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Abstract: The main purpose of this article is to study the wavelet shrinkage method

from a Bayesian viewpoint. Nonparametric mixed-effects models are proposed and

used for interpretation of the Bayesian structure. Bayes and empirical Bayes estima-

tion are discussed. The latter is shown to have the Gauss-Markov type optimality

(i.e., BLUP), to be equivalent to a method of regularization estimator (MORE),

and to be minimax in a certain class. Characterization of prior and posterior reg-

ularity is discussed. The smoothness of posterior estimators is controlled via prior

parameters. Computational issues including the use of generalized cross validation

are discussed, and examples are presented.
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1. Introduction

A typical nonparametric regression problem is

yi = f(ti) + σεi, i = 1, . . . , n, ti ∈ [0, 1], (1)

where t1, . . . , tn are design points, σ > 0 is a noise level, ε = (ε1, . . . , εn)T are
random errors with zero means and a known positive definite covariance matrix
R. The function f is to be recovered based on the observations Y = (y1, . . . , yn)T .
Wavelets have been applied to the estimation of f when f is spatially varying.
The main purpose of this article is to study the wavelet method from a Bayesian
viewpoint. The Bayesian formulation here is conceptually inspired by the work
of Parzen (1961), as well as by the work of Kimeldorf and Wahba (1970, 1971),
and Wahba (1978, 1990). The equivalence to regularization and the minimaxity
property for Bayesian wavelet shrinkage is influenced by the work of Li (1982).
Our Bayesian setup and viewpoints are different from those in Vidakovic (1998a),
Clyde, Parmigiani and Vidakovic (1998), Chipman, Kolaczyk and McCulloch
(1997), and Abramovich, Sapatinas and Silverman (1998). The setup here has
some common structure with spline models and our modelling makes it easy to
incorporate prior information on smoothness, to obtain optimality results, and
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to relate them to the method of regularization. A review of current research
involving Bayesian inference in wavelet nonparametric problems is in Vidakovic
(1998b).

This article is organized as follows. In Section 2, nonparametric mixed-
effects models (NPMEM) are proposed and used for interpretation of Bayesian
structure. Characterization of prior regularity is discussed. The relationship
between the prior parameters and Besov spaces is explored. In Section 3, the
Bayes and empirical Bayes estimators are derived. Some optimality properties
are obtained. The posterior space is investigated and is shown to have higher
regularity (i.e. smoother) than the prior space. The empirical Bayes estimator
derived in Section 3 is a shrinkage estimation. In Section 4, it is shown that
such shrinkage estimator is asymptotically equivalent to a diagonal shrinkage
wavelet estimator. The methodology developed in Section 3 provides an oracle
for guiding the adaptive diagonal shrinkage estimation. When parameter values
are not available, adaptive estimations are necessary. In Section 5, we discuss
adaptive variants and some computational issues. Examples using generalized
cross validation (GCV) for choices of parameters are presented. Concluding
remarks are in Section 6. A brief description of the GCV is in Appendix A. All
proofs are in Appendix B.

2. The Prior Model–NPMEM

It is assumed that

f(t) =
m∑

k=1

βkφk(t) + δ Z(t), t ∈ [0, 1], (2)

where φk(t)’s are known linearly independent functions, βk’s are fixed but un-
known coefficients, and Z(t) is a stochastic process with zero mean and covari-
ance kernel EZ(s)Z(t) = W(s, t). The covariance kernel is assumed to satisfy
the conditions:

∫ 1
0 W(t, t)dt < ∞ and

∫ 1
0

∫ 1
0 W2(s, t)dsdt < ∞. The first con-

dition ensures that the sample path of Z(t), and hence f(t), is in L2[0, 1] a.s.
The second condition ensures that W has an eigenfunction-eigenvalue decompo-
sition by the Hilbert-Schmidt theorem (Reed and Simon (1972)). That is, there
exist functions ψν , ν = 1, 2, . . ., and a sequence of numbers λ1 ≥ λ2 · · · ≥ 0
such that W(s, t) =

∑
ν λνψν(s)ψν(t). Thus, the process Z(t) has the so-called

Karhunen-Loève representation, Z(t) ∼ ∑
ν γνψν(t), where “∼” means “equal in

distribution” and γν , ν = 1, 2, . . ., is a sequence of uncorrelated random vari-
ables with zero means and variances λ1, λ2, . . . These random coefficients, γν , are
called random effects. Together with the fixed effects, βk, the resulting model
is a mixed-effects model. It is usually assumed that the closure of linear span
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by {φk, ψν}k,ν is the whole space of L2[0, 1]. This is the reason for using the
terminology “nonparametric” in front of “mixed-effects model”.

The prior model (2) is flexible by choice of different bases of φ’s and ψ’s
for modelling fixed effects and random effects respectively. Results for a general
model are discussed in Huang and Lu (2000). We would like to point out here
that, given a process Z(t), one cannot freely choose basis of ψ’s to admit the
representation Z(t) ∼ ∑

ν γνψν(t). Instead, we think of expanding an underlying
function f with respect to a choice of basis functions φ’s and ψ’s. Coefficients
for φ’s are modelled as fixed effects, which usually reflect the main features of
f . Coefficients for ψ’s are modelled as random effects, which usually reflect fine
features of f . These random coefficients are assumed uncorrelated. We focus
on prior models based on choices of wavelet bases. For references on construc-
tion and regularity of functions with random coefficients see Holschneider (1995)
and Wornell (1996). See also Cramér and Leadbetter (1967) for sample func-
tion (sample path) properties including the Karhunen-Loève representation for
stochastic processes.

From now on and throughout this work, a system of wavelets is used as our
choice of basis. Using conventional notation, {φj,k(t)} and {ψ�,k(t)} denote scal-
ing functions and wavelets on the interval respectively. For the scaling functions
{φj,k(t)}, j is a fixed resolution level and k is in a finite index set Ij. Denote
the size of Ij by m, which is of order O(2j). The wavelets are {ψ�,k(t)}, for each

 ≥ j and k in a finite index set J�, with number of elements of order O(2�).
These scaling functions and wavelets are assumed to retain orthonormality. It is
also assumed that this system has regularity r > 0 and ψ’s have N > r vanishing
moments. The properties of regularity and vanishing moments ensure that these
φ’s and ψ’s form an unconditional basis for Besov spaces Bs

p,q for 0 < s < r

and 1 ≤ p, q ≤ ∞. The construction of wavelets on an interval can be found in
Cohen, Daubechies, Jawerth and Vial (1993) and Cohen, Daubechies and Vial
(1993).

