ 3
2
c21 −

1
12
. (9)

However, this restriction is not essential and (6) holds for all values of c1 and c2.

Most asymptotically normal statistics have an Edgeworth expansion of type
(1). This holds for L-statistics (Helmers (1980)), R-statistics (Does (1983)),
and U-statistics (Bickel, Götze, and Van Zwet (1986)). Consequently, for many
estimators, sample splitting has no effect asymptotically to third order. At least
this suggests that in semiparametrics sample splitting is a natural option.

To conclude I would like to stress that I think this is a very nice paper,
which gives a clear perspective also for future research and which presents an
appropriate generalization of asymptotic linearity of estimators from i.i.d. non-
and semiparametric models to more general non-i.i.d. models. Therefore, my
comments have focused on rather minor issues. Nevertheless, I am very interested
in the opinion of the authors on them.

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Plantage Muidergracht

24, 1018 TV Amsterdam, The Netherlands.

E-mail: chrisk@science.uva.nl
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COMMENTS

Mark J. van der Laan and Zhuo Yu

University of California, Berkeley

Let us first compliment the authors on their nice paper on calculation of
the efficient influence function in semiparametric models. The authors provide a
framework for LAN-semiparametric models embedded in a nonparametric model,
which allows one to calculate the efficient influence function as the projection of
the nonparametric efficient influence function onto the tangent space. This gen-
eralizes the i.i.d.-result which says that the projection of any influence function
onto the tangent space equals the efficient influence function and thus that an
influence function which is an element of the tangent space must be equal to the
efficient influence function.

The current frontiers “locally efficient estimation” and its relation to “esti-
mation of non-smooth parameters” in the i.i.d. case, which the authors discussed,
drew our particular attention.

Why locally efficient estimation?

If an estimator of a regular parameter is a reasonably smooth functional of
the empirical distribution Pn, then its first order linear approximation (i.e., the
empirical mean of its influence function) represents its finite sample behavior.
It is clear that efficiency of an estimator and smoothness of the estimator as a
functional of the empirical distribution Pn are typically tradeoffs, so that it is
no surprise that in many models the maximum likelihood estimator suffers from
the curse of dimensionality (i.e., lack of smoothness) while many practical good
estimators are available. In fact, for most current data sets and their parameters
of interest (e.g., causal inference, censored data), maximum likelihood estimation
is a too restrictive methodology.

For example, suppose one observes right-censored data on a survival time
T and a 25-dimensional covariate W , where each of the 25 components of W
is discrete with 20 possible outcomes. Let FT be the parameter of interest.
Then the outcome space of W has 2025 values wj . In this case, the maximum
likelihood estimator of FT |W (· | wj) is the Kaplan-Meier estimate based on the
subsample of subjects with Wi = wj . Therefore one needs a sample size of
the order of 2025 observations in order to have that the MLE of FT (t) has a
reasonable practical performance. In this case the curse of dimensionality causes
a miserable practical performance for any practical sample size. On the other
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hand, Robins and Rotnitzky (1992) develop practical estimators which are locally
efficient at a user supplied submodel for the right-censored data structure (T̃ ≡
min(T,C), I(T̃ ≤ T ), W̄ (T̃ )) with a time-dependent covariate process W̄ (T̃ ) =
(W (t) : t ≤ T̃ ). Below, we provide a low-dimensional two sample semiparametric
model with a regression parameter β and unspecified marginal distribution, where
the maximum likelihood estimator of β requires so much smoothing that repairing
it will still only result in a non-practical estimator. In other words, the curse of
dimensionality occurs with low-dimensional and high-dimensional data structures
though it affects many more parameters in the latter case.

Data sets encountered in practice are nowadays typically high dimensional
(e.g gene expression profiles, genetic profiles, etc.) and involve time-dependent
covariate processes so that modeling the complete data generating distribution
with a parametric model is an extremely challenging problem and, even if one
succeeds, then maximum likelihood estimation requires maximizing a high dimen-
sional surface with lots of local maxima and can therefore be a computational
nightmare. Therefore semiparametric models are generally preferable to para-
metric models in these situations so that the estimating function methodology is
essential.

Estimating functions

The theory of estimating functions provides a general methodology for con-
struction of estimators, ranging from globally efficient (such as a maximum likeli-
hood estimator) to locally efficient at a small parametric submodel, or just ineffi-
cient everywhere. We here provide a short overview. For an extensive description
of the methods applied to censored data and causal inference data structures, we
refer to the upcoming book of van der Laan and Robins (2001) “Unified methods
for censored longitudinal data and causality”.

Let µ = µ(FX) ∈ Rk be a euclidean pathwise differentiable parameter of
interest of the data generating distribution FX ∈ M, where M denotes the model
for FX . In general, the nuisance scores are given by the scores of parametric
submodels Fε for which µ does not locally vary, i.e., d

dε µ(Fε)|ε=0 = 0. The
nuisance tangent space Tnuis(FX) ⊂ L2

0(FX) is now the closure of the linear
space generated by these nuisance scores.

Consider a class of k-dimensional estimating functions {Dh(X | µ, ρ) : h ∈
H} indexed by an index h ranging over a set H. An estimating function is
unbiased if

EFX
Dh(X | µ(FX), ρ(FX )) = 0 for all FX ∈ M.

Suppose now that the estimating functions are an element of the orthogonal
complement T⊥

nuis of the nuisance tangent space in the sense that, for all h ∈ H,

Dh(· | µ(FX), ρ(FX )) ∈ T⊥
nuis(FX )k at all FX ∈ M. (1)
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Such a rich class of estimating functions can be derived by finding appropriate
representations of T⊥

nuis(FX), or equivalently of the space generated by all influ-
ence functions. One wants to choose H so that there exists a hopt = hopt(FX ) ∈ H
with Dhopt(· | µ(FX), ρ(FX )) equal to the efficient influence function of µ at FX .
For example, if β is the parameter of interest in a generalized linear regression
model E(Y | Z) = m(Z | β), then T⊥

nuis = {h(Z)ε(β) : h} ∩ L2
0(FX) which nat-

urally implies a rich class of estimating functions {h(Z)ε(β) : supz | h(z) |< ∞}
which have no nuisance parameter ρ. Note that the unbiasedness of the optimal
estimating function Dhopt(X | µ, ρ) is protected against misspecification of the
index hopt so that one can construct locally efficient estimators by estimating
hopt according to a guessed low dimensional submodel.

A two sample semiparametric estimation problem

Suppose we observe n0 i.i.d. observations ofX0 ∼ f0 and n1 i.i.d. observations
of X1 ∼ f1, where f0, f1 are Lebesgue densities. Consider this as a sample of
n = n0 + n1 i.i.d. observations (Xi, ξi), i = 1, . . . , n, where ξi ∈ {0, 1} indexes
the 2 populations. Let Fj(x) = P (X ≤ x | ξ = j), j = 0, 1, be the corresponding
distribution functions. For example, X0 and X1 might represent a measurement
on a randomly drawn subject from a population of lung-cancer patients and a
healthy population, respectively. We are concerned with estimation of parameters
comparing F0 and F1 such as µ1 − µ0, where µj = EXj , j = 0, 1. In many
applications n0 is very small relative to n1. In these situations it is beneficial to
have a statistical framework which allows one to borrow information from the X1-
sample when estimating F0. Dominici and Zeger (2001) consider a parametric
model for the function p → F1F

−1
0 (p), p ∈ [0, 1], and develop a least squares

estimation method. In van der Laan, Dominici and Zeger (2001), we propose to
model the quantile-quantile function (as in the structural nested causal inference
models of Robins) that maps the quantiles of F0 into the quantiles of F1:

F−1
1 F0(q) = m(q | β), (2)

and yields a simpler parametrization of the likelihood. Here m(· | β): [a0, b0] →
[a1, b1] is a known increasing absolutely continuous function in q with range
[a1, b1] ≡ [F−1

1 (0), F−1
1 (1)], parametrized by a k-dimensional parameter β. No-

tice that F0(x) = P (X0 ≤ x) = P (X1 ≤ F−1
1 F0(x)) = F1(m(x | β)) and that

m(X0 | β) ∼ F1. Assumption (2) defines a semiparametric model for the data
generating distribution with infinite dimensional parameter the cumulative dis-
tribution function F1 and finite dimensional parameter β.

Calculation of the orthogonal complement of the nuisane tangent space of β
yields the following class of estimating functions for β (van der Laan, Dominici
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and Zeger (2001)):

{Dh(X, ξ | β) ≡ (ξ = 0)(1 − p)h(m(X | β)) − (ξ = 1)ph(X) : h} , (3)

where the index h = (h1, . . . , hk) can be any k-dimensional vector of real valued
functions and p = P (ξ = 1). (3) represents a class of unbiased estimating func-
tions indexed by a user-supplied h which does not involve a nuisance parameter
f1. The efficient score for β is given by Dhopt(X, ξ | β), where

hopt(X | f1, β) =
f ′1(x)
f1(x)

m(1)(m−1(x)) +
m′,(1)(m−1(x))
m′(m−1(x))

.

Here m′ denotes the derivative w.r.t. x, m(1)(x) denotes the k-dimensional vector
of first derivatives w.r.t. βj of m(x | β), j = 1, . . . , k, and m′,(1)(x) denotes the
k-dimensional vector of first derivatives w.r.t. βj , j = 1, . . . , k, of m′(x | β). In
other words, the class of unbiased estimating functions (3) includes, in particular,
the efficient score of β which is the optimal estimating function. One can estimate
β with the solution

0 =
n∑

i=1

Dhopt(f1n,β0
n)(Yi | β),

where we assume that (f1n, β
0
n) is the parametric maximum likelihood estimator

of (f1, β) assuming a certain parametric model for f1. If the parametric model is
correct, then the resulting estimator βn will be efficient, while it remains consis-
tent and asymptotically normally (CAN) distributed if (f1n, β

0
n) converges to a

wrong (f∗, β∗). In other words, βn will be CAN and efficient at the guessed para-
metric submodel. Note that globally efficient estimation will require estimation
of a derivative of the density f1, which explains why the maximum likelihood
estimator is inconsistent, and that a regularized maximum likelihood estimator
is not a preferred route of estimation.

Protection against misspecification of the nuisance parameter

If the estimating functions have a nuisance parameter ρ (note that we treat
hopt as an index and not as a nuisance parameter) which is high-dimensional,
then globally consistent estimation of ρ might still be too much to ask. The
orthogonality (1) of the estimating functions implies that derivatives w.r.t to
ρ along one-dimensional directions (as allowed by the model M) are equal to
zero, so that ad hoc consistent estimation of ρ does not affect the asymptotic
performance of the solution µn of the estimating equation 0 =

∑
iDh(Xi | µ, ρn).

Fortunately, the orthogonality can even provide protection of the consistency of
µn against inconsistent estimation of ρ. For example, the following lemma shows
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that if the nuisance parameter space for ρ is convex in the sense that ρ can be
varied along lines εF1 + (1 − ε)F ∈ M, then it remains unbiased even when the
nuisance parameter is misspecified.

Lemma 0.1. Consider an estimating function D(X | µ, ρ) which satisfies (1).
Assume that µ is pathwise differentiable at each F ∈ M along a class of one-
dimensional models including nuisance score lines Fε = εF1 + (1 − ε)F ∈ M
indexed by a set of F1’s with 1) dF1/dF and dF/dF1 being uniformly bounded,
2) d/dεµ(Fε)|ε=0 = 0, and 3) {ρ(F1) : F1} covers the whole parameter space
{ρ(F ) : F ∈ M}. Then

EFX
D(X | µ(FX), ρ1) = 0 for all ρ1 ∈ {ρ(F ) : F ∈ M}.

Proof. Let F1, F, ρ1 = ρ(F1), ρ = ρ(F ) be as in the lemma. Then Fε,h =
εF1 +(1−ε)F is a one dimensional submodel of M with score h = d(F1−F )/dF .
Since it is a nuisance score model we have 0 = d

dεµ(Fε,h)
∣∣∣
ε=0

. By the fact that µ
is pathwise differentiable along Fε,h at F , we have for any gradient �(X | F ):

0 =
∫
�(x | F )

d(F1 − F )
dF

dF =
∫
�(x | F )dF1(x).

Since a standardized version of D(· | µ(FX), ρ(FX )) is a gradient, this implies
also that for any such pair F1, F , 0 =

∫
D(x | µ(F ), ρ(F ))dF1(x) =

∫
D(x |

µ(F1), ρ(F ))dF1(x), which proves the lemma by just interchanging the role of F1

and F .

It is the protection of the unbiasedness of estimating functions against mis-
specification of nuisance parameters which allows locally efficient estimation,
since one can estimate ρ(FX) according to a guessed submodel of M without
losing the consistency of the corresponding estimator µn.

Double protection of estimating functions in censored data and causal
inference models

Suppose now that the parameter of interest is still µ(FX), but we only
observe n i.i.d. observations of censored data Y = Φ(C,X) ∼ PFX ,G, where
X ∈ FX ∈ MFull and the conditional distribution G(· | X) of C, given X, is as-
sumed to satisfy coarsening at random (Heitjan and Rubin (1991), Jacobsen and
Keiding (1995), Gill, van der Laan and Robins (1997)). Since causal inference
data structures are missing data problems where the full data is the collection
of all potential outcomes, this also covers causal inference models (for a unified
treatment we refer to van der Laan and Robins (2001)). In this model for the
observed data Y , the orthogonal complement of the nuisance tangent space T⊥

nuis
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of µ is given by the range of AFX

{
A�

GAFX

}−
: TFull,⊥

nuis → L2
0(PFX ,G) of the or-

thogonal complement TF,⊥
nuis of the nuisance tangent space of µ in the full-data

model MF , where AFX
: L2

0(FX) → L2
0(PFX ,G) is the nonparametric score op-

erator AFX
(h)(Y ) = E(h(X) | Y ) and A�

G : L2
0(PFX ,G) → L2

0(FX) is its adjoint
A�

G(V )(X) = E(V (Y ) | X). Here we implicitly assume that TFull,⊥
nuis is in the

range of the nonparametric information operator IF,G = A�
GAF , but this can be

weakened by replacing AF I
−1
F,G(D) by the projection of D(X) onto the closure of

the range of the score operator. Therefore, given a class of full-data estimating
functions {Dh(X | µ, ρ) : h ∈ HF} in the full-data model, the class of estimating
functions for µ in the observed data model is given by{

IC(Y | F,G,Dh(· | µ, ρ)) ≡ AF I
−
F,GDh(· | µ, ρ) : h ∈ HF

}
.

These are estimating functions for µ with nuisance parameter (ρ, F,G). By ap-
plying Lemma 0.1. (for G it follows directly and for F one needs to note that
the lemma can be applied for each choice of µ) we obtain protection against
misspecification of G, given FX , ρ, and misspecification of FX , given G, ρ: if
EFX

D(X) = 0, then EFX ,GIC(Y | F1, G1,Dh) = 0, if either F1 = FX or G1 = G.
This double protection property (which has been noted by various authors) of
the estimating function implies that the estimator µn corresponding with the
estimating equation 0 =

∑
i IC(Yi | Fn, Gn,Dhn(· | µ, ρn)), where Fn, Gn are

estimated according to guessed submodels for FX and G, will be consistent if at
least one of the guessed submodels is correct, assuming that the full-data esti-
mating function is asymptotically unbiased. In Gill, van der Laan and Robins
(2000) and van der Laan and Robins (2001) it is shown how one can also con-
struct locally efficient estimators based on the least squares representation of the
efficient influence function, as provided in Bickel, Klaassen, Ritov and Wellner
(1993).

