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Abstract: In observational studies subjects may self select, thereby creating a biased

sample. Such problems arise frequently, for example, in astronomical, biomedical,
animal, and oil studies, survey sampling and econometrics. For a typical subject,

let Y denote the value of interest and suppose that Y has an unknown density

function f . Further, let w(y) denote the probability that the subject includes itself

in the study given Y = y. Then the conditional density of Y given that it is

observed is f∗(y) = w(y)f(y)/κ, where κ is a normalizing constant. The problem
of estimating w and f from a biased sample X1, . . . , Xn independently from f∗ is

considered when f is known to belong to a parametric family, say f = fθ, where

θ is a vector of unknown parameters, and w is assumed to be non-decreasing. An

algorithm for computing the maximum likelihood estimator of (w, θ) is developed,

and consistency is established. Simulations are used to show that our method is
feasible with moderate sample size, and applications to animal and oil data are

given.
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1. Introduction

The Problem. Consider a multiparameter exponential family of univariate
densities with respect to a measure Λ, say

fθ(y) = exp{θ′T (y) − ψ(θ)}, for all y ∈ Y, θ ∈ Ω, (1)

where Ω ⊆ IRp, Y ⊆ IR and T : Y → IRp for some p ≥ 1. Suppose that
Y1, . . . , YN are i.i.d. with common density fθ for some unknown θ ∈ Ω and that
Yi is observed with probability w(Yi) given Yi, where w is an unknown function on
Y. If X1, . . . ,Xn denote the observed values, then X1, . . . ,Xn may be regarded
as a biased sample from fθ. The problem considered here is to estimate (w, θ)
from such a biased sample. Problems of this nature may arise in several ways.

Examples

1. Complaint Data. If a manufacturer distributes N lots of its product to
customers, then it may be reasonable to suppose that the number of defectives,
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Yi say, in the ith lot has a Poisson distribution and that the probability that the
user reports the number of defectives to the manufacturer is a non-decreasing
function of Yi.

2. Sample surveys. If a questionnaire is mailed to each ofN randomly selected
individuals who are asked to supply their own values of a variable, Y say, then
the probability that a given individual responds may well depend on Y .

3. Astronomy. In the discussion of Lynden-Bell (1992), Woodroofe (1992)
describes an example in which Y is the (observable) angular diameter of a galaxy
(in suitable units), and there is an unknown, non-decreasing selection functionw.

4. Animal Studies. Patil and Rao (1977) discussed an example in which Y
is the group size of moose in northeast Minnesota. Due to the visibility bias,
groups with smaller size have smaller probability to be seen.

5. Oil. If Y is the volume (size) of an oil field, then it is easier to find
larger Y ’s than small ones. See, for example, Gordon (1993) and Bloomfield et
al. (1979).

There are similar examples in reliability and biomedical research and econo-
metrics. In biomedical research censoring may occur besides the bias. As the
examples indicate, the value of N may be known (Examples 1 and 2) or unknown
(Examples 3-5). The estimation of w and θ differs in the two cases.

Of course, some restriction must be placed on w in order to insure identifi-
ability. In previous (non-regression) papers, w is often assumed known or to be
a known parametric function with some unknown parameters. See, for example,
Vardi (1982, 1985), Gill, Vardi and Wellner (1988), Robbins and Zhang (1988),
Gordon (1993), Bloomfield et al. (1979), and Vardi and Zhang (1992) et al. Here
the case in which w is a non-decreasing function is considered. This condition
seems reasonable in Examples 1, and 3-5, and may be reasonable in some cases
in Example 2. Our model is complementary to the earlier work, and may be
useful in assessing the validity of parametric assumptions on w. We shall use
the animal and oil data to illustrate these points. There is some related work in
econometrics, where w is assumed to be smooth and estimated by kernel meth-
ods. See Manski (1993) and the references therein. These methods differ from
ours since they postulate some possibly incomplete data from the unobserved
subjects.