Based on the choice of wavelet basis, the prior model becomes:

f(t) =
m∑

k=1

βkφj,k(t) + δ Z(t), Z(t) ∼
∑
�≥j

∑
k∈J�

γ�,k ψ�,k(t), (3)

where γ�,k are uncorrelated random variables with zero means and E(γ2
�,k) = λ�.

The definition of Besov space is summarized below. For 0 < b ≤ 1 and
1 ≤ p, q ≤ ∞, Jb

p,q is defined by

Jb
p,q(f) =



(∫ 1/(1+[b])

h=0 h−qb−1||∆1+[b]
h f ||qLp[0,1−(1+[b])h] dh

)1/q
, q <∞,

suph∈[0,1/(1+[b])] h
−b||∆1+[b]

h f ||Lp[0,1−(1+[b])h], q = ∞,
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where ∆k
h is the kth order difference and [b] is the greatest integer less than or

equal to b. When s > 0 with s = a + b for a positive integer a and 0 < b ≤ 1,
the Besov space Bs

p,q is the collection of functions f such that f, f (1), . . . , f (a) ∈
Lp[0, 1] and Jb

p,q(f (a)) <∞. This space Bs
p,q is equipped with the norm ||f ||Bs

p,q
=

||f ||Lp +
∑a

k=1 J
b
p,q(f (k)).

Expand f in terms of the wavelet basis: f =
∑

k β0,k φ0,k+
∑

j≥0

∑
k γj,k ψj,k.

Let ||β0,·||�p = (
∑

k β
p
0,k)

1/p and ||γj,·||�p = (
∑

k γ
p
j,k)

1/p, with the usual modification
for p = ∞. The norm ||f ||Bs

p,q
is equivalent to the sequence norm given by

||β0,·||�p +



∑
j≥0

(
2j(s+1/2−1/p)||γj,·||�p

)q




1/q

,

with the usual modification for q = ∞. Note that Bs
2,2 = W s

2 for s > 0. For ref-
erences, see Bergh and Löfström (1976), Holschneider (1995) and Meyer (1992).
In this article, the L2 norm is used as a standard measurement of function dis-
crepancy unless otherwise specified.

The relation between the prior parameters and the Besov spaces is charac-
terized below. The prior model can be regarded as a nonparametric prior over
the space Bs−1/2

2,∞ with scale coefficients as fixed effects and wavelet coefficients
as random effects. In a later section, it is shown that the “posterior” of f(t) is
in W s

2 = Bs
2,2, a smoother space than the prior space Bs−1/2

2,∞ . The smoothness
regularity of posterior estimators can be controlled via the prior parameters λ�.

Theorem 2.1. Suppose that sup�≥j E(γ4
�,k) <∞. The prior sample path of f(t)

is in B
s−1/2
2,∞ a.s. if and only if λ� = O(2−2�s), where s > 1/2.

Consider the functional class consisting of sample paths of prior model (2)
with a common upper bound lim sup�→∞ 22�sλ� ≤ C imposed upon prior param-
eters. Let π denote the induced prior probability measure. By the proof for
Theorem 2.1 in Appendix B, we see that ||f ||

B
s−1/2
2,∞

≤ C almost surely. That is,

π{ ||f ||
B

s−1/2
2,∞

≤ C } = 1. It indicates that we are working over a compact prior

functional class.

Corollary 2.2. Suppose that sup�≥j E(γ4
�,k) <∞. The prior sample path of f(t)

is in B
s′−1/2
2,q a.s. for all 1/2 < s′ < s, 1 ≤ q ≤ ∞, if λ� = O(2−2�s).

Theorem 2.3. Assume that Z(t) is a Gaussian process. For 1 ≤ p ≤ ∞, the
prior sample path of f(t) is in B

s−1/2
p,∞ a.s. if and only if λ� = O(2−2�s), where

s > 1/2.

Again, with the common upper bound lim sup�→∞ 22�sλ� ≤ C, we have that
π{ ||f ||

B
s−1/2
p,∞

≤ C } = 1.
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Corollary 2.4. Assume that Z(t) is a Gaussian process. The prior sample path
of f(t) is in B

s′−1/2
p,q a.s. for all 1/2 < s′ < s, 1 ≤ p, q ≤ ∞, if λ� = O(2−2�s).

Corollary 2.2 and Corollary 2.4 can be obtained by embedding theorems:
Bs

p,q ⊂ Bs−
p,q+ for s ≥ s− > 0 and 1 ≤ q ≤ q+ ≤ ∞. The space Bs−1/2

p,∞ is a

more precise prior space than B
s′−1/2
p,q is. Corollary 2.2 and Corollary 2.4 can

be compared with Theorems 1 and 2 in Abramovich, Sapatinas and Silverman
(1998). Note that Theorem 2.1 and Corollary 2.2 in this article do not require
distribution specification, only a few moment conditions are assumed.

3. The BLUP

If ε and Z(t) are assumed to be Gaussian processes, the posterior mean of
f(t) given the observations Y can be calculated straightforwardly as

E(f(t)|Y ) = µ(t) + δ E {Z(t) |Y }
= µ(t) + (δ2/σ2) wT (t) M−1(Y − µ), (4)

where µ(t) =
∑m

k=1 βkφj,k(t), w(t)=[W(t, t1), . . . ,W(t, tn)]T , M = R+(δ2/σ2)W,
µ = [ µ(t1), . . . , µ(tn) ]T , and W is an n× n matrix with the (i, j)th entry given
by W(ti, tj). The posterior mean (4) is the Bayes rule under squared error loss
and the Gaussian assumptions. Without the Gaussian assumptions, (4) is linear
Bayes in the sense that it minimizes the squared error loss among all linear rules
of the form a0(t) +

∑n
i=1 ai(t) yi, for some functions, ai(t), i = 0, 1, . . . , n,

(Parzen (1961)).
If the coefficients β are not known, one needs to estimate them from the data

Y . This is known as the empirical Bayes approach. A generalized least squares
estimate is proposed to estimate β here,

β̂ = (XTM−1X)−1XTM−1Y, (5)

where X is the design matrix for fixed effects. The empirical Bayes estimator
becomes

f̂(t) = µ̂(t) + (δ2/σ2)wT (t) M−1(Y − µ̂), (6)

where µ̂(t) =
∑m

k=1 β̂kφj,k(t) and µ̂ = [µ̂(t1), . . . , µ̂(tn)]T . The estimator (6) turns
out to be the BLUP as shown in Theorem 3.1 below.