Double protection w.r.t. non-convex parameters

Consider the semiparametric regression model:

T = m(A|α) + g(Z) + ε, (4)

where m is a known function, say, m(A|α) = αA, g(Z) is unspecified, the con-
ditional distribution H(A | Z) of A, given Z is unspecified, and E(ε|A,Z) = 0.
Note that in a study where a treatment A is randomly assigned to a subject based
on covariates, this conditional distribution H would be known by design. This
model was studied in Newey (1990) and in Robins, Mark and Newey (1993), who
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proposed a variety of estimators. In Zhuo and van der Laan (2001) it is shown
that the orthogonal complement of the nuisance tangent space is given by

T⊥
nuis ={Dh(X|α, g,H)≡{T−m(A|α)−g(Z))}{h(A,Z)−EH (h(A,Z)|Z)} : h},

and the optimal estimating function Dhopt(X | α, g,H) (i.e., the efficient in-
fluence function) is presented in closed form. Consider this class of estimat-
ing functions {Dh(X | α, g,H) : h} for α with nuisance parameters g and
H(A | Z). Lemma 0.1. predicts protection of the unbiasedness property of
these estimating functions against misspecification of H, but not against mis-
specification of g1. However, the double protection property can be directly
verified: EFX

Dh(X | α, g1,H1) = 0, if either g1 = g(FX) or H1 = H(FX).
Where g(FX ), H(FX) denote the true regression curve g and true conditional
distribution of A, given Z. For example, if HA|Z is known by design, or it is
known that A is independent of Z, then one can estimate g(Z) in the estimating
equation 0 =

∑
iDhn(Xi | α, gn,Hn) as if it is linear in Z (thus no smoothing

required) without any risk of getting an inconsistent estimator of α. We refer
to Zhuo and van der Laan (2001) for simulations addressing the performance of
the corresponding locally efficient estimators relative to estimators proposed in
Newey (1990) and in Robins, Mark and Newey (1993).

Estimation of non-smooth parameters

Consider n i.i.d. observations on the right-censored data structure (T̃ =
(min(T,C),∆ = I(T ≤ C), W̄ (T̃ )) on a survival time T . Suppose that the den-
sity fT is the parameter of interest. As suggested in the paper under discussion,
given a kernel k and bandwidth b, one could estimate µb =

∫
fT (s)k((s−t)/b)/bds

with a locally efficient estimator µb,n (Robins and Rotnitzky (1992)) and esti-
mate fT (t) with µbn,n, where bn is a cross-validated bandwidth estimator. Let
us compare this estimator with a smoothed Kaplan-Meier estimate and assume
independent censoring, so that the latter estimator is consistent. It can be shown
that the locally efficient estimators (under both correct and incorrect specifica-
tion of a guessed submodel) are asymptotically equivalent with the smoothed
Kaplan-Meier estimator, though these estimators are known to gain in efficiency
relative to Kaplan-Meier for smooth parameters. In other words, it is not possible
to asymptotically improve estimation of the density by using covariate informa-
tion. Consider now n i.i.d. observations on the current status data structure
(C, I(T ≤ C), W̄ (C) = (W (s) : s ≤ C)) on a failure (e.g., onset of tumor) time
T . Suppose that the parameter of interest is FT (t) = P (T ≤ t), which can be ap-
proximated by the smooth parameter µb =

∫
FT (s)k((s− t)/b)/bds. In this case

the locally efficient estimators µb,n of µb of van der Laan and Robins (1998) are
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now also asymptotically exploiting the covariate information to gain in asymp-
totic efficiency relative to the smoothed marginal NPMLE, as shown in van der
Vaart and van der Laan (2001). This difference in asymptotic use of covariate
information for the two data structures raises a general interesting question.

Division of Biostatistics, University of California, Berkeley, School of Public Health Warren Hall
#7360, Berkeley, California 94720-7360, U.S.A.

E-mail: laan@stat.berkeley.edu
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Brad McNeney and Jon A. Wellner

University of Simon Fraser and University of Washington

Bickel and Kwon present an interesting survey of recent work on semipara-
metric models and statistical methods for such models. They correctly note that
the primary focus has been on the i.i.d. data case or in models formulated in
terms of counting processes. After reviewing developments for the i.i.d. case
and presenting five Questions (A-E), they focus on Question C, and in answer
to this question they present an approach to extending current results from the
i.i.d. theory to more general models.

Our discussion will first focus on the general themes and issues raised by
Questions A-E, and then return to the specific Answer developed to Question C.
First some comments on Questions A,B,D, and E.

Question A. How should bandwidth estimation be accomplished when “smooth-
ing” is necessary to attain efficiency?

This question is difficult and deserves considerable further study. The study
of “adaptive estimation” in nonparametric models has been underway over the
past 5-8 years: see e.g., Birgé and Massart (1999), Barron, Birgé, and Massart
(1997), Efromovich (1998), Spokoiny (1996), and Lepski and Spokoiny (1997).
The approaches developed for nonparametric models need to be brought to bear
on semiparametric models. Perhaps another way to put the question is as follows.

Question A′. In a semiparametric model, can we estimate the infinite-dimen-
sional parameter “adaptively” (here we use the term in the sense of the nonpara-
metric function estimation literature, and not in the sense of Bickel (1982) or
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Bickel and Kwon Question A) and still efficiently estimate and test hypotheses
about and form confidence intervals for the finite-dimensional parameter?

Bunea (2000) has started to address this question in the special case of partially
linear regression models.

Question B. What are appropriate model selection criteria for estimation of the
variances of estimates of Euclidean parameters in i.i.d. and non-i.i.d. settings.

We view this question as being closely connected with Question A: can we
eat our efficiency/adaptivity cake and make valid inferences too? Of course
additional complications will ensue in non-i.i.d. problems.

Question D. How can we test goodness-of-fit for a given semiparametric model?
What are the appropriate (best?) model diagnostics?

Another side to this coin is the establishment of properties of efficient semi-
parametric estimators beyond the models for which they are derived. As an
example, consider the study of the Cox partial likelihood estimators beyond the
Cox model given by Lin and Wei (1989) and BKRW pages 330 - 335. More
studies of this type are needed. In situations in which a whole class of consistent
estimators is available for estimation of the Euclidean parameters of a model,
trade-offs between robustness and efficiency should be considered.

Question E. What are the asymptotic behaviors of semiparametric (and non-
parametric) Bayes estimators?

This is a very important question since many (most?!) current estimators
for semiparametric models are being computed via Markov Chain Monte Carlo
methods with virtually no understanding of their (frequentist) properties. As
Bickel and Kwon note, there has been some recent progress by Wasserman (1998),
Ghosal and van der Vaart (2000), (2001), and Shen and Wasserman (2001), but
much remains to be done in this area. Moreover, questions concerning frequentist
properties (such as consistency) and inference remain largely unexplored.

Question E raises the interesting issue of development of algorithms for fre-
quentist methods (Non- and Semi-Parametric Maximum Likelihood estimators,
Generalized Estimating Equations,. . .). While some work has been done in this
direction (see e.g., Böhning (1986), (1995) and Jongbloed (1998)), there is a large
scope for further development of fast, high-quality, scalable algorithms.

A further set of problems involves the examination of semiparametric models
under “functional model” (or incidental parameter) hypotheses as well as the
more usual “structural model” (or i.i.d.) hypotheses. See Murphy and van der
Vaart (1996) for an interesting study of the particular case of (linear) errors-
in-variables regression models, and see Pfanzagl (1993) and Strasser (1996) for
discussion of some of the general issues.
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Now we turn to Bickel and Kwon’s Answer to Question C.
Their approach is based on finding a suitable replacement b̂(n) for the empir-

ical measure Pn. This replacement has several key properties, outlined in their
conditions (A1) – (A3), in common with the empirical measure. The authors dis-
cuss how these three simple properties allow a generalization of many i.i.d. results
on asymptotic efficiency and, in particular, how one might characterize efficient
estimators. They present several interesting applications of their formulation,
such as d-sample models and real-valued Markov chains. Their discussion of the
key conceptual ideas needed to extend the i.i.d. theory is very insightful.

Hájek-LeCam style convolution theorems, which form the basis of the famil-
iar notion of asymptotic efficiency in Bickel, Klaassen, Ritov and Wellner (1993)
(BKRW), are of course not restricted to i.i.d. data. Rather it is the study of suffi-
cient conditions to satisfy the convolution theorem hypotheses of local asymptotic
normality (LAN) and regularity of the parameter of interest that has met with
the most success to date in the i.i.d. setting. Hence an alternate way to extend
i.i.d. results to non-i.i.d. models is to generalize these sufficient conditions. This
is the approach taken in McNeney and Wellner (2000). In what follows we will
comment on some of the connections between the two approaches.

In Definition 1 Bickel and Kwon define regular 1-dimensional submodels and
describe the form of the local approximations to the log-likelihood ratio. The
sequence of functionals {b∗n} that appears in the leading term in the expansion
is connected to a tangent l̇ via an operator T . This leads to a definition of the
tangent set Ṗ0 and the tangent space Ṗ as the closed linear span of Ṗ0. In general
parameter spaces, linearity of Ṗ0 is required (cf. Assumption (iii) of Theorem
5.2.1 in BKRW). Is this linearity of the tangent set implicitly assumed here?

The form of the approximation for the log-likelihood ratios is the basic build-
ing block for a study of efficiency. In McNeney and Wellner (2000), this is also
the starting point. We chose a formulation with a more traditional triangular
array of observations {Xnk; k = 1, . . . ,mn; n = 1, 2, . . .} and our approximation
is in terms of a Martingale difference array {hnk −E[hnk | Xn1, . . . ,Xn,k−1]; k =
1, . . . ,mn; n = 1, 2, . . .}. The Martingale difference array conveniently provides
the asymptotic normality needed in the local approximation, and we assume
a connection between the hnk’s and a corresponding element h of the tangent
space. We do not actually require the tangent space to be closed although in our
discussion of asymptotic linearity and regularity of estimators, following Bickel
(1993), we do define a “largest model of interest” and assume the tangent space
for the largest model of interest is closed. As in Definition 2 of the present paper,
asymptotically linear estimators are those which satisfy an expansion of the same
form as the expansion of the log-likelihood ratios in a submodel of the largest
model of interest.
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The authors technical description is for estimation of regular 1-dimensional
parameters, but they note that extensions to Banach-valued parameters follow as
well. However, in considering Banach-valued parameters, there are several possi-
ble notions of regularity and asymptotic linearity of estimators; see for instance
Definition 5.2.5 of BKRW regarding asymptotic linearity. By working exclusively
with estimates of general parameters as collections of estimates of 1-dimensional
parameters, it appears that the authors will adopt the weak versions of these
definitions – weak regularity of parameters, weakly asymptotically linear estima-
tors, and a resulting weak form of efficiency wherein an estimator Tn of a general
parameter b ∈ B is efficient if the limiting distribution of b∗(

√
n(Tn − b)) is as

concentrated as possible. This form of optimality does not, however, translate
into the stronger conclusion that the asymptotic distribution of

√
n(Tn − b) is

optimal. It does not even imply {Tn} is consistent. See the discussion of Example
1 in Section 4 of McNeney and Wellner (2000, p.464), for an example.

In their Example 1 discussing d−sample problems, the authors derive the
same tangent space for the case of fixed covariates as in a randomized version
that produces i.i.d. data, so that information bounds are the same in the two
problems. Note that this is more generally true in that information bounds will
be the same in two problems whenever the two tangent spaces are isomorphic as
Hilbert spaces. See Corollary 4.4 of McNeney and Wellner (2000).
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We thank the editors for giving us this opportunity to discuss Bickel and
Kwon’s stimulating article and to give our perspective on the future of semi-
parametric inference. We found Bickel and Kwon’s extension of methods for
calculating information bounds to non i.i.d. models both enlightening and novel,
and their list of five open questions relevant and challenging. In this discussion
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we would like to pose a sixth question and to describe some initial attempts at an
answer. Specifically we will discuss the question of how to approach the estima-
tion of a finite dimensional parameter θ in very large semi parametric models, like
those studied in Ritov and Bickel (1992), in which the semiparametric variance
bound for n1/2-consistent estimators of θ is finite (i.e., θ is a regular parameter)
and yet θ is not estimable at rate nα for any α > 0. Robins and Ritov (1997)
have argued that the study of these models is of major importance because the
asymptotic behavior of an estimator in these very large models accurately mimics
the finite sample behavior of estimators in the high dimensional models typically
used in biomedical applications. Here we argue, following Scharfstein, Rotnitzky
and Robins (1999) and Robins Rotnitzky and Van der Laan (2000), that in such
large models one promising partial answer to our question is to employ so called
doubly robust (DR), equivalently doubly protected, estimators when such esti-
mators exist. Section 1 of our discussion will serve as motivation for and an
introduction to DR estimation. Section 2-4 will summarize the current state of
knowledge. Section 3 also outlines an approach to DR estimation of non-regular
parameters. A discussion and bibliographic history of DR estimation concludes.

1. Motivation

Consider a follow-up study with data on outcome Y , a binary treatment R,
and a high-dimensional vector of potential confounding factors V , many of which
are continuous, such as age, red blood count, white blood count, liver function
tests and weight. In realistic epidemiologic studies it would not be unusual for the
sample size n to be between 500 and 2000 and yet for V to be 50-100 dimensional.
Because V is high-dimensional and continuous, neither nonparametric smoothing
nor stratification can be used for confounder control. As a consequence, statistical
models are required for dimension reduction. Typically this involves regressing
the outcome on the treatment and the confounders using linear, logistic, or log
linear models.

For example if Y were continuous, we might choose to fit by ordinary least
squares (OLS) the linear outcome regression (OR) model

E (Y | R,V ) = β0 + β
′
V + θR

owing to the infeasibility of fitting the semiparametric regression (SR) model
E (Y | R,V ) = ω (V ) + θR by multivariate non-parametric (e.g. kernel) smooth-
ing, where ω (V ) is an unknown arbitrary function. In the absence of measure-
ment error or confounding by unmeasured factors, the parameter θ of the SR
model represents the treatment effect. Even if, as we assume, the SR model as-
sumption of no treatment-covariate interaction is correct, the OLS estimate θ̂OR

from the OR model may be badly biased if ω (V ) cannot be well approximated
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by β0 + β
′
V . In particular, if the nonlinear part of ω (V ) is highly correlated

with R and highly predictive of Y , then θ̂OR will be badly biased, even though
the estimated regression function β̂

′
OLS,0 + β̂

′
OLSV + θ̂ORR may be highly predic-

tive of the response Y and the power of standard global lack of fit tests may be
small. Partially non/semiparametric dimension reducing techniques such as gen-
eralized additive models may improve somewhat upon a linear regression model
but cannot solve the dimensionality problem. For example, GAM models ignore
interactions among components of V .