In Section 3, the maximum likelihood estimators and penalized maximum
likelihood estimators of (w, θ) are developed through an MM (maximization-
maximization) algorithm, when N is known or unknown. The MM algorithm
is similar to the EM algorithm in concept but differs in an important way: the
maximizing value may be a boundary point (cf. Wu (1983)). In Section 4, appli-
cations to oil and animal data are given as examples, and simulations for various
models are performed to examine our methods in the finite sample situation. A
general convergence theorem for the MM algorithm and its application to our
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(penalized) maximum likelihood estimates are given in Section 5. The consis-
tency of the estimators is shown in Section 6. Amusingly, convergence of the
MM algorithm is more difficult for known N , and consistency is more difficult
for unknown N . A penalty term with a proper smoothing parameter has to
be introduced to insure the consistency in the case of unknown N . The proofs
differ from those of Vardi and Zhang (1992) for empirical distributions. Some
concluding remarks about the asymptotic distribution and choice of the penal-
izing parameter are given in Section 7. An optimization theorem and its proof
are provided in the Appendix. These may be of independent interests. Some
preliminaries are presented in Section 2.

2. Preliminaries

The Model. To formalize the problem, let W denote the set of all non-
decreasing functions w : Y → (0, 1] for which

∫
Y wdΛ > 0. If Y has density fθ,

where θ ∈ Ω, and Y is observed with probability w(Y ), where w ∈ W , then the
probability that Y is observed and its conditional density given the observations
are respectively

κ(w, θ) =
∫
Y
w(y)fθ(y)Λ(dy) and f∗w,θ(y) =

w(y)fθ(y)
κ(w, θ)

for all y ∈ Y. (Here κ(w, θ) > 0 for all (w, θ) ∈W ×Ω.) Then the biased sample
introduced in Section 1 may be modeled by random variables n and X1, . . . ,Xn,
where n ∼ Binomial[N,κ(w, θ)] and X1, . . . ,Xn are drawn independently from
f∗w,θ, given n. Here (w, θ) ∈W×Ω is unknown and N may be known or unknown.
In addition, there may be an independent (of n,X1, . . . ,Xn) sample from fθ, say
Y1, . . . , Ym, where m ≥ 0. The complete sample is absent if m = 0. This model
differs from those of Bickel, Nair and Wang (1992), and Gordon (1993) where
the population is assumed to be finite.

Some Conditions. In (1), Ω is taken to be the natural parameter space of
the family and is assumed to be open. In addition, two special properties are
required of the family. Let Y denote the support of Λ. It is required that Y be
unbounded on the right; that is, supY = ∞. This requires Y to contain infinitely
many points, but little else in view of the generality of T . Next, it is required
that the family of conditional distributions given Y ≥ x be minimal for each
x ∈ Y, using the terminology of Brown (1986). Letting Λx be the restriction of
Λ to [x,∞), the condition may be written

dimension {convexhull [support(Λx ◦ T−1)]} = p, for all x ∈ Y. (2)

With p = 1, the conditions are satisfied by the exponential, geometric, normal,
and Poisson families, but not by the binomial. They are also satisfied by the two
parameter normal and gamma families.
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Properties. For any fixed w ∈ W , it is easy to see that {f∗w,θ : θ ∈ Ω}
is another exponential family of the form (1), with Λ replaced by Λw(dy) =
w(y)Λ(dy) and ψ by

ψw(θ) = log
{ ∫

Y
exp[θ′T ]dΛw

}
≤ ∞, θ ∈ IRp,

and this family is minimal by (2). The natural parameter space for the latter
family, Ωw = {θ ∈ IRp : ψw(θ) < ∞} contains Ω, and the inclusion may be
proper. With this notation,

κ(w, θ) = exp[ψw(θ) − ψ(θ)] (3)

for all θ ∈ Ω, w ∈W.

For any θ ∈ Ω, the mean ∇ψ(θ) of fθ is in the expectation space ∇ψ(Ω),
obviously, where ∇ denotes gradient with respect to θ. The next lemma shows
that the mean ∇ψw(θ) of f∗w,θ is in ∇ψ(Ω) too for any w ∈W .