According to the conventional terminology, estimators of random effects are
predictors and estimators of fixed effects are estimators. If there is no ambigu-
ity, estimators or predictors are used without distinction. It is noteworthy that
Gaussian assumptions are not required in Theorem 3.1.

Definition. A predictor f̂(t) is the best linear unbiased predictor (BLUP) of
f(t) if and only if (i) f̂(t) is linear in Y , (ii) f̂(t) is unbiased in the sense that
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Ef̂(t) = Ef(t) =
∑m

k=1 βkφj,k(t) for all t ∈ [0, 1] and all β ∈ Rm, (iii) f̂(t) has
the minimum mean squared error, among all linear unbiased estimators f̃(t), i.e.,
E(f̂(t) − f(t))2 ≤ E(f̃(t) − f(t))2 for all t ∈ [0, 1] and all β ∈ Rm.

Theorem 3.1. Assume the data model (1) and the prior model (3) with fixed
effects

∑m
k=1 βkφj,k(t) and random-effects covariance

W(s, t) =
∑
�≥j

∑
k∈J�

λ�ψ�,k(s)ψ�,k(t).

Assume the prior parameters λ� are known. Then f̂(t) in (6) is the unique BLUP
of f(t).

In a parametric mixed-effects model, the model is Y = Xβ+Zγ+ε, where X
and Z are known design matrices, β denotes fixed effects, and γ denotes random
effects. The BLUP was investigated by Harville (1976). A recent review was in
Robinson (1991). As for nonparametric models, there was pioneering work by
Kimeldorf and Wahba (1970, 1971), and Wahba (1978). The BLUP was called
either the minimum variance linear unbiased estimation or the Gauss-Markov
estimation in those papers. In Section 7 of Kimeldorf and Wahba (1971), they
considered the model given by (1) and (2) with random errors ε ∼ N(0, R),
random coefficients β ∼ N(0, I), and an independent zero mean Gaussian pro-
cess Z(t) with a known covariance kernel. Their definition of unbiasedness was
conditioned on a fixed β and so is ours. However, their variance was calculated
by averaging over values of β according to its distribution N(0, I), while ours is
obtained by conditioning on a fixed but arbitrary β. Thus the minimum variance
result here is more general. In Wahba (1978), β ∼ N(0, ξI) and ξ went to infinity.
For fixed σ2, δ2, and ξ, let Eξ(f(t)|Y ) denote the posterior mean of f(t) given
Y . Under Gaussian assumptions, the posterior mean Eξ(f(t)|Y ) is the BLUP in
the sense that both the unbiasedness and the mean squared error are averaged
over values of β according to its distribution N(0, ξI), instead of conditioning on
a fixed value of β. By letting ξ → ∞, the resulting estimate limξ→∞Eξ(f(t)|Y )
is BLUP at design points (Speed 1991). Our results extend to non-design points.

The BLUP f̂(t) is a shrinkage estimator, which shrinks the data toward µ̂(t),
where µ̂(t) is the generalized least squares fit of data to the low dimensional sub-
space spanned by {φj,k(t)}m

k=1. Let H0 be the linear subspace of L2[0, 1] spanned
by {φj,k(t)}k with a fixed resolution level j and k in the corresponding finite index
set Ij. Let HW be the closure (not the L2 closure, but rather the closure with
respect to the norm given below) of the linear space spanned by {ψ�,k(t)}�,k with

 ≥ j and k in the corresponding finite index set J� for each fixed 
. The norm
in HW is defined by ||∑�≥j

∑
k∈J�

γ�,k ψ�,k||2HW =
∑

�≥j

∑
k∈J�

γ2
�,k/λ�, where 0/0
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is defined to be zero. The BLUP in (6) is also equivalent to a penalized least
squares estimator in (7) of the next theorem.

Theorem 3.2. The BLUP f̂(t) in (6) can be obtained as the solution to the
following minimization problem:

min
f∈H0⊕HW

n−1(Y − F )TR−1(Y − F ) + λ||f ||2HW (7)

with λ = σ2

nδ2 and F = (f(t1), . . . , f(tn))T .

The penalized least squares estimation in (7) is a method of regularization
based on a Sobolev norm, || · ||HW . This is similar in spirit to a Sobolev regular-
ization proposed in Section 5.4 of Amato and Vuza (1997).

The Bayes/linear Bayes estimator in (4) and its empirical Bayes version in
(6) are smooth random functions. It is interesting to know their regularity and
compare this with the prior regularity given in Section 2. It is referred to the
posterior regularity.

Theorem 3.3. When λ� is of order O(2−2�s) as 
 → ∞, the posterior space
H0 ⊕HW is simply W s

2 [0, 1].

The space H0 is the prior space as well as the posterior space for fixed ef-
fects. The space HW is the posterior space for random effects. The method
of regularization in (7) penalizes random effects. The penalty on random ef-
fects is magnified as the resolution level gets finer. Such penalty discourages
high frequency wavelet coefficients and diminishes high frequency fluctuation to
get smoother posterior curves than the prior curves. Unlike other Bayesian ap-
proaches based on some prior distribution assumption, the approach here (BLUP
and its equivalent MORE) does not require us to specify any parametric form
of distribution, but only the first two moments. Furthermore, one obtains the
following theorem as an immediate result of Theorem 2.2 of Li (1982).