Recently alternative methods of confounder control based on an estimated
propensity scores have been introduced. The propensity score P ≡ pr (R = 1 | V )
is the conditional probability of exposure given the covariates (Rosenbaum and
Rubin (1983)). Because P is unknown, and the fitting of the nonparametric
logistic regression model logit pr (R = 1 | V ) = γ (V ) , with γ (V ) an unknown
unrestricted function is infeasible, we might choose to estimate P by the predicted
value P̂ =expit

(
α̂0 + α̂

′
V
)

from the maximum likelihood fit of a linear logistic
model

logit pr (R = 1 | V ) = α0 + α
′
V,

Here logit x = ln {x/ (1 − x)} and expit(x) = {1 + exp (−x)}−1. A suitable
propensity score estimator θ̂P of θ turns out to be the estimator of θ in the OLS
fit of the model E (Y | R,V ) = β0 + θR+ ςP̂ (Robins (2000)).

There has been considerable debate as to which approach to confounder
control is to be preferred, as the first is biased if the outcome regression model
is misspecified while the second approach is biased if the treatment regression,
i.e., propensity, model is misspecified. This controversy could be resolved if an
estimator were available that was guaranteed to be consistent for θ whenever at
least one of the two models was correct under an asymptotic sequence in which
the outcome and treatment regression models remain fixed as the sample size
n increases to infinity. We refer to such combined methods as doubly-robust
or doubly-protected as they can protect against misspecification of either the
outcome or treatment model, although not against simultaneous misspecification
of both.

A natural first guess that turns out to be correct is that the OLS estimator
θ̂DR based on an expanded model E (Y | R,V ) = β0 + β

′
V + θR+ ςP̂ that adds

P̂ as a regressor is doubly robust. One could wonder about the actual advantage
of using DR estimators as, in practice, all models including the outcome and
treatment regression models are misspecified and thus even the DR estimator of
θ may be considerably biased. In our opinion, a DR estimator has the following
advantage that argues for its routine use: if either the model for the outcome
or the model for the propensity score is nearly correct, then the bias of a DR
estimator of θ will be small. Thus, the DR estimator θ̂DR, in contrast with
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both the usual outcome regression estimator θ̂OR or the propensity estimator θ̂P ,
gives the analyst two chances, instead of only one, to get nearly correct inference
about the treatment effect. Of course, there can be an efficiency cost to using a
DR estimator rather than the outcome regression estimator of θ: if the outcome
regression model is correct both the θ̂DR and θ̂OR will be consistent but the DR
estimator will be less efficient. However, in our opinion, we have already paid
homage to the need for efficiency by using parametric, albeit high dimensional,
models in the outcome and treatment regressions; at this juncture the hope to
control bias due to model misspecification with DR estimators trumps further
efficiency concerns.

A further advantage of DR estimation is that comparison of the three esti-
mators θ̂DR, θ̂P , and θ̂OR with one another serves as a useful informal goodness
of fit test. Specifically if the DR estimator differs from both the propensity and
outcome regression estimator by much more than can be explained by sampling
variation (say, as evaluated using the bootstrap) then we can conclude that both
the propensity and outcome regression model must have been badly misspecified
and that all three estimators probably suffer from substantial bias. In that event
the specification of both the propensity and outcome regression model should be
modified, say by adding additional nonlinear and interaction terms to the model.
If θ̂DR and θ̂P are close but differ greatly from θ̂OR, one can take that as some
evidence that the propensity model may be nearly correct, that the outcome re-
gression model is probably badly misspecified, and that θ̂DR and θ̂P may suffer
from only a small amount of bias. Similar remarks apply with the roles of θ̂OR

and θ̂P reversed. This informal goodness of fit test is based directly on estimators
of the parameter θ of interest and thus will presumably be both more sensitive
and inferentially relevant than global goodness of fit tests of the outcome and
propensity regression models themselves.

Doubly robust estimators do not always exist, and even when they do, their
construction may not always be obvious. As an example, suppose that in our
motivating problem, either the outcome Y is Bernoulli and we fit a linear logistic
outcome model logitE (Y | R,V ) = β0 +β

′
V + θR or the outcome Y is a count

variable and we fit the log linear outcome regression model logE (Y | R,V ) =
β0 + β

′
V + θR. In both cases the iteratively reweighted least squares (IRLS)

estimator of θ (i.e., the ML estimator under the Bernoulli and Poisson likelihoods
respectively) obtained by adding the term ςP̂ to the model is, in contrast with
the linear regression model, inconsistent whenever the outcome regression model
is misspecified and the true value of θ is non-zero, even if the propensity model is
correct. Indeed, as we discuss in Sections 2 and 3, (i) no DR estimator exists for
the linear logistic model and (ii) a DR estimator exists in the log linear model but
it is not constructed by adding functions of P̂ to a log linear regression model.
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In Sections 2-4 we use the semiparametric theory developed by Bickel and
others to provide some preliminary answers to the question of existence and
construction of DR estimators.

2. The Formal Problem and Doubly Robust Estimating Functions

To formalize our problem we consider inference about a possibly vector val-
ued functional θ ≡ θ (ρ) under a model M (R) indexed by an infinite dimensional
parameters ρ ∈ R for n i.i.d. copies of a random vector X. We are interested
in settings in which the parameter space R is very large and inference about θ
is practically unfeasible due to the curse of dimensionality. Specifically, follow-
ing Ritov and Bickel (1992), Robins and Ritov (1997) and Robins, Rotnitzky
and van der Laan (2000), we consider models M (R) which have the following
properties: (i) the semiparametric variance bound for n1/2-consistent estimators
of θ is finite at all ρ ∈ R, and yet, no estimator is consistent for θ uniformly
over ρ ∈ R, much less uniformly asymptotically normal (UAN); (ii) no estima-
tor of θ attains a pointwise (i.e., non-uniform) rate of convergence of nα at all
ρ ∈ R for any α > 0; (iii) there does not exist a regular asymptotically linear
estimator (RAL) of θ at any ρ ∈ R. In this setting in both theory and practice
some method of dimension reduction is necessary by imposing additional mod-
elling restrictions. One dimension reduction strategy often used in practice is to
introduce a parametrization (κ, γ) , κ ∈ K and γ ∈ Γ, of ρ with κ and γ varia-
tion independent, i.e., R = K× Γ and replace model M (R) by either a working
submodel M (Ksub×Γ) or a working submodel M (K×Γsub) where Ksub ⊂ K and
Γsub ⊂ Γ, and hope that RAL estimators can be found in one or both of the
working submodels. However, because Ksub and Γsub are only working submod-
els, it is unknown whether the true value of γ is in Γsub or the true value of κ is
in Ksub. Thus, the best that can be hoped for is an estimator that is RAL in the
union model M (K × Γsub) ∪M (Ksub × Γ) that assumes that the true value of ρ
either lies in K × Γsub or in Ksub × Γ. We refer to such an estimator as doubly
robust or doubly protected under the parametrization ρ = (κ, γ) and submodels
Γsub and Ksub.

The ultimate goal would be to characterize necessary and sufficient condi-
tions for the existence of a DR estimators and, where they exist, provide con-
structive methods for finding them. In this discussion, we summarize current
progress. Before studying the union model M (K × Γsub)∪ M (Ksub × Γ) of in-
terest, it will be advantageous to study unbiased estimating functions in the
special case M (κ× Γ) ∪M (K × γ) in which Ksub and Γsub are singletons.

Definition 1. We say that a function U (θ, κ, γ) ≡ u (X, θ, κ, γ) is a DR
estimating function for a, possibly vector valued, functional θ (κ, γ) in model
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M (K × Γ) under parametrization (κ, γ) if it is an unbiased estimating func-
tion in the union model M (κ× Γ) ∪ M (K × γ). That is for all (κ, γ) and
(κ∗, γ∗) ∈ K × Γ, Eκ∗,γ∗ [U (θ (κ∗, γ∗) , κ∗, γ)] = Eκ∗,γ∗ [U (θ (κ∗, γ∗) , κ, γ∗)] = 0
and ∂Eκ∗,γ∗ [U (θ, κ, γ∗)] /∂θ

∣∣∣
θ=θ(κ∗,γ∗)

and ∂Eκ∗,γ∗ [U (θ, κ∗, γ)] /∂θ
∣∣∣
θ=θ(κ∗,γ∗)

are

invertible.

Henceforth, we always assume invertibility of ∂Eκ∗,γ∗[U(θ, κ, γ∗)]/∂θ
∣∣∣
θ=θ(κ∗,γ∗)

and ∂Eκ∗,γ∗ [U(θ, κ∗, γ)]/∂θ
∣∣∣
θ=θ(κ∗,γ∗)

. Clearly, a necessary (but not sufficient)

condition for the existence of a doubly robust estimating function is that there
is an unbiased estimating function U1(θ, γ) for θ(κ, γ) in model M(K × γ) and
an unbiased estimating function U2(θ, κ) for θ(κ, γ) in model M(κ×Γ). Further
progress requires semiparametric theory definitions.

Given an arbitrary semiparametric model M(Ψ1 ×Ψ2) indexed by variation
independent, possibly infinite dimensional parameters, ψ1 and ψ2, and a, possibly
p-dimensional vector valued, functional θ (ψ) where ψ = (ψ1, ψ2) , let L0

2(ψ) be
the Hilbert space of random vectors of the dimension of θ with mean zero and
covariance inner product under ψ. Let ΛΨj (ψ) ⊂ L0

2 (ψ) and ΛΨ (ψ) ⊂ L0
2 (ψ)

be the tangent spaces (i.e., closed linear span of scores) for ψj, j = 1, 2, and
for ψ, respectively, when the data is generated under ψ and let Λ⊥

Ψj
(ψ) , j =

1, 2, and Λ⊥
Ψ (ψ) denote their orthogonal complements in L0

2 (ψ). Finally, in
any semiparametric model M (Ψ) indexed by ψ, let IF (ψ) denote the influence
function space for θ at ψ. That is, IF (ψ) is the direct sum of Λ⊥

Ψ (ψ) and the
linear space spanned by the efficient influence function EIF (ψ) for θ. In many
models IF (ψ) is called the orthogonal complement to the nuisance tangent space
for θ. To make our discussion concrete we use two models M (K× Γ) to illustrate
our results. In the first, θ (κ, γ) may be a function of both κ and γ. In the second,
θ (κ, γ) = θ (κ) only depends on κ. When θ (κ, γ) = θ (κ), we define IF (κ, γ) in
model M (κ× Γ) to be Λ⊥

Γ (κ, γ).

Example 1. A Partially Missing Response Model
Suppose we have a model with underlying full data (R,Y, V ), Y and R

Bernoulli and V highly multivariate and continuous. The parameter of interest
θ is the mean of Y . However, if R = 1 then Y is not observed. Thus X =
(R,V,RY ) is observed. Scharfstein, Rotnitzky and Robins (1999) consider the
model M(K × Γ) for X that imposes the sole assumption that

pr (R = 1|Y, V ; γ) = φ {γ (V ) + αY } ≡ Φ (γ) (1)

where α is a known selection bias parameter, φ(·) is a known differentiable,
strictly increasing, cumulative distribution function with support on (−∞,∞),
and Γ = {γ = γ(·)} is the set of all functions of V . When α = 0, the
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data are said to be coarsened at random (CAR) and the missingness is said
to be ignorable. When α �= 0, missingness is said to be nonignorable. Write
pr(Y = 1|V,R = 1;ω) = ω(V ) and let Ω = {ω = ω(·); 0 < ω(V ) < 1} be
the set of all integrable functions taking values in (0, 1), so ω is the condi-
tional mean function of Y given V in the subpopulation of units with Y ob-
served. At α = 0, ω is also the conditional mean function for the entire popu-
lation. Let N ={η = η(·)} be the set of all densities for V and let K = N × Ω.
Robins and Rotnitzky (RR) (2001a) show that κ and γ are variation inde-
pendent, i.e., their joint parameter space is the product space K × Γ. The
individual likelihood contribution is L(κ, γ) = L1(κ)L2(κ, γ) where L1(κ) =
η(V )[ω(V )Y {1 − ω(V )}1−Y ]R and L2(κ, γ) = Eω,γ(R|V )R{1 − Eω,γ(R|V )}1−R.
RR (2001a) show that Eω,γ(R|V ) = Eω{Φ(γ)−1|V,R = 1}−1. Under CAR,
i.e., under α = 0, θ(κ, γ) = θ(κ), Eω,γ(R|V ) = Eγ(R|V ) does not depend on ω

and L(κ, γ) = L1(κ)L2(γ) factors into a function of κ only and a function of γ
only. Rotnitzky, Robins and Scharfstein (1998) showed that model M(K × Γ)
is a non-parametric model for the law FX of the observed data and that the
joint law FY,R,V is identified. In particular, the marginal mean of Y , Eκ,γ(Y ) is
θ(κ, γ) = Eη[Eω{Y/Φ(γ)|V,R = 1}/Eω{1/Φ(γ)|V,R = 1}].

RR (2001a) show that the efficient influence function for θ(κ, γ) is Seff (κ, γ,
θ(κ, γ)) where

Seff (κ, γ, θ)=
R

Φ(γ)

Y −
Eω

{
Φ′(γ)
Φ(γ)2Y |R = 1, V

}
Eω

{
Φ′(γ)

Φ(γ)2
|R = 1, V

}
+

Eω

{
Φ′(γ)

Φ(γ)2
Y |R = 1, V

}
Eω

{
Φ′(γ)

Φ(γ)2
|R = 1, V

} −θ,

and the influence function space for θ in model M(K × Γ) is thus {cSeff (κ, γ,
θ(κ, γ)); c ∈ R}.

We later use Lemma 1 below to show that a DR estimating function exists for
the parametrization (κ, γ) if and only if the ratio B(ω, γ)=Eω

{
Φ′(γ)
Φ(γ)2Y |R = 1, V

}
/Eω

{
Φ′(γ)

Φ(γ)2
|R = 1, V

}
is free of γ. RR (2001a) proved that this ratio is free of γ

if and only either (i) α = 0 and thus there is CAR or, (ii) the known CDF φ (·)
satisfies

φ (x) =
exp {kα [x/α] + q (x− α [x/α])}

1 + exp {kα [x/α] + q (x− α [x/α])} , (2)

where k is any positive constant, [x] is the largest integer less than or equal
to x, and q (u) is any increasing and differentiable function on [0, α) such that
kα [x/α] + q (x− α [x/α]) is differentiable. The choice q (u) = u and k = 1
gives the logistic cumulative distribution function φ (x) = exp (x) / {1 + exp (x)}.
However the logistic CDF is not the only possible choice for q (u). For example,
q (u) = I[0,1/2) (u) 2u2 + I(1/2,1] (u) {1− 2 (u− 1)2} is a valid choice for α = 1 and
k = 1.
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When (i) or (ii) hold, it is easy to check that B (ω, γ) = Eω{e−kαY Y |R =
1, V }/Eω{e−kαY |R = 1, V } and {cSeff (κ, γ, θ) ; c ∈ R} is a set of DR estimating
functions. Robins and Rotnitzky (2001a) use Lemma 1 below to prove that this
set contains all DR estimating functions.

A necessary condition for the existence of a DR estimating function is the
existence of both an unbiased estimating function for θ with κ known and an-
other with γ known. A natural question is whether there exist simple primitive
sufficient conditions for the existence of these estimating functions. Example 1
suggests not as the sufficient condition (ii) is very complex and nonintuitive.