Theorem 3.4. For f in the functional class

W s
2 (δ) =

{
f ∈W s

2 [0, 1], s > 0, and ||f ||2HW ≤ δ
}
,

the estimator f̂(t) in (6), which is the same as the estimator in (7), is the mini-
max linear estimator of f(t) under mean squared error.

In the literature of nonparametric function estimation, minimaxity and con-
vergence rate results have been obtained for a wide variety of cases. It is known
that the minimax rate for estimating a function f at a point f(t) with squared
error loss is O(n−2s/(2s+1)) for f in a Sobolev ball W s

2 (δ) and f̂(t) linear in ob-
servations (Stone (1980), Ibragimov and Has’minskii (1981)). The restriction to
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linear estimators for obtaining the minimaxity rate can be relaxed to estimators
taking values in a Besov ball of Bs

2,∞ using ideas and techniques developed in
Kerkyacharian and Picard (1993).

4. Asymptotic Equivalence

It is shown below that the BLUP f̂ in Theorems 3.1 and 3.2 is asymptotically
equivalent to a diagonal shrinkage (DS) estimator.

Theorem 4.1. If the random variables ε are uncorrelated with common variance
σ2, the design points {ti}n

i=1 are uniformly distributed, and λ → 0, nλ → ∞ as
n→ ∞, then conditional on f ,

f̂(t) = f̂L(t) + f̂res,DS(t) +O

(
1
nλ

)
a.s. for a fixed t ∈ (0, 1), (8)

where

f̂L(t) =
m∑

k=1

β̂�
kφj,k(t), β̂�

k = n−1
n∑

i=1

φj,k(ti)yi, (9)

f̂res,DS(t) =
∑
�≥j

∑
k∈J�

λ�

λ� + λ
γ̂�,k ψ�,k(t), (10)

with γ̂�,k = n−1 ∑n
i=1 ψ�,k(ti)yi.

The notation β̂� is used in the above theorem to distinguish it from its
asymptotically equivalent form–the generalized least squares estimator β̂ in (5).
This asymptotic equivalence is useful in computational implementation. The fast
algorithm of discrete wavelet transform can be applied to get the estimates β̂�

and γ̂�,k in linear complexity O(n).

5. Adaptive Variants

When the parameter values for σ, δ and the λ� are not available, adaptive
estimates are necessary. The methodology developed in previous sections provide
an oracle for guiding adaptive diagonal shrinkage estimation. We name the es-
timator (6) the BLUPWAVE. One approach in obtaining the BLUPWAVE is to
solve the optimization problem in (7). The other adaptive and computationally
economical alternatives are suggested below, based on the asymptotic equiva-
lence in Theorem 4.1 and the result in Proposition 5.1. The resulting adaptive
variants are nonlinear.

Proposition 5.1. Under the same conditions in Theorem 4.1, for fixed k, 
 we
have E(γ̂2

�,k) = δ2λ� + σ2/n+O(n−2) as n→ ∞.
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Note that λ�/(λ� + λ) = λ�/(λ� + σ2/(nδ2)) = 1 − [(σ2/n)/(δ2λ� + σ2/n)].
By Proposition 5.1, an adaptive version of the BLUPWAVE is

f̂BLUPWAVE(t) =
m∑

k=1

β̂�
kφj,k(t) +

∑
�≥j

∑
k∈J�

(
1 − σ2/n

γ̂2
�,k

)
+

γ̂�,k ψ�,k(t). (11)

The positive sign in (11) is to assure that the shrinkage ratio estimate is nonneg-
ative. Thus, the resulting rule is a thresholding rule that combines the shrinkage
and the keep-or-kill rule. Often σ2 is not known, we consider a completely data-
driven procedure

f̂GCV
BLUPWAVE(t) =

m∑
k=1

β̂�
kφj,k(t) +

∑
�≥j

∑
k∈J�

(
1 − cn−1

γ̂2
�,k

)
+

γ̂�,k ψ�,k(t) (12)

with c selected by GCV. A brief description of the GCV procedure is in Appendix
A.

The computational cost of f̂GCV
BLUPWAVE is low. First, the fast Mallat’s pyra-

mid algorithm can be applied to get the estimates of scale and wavelet coefficients,
β̂�

k and γ̂�,k, in linear complexity. Then, these estimated coefficients can be ap-
plied to obtain the GCV scores and to select c accordingly. With c selected, the
fast algorithm can be applied to perform the reconstruction in linear complexity.
Four test examples taken from Donoho and Johnstone (1994), Blocks, Bumps,
HeaviSine and Doppler, are studied to investigate the finite sample performance.
The most nearly symmetric Daubechies wavelets with 8 vanishing moments are
used. The periodic wavelet basis over [0, 1] is applied to these four examples.
The computation is based on the WaveLab package for MATLAB (Buckheit,
Chen, Donoho, Johnstone and Scargle (1995)). The primary resolution scale is
j = 5 and the remaining fine scales are all included up to the finest possible
resolution. The averages and standard errors (in parentheses) of average squared

errors (ASEs), ASE = n−1 ∑n
i=1

{
f̂GCV
BLUPWAVE(ti) − f(ti)

}2
, for 100 replications

with various sample sizes and root signal-to-noise ratios (RSNRs) are reported
in Table 1. In order to compare with Table 4 in Donoho and Johnstone (1994)
and Table 1 in Abramovich, Sapatinas and Silverman (1998), the noise levels are
standardized so that σ = 1 when RSNR=7, as those tables do.

Referring to Table 4 in Donoho and Johnstone (1994), our results are better
than the VisuShrink in all four examples and they are also better than those
shrinkage estimators with optimal threshold λ∗n in examples of Blocks, Bumps
and Doppler.

When compared with BayesThresh in Table 1 of Abramovich, Sapatinas and
Silverman (1998) (wherein n = 1024), our results in Table 1 are often better.
See Table 2 for comparison. The symbol “+” means that our results are better,
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blank means about the same and “-” means our results are worse. However, one
evident advantage of our estimator is that it is totally data-driven, while their
prior parameters α and β are assigned a priori.

Displayed in Figure 1 are reconstructions for these four examples with cases
which are close to the averages of ASEs in Table 1 and whose RSNR=7. The
noises are effectively removed and the heights are preserved in the reconstruction.

Table 1. Averages and standard errors (in parentheses) of ASEs from 100
replications of BLUPWAVE by GCV.

RSNR n Blocks Bumps HeaviSine Doppler
10 256 0.3388 (0.00670) 0.3830 (0.00577) 0.1346 (0.00279) 0.2036 (0.00307)

512 0.2451 (0.00329) 0.2666 (0.00315) 0.0906 (0.00179) 0.1233 (0.00182)
1024 0.1878 (0.00180) 0.1868 (0.00178) 0.0524 (0.00088) 0.0834 (0.00112)
2048 0.1191 (0.00093) 0.1270 (0.00086) 0.0356 (0.00047) 0.0510 (0.00071)
4096 0.0772 (0.00047) 0.0783 (0.00048) 0.0218 (0.00035) 0.0261 (0.00034)
8192 0.0480 (0.00028) 0.0466 (0.00029) 0.0136 (0.00016) 0.0148 (0.00016)

7 256 0.6903 (0.01254) 0.7200 (0.01168) 0.2396 (0.00442) 0.3995 (0.00617)
512 0.4831 (0.00683) 0.5285 (0.00675) 0.1669 (0.00307) 0.2478 (0.00371)
1024 0.3533 (0.00341) 0.3514 (0.00326) 0.0904 (0.00145) 0.1643 (0.00213)
2048 0.2302 (0.00201) 0.2443 (0.00183) 0.0613 (0.00099) 0.0987 (0.00127)
4096 0.1470 (0.00096) 0.1547 (0.00123) 0.0391 (0.00058) 0.0539 (0.00076)
8192 0.0929 (0.00053) 0.0893 (0.00055) 0.0257 (0.00032) 0.0289 (0.00030)

5 256 1.2492 (0.02050) 1.3348 (0.02275) 0.3895 (0.00703) 0.7776 (0.01293)
512 0.9058 (0.01159) 0.9913 (0.01239) 0.2586 (0.00365) 0.4737 (0.00787)
1024 0.6423 (0.00645) 0.6434 (0.00595) 0.1442 (0.00271) 0.3051 (0.00444)
2048 0.4203 (0.00365) 0.4369 (0.00370) 0.0963 (0.00175) 0.1793 (0.00222)
4096 0.2760 (0.00208) 0.2824 (0.00230) 0.0642 (0.00098) 0.1036 (0.00134)
8192 0.1750 (0.00104) 0.1648 (0.00118) 0.0428 (0.00055) 0.0544 (0.00057)

3 256 3.2561 (0.06112) 3.4741 (0.06931) 0.8724 (0.02073) 2.0865 (0.03432)
512 2.2178 (0.03368) 2.5254 (0.03287) 0.5115 (0.01328) 1.2395 (0.02177)
1024 1.6077 (0.01664) 1.6455 (0.01610) 0.3137 (0.00693) 0.7253 (0.01096)
2048 0.9989 (0.00976) 1.0635 (0.00849) 0.2066 (0.00433) 0.4329 (0.00573)
4096 0.7126 (0.00491) 0.6844 (0.00525) 0.1410 (0.00282) 0.2609 (0.00351)
8192 0.4467 (0.00274) 0.4127 (0.00259) 0.0885 (0.00134) 0.1462 (0.00189)

Table 2. Comparison with BayesThresh.

RSNR n Blocks Bumps HeaviSine Doppler
10 1024 + + + +
7 1024 + + +
5 1024 + +
3 1024 - + - -
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6. Concluding Discussion

Starting with nonparametric mixed-effects models, we use Bayesian and em-
pirical Bayesian formulation in discussing the prior and posterior spaces. Also
with the help of Bayesian and empirical Bayesian techniques, we obtain the
shrinkage estimation in (6). The estimation method (6) is shown to have the
Gauss-Markov type optimality, to be equivalent to a regularization method, and
to be linear minimax for a certain class. The estimator in (6) is not practical for
computation. Thus its asymptotic equivalent is derived in Theorem 4.1. Adap-
tive variant by GCV along with a simulation study are discussed in Section 5.
This method is simple and computationally economical.

When preparing this article, the authors found a related technical report
by Huang and Cressie (2000). Independently, they discussed the determinis-
tic/stochastic wavelet decomposition, which is the same setup as the nonpara-
metric mixed-effects model in this article. Under Gaussian assumptions they
also derived the Bayes estimate. They used a different technique based on the
normal probability plot for the empirical estimate of the Bayes estimate. Their
simulation results also confirmed the advantage of Bayesian estimates. To sum
up, either from the perspective of nonparametric mixed-effects models or from
that of deterministic/stochastic wavelet decomposition, the Gauss-Markov type
predictor and its adaptive variants are useful for the recovery of signals.
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Figure 1. The reconstructions of BLUPWAVE and ASEs by the GCV method
when n = 1024, RSNR=7, and σ is unknown.
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Appendix A. Generalized Cross Validation

This appendix gives a brief description of a data-driven selection method via
GCV for the threshold parameter c in the BLUPWAVE. The CV and GCV
methods for hard and soft wavelet thresholding are studied by Weyrich and
Warhola (1995), Jansen, Malfait and Bultheel (1997). Parallel to their ideas, we
derive a GCV method in our context. Suppose n = 2J+1. Let y = (y1, . . . , yn)t

and w = (w1, . . . , wn)t =
√
n (β̂∗1 , . . . , β̂∗2j , γ̂j,1, . . . , γ̂J,2J )t, the empirical wavelet

coefficients. The empirical wavelet coefficients w, by discrete wavelet transform,
can be represented by an orthogonal matrix W . That is, w = Wy.