Example 2. Semiparametric Regression
Model M (K × Γ) for X = (R,V, Y ) imposes the sole assumption that

φ−1 {E (Y |R,V )} = θR + ω (V ), with Y and R being continuous, count, or
dichotomous outcome and treatment variables, V a highly multivariate contin-
uous random vector with support in V, φ−1 (x) a known 1-1 link function with
range (−∞,∞) ,Ω = {ω = ω (·)} the set of all functions of V . To avoid dis-
tracting technicalities, we will additionally impose the assumption that f (V )
is known. This we do without loss of generality because the influence function
space for θ is the same whether f (V ) is known or unknown. Let ε (θ, ω) denote
Y − φ {θR+ ω (V )} ≡ Y − Φ {θ, ω}. Then K ={κ = (θ, ω, η); θ ∈ R1, ω ∈ Ω,
η ∈ N (θ, ω)}, where N (θ, ω) is the set of all mean zero conditional densities
for ε (θ, ω) given V (except when Y is binary in which case κ = (θ, ω)). We
define Γ = {γ ≡ γ(R|V )} to be the set of all conditional densities for R given V .
The individual likelihood contribution factors as L (κ, γ) = L1 (κ)L2 (γ), where
L1 (κ) = η (ε (θ, ω) |V ) and L2 (γ) = γ(R|V ).

Bickel, Klaassen, Ritov and Wellner (1993) and RR (2001b) show that the
influence function space for θ is

IF (κ, γ) = {U (κ, γ, g, φ) = ε (θ (κ) , ω (κ)) {g (R,V ) −M (γ, κ, g, φ)} ; g ∈ G} ,

with G the set of all functions of (R,V ), and M(γ, κ, g, φ) = Eγ{g(R,V )|V }
if φ−1 is the identity link, M(γ, κ, g, φ) = Eγ{g(R,V )eθ(κ)R|V }/Eγ{eθ(κ)R|V }
if φ−1 is the log link and M(γ, κ, g, φ) = Eγ [g(R,V )Φ{θ(κ),ω(κ)}[1−Φ{θ(κ),ω(κ)}]|V ]

Eγ [Φ{θ(κ),ω(κ)}[1−Φ{θ(κ),ω(κ)}]|V ]

if φ−1 is the logit link. Throughout, we write θ(κ) and ω(κ) when we wish
to emphasize that θ and ω are formally functions of κ. Note that IF (κ, γ)
does not depend on η, so without loss of generality we write it as IF (θ, ω, γ).
RR (2001b) have proved that the only links for which M(γ, κ, g, φ) depends
on κ only through θ(κ) for all g ∈ G are the identity and exponential. It
is straightforward to check that, for φ−1 the identity or the log-link, the set
D = {U(θ, κ, γ, g, φ) = ε(θ, ω(κ)){g(R,V )−Mest(γ, θ, g, φ)}; g ∈ G} is comprised
of DR estimating functions, where Mest(γ, θ, g, φ) = Eγ{g(R,V )|V } if φ−1 is
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the identity link and Mest(γ, θ, g, φ) = Eγ{g(R,V )eθR|V }/Eγ{eθR|V } if φ−1 is
the log link. Note U(θ, κ, γ, g, φ) is U(κ, γ, g, φ) with θ(κ) replaced by the free
parameter θ.

We next summarize results in RR (2001a) and apply them to prove that
the set D contains all DR estimating functions that depend on κ only through
ω (κ) when φ−1 is either the identity or the log link, and that no DR estimating
function exists when Y is binary and φ−1 is the logit link.

• A necessary condition for U (θ, κ, γ) to be DR is that U (θ (κ, γ) , κ, γ) must
be an element of the influence function space IF (κ, γ) in the unrestricted
model M (K × Γ) at each (κ, γ).

• Suppose that θ (κ, γ) = θ (κ) is a function of κ alone. Then (i) our model
M (R) will admit parameterizations R = K × Γ with K = {κ = (θ, δ) :
θ ∈ Θ, θ (κ) = θ and δ ∈ ∆ (θ)}, where ∆ (θ) is a set that can pos-
sibly depend on θ, (ii) IF (κ, γ) can be expressed as the set IF (θ, δ, γ) ={
Ṽ (θ, δ, γ) ≡ Ũ ((θ, δ) , γ) ; Ũ (κ, γ) ∈ IF (κ, γ)

}
of functions of (θ, δ, γ), and

(iii), by the previous remark, a necessary condition for an estimating func-
tion U (θ, κ, γ) = U (θ, δ, γ) that depends on κ only through δ to be DR is
that it be an element of IF (θ, δ, γ) in model M (K× Γ).

Example 2. (continuation). In Example 2, take δ = (ω, η) and ∆(θ) = {(ω, η) :
ω ∈ Ω, η ∈ N (θ, ω)}. Then since κ = (θ, δ) with θ(κ, γ) = θ(κ) = θ, any DR
estimating function U(θ, ω, γ) must be in the set IF (θ, δ, γ) in model M(K×Γ).
But as pointed out above, IF (θ, δ, γ) = IF (θ, ω, γ) does not depend on η. Now,
when φ−1 is the logit link, RR (2001a) showed that Eθ,ω,γ∗ [U(θ, ω, γ)] �= 0 for all
U(θ, ω, γ) ∈ IF (θ, ω, γ) in model M(K × Γ). Thus, no DR estimating function
can exist when φ−1 is the logit link. When φ−1 is the identity or log link, we noted
above that all elements U(θ, ω, γ) of IF (θ, ω, γ) are doubly robust. This proves
that IF (θ, ω, γ) is the set of all DR estimating functions U(θ, κ, γ) = U(θ, ω, γ)
that depends on κ only through ω for φ−1 the identity or the log link.

When θ(κ, γ) depends on κ and γ the above strategy is not available. The
following Lemma provides a sometimes useful way to prove the absence of DR
estimating functions in this case.

Lemma 1. A necessary condition for the existence of a doubly robust esti-
mating function is that, for each θ in Θ(γ) ≡ {θ(κ, γ) : κ ∈ K}, we have
∩κ∗:θ(κ∗,γ)=θ IF (κ∗, γ) �= ∅ in model M(K×γ), and for each θ in Θ(κ) ≡ {θ(κ, γ)
: γ ∈ Γ}, we have ∩γ∗:θ(κ,γ∗)=θ IF (κ, γ∗) �= ∅ in model M(κ× Γ).

Informally, we interpret Lemma 1 as saying that in the model M(K × γ)
there exists an element of IF (κ∗, γ) that depends on κ∗ only through θ(κ∗, γ),
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and in model M(κ×Γ) there is an element of IF (κ, γ∗) that depends on γ∗ only
through θ(κ, γ∗).

Example 1. (continuation). In modelM(κ×Γ), RR (2001a) prove that IF (κ, γ)
= {Seff (κ, γ, θ(κ, γ)) + a(X); a ∈ A(κ)}, where

A(κ)=
{
a(X)=Rs(Y, V )+(1−R)Eω [s(Y, V )|R=1, V ]−ϕ(s;κ); s unrestricted

}
,

and ϕ(s;κ) = Eη{Eω[s(Y, V )|R = 1, V ]}. RR (2001a) show that in order for
∩γ:θ(κ,γ)=θIF (κ, γ) �= ∅ it must be that B(ω, γ) does not depend on γ.

We have described ways to rule out DR estimating functions for θ(κ, γ) by
checking necessary conditions for their existence. We now explore ways to rule in
DR estimating function by finding further sufficient conditions for their existence.
Consider the following.

Condition 1. IF (κ∗, γ) in modelM(K×γ) depends on κ∗ only through θ(κ∗, γ),
and IF (κ, γ∗) in model M(κ× Γ) depends on γ∗ only through θ(κ, γ∗).

Condition 2. θ(κ, γ) is function of κ alone and
K = {κ = (θ, δ) : θ ∈ Θ, θ(κ, γ) = θ, and δ ∈ ∆(θ)}.
Condition 3. There exists a function q(·) such that q(θ) is a linear functional
of both the law indexed by κ (with γ fixed) and the law indexed by γ (with κ

fixed), in the sense that for some U1(γ) and U2(κ), Eκγ{U1(γ)} = Eκγ{U2(κ)} =
q{θ(κ, γ)}. The following Theorem, proved in RR (2001a), states that when
Condition 1 and one of Conditions 2 or 3 hold, then there exist DR estimating
equations. Indeed, the theorem shows how to construct them.

Theorem 1. (a) If Conditions 1 and 2 hold, then all elements U(θ, δ, γ) of
IF (θ, δ, γ) = IF (κ, γ) in model M(K × Γ) are doubly robust; (b) if Conditions
1 and 3 hold, IF (κ, γ) in model M(K × Γ) has the form IF (κ, γ) = {Ũ (γ) −
q[θ(κ, γ)]; Ũ(γ) ∈ Ũ(γ)}, where Ũ(γ) is the set of all random variables Ũ(γ) for
which Ũ(γ)− q[θ(κ, γ)] ∈ IF (κ, γ) in both M(K× γ) and M(κ×Γ). Further the
set {Ũ (γ) − q[θ]; Ũ(γ) ∈ Ũ(γ)} consists of DR estimating functions.

A necessary and sufficient condition for Condition 1 to hold is that in model
M(κ × Γ) there exists an unbiased estimating function U2(θ, κ) for θ and the
orthogonal complement Λ⊥

Γ (κ, γ) = Λ⊥
Γ (κ) to the tangent space for γ is the same

for all (i.e., does not depend on) γ ∈ Γ, and in model M(K × γ) there exists an
unbiased estimating function U1(θ, γ) for θ and Λ⊥

K(κ, γ) = Λ⊥
K(γ) is the same for

all κ ∈ K. This raises the question of when one might expect Λ⊥
K(κ, γ) = Λ⊥

K(γ)
and/or Λ⊥

Γ (κ, γ) = Λ⊥
Γ (κ). RR (2001a) used ideas from Bickel (1982) on convex

models to show that these identities hold if model M(κ × Γ) is convex in its
parameter γ and M(K×γ) is convex in κ. A model M(Ψ) is convex if for all ψ∗,
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ψ ∈ Ψ, any mixture of the laws governed by ψ∗ and ψ lies in the model. We say
that κ and γ are mutually convex in model M(K × Γ) if both model M(K × γ)
and model M(κ × Γ) are convex. The models of both Example 1 and Example
2 have κ and γ mutually convex.

Example 1.(continuation). Model M(K × γ) is convex in κ. Thus Λ⊥
K(κ∗, γ) =

{( R
Φ(γ) − 1)g(V ); g ∈ G} does not depend on κ∗. Model M(κ× Γ) is convex in γ.

Thus Λ⊥
Γ (κ, γ∗) = A(κ) does not depend on γ∗.

Robins and Rotnitzky (2001a) provide an example that shows that condition
1 alone is not sufficient for the existence of doubly robust estimating functions.

Theorem 1 provides sufficient conditions for the existence of DR estimating
functions only in models under the quite strong Condition 1. The following two
theorems provide sufficient conditions for the existence of DR estimating func-
tions in models that need not satisfy this condition. The first theorem considers
the case where θ(κ, γ) = θ(κ). It strengthens the suppositions of Theorem 1a by
assuming that the likelihood factors into a κ−part and a γ−part. It relaxes the
suppositions of Theorem 1a by no longer assuming either that model M(κ × Γ)
admits an unbiased estimating function for θ or that Λ⊥

K(κ, γ) in model M(K×γ)
depends only on γ.

Theorem 2. (Robins, Rotnitzky and Van der Laan, (2000)). Suppose in
model M(K × Γ), the parameter θ(κ, γ) = θ(κ) depends only on κ, the likeli-
hood L(κ, γ) = L1(κ)L2(γ) factors, Λ⊥

Γ (κ, γ) = Λ⊥
Γ (κ) in model M(κ × Γ) de-

pends only on κ, and there exist an unbiased estimating function Ũ(θ, γ) in model
M(K×γ), i.e., Eκ∗,γ{Ũ (θ(κ∗), γ)} = 0 for all (κ∗, γ). Then U(θ, κ, γ) = Ũ(θ, γ)−
Πκ,γ[Ũ (θ, γ)|ΛΓ(γ)] is a DR estimating equation where Πκ,γ [A|B] is the projection
of the random variable A on the closed linear space B, and ΛΓ(κ, γ) = ΛΓ(γ) by
the factorization of the likelihood.

Example 2. (continuation). Robins and Rotnitzky (2001b) proved that for any
choice of φ−1 other than the identity or the log link and for R continuous or
discrete, model M(K× γ) was not convex in κ and Λ⊥

K(κ, γ) varies with κ. Thus
Theorem 1 cannot be used to guarantee the existence of a DR estimating function.
However it is clear that the suppositions of Theorem 2 hold for any choice of φ,
except perhaps the existence of an unbiased estimating function Ũ(θ, γ) in model
M(K × γ). Further for R continuous and φ(x) = x3, Robins and Rotnitzky
(2001b) proved that Ũ(θ, γ) ≡ ε(θ)h(R,V, γ) is an unbiased estimating function,
where ε(θ) = Y − θ3R3 and h(R,V, γ) = R3 − Eγ(R3B|V ){Eγ(BBT |V )}−1B is
the residual from the population conditional least squares regression of R3 on
B = (1, R,R2)T provided h(R,V, γ) = 0 wp1 is false.

The following is an alternative to Theorem 1b that does not require mutual
convexity in κ and γ.
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Theorem 3. Suppose there exists a function q(·) such that q(θ) is a linear func-
tional of both the law indexed by κ (with γ fixed) and the law indexed by γ (with κ
fixed) in the sense that for some U1(γ) and U2(κ), Eκγ{U1(γ)} = Eκγ{U2(κ)} =
q(θ(κ, γ)) and the model M(K× Γ) = M(R) is convex in ρ = (κ, γ). Then there
exists a DR estimating function. Specifically for any S(κ, γ) ∈ IF (κ, γ) in model
M(K × Γ), U(κ, γ)− q(θ) = S(κ, γ)+ q(θ(κ, γ)) − q(θ) is doubly robust.

Example 4. Suppose we have a nonparametric i.i.d. model for densities of
X absolutely continuous variable w.r.t. Lebesgue measure parameterized by
κ = V ar(X), κ ∈ K = {κ;κ > 0}, and γ = (µ, η(·)), where µ = E(X) and η(·)
is the density of (X − µ)/κ1/2, with γ ∈ Γ = {µ, η(·);µ ∈ R1, η(·) a density with
mean 0 and variance 1}. Let θ(κ, γ) = µκ. The space Λ⊥

K(κ, γ) varies with κ and
thus M(K× γ) is not convex in κ so the suppositions of Theorem 1 do not hold.
Nonetheless, by the convexity of the entire nonparametric model M(K× Γ) and
Eκ,γ∗[Xκ] = θ(κ, γ∗) and Eκ∗,γ [µ(X2−µ2)] = θ(κ∗, γ), a DR estimating function
exists by Theorem 3. Indeed, since IF (κ, γ) in model M(K × Γ) is the span of
S(κ, µ) = (X − µ)(κ− 2µ2)− µ(X2 − µ2 − κ), the function S(κ, µ) + µκ− θ is a
DR estimating function. Of course, this example does not suffer from the curse
of dimensionality, but it does confirm that Theorem 3 can be applied in settings
in which Theorem 1b does not apply.