Let ŷ be the estimates of f̂GCV
BLUPWAVE evaluated at design points ti = i/n, i =

1, . . . , n. Then ŷ can be represented as ŷ = W−1Dc w = W−1DcWy, where Dc

is an n× n diagonal matrix Dc = diag{dii}, i = 1, . . . , n, with

dii =




1, for i = 1, . . . , 2j ,

0, for i = 2j + 1, . . . , n and w2
i ≤ c,

1 − c
w2

i
, for i = 2j + 1, . . . , n and w2

i > c.
(13)

Note that the elements of Dc depend on the signal w, thus Dc is a nonlinear
mapping. Define the influence matrix by A = W−1DcW and the differential in-
fluence matrix by Adif

i,j = ∂ŷi/∂yj entrywise. It can be shown that the differential
matrix Adif is given by Adif = W−1DdifW , where Ddif

i,j = ∂(Dcw)i/∂wj . We
then have tr(Adif ) = tr(Ddif ). Let wc = Dcw. The generalized cross validation
score is

GCV (c) =
n−1‖y − ŷ‖2

[n−1tr(I −Adif )]2
=

n−1‖w − wc‖2

[n−1(trI − trAdif )]2

=
n
∑n

i=2j+1(1 − dii)2w2
i[∑n

i=2j+1,dii=0 1 −∑n
i=2j+1,dii �=0

(
c/w2

i

)]2 .
The computation of a GCV curve is very fast because it is based on the

wavelet coefficients already generated in the construction of BLUPWAVE. No
more forward and inverse discrete wavelet transforms are needed for GCV curves.

Appendix B. Proofs

Proof of Theorem 2.1. Recall that Z(t) ∼ ∑
�≥j

∑
k∈J�

γ�,k ψ�,k(t), where
γ�,k’s are uncorrelated random variables with zero means and Eγ2

�,k = λ�. The

sample path of Z(t) is in Bs−1/2
2,∞ a.s. if and only if the wavelet coefficients satisfy

the constraint
sup
�≥j

22�(s−1/2)
∑
k∈J�

γ2
�,k <∞ a.s.
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The number of elements in J� is of order O(2�). By the Strong Law of Large
Numbers for uncorrelated random variables whose second moments have a com-
mon upper bound (Theorem 5.1.2. in Chung (1974)), lim sup�→∞ 22�s(

∑
k∈J�

γ2
�,k)

/2� = lim sup�→∞ 22�sλ� a.s. Thus, sup�≥j 22�(s−1/2) ∑
k∈J�

γ2
�,k < ∞ a.s. if and

only if sup�≥j 22�sλ� < ∞. Therefore, the sample path of Z(t), as well as the

sample path of f(t), are in the space Bs−1/2
2,∞ a.s. if and only if λ� is of order

O(2−2�s).

Proof of Theorem 2.3. The case 1 ≤ p < ∞. The sample path of Z(t)
is in B

s−1/2
p,∞ a.s. if and only if the wavelet coefficients satisfy the condition

sup�≥j 2p�(s−1/p) ∑
k∈J�

|γ�,k|p <∞ a.s. By the Strong Law of Large Numbers,

lim sup
�→∞

2p�s

∑
k∈J�

|γ�,k|p
2�

= lim sup
�→∞

2p�sλ
p/2
� a.s.

Thus, sup�≥j 2p�(s−1/p) ∑
k∈J�

γp
�,k < ∞ a.s. if and only if sup�≥j 2p�sλ

p/2
� < ∞.

Therefore, the sample path of Z(t) (and the sample path of f(t)) is in the space
B

s−1/2
p,∞ a.s. if and only if λ� is of order O(2−2�s).

The case p = ∞. The sample path of Z(t) is in Bs−1/2
∞,∞ a.s. if and only if the

wavelet coefficients satisfy the condition lim sup�

(
2�s maxk∈J�

|γ�,k|
)
< ∞ a.s.

That is, if and only if, for any K > 0,

P{2�s max
k∈J�

|γ�,k| > K i.o.} = 0. (14)

By the Borel-Cantelli Lemma, (14) holds if
∑∞

�=j P{2�s maxk∈J�
|γ�,k| > K} is

finite. For every fixed resolution level 
 and constant K > 0, let A(�,K)
k denote

the set where |γ�,k| > 2−�sK, but |γ�,k′ | ≤ 2−�sK for k′ < k, where k′, k ∈ J�.
We have

∞∑
�=j

P{2�s max
k∈J�

|γ�,k| > K} =
∞∑
�=j

∑
k∈J�

P{A(�,K)
k } =

∞∑
�=j

∑
k∈J�

∫
A

(�,K)
k

dP

≤
∞∑

�=j

22�sK−2
∑
k∈J�

∫
A

(�,K)
k

|γ�,k|2dP =
∞∑
�=j

22�sK−2
∫
∪k∈J�

A
(�,K)
k

|γ�,1|2dP

≤
∞∑

�=j

22�sK−2E|γ�,1|2 =
∞∑

�=j

22�sλ�/K
2,

which is finite if and only if λ� is of order O(2−2�s).

Proof of Theorem 3.1. (i) It is clear that f̂(t) is linear in Y . (ii) By the
unbiasedness of the generalized least squares estimate, Eµ̂(t) = µ(t) and E(Y −
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µ̂) = 0. Thus, Ef̂(t) = Ef(t) =
∑m

k=1 βkφj,k(t) holds for all t ∈ [0, 1] and
β ∈ Rm. (iii) Let Lt be an n-vector depending on t and let LT

t Y be an arbitrary
linear unbiased estimate of f(t). A necessary and sufficient condition for LT

t Y

being unbiased is LT
t X = ΦT (t), where Φ(t) = (φj,1(t), φj,2(t), . . . , φj,m(t))T . The

BLUP for f(t) is the solution LtY to the minimization problem:

min
Lt

E(LT
t Y − f(t))2 for Lt ∈ It ≡ {Lt ∈ Rn : LT

t X = ΦT (t)}.

The following lemma can be proved straightforwardly and the proof is omitted.

Lemma A. Let A be an n× n positive definite matrix, X be an n×m (m < n)
full rank matrix, L be an n-vector and u be an m-vector. The unique solution to
the minimization problem minL L

TAL, L ∈ {L ∈ Rn : LTX = uT } is given by
L = A−1X(XTA−1X)−1 u.

Let Zn = (Z(t1), . . . , Z(tn))T , Lt,� = Lt − (δ2/σ2)M−1w(t) and Φj,�(t) =
Φ(t) − (δ2/σ2)XTM−1w(t). Then one has

min
Lt∈It

E(LT
t Y − f(t))2 = min

Lt∈It

E(LT
t (δ Zn + σε) − δ Z(t))2

= min
Lt∈It

σ2LT
t MLt − 2δ2LT

t w(t) + δ2W(t, t)

= min
Lt∈It

σ2LT
t,�MLt,� + some constant.