The suppositions of Theorem 1b do not imply those of Theorem 3 because,
as can be demonstrated with the semiparametric regression model of Example 2
for the identity link, mutual convexity in κ and γ does not imply convexity in
ρ = (κ, γ). Conversely Example 4 demonstrates that convexity in ρ = (κ, γ) does
not imply mutual convexity in κ and γ.

3. Estimation When Γsub or Ksub Are not Singletons

We now consider inference when Γsub or Ksub are not singletons, this being
the problem of practical interest.

Definition. An estimator θ̂ is a doubly robust * estimator for θ(κ, γ) in model
M(K × Γ) with respect to the parametrization (κ, γ) and submodels Γsub ⊂ Γ
and Ksub ⊂ K if θ̂ is a * estimator for θ(κ, γ) in the union model M(K× Γsub) ∪
M(Ksub × Γ), where * can represent any property of interest such as consistent,
RAL, etc.

RR (2001a) show that when the true value of (κ, γ) lies in the intersection
submodel M(Ksub×Γsub), the influence function of any RAL DR estimator must
be an element of the influence function space IF (κ, γ) of the full modelM(K×Γ).
Following the introduction of some notation we discuss a number of settings where
DR estimators exist.
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Throughout, for a given random function U(θ, κ, γ), we write U(θ, κ, γ) =
Ũ(θ, k, j) where k = k(κ) and j = j(γ) are maximal coarsening functions of κ
and γ with respect to the function U(θ, κ, γ), in the sense that if U(θ, κ1, γ1) =
U(θ, κ2, γ2) then k(κ1) = k(κ2) and j(γ2) = j(γ2).

Example 1. (continuation). Seff (κ, γ, θ) ≡ S̃eff (θ, k(κ), j(γ)) with k(κ) = ω

and j(γ) = γ.
One setting where DR RAL estimators exist is when (i) U(θ, κ, γ) is a DR

estimating function for θ(κ, γ) in model M(K × Γ) and (ii) given U(θ, κ, γ) =
Ũ(θ, k(κ), j(γ)), one can construct a consistent estimator ĵ of j(γ) in model
M(K×Γsub) and a consistent estimator k̂ of k(κ) in model M(Ksub ×Γ). Under
(i) and (ii), the estimator θ̂(k̂, ĵ) solving Pn[Ũ(θ, k̂, ĵ)] = 0 will be a DR RAL
estimator under regularity conditions provided, as we assume, that the size of
Γsub and Ksub are chosen small enough so that ĵ converges to j(γ), γ ∈ Γsub under
(κ, γ) and k̂ converges to k(κ), κ ∈ Ksub under (κ, γ), at sufficiently fast rates.
Pn is the empirical distribution expectation operator.

Supposition (ii) holds when the likelihood factors as L(κ, γ) = L1(κ)L2(γ)
in model M(Ksub × Γsub), since then the scores Sγ(γ) and Sκ(κ) can be used
as unbiased estimating functions if Γsub and Ksub are finite dimensional. More
generally (ii) holds when there exists a possibly expanded model M(Kexp ×Γexp)
with K⊆Kexp,Γ⊆Γexp such that M(Kexp × Γexp) is mutually convex in κ and
γ. This is so because, in model M(Kexp × γ),Λ⊥

Kexp
(κ, γ) = Λ⊥

Kexp
(γ) does not

depend on κ ∈ Kexp so that elements U(γ) of Λ⊥
Kexp

(γ) can be used as unbiased
estimating functions for γ ∈ Γsub.

In this section we assume condition (ii) holds.

Example 1. (continuation). To construct S̃eff (θ, ω̂, γ̂), suppose Ksub = Ωsub ×
N where Γsub and Ωsub are qγ-and qω-dimensional parametric models. Then,
although the likelihood does not factor as L(κ, γ) = L1(κ)L2(γ), nonetheless
M(K × Γ) is mutually convex in κ and γ for any choice of φ. In particular,
we can find γ̂ = γ̂(g) ∈ Γsub as the solution to a qγ−dimensional estimating
equation Pn[( R

Φ(γ) −1)g(V )] = 0, each component of which is in Λ⊥
K(γ). Similarly

we can find ω̂ = ω̂(s) ∈ Ωsub as the solution to Pn[R{Y − ω(V )}s(V )] = 0, each
component of which is in Λ⊥

Γ (κ). Recall that even though we can find consistent
estimators of ω, and γ, S̃eff (θ, ω, γ) is DR only if condition (i) or (ii) of page 926
holds.

Example 2. (continuation). Returning to the set-up of Section 1, for the
identity or log link, we obtain a DR estimator of θ by solving Pn[ε(θ, ω̂){g(R,V )−
Mest(γ̂, θ, g, φ)}] = 0 for g ∈ G, where ω̂ is the IRLS estimator of ω under the
model Ksub for which ω ∈ Ωsub = {ω;ω(V ) = β0 + β

′
V } and γ̂ is the MLE

in the model Γsub = {γ; log it γ(V ) = α0 + α
′
V }. Furthermore, if we take
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Ωsub = {ω;ω(V ) = β0 +β
′
V + ςMest(γ̂, θ, g, φ)} and g(R,V ) = R, we also obtain

a DR estimator which for the identity link is algebraically equivalent to the OLS
DR estimator of Section 1. RR (2001a) show there is no DR estimator for the
logit link.

Again suppose (i) and (ii) are true. In this setting, an estimation strategy
we do not recommend is the following. One first performs a global lack of fit test
for model M (K × Γsub); then if the test rejects, one estimates θ (κ, γ) assuming
model M (Ksub × Γ) is true; if it accepts then one tests the fit of M (Ksub × Γ)
and if it rejects, one estimates θ (κ, γ) assuming model M (K × Γsub) is true. If
neither test rejects one uses the doubly robust estimation strategies described
above. This preliminary test strategy can result in a RAL estimator in the union
model M (K × Γsub) ∪M (Ksub × Γ) provided that, in order to insure regularity,
the lack of fit tests have power zero against all parametric Pitman alternatives.
However, in our view, we do not recommend this strategy because it takes too
seriously the truth of the union model M (K × Γsub) ∪ M (Ksub × Γ) which is
really only a working model that is used because the model M (K × Γ) is too
large. We would therefore recommend that if a lack of fit test rejects either
model M (K × Γsub) or M (Ksub × Γ) , one enlarges Γsub or Ksub (until neither
lack of fit test rejects ) and then uses the above DR estimation strategy.

We now turn to the question of how we might obtain DR estimators when no
DR estimating function U (θ, κ, γ) for θ exists. We do so by extending to doubly
robust estimation several well-known approaches to estimation of a parameter θ
in a model where no unbiased estimating function for θ exists.

We first consider how to construct DR estimators of certain non-regular
parameters (i.e., parameters that do not have finite semiparametric information
bounds). Our strategy is to approximate the non-regular parameters by a regular
parameter, as in Van der Laan and Robins (1998) and Bickel and Ritov (2000),
because non-regular parameters do not admit unbiased estimating functions. Let
θ(κ, γ) be a nonregular parameter. Suppose that θδ(κ, γ) is a regular parameter
such that θδ(κ, γ) converges to θ(κ, γ) as δ ↓ 0. Suppose a DR estimating function
Uδ(θ, κ, γ) = Ũδ(θ, k(κ), j(γ)) exists for θδ(κ, γ). Then, in general, the estimator
θ̂δ(n)(k̂, ĵ) solving Pn[Ũδ(n)(θ, k̂, ĵ)] = 0 will under regularity conditions be a DR
consistent estimator for θ(κ, γ) if δ(n) ↓ 0 as n ↑ ∞ at an appropriate rate.

Example 1. (continuation). Suppose now that Y is a continuous variable with
a twice differentiable density w.r.t. Lesbesgue measure and φ is logistic. Let
θ(κ, γ) = f(y;κ, γ) be the density of Y at y and let θδ(κ, γ) = Eκ,γ{W (δ)} where
W (δ) = {w((Y − y)/δ)}/δ, w(·) is a mean zero smooth positive kernel function
and δ a suitable bandwidth. Then

Uδ(κ, γ, θ) = Ũδ(ω, γ, θ) = RΦ−1(γ){W (δ) − θ}
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−{RΦ−1(γ)−1}Eω [Φ′(γ)Φ(γ)−2{W (δ)−θ}|R = 1, V ]/Eω{Φ′(γ)Φ(γ)−2|R = 1, V }

is a DR estimating function for θδ(κ, γ). Under suitable regularity conditions, and
with δ(n) = n−1/5, θ̂δ(n)(ω̂, γ̂) solving Pn[Ũδ(n)(ω̂, γ̂, θ)]=0 will be n2/5-consistent
for θ(κ, γ) in model M(K × Γsub) ∪M(Ksub × Γ).

Suppose next θ(κ, γ) is a regular parameter for which no DR estimating func-
tion exists, but there exists a possibly non-regular parameter ψ(κ, γ) and a func-
tion U(θ, ψ, κ, γ) = Ũ(θ, ψ, k(κ), j(γ)) that is a DR estimating function for θ(κ, γ)
with ψ(κ, γ) known. That is Eκ∗,γ [U(θ(κ∗, γ), ψ(κ∗, γ), κ, γ)] = Eκ,γ∗ [U(θ(κ, γ∗),
ψ(κ, γ∗), κ, γ)] = 0. Suppose further there exists a DR n1/4-consistent estimator
ψ̂ = ψ̂(θ(κ, γ)) for ψ(κ, γ) when θ(κ, γ) is known. Then subject to regularity con-
ditions the estimator θ̂(ψ̂, k̂, ĵ) solving Pn[Ũ(θ, ψ̂(θ), k̂, ĵ)] = 0 will be a doubly
robust RAL estimator. RR (2001a) provide a concrete example.

Finally, suppose θ(κ, γ) is a regular parameter; no DR estimating function
for θ(κ, γ)exists even with some other parameter known; but θ(κ, γ) is known
function b(ζ(κ, γ), τ(κ, γ))of parameters ζ(κ, γ) and τ(κ, γ) that admit RAL DR
estimators. In this setting we can obtain a RAL DR estimator of θ(κ, γ) by eval-
uating b(·, ·) at RAL DR estimators of ζ(κ, γ) and τ(κ, γ). RR (2001a) provide a
concrete example. Note that the existence of DR estimating functions for ζ(κ, γ)
and τ(κ, γ) does not imply that b(ζ(κ, γ), τ(κ, γ)) has a DR estimating function.

4. Generalized Double Robustness

In this section we discuss settings in which (i) exact DR estimators are dif-
ficult to compute, or (ii) no exact DR estimators exist. For such situations we
propose the use of “generalized” DR estimators. Generalized DR estimators are
those which have small asymptotic bias if either one of two (possibly incompat-
ible) lower dimensional models Γsub or Ksub is approximately correct. Thus, a
generalized DR estimator shares with a true DR estimator the crucial property
of giving the analyst two chances for approximately correct inference about θ.
We will illustrate a generalized DR estimator in setting (ii). RR (2001a) provide
an example of a generalized estimator in setting (i).

Example 1. (continuation). Consider Example 1 with φ logistic, α �= 0, except
with Y continuous. Suppose we wish to estimate the parameter θ(κ, γ) of a given
marginal parametric model f(Y ; θ). For concreteness, we use a normal model
with mean θ1 and variance θ2. As noted earlier the parameters κ and γ, defined
as before, determine the marginal law of Y . However, in contrast to our previous
discussion of Example 1, the model is no longer non-parametric, and when α �= 0
the set of parameters (κ, γ) compatible with the parametric model f(Y ; θ) is no
longer a product space. We can make R a product space by choosing the following
new parameterization. We let Γ = {γ = γ(·)} remain unchanged, but now let κ
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parametrize the law f(Y, V ) rather than the laws f(Y |V,R = 1) and f(V ). Thus,
we now take K to be K ={κ = (θ, ω);ω ∈ Ω, θ = (θ1, θ2), θ1 ∈ R1, θ2 ∈ (0,∞)},
where Ω is the set of all densities for V given Y . In model M(K×Γ), the IF space
for θ is {U(θ(κ), κ, γ, c); c ∈ C}, with C the set of all functions Y , and

U (θ, κ, γ, c) =
RC̃ (θ)
Φ (γ)

−
{

R

Φ (γ)
− 1

} Eκ,γ

[
e−αY C̃ (θ) |R = 1, V

]
Eκ,γ [e−αY |R = 1, V ]

,

C̃ (θ) = c (Y ) −
∫
c (Y ) f (Y ; θ) dY.

Note that because of the redefinition of κ, θ(κ, γ) = θ(κ), and f(Y |R =
1, V ;κ, γ) is now a function of both γ and κ. RR (2001a) show that no DR
estimating function for θ(κ) exists in model M(K × Γ) with respect to the
new parametrization (κ, γ) for any submodels Γsub ⊂ Γ and Ksub ⊂ K when
α �= 0. However a “generalized” DR estimator θ̂(τ̂ , γ̂, c) is obtained by solv-
ing Pn[Ũ(θ, τ̂(θ), γ̂, c)] = 0 with Ũ(θ, τ̂(θ), γ̂, c) = RC̃(θ)Φ(γ̂)−1 − {RΦ(γ̂)−1 −
1}b(V ; τ̂(θ)), where b(V ; τ(θ)) is a user specified model for the ratio Eκ,γ [e−αY

C̃(θ)|R = 1, V ]/Eκ,γ [e−αY |R = 1, V ] indexed by a finite dimensional parameter
τ , and τ̂(θ) is the e−αY −weighted non linear least squares regression estima-
tor of τ solving Pn[e−αYR(C̃(θ) − b(V ; τ))∂b(V ; τ)/∂τ ] = 0. The theoretical
difficulty with this approach is that the model b(V ; τ) for Eκ,γ[e−αY C̃(θ)|R =
1, V ]

/
Eκ,γ [e−αY |R = 1, V ] will often be incompatible with the model M(K×Γ),

in the sense that there does not exist a joint distribution that satisfies both. In
such case, θ̂(τ̂ , γ̂, c) of course cannot be a DR RAL estimator in model M(K×Γ).
However, this theoretical difficulty does not seem to us to be a practical dif-
ficulty. After all, as discussed in Section 1, even for models that admit DR
estimators, the chosen low dimensional models Ksub and Γsub are practically
(although not logically) certain to be misspecified; thus our best hope is that
one of the two submodels is nearly correct, so the bias of the DR estimator
will be small. In precise analogy if either model Γsub for γ or model b(V ; τ(θ))
for Eκ,γ [e−αY C̃(θ)|R = 1, V ]/Eκ,γ [e−αY |R = 1, V ] is nearly correct, the bias of
θ̂(τ̂ , γ̂, c) for θ(κ) will be small.

Discussion: Heretofore we have been studying union models M(K × Γsub)∪
M(Ksub ×Γ) that possess a non-empty intersection submodel M(Ksub ×Γsub). A
consequence of this fact is that, by Theorem 1, any unbiased estimating function
U(θ, κ, γ) for θ in M(K × γ)∪ M(κ× Γ) must satisfy U(θ(κ, γ), κ, γ) ∈ IF (κ, γ)
in model M(K × Γ). It is this consequence that underlies many of the results
presented in this discussion. RR (2001a) discuss double robustness in union
models with empty intersections.