It is observed that LT
t X = ΦT (t) holds if and only if LT

t,�X = ΦT
j,�(t) holds.

Therefore, minLt∈It L
T
t,�MLt,� = minLt,�∈It,� L

T
t,�MLt,�, where It,� ≡ {Lt,� ∈

Rn : LT
t,�X = ΦT

j,�(t)}. By Lemma A, the unique solution is given by Lt,� =
M−1X(XTM−1X)−1 Φj,�(t) or, equivalently, by Lt = (δ2/σ2)M−1w(t) + M−1

X(XTM−1X)−1 Φj,�(t). It is then straightforward to check that LT
t Y = µ̂(t) +

(δ2/σ2)wT (t)M−1(Y − µ̂).

Proof of Theorem 3.2. We establish this theorem by showing that it is a
special case of Theorem 3.1 of Huang and Lu (2000) with λ = α/n = σ2/(nδ2).
The regression model (1) together with the prior model (3) in this paper is a
special case of the model given by (1.1) and (1.2) in Huang and Lu (2000). To
apply their Theorem 3.1, we have to check the following assumptions.

Identifiability condition. The scaling functions {φj,k}m
k=1 used in this paper

are linearly independent, so the identifiability condition is met.
Boundedness condition I. Evaluation on a reproducing kernel Hilbert space
is a bounded linear functional and this condition is met.
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Boundedness condition II. For g ∈ H0 ⊕ HW , define L(g) = n−1Y TR−1G,
where G = (g(t1), . . . , g(tn))T . For an n-vector v, let ||v||22 = n−1 ∑n

j=1 v
2
j . Then

||L|| = sup
g∈H0⊕HW

|Y TR−1G|/n
||g||H0⊕HW

≤ sup
g∈H0⊕HW

||R−1Y ||2 · ||G||2
||g||H0⊕HW

≤ ||R−1Y ||2 sup
g∈H0⊕HW

(
n−1 ∑n

j=1 g
2(tj)

)1/2

||g||H0⊕HW
.

For g ∈ H0⊕HW , let ltj (g) = g(tj) denote evaluation at tj . AsH0⊕HW is a repro-
ducing kernel Hilbert space, we have ||ltj || = supg∈H0⊕HW (|g(tj)|/||g||H0⊕HW ) <
∞. Thus

sup
g∈H0⊕HW

(
n−1 ∑n

j=1 g
2(tj)

)1/2

||g||H0⊕HW
≤


n−1

n∑
j=1

||ltj ||2



1/2

.

Therefore, ||L|| <∞ for an arbitrary realization of Y .

Proof of Theorem 3.3. By the characterization theorem of Sobolev spaces
(Mallat (1989) or Meyer (1992)) and the definition of HW-norm, we have that
the posterior space H0 ⊕ HW is simply the Sobolev space W s

2 [0, 1], when λ� =
O(2−2�s).

In what follows, “
∑

�,k” means “
∑

�≥j

∑
k∈J�

”. The symbol On×m(δn) stands
for a sequence of n ×m (m can be a fixed or an n-dependent index) matrices
whose (i, j)th entry is uniformly of order O(δn), as n → ∞. When there is no
ambiguity, the subscript n × m is suppressed. Let W�,k be the n × n matrix
with its (i, j)th entry given by W�,k(ti, tj) = ψ�,k(ti)ψ�,k(tj). Then the W matrix
defined in Section 3 has the decomposition W =

∑
�,k λ�W�,k. Let

W [p](s, t) =
∫
[0,1]p−1

W(s, u1)W(u1, u2) · · ·W(up−1, t) du1 du2 · · · dup−1,

then we have the decomposition W [p](s, t) =
∑

�,k λ
p
�ψ�,k(s)ψ�,k(t). Let W [p] be

the n × n matrix with its (i, j)th entry given by W [p](ti, tj), then the matrix
W [p] has the decomposition W [p] =

∑
�,k λ

p
�W�,k. We remind the reader that the

symbol W stands for kernel function and the symbol W for matrix.
The following lemma is needed for Theorem 4.1.

Lemma B. (i) n−pXTW p = O(n−p),
(ii) M−1 = {I +

∑∞
p=1(−1)p( W

nλ )p} = {I −∑
�,k

λ�W�,k

n(λ�+λ)} + O( 1
n2λ2 ), and

(iii) XTM−1(I −X(XTX)−1XT ) = O
(

1
nλ

)
.
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Proof of Lemma B. (i) The (i, j)th entry of a matrix A is A(i, j). For a fixed
entry, say the (i, j)th entry, and for integer p ≥ 1, we have

n−p(XTW p)(i, j) = n−p
n∑

d1=1

· · ·
n∑

dp=1

XT (i, d1)W (d1, d2) · · ·W (dp, j)

=
∫
[0,1]p

φi(u1)W(u1, u2) · · ·W(up, tj) du1 du2 · · · dup +O(n−p)

= O(n−p), uniformly in i and j.

That is, for integer p ≥ 1, n−pXTW p = O(n−p).
(ii) Recall that M = I + (δ2/σ2)W . For a fixed (i, j)-th entry, we have

n−p+1W p(i, j) = n−p+1
n∑

d1=1

· · ·
n∑

dp−1=1

W (i, d1)W (d1, d2) · · ·W (dp−1, j)

=
∫

[0,1]p−1
W(ti, u1)W(u1, u2) · · ·W(up−1, tj) du1 du2 · · · dup−1 +O(n−p+1)

=W [p](i, j) +O(n−p+1) uniformly in i and j.