936 PETER J. BICKEL AND JAIMYOUNG KWON

As far as we are aware Brillinger (1983) was the first to call attention to
and provide examples of DR-like estimators. Other examples are given by Ruud
(1983, 1986), Duan and Li (1987, 1991), Newey (1990), Robins, Mark and Newey
(1992), Ritov and Robins (1997), Lipsitz and Ibrahim (1999). All these examples
have θ(κ, γ) = θ(κ) and likelihood factorization L(κ, γ) = L1(κ)L2(γ); thus they
are all special cases of the general model treated in Theorem 2 above. Scharfstein
et al. (1999) and Robins (2000) went beyond individual examples to provide a
general theory of double robustness in missing data and counterfactual causal
inference models in which the data was coarsened at random (CAR). Robins et
al. (2000) extended these latter results to cover all models with θ(κ, γ) = θ(κ) and
likelihood factorization L(κ, γ) = L1(κ)L2(γ) ; they stated and proved Theorem
2. Scharfstein et al. (1999) treated Example 1 which is the only previous example
we have found in the literature in which θ(κ, γ) depends on both (κ, γ) and the
likelihood does not factor. At present, Theorem 2 seems to be our most significant
practical result in the sense that the set of models that are known to admit DR
estimators, but that do not satisfy the suppositions of Theorem 2, is still quite
small.
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their view on further research. In particular, they have listed six areas (A)-(F)
for further growth. Bickel and Kown describe a systematic method for finding
the efficient influence function and the information bound for semiparametric
and nonparametric models in area (D). Because the efficient influence function
is defined as a solution to a functional equation in a functional space, we have
felt that a major part of the work would involve “guessing and checking” — that
is, first guess a solution (sometimes available as a “good estimator”) and then
check if the relevant functional equation can be satisfied. Now Bickel and Kwon
have substantially reduced the guess work in this.

Our discussion comprises two parts. The first part concerns the frequency
properties of semiparametric and nonparametric Bayes procedures. The second
part establishes a connection between “calculus of information” and the theory
of estimating equations, which focuses on area (D).

1. Frequency Properties of Bayes Procedures

In recent years, advances in computer technology make it much easier to com-
pute posterior distributions over large parameter spaces. As a result, Bayesian
methodology has been widely implemented in many semiparametric and non-
parametric models, which motivates extensive studies on computational aspects
of semiparametric and nonparametric Bayes procedures. Yet, frequency aspects
of these Bayes procedures have not received a lot of attention.

Frequency properties of semiparametric and nonparametric Bayes procedures
are important not only to Bayesians but also to frequentists. Often, Bayes pro-
cedures are used by frequentists, especially when it is difficult to implement a
desired frequentist procedure. Based on our intuition and experience with para-
metric models, we expect that semiparametric and nonparametric posterior dis-
tributions behave like a parametric posterior. Limited numerical evidence also
indicates this. However, due to the difficulty of evaluating an infinite-dimensional
distribution, it is very difficult or impossible to make a conclusive statement
about semiparametric and nonparametric posterior distributions based on simu-
lations. Recent theoretical investigation suggested that special care is necessary
and that posterior distributions may behave quite differently than a parametric
posterior distribution. In what is to follow, we use a simple example to illustrate
a number of important aspects of semiparametric and nonparametric posterior
distributions.

Consider a simple version of the nonparametric regression example of Cox
(1993). Let

Y (x) = θ(x) + n−1/2N(x), (1)

where N(x) is the one-dimensional Brownian motion. Model (1) is closely re-
lated to the usual nonparametric regression; c.f., Cox (1993) and Brown and Low
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(1996). Now expand θ(x) and Y (x) in terms of an orthonormal basis {ψi} with
(θ1, θ2, . . .) and (Y1, Y2, . . .) being the corresponding coefficients in the expansion.
Then (1) becomes Yi = θi+n−1/2εi, where the εi’s are i.i.d. N(0, 1). Here we esti-
mate infinitely many normal means {θi}, which is equivalent to estimating θ(x).
In this example, θ(·) is smooth and belongs to a Sobolev space W p

2 [0, 1], where
p is the degree of smoothness, measured by the usual L2-metric. Now, define
Θ(x) to be

∑∞
j=1 αjBj(x), where {Bj}∞j=1 is the Fourier basis on [0, 1], and {αj}

are independent normal random variables distributed according to N(0, j−2d),
with d ∈ R1 satisfying

∑∞
j=1 j

2(p−d) < ∞. By the Three Series Theorem, the
sample paths of θ have pth derivatives θ(p) in L2 if and only if

∑∞
j=1 j

2(p−d) <∞.
Roughly, d > p + 1/2 and p > 1/2. Consequently, Θ induces a probability mea-
sure on W p

2 [0, 1]; c.f., Kuo (1975). By the Karhunen-Loéve expansion, this prior
is equivalent to that of Cox (1993).

Model (1) has been extensively studied by frequentists. A variant of max-
imum likelihood estimator (MLE) such as penalized and sieve MLEs achieves
the desired frequency properties. Naturally, one would expect that the non-
parametric posterior distribution possesses the desired frequency properties of a
parametric posterior distribution. Unfortunately, Cox (1993) showed that a 95%
posterior confidence region defined by the usual L2-norm has zero asymptotic
frequency coverage for almost all θ ∈ W p

2 [0, 1] and any integer p ≥ 2. A more
detailed explanation of the phenomenon of Cox (1993) has been given in a re-
cent paper by Wasserman (1998), and by Diaconis and Freedman (1999). This
negative result is in contrast to the well established Bernstein-Von Mises Theo-
rem, which says that this phenomenon typically does not occur for a parametric
posterior distribution, except for pathological examples.

To gain insight into the structure of the problem, we first examine the rates
of convergence of the posterior mean and the posterior distribution, measured
by the L2-norm. As shown in Shen and Wasserman (2001), the exact rate of
convergence of the posterior mean and that of the posterior distribution are of
order of n−b, where b belongs to ( p

2d ,
1
2 (1 − 1

2d )], depending on θ. This means
that, the rates are faster for some θ’s, and slower for others, as compared to
the optimal rate n−

p
2p+1 . In contrast, the optimal rate n−

p
2p+1 is attainable by a

variant of MLE for all θ ∈ W p
2 [0, 1]; c.f., Pinsker (1980). A similar phenomenon

in the minimax sense was also observed in Zhao (2000). In the setting of (1),
the prior impedes the performance of the posterior distribution, and that of the
posterior mean, because the prior assigns small probability to any neighborhood
of the true parameter, which explains the phenomenon of Cox (1993).

It is natural to ask why the phenomenon of Cox (1993) occurs in this simple
example with a Gaussian prior. It is interesting to note that the restriction of∑∞

j=1 j
2(p−d) <∞ prevents us from choosing the value of d = p+ 1/2 that yields
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the optimal rate n−
p

2p+1 , where ( p
2d ,

1
2(1 − 1

2d)] = { p
2p+1}. In other words, the

prior impedes the performance of the posterior if we insist a prior assign positive
probability to all smooth functions in the parameter space W p

2 [0, 1]. On the other
hand, even if the prior with d = p+ 1/2 is used, it remains unclear whether the
Bernstein-Von Mises Theorem holds for this prior. A similar phenomenon occurs
for a Dirichlet process prior in estimating a continuous distribution function,
where the Dirichlet prior assigns zero probability to all continuous distribution
functions. However, the Dirichlet priors does not impede the performance of the
posterior, and the Bernstein-Von Mises Theorem holds in this situation.

Philosophically, it seems reasonable to use a prior that puts positive proba-
bility on a parameter space. For this reason, a mixture of Dirichlet priors that
assigns positive probability to all continuous distribution functions is preferable,
as opposed to the Dirichlet prior. So consider a hierarchical prior that assigns
positive probability to all smooth functions in W p

2 [0, 1]. The hierarchical prior,
called the sieve prior, is defined on a sequence {Θk} of nested approximating
spaces (sieve) as follows: π(·) =

∑∞
k=1 λkπk(·), where

∑
k λk = 1, λk ≥ 0, and πk

is a prior on Θk. This prior is essentially a two-stage hierarchical prior. As shown
in Shen and Wasserman (2001), it recovers the optimal rate of convergence of the
posterior distribution and the posterior mean for any θ in W p

2 [0, 1]. In addition,
as shown in Zhao (2000), it also gives the optimal minimax rate of convergence
of the posterior mean. Furthermore, in a closely related problem, Huang (2001)
used this type of sieve prior to adaptively obtain the optimal rate of convergence
of the posterior distribution without knowing the degree p of smoothness. How-
ever, it still remains an open problem as to whether the Bernstein-Von Mises
Theorem holds for this type of sieve prior. Some preliminary results in Gen-
ovese, Shen and Wasserman (2001) suggest that it may not hold for the above
sieve prior in the setting of (1). Further investigation is necessary.

2. Estimating Equations

In this section we explore the connection between the “calculus of informa-
tion”, as described in the paper, and the theory of optimal estimating equations.
Though the subsequent discussion can be made much more general we focus on
the simplest case — i.i.d. with real-valued parameters — to illustrate the ideas.
A detailed and general development can be found in a book in preparation Li
(2001).

In the theory of estimating equations we usually start with a class of candi-
date estimating equations, and find the optimal one that minimizes the asymp-
totic variance of the solutions. The optimal estimating equation turns out to
be the projection of the true score on the closed spanned of the class of esti-
mating equations. Usually, the form of the true score is unknown — that is, it
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cannot be described by the set of moment conditions that specifies the class of
estimating equations. However, the projection of the score can be described by
the mentioned set of moment conditions.

To fix the ideas, assume (X1, Y1), . . . , (Xn, Yn) are i.i.d. copies of (X,Y )
whose conditional mean and conditional variance belong to parametric families
E(Y |x) = µ(θx) and Var(Y |x) = V (θ, x) for some known functions µ and V .
Suppose we are interested in estimating the regression parameter θ. Consider
the class of square-integrable unbiased estimating equations linear in Y , that is,

G = {g(θ,X, Y ) = a(θ,X)(Y − µ(θY )) : Eθg
2(θ,X, Y ) <∞}. (2)

With appropriate conditions for completeness, this is a Hilbert space with inner
product 〈g, h〉θ = Eθ(gh). Note that the inner product, and hence the Hilbert
space, is completely specified by the functions µ and V .

Let pθ(x, y) be the true density. Then the projection of ∂ log pθ(x, y)/∂θ
onto G is �̇(θ) = xµ̇(xθ)(y − µ(θx)/V (θ, x), where µ̇ denotes the derivative of µ.
Note that �̇ is specified by µ and V even though the form of pθ is unknown. It
can be shown by a simple application of the Cauchy-Schwarz inequality that the
solution to �̇(θ) = 0 has the smallest asymptotic variance among the solutions to
any estimating equation in G. See Heyde (1997, Chapter 2).

We now formulate the optimality of the quasi score in terms of the “calculus
of information.” Consider the family of probability distributions P whose con-
ditional mean is described by a parametric family. That is, each P in P has a
probability density function of the form f(y|x)g(x), with g being the marginal
density of X that is fixed among the family, and f being the conditional density
of Y given X that satisfies the moment constraint E(Y |x) = µ(θx) for some
θ and for all x. In symbols, for some fixed g, P = {p(x, y) = f(y|x)g(x) :∫
yf(y|x)dy = µ(θx) for some θ and for all x}. Let p0 = f0(y|x)g(x) be the true

probability density that generates (X,Y ), and let θ0 correspond to f0. Let V0(x)
be the conditional variance of Y under the true conditional density f0(y|x).

Define ν̇ = {xµ̇(θ0x)(y − µ(θ0x)/V0(x)}/E{X2µ̇2(θ0X)/V0(X)}. It is shown
in Li (2001) that ν̇ is the efficient influence function with respect to the family
P. Now it is easy to see that the solution to the quasi score equation �̇(θ) = 0 is
an asymptotically linear estimator with ν̇ as influence function, where V0(x) is
taken to be V (θ0x) in the previous section. Hence the quasi likelihood estimator
is optimal among all estimators that are regular with respect to P.

This also gives the quasi score a new interpretation — it is the tangent of
the least favorable curve in P that passes through p0.

To compare the methods of optimal estimating equation and calculus of infor-
mation, we note that the first method is simpler than the second, but the second
gives a stronger conclusion than the first. The demonstration of the optimality
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in the first section essentially only involves an application of the Cauchy-Schwarz
inequality, whereas the second method requires the Riesz representation of a
Frechet derivative in the tangent space of P, as well as the use of the Convo-
lution Theorem. However, the second optimality result is stronger: the class
of linear estimating equations G can roughly be identified with the class of reg-
ular, asymptotically linear estimators whose influence functions are linear in y

(Li (2001)), but the class of regular estimators with respect to P include, in
addition, asymptotically nonlinear regular estimators.

The two methods proceed in opposite ways. The first starts with a class of
estimating equations G and seeks the optimal one among that class; the second
starts with a family of distributions P and seeks the least favorable path in that
family. In the end, both give rise to the quasi score (or what is proportional to it).
Intuitively, the more distributions we put into the family P, the harder it is for an
estimator to be regular with respect to it, and consequently the efficient estimator
with respect to P is optimal among a smaller class. Conversely a larger class of
estimating equations corresponds to more moment conditions, which are satisfied
by fewer probability distributions, resulting in an estimator that is optimal in a
wider class.
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The authors are to be congratulated for pointing out interesting research
directions in semiparametric inference. I would like to complement the paper
with a theorem of M -estimators based on b̂(n). I will also describe an extension
of the semiparametric efficiency to the estimation of sums of random variables
and comment on minimaxity, both related to my recent work.
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1. M-estimators

Let P ⊆ M be a submodel. Consider a finite- or infinite-dimensional param-
eter θ : P → B1 for a Banach space (B1, ‖ · ‖1). Suppose conditions (A1), (A2)
and (A3) hold for the nonparametric estimator b̂(n). Let Θ ≡ {θ(b) : b ∈ P} and
{Bθ, θ ∈ Θ} be a family of bounded linear operators from B to a Banach space
(B2, ‖ · ‖2) satisfying the Fisher consistency condition Bθ(b)(b) = 0 ∀ b ∈ P. Let
θ̂(n) be an M-estimator of θ ≡ θ(b) satisfying

B
θ̂(n)(b̂

(n)) = rnε
(n)
2 , θ̂(n) ∈ B1, (1)

with ‖ε(n)
2 ‖2 → 0 in P

(n)
b for all b ∈ P. We provide sufficient conditions for the

asymptotic linearity and efficiency of θ̂(n).
Let b0 ∈ P be the true value of b. Set θ0 = θ(b0). Suppose

Z(n) ≡ (b̂(n) − b0)/rn
D−→ Z in (B, ‖ · ‖), ‖θ̂(n) − θ0‖1 = oP (1), (2)

under P (n)
b0

. Here D−→ means weak convergence in the sense of Hoffmann-Jøgensen
(1984,1991). Suppose Bθ is strongly continuous in θ at θ0:

lim
‖θ−θ0‖1→0

‖Bθ(b) −Bθ0(b)‖2 = 0, ∀ b ∈ B. (3)

Suppose further that, for certain bounded linear operator Aθ0 : B2 → B1,

‖r−1
n {Bθn(b0) −Bθ0(b0)} − g2‖2 → 0

and ‖θn − θ0‖1 → 0

}
⇒ ‖r−1

n (θn − θ0) −Aθ0g2‖1 → 0 (4)

for all θn ∈ Θ and g2 ∈ B2. It follows directly from the continuous mapping
theorem and the asymptotic tightness of Z(n) that the Fisher consistency of Bθ,
(1), (2), (3) and (4) imply the asymptotic linearity and normality of θ̂(n) in the
sense that

r−1
n (θ̂(n) − θ0) = −Aθ0Bθ0Z

(n) + ε
(n)
1

D−→ −Aθ0Bθ0Z in (B1, ‖ · ‖1), (5)

where ‖ε(n)
1 ‖1 = o(1) in P

(n)
b0

. Since −Aθ0Bθ0 is the influence operator of θ̂(n),
the asymptotic efficiency of θ̂(n) at b0, with respect to any Θ∗ ⊆ B∗

1, is equivalent
to B∗

θ0
A∗

θ0
θ∗ ∈ B∗

0 and TB∗
θ0
A∗

θ0
θ∗ ∈ P ′(b0) for all θ∗ ∈ Θ∗, where B∗

0 and T are
as in (A1) and (A2) and P ′(b0) is the tangent space of P at b0. By the Fisher
consistency and (3) and (4), −Aθ0Bθ0 is the derivative of θ(b) in the sense that
{θ(bn) − θ0}/rn → −Aθ0Bθ0g when (bn − b0)/rn → g and θ(bn) → θ0.

The above theorem is a straightforward translation of the methods in Vardi
and Zhang (1992), Gu and Zhang (1993), and Tsai and Zhang (1995), where
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nonparametric maximum likelihood estimators were considered in specific, but
quite different, incomplete-data models. In these papers, the Fisher consistency
and (1) are, respectively, equivalent to the population and sample versions of
self-consistency equations via the EM algorithm, while the crucial implicit dif-
ferentiability condition (4) was verified via the identity

Bθ(b0) −Bθ0(b0) = Rθ(θ − θ0), (6)

with a family of linear operators Rθ : B0
1 → B2, {Θ − θ0} ⊂ B0

1 ⊂ B1, and via
the continuous invertibility of Rθ at θ = θ0 under the strong topology of B1 and
B2. The approach with (4) and (6) seems to lead to sharper results, compared
with others, since it allows careful choice of the spaces B, B1, B2 and B0

1. The
identity (6) was extended to a general convex model by van der Laan (1995),
and the methodology was extended recently by Zhan (1999) to certain general
models with i.i.d. observations. Zhang and Li (1996) showed that Rθ0 = A−1

θ0
is an

information operator when Bθ0 is a score operator with censored data. Theory of
M -estimators (Z-estimators) was considered in Van der Vaart and Wellner (1996)
among others, and is closely related to the compact differentiability approach of
Gill (1989) and Gill and Van der Vaart (1993).

2. Estimation of Sums of Random Variables

Let (X, θ), (Xj , θj) be i.i.d. random vectors with an unknown joint distri-
bution F , F ∈ F . Let {u(x, ϑ;F ), F ∈ F} be functions satisfying certain mild
smoothness conditions. Semiparametric information bounds can be extended to
the estimation (or prediction) of the sum

Sn ≡ Sn(F ) ≡
n∑

j=1

u(Xj , θj;F )

based on X1, . . . ,Xn. The problem is closely related to the estimation of the
mean µ(F ) ≡ EFu(X, θ;F ). Let ψ∗(x;F0) be the efficient influence function for
the estimation of µ(F ) at F0. Let u(x;F ) ≡ EF [u(X, θ;F )|X = x] and u∗(x;F0)
be the L2(PF0) projection of u(x;F0) to the tangent space at F0. An estimator Ŝn

of Sn(F ) is asymptotically efficient in contiguous neighborhoods of F0 if, under
PF0,

Ŝn = nµ(F0) +
n∑

j=1

φ∗(Xj ;F0) + oP (
√
n).

The efficient influence function φ∗(x;F0) for the estimation of Sn(F ) is related
to the efficient influence function for the estimation of µ(F ) via

φ∗(x;F0) = ψ∗(x;F0) + u(x;F0) − µ(F0) − u∗(x;F0).
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Based on this criterion, certain “plug-in” empirical Bayes estimators are asymp-
totically efficient in parametric models, while the so-called “u,v” estimators of
Robbins (1988) are asymptotically efficient in nonparametric mixture models.

Example 1. Given a pool of n motorists and an integer k ≥ 0, an asymptotically
efficient estimator for

∑n
j=1 θjI{Xj = k}, the total intensity of those motorists

with k traffic accidents, is (k + 1)#{i ≤ n : Xj = k + 1}, the total number of
accidents of those individuals with k+1 accidents. Here, Xj , the number of traffic
accidents for the j-th individual, is assumed to have the Poisson distribution
with mean θj conditionally on θj, and θj are assumed to be i.i.d. variables with
a completely unknown distribution.

Example 2. Let X|θ ∼ N(θ, σ2) and θ ∼ G. Suppose G is a normal distribution
with mean τ . The number of “above-average” individuals, #{j ≤ n : Xj > X̄},
is an efficient estimator of the number of above-mean individuals Sn ≡ #{j ≤
n : Xj > τ}. The estimator n/2 is efficient for the estimation of EτSn = n/2,
but not Sn.

Example 3. Suppose G is completely unknown in Example 2. Then, n/2 is an
efficient estimator of #{j ≤ n : Xj > θj}.

The estimator in Example 1 was proposed by Robbins (1977, 1988). The
asymptotic efficiency in Example 1 was established in Robbins and Zhang (2000),
and was extended to the general case in Zhang (2001).

3. Minimaxity and Super-efficiency

For the estimation of regular parameters in regular models, super-efficient
estimators (i.e.

√
n(θ̃n−θ0) → 0) are neither regular nor minimax locally asymp-

totically. However, this is no longer true for the estimation of irregular parame-
ters.

Consider the estimation of a regression function f in the nonparametric
regression model with uniform design, or equivalently, in the white noise model.
Certain block empirical Bayes estimators f̂n are exactly adaptive minimax:

lim
n→∞

supf∈F E
(n)
f

∫ 1
0 (f̂n − f)2

inf
f̃n

supf∈F E
(n)
f

∫ 1
0 (f̃n − f)2

= 1, ∀F ∈ C, (7)

for a suitable collection C of sets F ⊂ L2[0, 1], and are also everywhere super-
efficient:

lim
n→∞

E
(n)
f

∫ 1
0 (f̂n − f)2

inf
f̃n

supf∈F E
(n)
f

∫ 1
0 (f̃n − f)2

= 0, ∀f ∈ F ∈ C. (8)
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If C is the class of all Sobolev balls of different smoothness indices and radii,
both (7) and (8) hold for the James-Stein type block empirical Bayes estimators
of Efromovich and Pinsker (1984) with the Fourier basis. If C is the class of all
Besov balls of different smoothness indices, shapes indices (p, q), q < ∞, and
radii, both (7) and (8) hold for the block general empirical Bayes estimators of
Zhang (2000) with wavelet bases.
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REJOINDER

Peter J. Bickel and Jaimyoung Kwon

We thank the discussants for their varied and thought provoking responses
although their number and variety makes a short response difficult. One of our
goals, amply fulfilled, was to have extensive discussion of the many questions we
raised but did not try to answer. In particular, Fan, Klaassen, and McNeney and
Wellner all addressed questions A and B which we respond to further below.

Another goal of ours was to have additional important issues raised and
here again, we were far from disappointed. Fan addressed the testing question.
Klaassen, van der Laan and Yu, and Robins and Rotnitzky raised the important
issue of robustness. Shen and Li discuss the estimating equation paradigm, re-
lating the information calculus approach to estimating equations. Zhang gives a
careful new abstract M estimation theorem.

Finally, McNeney and Wellner and Greenwood, Schick and Wefelmeyer di-
rectly address question C, the general information calculus we discuss. The latter
in particular, in a discussion full of examples, correctly find that our calculations,
though not our calculus, were flawed in one of the examples we discuss.

We respond briefly to the individual discussions. We begin with general
responses to comments on robustness and bandwidth selection.
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1. Robustness

Klaassen, van der Laan and Yu, and Robins and Rotnitzky correctly remind
us of the critical role of uniformity of convergence and robustness. The opti-
mality theory we have reviewed applies only to estimates which converge in law
on the

√
n scale uniformly on compact subsets of parametric submodels of the

semiparametric model considered. Other types of uniformity requirements, like
convergence on the

√
n scale uniformly on bounded (in total variation distance)

subsets of the semiparametric model for example, can be more compelling.
We can interpret such results in terms of robustness, or how stable the be-

havior of the estimate is, for fixed n, under perturbations of the underlying
distribution defined by the uniformity class. See Hampel, Ronchetti, Rousseeuw
and Stahel (1986) and Huber (1981) as primary sources, and Rieder (1994) and
Shen (1995) for a discussion amplifying our comments. Stable here is in terms of
the worst that can happen for perturbations of a given magnitude. Robustness
is evidently desirable but, like all statistical criteria which involve worst case
analyses, not determinative. We are often luckier than we deserve.

The type of uniformity of convergence one uses can also be guided by the
simplicity and intuitive nature of the results one obtains. For example, requiring
uniformity on compact subsets of parametric submodels of the big semipara-
metric model is pretty weak, yet necessary for exclusion of the super efficiency
phenomenon. For estimation in functional models, requiring uniformity on weak
compacts in the nonparametric (nuisance) part of the parametrization leads to
clean results, see Bickel and Klaassen (1982), while requiring only pathwise uni-
formity leads to pathologies (Pfanzagl (1982)). Similar restrictions of uniformity
on weak compacts proposed by Ritov and Robins (1997) lead us to not try to
adapt to high dimensional nuisance parameters.

2. Choice of Bandwidth or Regularization Parameter

Fan, Klaassen and McNeney and Wellner all comment on our question A and
B, bandwidth choice. We can summarize our presentation and their comments as
follows: There are at least three distinct situations where one needs to estimate
irregular (non-differentiable) parameters.

(i) Estimation of objects, such as the density function, regression function, or
hazard rate, for their own sake and at minimax rate as “adaptively” as possible,
in the sense of nonparametric function estimation literature. This is, of course,
widely discussed in the work of Donoho and Johnstone (1995), Birgé and Massart
(1999), and others.

(ii) Estimation of the above objects as necessary intermediaries in the estima-
tion of regular Euclidean parameters, such as θ in the semiparametric regression
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model
E(Y |R,V ) = ω(V ) + θR+ ε, (2.1)

where ε is independent of R and V , ω is “arbitrary”, and X = (R,V, Y ) is
observed. Here E(Y |V ) and E(R|V ) need to be estimated. More generally, we
can consider regular parameters which can be written in the form θ(P, η(P )),
where η ranges over a function space and (P, η) → θ(P, η) is smooth but the map
P → η(P ) is irregular. Thus, in (2.1),

θ(P, η) =
∫
(y − a(v))(r − b(v))dP (y, r, v)∫

(r − b(v))2dP (r, v)

for η = (a, b) and η(P ) = (EP (Y |V = v), EP (R|V = v)).
Estimation of the normalized asymptotic variance I−1(P ) = [

∫
(f ′/f)2dP ]−1

where f is the density of P in, say the symmetric location model, is another
example of (ii) since one can write the parameter as θ(P, η) =

∫
η2dP with

η(P ) = f ′/f . As McNeney and Wellner point out, this example is relevant to
our question B as well.

(iii) Estimation of irregular parameters such as the density in an “adaptive”
minimax way by f̂ , such that when f̂ is plugged into

∫
hf̂ , the resulting estimate

of
∫
hf is efficient.
As Fan points out, situation (ii) can be dealt with by treating estimation

of η as an intermediate step, by regularizing less than one needs to for minimax
estimation of η, and then estimating η separately with appropriate regularization.

Regarding case (iii), McNeney and Wellner refer to the work of Bunea (2000)
and Fan to that of Ruppert and Carroll et al. (1997), and both suggest that by
working harder, one can achieve both goals simultaneously. This is, we believe,
a consequence of special orthogonality properties in the examples they consider.
In fact, Bickel and Ritov (2000b) show that the goal is in general unattainable in
their discussion of the “plug in” principle. In particular, unattainability appears
to be the case for our second example, estimation of I(f) above, judging from
the work of Laurent (1997).

In any case, persuasive criteria for choosing regularizing parameters in these
situations (and perhaps generally!) are not really available. We believe there is
great room for the advocacy and use of cross validation methods.

3. Response to Fan

Fan’s study of generalized likelihood ratio tests has indeed provided us with
a number of interesting and potentially useful tools for testing parametric, semi-
parametric or nonparametric hypotheses against non- or semi-parametric alter-
natives. The situations he considers in Sections 1 and 2 are all models where the
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co-dimension of the hypothesis (the dimension of the orthocomplement of the
tangent space to the hypothesis) is infinite. The likelihood ratio test statistics
are asymptotically normal under the null hypothesis — chi square with an in-
creasing number of degrees of freedom as n increases. As Fan points out, they
may inherit minimax rate testing optimality in the sense of Ingster (1993) from
the corresponding estimation minimax results for estimates of function-valued
parameters used to construct them. This testing minimaxity can be viewed as
the limiting version of the optimality among all invariant tests of the likelihood
ratio test for a linear hypothesis in the Gaussian shift model with known co-
variance matrix. This gives equal non trivial asymptotic power against nearby
alternative on scales larger than n−1/2.

When considering nonparametric alternatives however, as Bickel, Ritov and
Stoker (2001) point out, it may be important to tailor tests to directions which
a priori appear important and save some power for grossly divergent alternatives
in other directions, rather than having negligible power in all directions.

As usual in testing theory, there is no simple prescription at the n−1/2 scale
as there is in estimation.

4. Response to Greenwood, Schick and Wefelmeyer

In a long series of examples, Greenwood, Schick and Wefelmeyer explore
the situations in which the traditional approach is contrasted, in the context of
Markov chain models, to the approach we have advanced.

In their particularly intriguing Example 6 based on Müller, Schick and We-
felmeyer (2001b), they note that neither approach works simply directly. We
are not entirely convinced, admittedly, at the level of heuristics. For simplicity,
we consider the case where d = 1 and the restriction is given by

∫
zdb = 0.

As they argue, the tangent space is indeed the set of all functions of the form
h(X1,X2) − a∗zH where a∗ = ‖zH‖−2〈h, zH〉, zH(X1,X2) is the representer of
z(X1,X2) and E(h(X1,X2)|X1) = 0. As they point out, it is natural to use

1
n− 1

(
n−1∑
i=1

k(Xi,Xi+1) − â∗
n−1∑
i=1

z(Xi,Xi+1)

)
,

to estimate
∫
kdb efficiently in the restricted model, as in the i.i.d. case. But, if

Ta is the representer of a(X1,X2) then, by construction,

‖Ta‖2 = AsV ar(
1√
n

n∑
i=1

a(Xi,Xi+1))

= Var (a(X1,X2)) + 2
∞∑
i=1

Cov (a(X1,X2), a(Xi+1,Xi+2)),
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〈Ta, T b〉 = Cov (a(X1,X2), b(X1,X2))

+
∞∑
i=1

[Cov (a(X1,X2), b(Xi+1,Xi+2)) + Cov (a(Xi+1,Xi+2), b(X1,X2))].