Therefore,

M−1 = {I + (nλ)−1W}−1 =


I +

∞∑
p=1

(−nλ)−pW p




= I − W

λ n
+

∞∑
p=2

W [p] + O
(
n−p+1

)
(−λ)p n

= I −
∑

�,k λ�W�,k

λ n
+

∞∑
p=2

∑
�,k λ

p
�W�,k + O

(
n−p+1

)
(−λ)p n

= I −
∑

�,k λ�W�,k

λ n
+

∑
�,k

n−1W�,k




∞∑
p=2

(−λ�/λ)p

 + O

(
n−2λ−2

)

= I −
∑

�,k λ�W�,k

λ n
+

∑
�,k

n−1W�,k

{
λ2

�

λ(λ+ λ�)

}
+ O

(
n−2λ−2

)

= I −
∑
�,k

λ�W�,k

n(λ� + λ)
+ O

(
1

n2λ2

)
.

(Here we implicitly assume that λ�/λ < 1, which is eventually true as n → ∞.
The finitely many λ�/λ ≥ 1 will not affect the result of Theorem 4.1.)
(iii) Observe that

XTM−1(I −X(XTX)−1XT )=XT {I +
∞∑

p=1

(−nλ)−pW p}(I −X(XTX)−1XT )
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=XT {
∞∑

p=1

(−nλ)−pW p}(I −X(XTX)−1XT )=XT {
∞∑

p=1

(−nλ)−pW p}=O
(

1
nλ

)
,

as n−pXTW p = O(n−p).

Proof of Theorem 4.1. First we show that

µ̂(t) = f̂L(t) +O

(
1
nλ

)
a.s. (15)

One has

µ̂(t) = ΦT (t)(XTM−1X)−1XTM−1Y

= ΦT (t)(XTM−1X)−1XTM−1X(XTX)−1XTY

+ΦT (t)(XTM−1X)−1XTM−1{I −X(XTX)−1XT }Y
= ΦT (t)(XTX)−1XTY + ΦT (t)(XTM−1X)−1O

(
(nλ)−1

)
Y.

As (n−1XTX)−1 = I + O(n−1), ΦT (t)(XTX)−1XTY = f̂L(t) + O
(
n−1

)
a.s.

Also note that

n−1XTM−1X = n−1XTX +
∞∑

p=1

(−1)pXTW pX

np+1λp

= I + O
(

1
n

)
+ O

(
1
nλ

)
= I + O

(
1
nλ

)
; (16)

then
ΦT (t)(XTM−1X)−1O

(
(nλ)−1

)
Y = O

(
1
nλ

)
. (17)

By (16) and (17), we have (15).
Next, we show that (δ2/σ2)wT (t)M−1(Y −Xβ̂) = f̂res,DS(t)+O(1/nλ) a.s.

Let w�,k(t) = [W�,k(t, t1), . . . ,W�,k(t, tn)]T . By Lemma B (ii),

(δ2/σ2)wT (t)M−1(Y −Xβ̂)=(δ2/σ2)wT (t)


I +

∞∑
p=1

(−nλ)−pW p


 (Y −Xβ̂)

=
1
nλ

∑
�,k

λ�w
T
�,k(t)


I −

∑
�,k

λ�W�,k

n(λ� + λ)
+ O

(
1

n2λ2

)
 (Y −Xβ̂)

=
1
nλ



∑
�,k

λ�w
T
�,k(t) −

∑
�,k

λ2
�w

T
�,k(t)W�,k

n(λ� + λ)
+ O

(
1

n2λ2

)
 (Y −Xβ̂)

=
1
nλ



∑
�,k

λ�w
T
�,k(t) −

∑
�,k

λ2
�w

T
�,k(t)

(λ� + λ)
+ O

(
1
nλ

)
+ O

(
1

n2λ2

)
 (Y −Xβ̂)
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=
1
nλ



∑
�,k

λ�λ w
T
�,k(t)

(λ� + λ)
+ O

(
1
nλ

)
 (Y −Xβ̂).

Notice that an explicit expression for O
(

1
nλ

)
is

∑
�,k

λ2
�w

T
�,k(t)

(λ� + λ)
−

∑
�,k

λ2
�w

T
�,k(t)W�,k

n(λ� + λ)

and we have the order

1
nλ


∑

�,k

λ2
�w

T
�,k(t)

(λ� + λ)
−

∑
�,k

λ2
�w

T
�,k(t)W�,k

n(λ� + λ)


 (Y −Xβ̂) = O

(
1
nλ

)
.

Therefore,

(δ2/σ2)wT (t)M−1(Y −Xβ̂) =
∑
�,k

λ�w
T
�,k(t)(Y −Xβ̂)
n(λ� + λ)

+O

(
1
nλ

)
a.s.

=
∑
�,k

λ�w
T
�,k(t)Y

n(λ� + λ)
+O

(
1
nλ

)
a.s. = f̂res,DS(t) +O

(
1
nλ

)
a.s.

Proof of Proposition 5.1. One has∣∣∣∣n−2
n∑

i,j=1

W�,k(ti, tj)µ(ti)µ(tj)
∣∣∣∣ = O(n−2),

n−2δ2
n∑

i,j=1

W�,k(ti, tj)W�′,k′(ti, tj)

=
∫ 1

0

∫ 1

0
δ2W�,k(s, t)W�′,k′(s, t) ds dt +O(n−2) = O(n−2), (
, k) �= (
′, k′)

n−2δ2
n∑

i,j=1

W2
�,k(ti, tj) =

∫ 1

0

∫ 1

0
δ2W2

�,k(s, t) ds dt +O(n−2) = δ2 +O(n−2),

n−2σ2
n∑

i=1

W�,k(ti, ti) = n−1σ2
(∫ 1

0
W�,k(t, t)dt +O(n−1)

)
=n−1σ2 +O(n−2).

Therefore, for fixed (
, k),

E γ̂2
�,k = n−2

n∑
i,j=1

W�,k(ti, tj)E{yi yj}

= n−2




n∑
i,j=1

W�,k(ti, tj)
[
µ(ti)µ(tj) + δ2EZ(ti)Z(tj) + σ2Eεiεj

]
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= O(n−2) + n−2δ2
∑

(�′,k′)�=(�,k)

n∑
i,j=1

λ�′W�,k(ti, tj)W�′,k′(ti, tj)

+n−2δ2
n∑

i,j=1

λ�W2
�,k(ti, tj) + n−2σ2

n∑
i=1

W�,k(ti, ti) = δ2λ� + σ2/n+O(n−2).
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