Thus, estimating a∗ is equivalent to estimating the asymptotic variance of n−1/2∑n−1
i=1 z(Xi,Xi+1) and the asymptotic covariance of n−1/2 ∑n−1

i=1 k(Xi,Xi+1) and
n−1/2 ∑n−1

i=1 z(Xi,Xi+1), which are, respectively, the spectral density of the pro-
cess {z(Xi,Xi+1)} at 0 and the cross spectral density of {k(Xi,Xi+1)} and
{z(Xi,Xi+1)} at 0. For these, standard consistent estimates, say based on
smoothing (cross-)periodograms, exist. This can easily be generalized to d > 1.

Greenwood et al. rightly take us to task for our Example 3, where our asser-
tions are essentially false. Our calculations and not our calculus are at fault. Con-
sider the nonlinear autoregressive model Xi+1 = g(Xi)+ εi+1, 1 ≤ i ≤ n where εi
are i.i.d. with distribution F with density f unknown except E(ε1) = 0 and g is
unknown. At least formally, the tangent space in our sense is {u(X1)l(ε2)+v(ε2) :
u ∈ L2(π), v ∈ V }, where V = {v ∈ L2(F ) :

∫
εv(ε)dF (ε) =

∫
v(ε)dF (ε) = 0}

and l(ε) = (f ′/f)(ε). This follows since E(u(X1)l(ε2)|X1) = 0 and E(v(ε2)) =
E(ε2v(ε2)) = 0 are immediate. The tangent space structure is exactly as in the
nonparametric regression model with i.i.d. errors, and the analysis of Koul and
Schick (1997) based on the traditional approach comes out as it must from our
formulation also, i.e., proceed as if the (Xi,Xi+1) are (Xi, Yi) in the i.i.d. regres-
sion model.

This should be a familiar space to at least one of us and, indeed, adaptation
is not possible unless

∫
l(ε)v(ε)dF (ε) = 0 for all v ∈ V . This happens if f is

known to be symmetric about 0 but not, in general, otherwise. Thus, the “kernel
plug in” estimate of

∫
g(x)λ(x)dx given by Kwon (2000) is indeed efficient only

in the Gaussian case, since only then is l(ε) ∝ ε so that the influence function
ελ(X)π−1(X) belongs to the tangent space.

Thus if f is known but not Gaussian, one presumably needs to estimate g
by a regularized version of the appropriate maximum likelihood, for instance by
maximizing

1
n− 1

n−1∑
i=1

log f(Xi+1 − g(Xi)) − λn

∫
[g′′]2(x)dx (4.2)

for λn → 0 appropriately, or by some variant of the method of sieves.
If f is unknown and we are in the adaptive case, say the distribution of ε

symmetric about 0, it is then natural to begin by estimating g crudely as in the
Gaussian case to get g̃, and then f by f̂ symmetric about 0 based on the centered
residuals ε̂i+1 = ε̃i+1− 1

n

∑n−1
j=1 ε̃j+1 where ε̃i+1 = Xi+1− ĝ(Xi). Then, apply (4.2)

with f replaced by f̂ to get the final ĝ. Here, use of the centered residuals is



950 PETER J. BICKEL AND JAIMYOUNG KWON

indeed necessary as Greenwood et al. point out so that the ε̂i empirically conform
to the εi and have mean 0.

5. Response to Klaassen

As Klaassen points out, asymptotics should be used as a guide to small
sample behavior. But what is small and which particular situations should we
consider? Simulations can guide us but again are not determinative. To quote
an anonymous observer, “There is no safety in numbers or in anything else!”
His elegant Edgeworth approximation theorem is encouraging but it is not about
small samples any more than first order asymptotics is.

We very much appreciate the elegant device of equal sample splitting intro-
duced by Klaassen and Schick, and its superiority in this context to the small
initial sample methods of Hájek (1962) and subsequently Bickel (1981). We be-
lieve its use in practice should be investigated further.

6. Response to McNeney and Wellner

McNeney and Wellner point us to their work on the non i.i.d. case which is,
in that respect, considerably more extensive than ours. They also correct our
loose talk about infinite dimensional parameters. We were, of course, aware that
different topologies are possible but we think, although these determine what
procedures are candidates, it’s still fair to say that lower bounds on risk are
determined essentially by the finite case. It was only in that sense that we would
argue that the extension from finite to infinite dimensional regular parameters is
relatively straightforward.

7. Response to Shen and Li

Shen and Li point to the development of Bernstein-von Mises theorems in
terms of the negative examples, i.e., prior distributions that lead to posterior
distributions that do not converge at the “optimal” minimax rate while penalized
maximum likelihood does, and point to examples such as that of Cox (1993) where
posterior confidence region based on the L2 norm misbehave. Since penalized
maximum likelihood can be viewed as a posterior mode with respect to a formal
prior distribution, these arguments apply only to some priors. As the works of
Shen and Wasserman (2001) and Zhao (2000) show, “satisfactory” asymptotic
behavior can be achieved by priors placing “enough” mass in every neighborhood
of any particular value.

This is not surprising in view of the effect of prior structure on Bayes consis-
tency in the early work of Freedman (1965). And even the parametric Bernstein-
von Mises theorem requires positive continuous densities in the neighborhood of
every parameter value.
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The “semiparametric” as opposed to the “nonparametric” aspect of Bayesian
analysis, that is, not of the posterior of the whole object but of that of nice param-
eters has been studied for special priors such as Dirichlet processes where calcula-
tions are explicit, see Ferguson (1973). One would expect that the Bernstein-von
Mises theorem in the classical sense would hold under less restrictive conditions.
Specifically, if we are interested in µ(f) =

∫
xf(x)dx, when is

E

{∫
xf(x)dx

∣∣∣∣X1, . . . ,Xn

}
= X̄ + op(n−1/2)?

Priors for which such result holds and for which posterior samples can be gen-
erated by MCMC might then be used to construct estimates which are efficient
from a frequentist point yet, easier to calculate than using regularized maximum
likelihood techniques for these large parameter spaces.

Shen and Li’s discussion relating the information calculus to estimation equa-
tions is clear and attractive. Estimating equations are, however, more restrictive
than may appear at first sight, at least if these as usual correspond to M estimates
and are of the form ∫

ψ(x, θ)dP (x) = 0, (7.3)

in which case they are linear in P . For example, if we consider the Cox pro-
portional hazards model, we would conjecture there is no equation of form (7.3)
which leads to an estimate of θ consistent whatever the unknown baseline hazard
rate may be. The Cox estimate corresponds to an estimating equation that is
nonlinear in P .

As a second example, consider the class of all equations based on functions
ψ(x− θ) where x and θ are real and ψ is antisymmetric. These are essentially all
the equations that maximum likelihood for a fixed shape lead to in the symmetric
location model. If one calculates the information bound as Shen and Li suggest,
we arrive at I−1(f) where I(f) =

∫
(f ′/f)2f and the optimal ψ = −f ′/f . Un-

fortunately, ψ now depends on the unknown shape. Although a fixed estimating
equation can give a locally efficient estimates for any given shape f , to fully
adapt one needs to estimate f appropriately. This leads to estimating equations
outside the framework since the ψ function is itself data-determined.

8. Response to van der Laan and Yu and Robins and Rotnitzky

These authors, as we indicated earlier, point to the fundamental issue of ro-
bustness. They present a large number of important examples where (a) there, in
principle, exist asymptotically globally efficient estimates, but (b) we can expect
the behavior of these to be very sensitive to slight violations of rather arbitrary
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assumptions about the smoothness of the distribution of high dimensional co-
variates, and, on the other hand, (c) simple estimates which are locally efficient
and insensitive to behavior of the covariates can be used.

At least one of us has great sympathy for this viewpoint developed by Robins,
Rotnitzky, van der Laan and others in a remarkable way. Indeed, Bickel and
Ritov (2000b) point out that, with the stringent Hampel view of robustness,
one should knowingly limit oneself to estimation of parameters with uniformly
bounded influence functions, which of course implies acceptance of the point of
view that densities should be estimated only with fixed bias. Unfortunately, this
point of view prevents us from talking about estimation of a real parameter θ in a
model as simple as the semiparametric regression model discussed above. What
Robins and collaborators isolate are remarkably large submodels of models such
as (2.1) where use of low dimensional sub-submodels can produce estimating
equations for θ which yield consistent asymptotically normal estimates of θ in
the high dimensional submodel.

The most useful though not most general theorem (Theorem 2) cited by
Robins and Rotnitzky, and also by van der Laan and Yu, which is due to Robins,
Rotnitzky and van der Laan, gives simple conditions under which the following
holds: if the parameter θ of interest is a function of two high dimensional (infinite
dimensional) parameters κ and γ, then an estimate based on putting parametric
models on both κ and γ is in fact robust under misspecification of either κ and γ.

A simple example of this phenomenon is estimation of θ in the semiparamet-
ric regression model (2.1), which we think is worth exhibiting explicitly. Here,
assuming R = aV + b + ε′ with ε′ Gaussian and ω(V ) = cV + d leads to the
estimate

θ̂ =
∑n

i=1(Yi − Ŷi)(Ri − R̂i)∑n
i=1(Ri − R̂i)2

,

where Ŷi is the fitted value of the linear regression Y on V and R̂i that of R on
V . It is clear that if the model for ω(V ) is correct, then E(θ̂|V1, . . . , Vn) = θ and
the estimate is

√
n consistent. A slightly more involved calculation shows that

if the model for R is correct, then E(θ̂) = θ + O(n−1/2) again because of the
asymptotic orthogonality of the two factors which the conditions of Robins and
Rotnitzky assure.

The theory explained in Theorems 1 and 2 as cited goes well beyond this
elementary example. Of course, as Robins and Rotnitzky readily agree, if both
specifications are wrong then the resulting estimate is asymptotically biased, but
to quote another popular philosopher “There’s no free lunch!” In any case, this
work, apparently motivated by Robins’ work on censored models, seems well
worth pursuing.
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9. Response to Zhang

Zhang’s theorem, whose conditions are unfortunately missing, can be viewed
as a linearization theorem for estimates of infinite dimensional parameters defined
implicitly. This can be viewed as a special case of the estimates discussed in
BKRW, pp. 370-371, where B is linear in b. (His Bθ(b) is Wn(ν, P ) of BKRW
with θ = ν and b = P .) However, Zhang’s theorem is evidently more “utility
grade” than Theorem 7.6.2 of BKRW.

The problem of prediction in semiparametric models and the solution he
discusses are intriguing. However, rather than viewing this as a problem of
estimating EF (u(X, θ;F )) where (X, θ) has joint distribution F ∈ F , it may be
easier to simply define the parameter F → EF (u(X, θ;F )|X = ·) carrying F to
functions of x and then apply the theory of Chapter 5 of BKRW.
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425-440.

McNeney, B. and Wellner, J. A. (2000). Application of convolution theorems in semiparametric

models with non-i.i.d. data. J. Statist. Plann. Inference 91, 441-480.

Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer,

London.

Müller, U. U., Schick, A. and Wefelmeyer, W. (2001a). Plug-in estimators in semiparamet-

ric stochastic process models. To appear in Selected Proceedings of the Symposium on

Inference for Stochastic Processes (Edited by I. V. Basawa, C. C. Heyde and R. L. Tay-

lor). IMS Lecture Notes-Monograph Series, Institute of Mathematical Statistics, Hayward,

California.

Müller, U. U., Schick, A. and Wefelmeyer, W. (2001b). Improved estimators for constrained

Markov chain models. To appear in Statist. Probab. Lett.

Müller, U. U., Schick, A. and Wefelmeyer, W. (2001c). Estimating linear functionals of the error

distribution in nonparametric regression. Technical Report, Department of Mathematical

Sciences, Binghamton University. http://math.binghamton.edu/anton/preprint.html

Murphy, S. A. and Van der Vaart, A. W. (1996). Likelihood inference in the errors-in-variables

model. J. Multivariate Anal. 59, 81-108.

Newey, W. K. (1990). Semiparametric Efficiency Bounds. J. Appl. Econometrics 5, 99-135.

Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.

Biometrika 75, 237-249.

Penev, S. (1990). Convolution theorem for estimating the stationary distribution of Markov

chains. C. R. Acad. Bulgare Sci. 43, 29-32.

Penev, S. (1991). Efficient estimation of the stationary distribution for exponentially ergodic

Markov chains. J. Statist. Plann. Inference 27, 105-123.



958 PETER J. BICKEL AND JAIMYOUNG KWON

Peng, H. and Schick, A. (2001). Efficient estimation of linear functionals of a bivariate distri-
bution with equal but unknown marginals: The least squares approach. Technical Report,
Department of Mathematical Sciences, Binghamton University.

Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, New York.
Pfanzagl, J. (1993). Incidental versus random nuisance parameters. Ann. Statist. 21, 1663-

1691.
Pinsker, M. S. (1981). Optimal filering of square integrable signals in Gaussian white noise (in

Russian). Problems Information Transmission 16, No. 2, 52-68.
Rieder, H. (1994). Robust Asymptotic Statistics. Springer-Verlag, New York.
Ritov, Y., and Bickel, P. J. (1987). Achieving Information Bounds in Non and Semiparametric

Models. Technical Report No. 116, University of California, Berkeley, Department of
Statistics.

Ritov, Y. and Wellner, J. A. (1988). Censoring, martingales, and the Cox model. In Sta-
tistical Inference from Stochastic Processes (N. U. Prabhu, ed.), 191-219. Contemporary
Mathematics 80, American Mathematical Society, Providence, Rhode Island.

Robbins, H. (1977). Prediction and estimation for the compound Poisson distribution. Proc.
Nat. Acad. Sci. USA 74, 2670-2671.

Robbins, H. (1988). The u, v method of estimation. In Statistical Decision Theory and Related
Topics IV 1 (Edited S. S. Gupta and J. O. Berger), 265-70. Springer-Verlag, New York.

Robins, J. M. and Ritov, Y. (1997). A curse of dimensionality appropriate (CODA) asymptotic
theory for semiparametric models. Statist. in Medicine 16, 285-319.

Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal
inference models. Proceedings of the Journal of the American Statistical Association. To
appear.

Robins, J. M. and Rotnitzky, A. (2001a). Double robustness in statistical models. J. Statist.
Plann. Inference. To appear.

Robins, J. M. and Rotnitzky, A. (2001b). Testing and estimation of direct effects by reparam-
eterized directed acyclic graphs with structural nested models. Ann. Statist. To appear.

Robins, J. M., Rotnitzky, A., and van der Laan, M. (2000). Comment on “On Profile Likelihood”
by S. A. Murphy and A. W. van der Vaart. J. Amer. Statist. Assoc. 95, 431-435.

Robbins, H. and Zhang, C.-H. (2000). Efficiency of the u,v method of estimation. Proc. Nat.
Acad. Sci. USA 97, 12976-12979.

Robins, J. M. and Rotnitzky, A. (1992). Recovery of information and adjustment for dependent
censoring using surrogate markers. Aids Epidemiology, Methodological issues. Birkhäuser.
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