Lemma 1. If w ∈ W , then ∇ψw(Ω◦
w) ⊆ ∇ψ(Ω), where Ω◦

w denotes the interior
of Ωw.

Proof. From Brown (1986), it is known that∇ψw(Ω◦
w) is contained in the interior

of the convex support of Λw ◦ T−1 for each w ∈W with equality when w = 1, in
which case the family is steep. Thus, it suffices to show that support(Λw◦T−1) ⊆
support(Λ◦T−1) for all w ∈W ; and this is clear, since Λw is absolutely continuous
with respect to Λ.

Lemma 2. Let J be any compact subset of ∇ψ(Ω). If θj ∈ Ω, j ≥ 1, and either
||θj|| → ∞ or θj → θ 
∈ Ω as j → ∞, then

lim sup
j→∞

sup
t∈J

[t′θj − ψ(θj)] = −∞.

Proof. If θj → θ 
∈ Ω, then the result is clear, since then ψ(θ) = ∞ and
lim infj→∞ψ(θj) ≥ ψ(θ), by Fatou’s Lemma. If ||θj|| → ∞ as j → ∞, then the
result follows easily from Lemma 3.5 and Lemma 5.3 of Brown (1986), pp. 73-74,
pp. 146.

More General Models. The model described above may be used as a building
block in more complicated ones. For example, in many case control studies, there
is a {0, 1} valued covariate Z and the conditional distribution of an observable
X given Z = j is of the form: wj(x)fθj

(x)/[κ(wj , θj)], for j = 0, 1. If w0 and w1

are assumed to be equal (monotone or not), then

Pθ0,θ1[Z = 1|X = x] =
exp(α+ βt)

1 + exp(α+ βt)
,
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where β = θ1 − θ0 and t = T (x), and inference about β may be carried out by
logistic regression. (See, for example, Breslow (1980).) The methods advocated
in this paper may be useful for estimating the individual θj and, in principle, for
checking the assumption that w0 = w1.

3. Maximum Likelihood Estimators

In the derivation of the maximum likelihood estimators, suppose that 1 ≤
n < N and denote the observed order statistics of X1, . . . ,Xn by x1 < · · · < xr .
Further, let ni = #{k ≤ n : Xk = xi} for i = 1, . . . , r, and

t̄ =
∑n
i=1 T (Xi) +

∑m
j=1 T (Yj)

m+ n
.

It is assumed that t̄ is an interior point of the expectation space of the family;
that is, t̄ ∈ ∇ψ(Ω). By Lemma 1, this holds with probability approaching one as
N → ∞.

Known N . If N is known, then the log likelihood function is

l(w, θ)=
r∑
i=1

ni log[w(xi)]+(m+n)[θ′t̄−ψ(θ)]+(N−n) log[1−κ(w, θ)]

=
r∑
i=1

ni log[w(xi)]+(m+n)θ′t̄+(N−n) log[eψ(θ)−eψw(θ)]−(N+m)ψ(θ) (4)

for θ ∈ Ω and w ∈W , using (3). It is easily seen that for any fixed θ ∈ Ω, l(w, θ)
is maximized when w is a step function of the form w(y) = 0 for y < x1 and
w(y) = wk for xk ≤ y < xk+1, k = 1, . . . , r, where 0 ≤ w1 ≤ · · · ≤ wr ≤ 1 and
xr+1 = ∞. Then w(xk) = wk, k = 1, . . . , r, in (4), and

κ(w, θ) =
r∑

k=1

pk(θ)wk, for all θ ∈ Ω,

where
pk(θ) =

∫
[xk,xk+1)

fθ(y)Λ(dy), k = 0, . . . , r,

with x0 = −∞. So the maximization may be restricted to such step functions.
It is straightforward to maximize the likelihood function with respect to one

variable when the other is held fixed. For fixed θ, maximizing l(w, θ) with respect
to w is an exercise in isotonic estimation (cf. Robertson, Wright and Dykstra
(1988)), and the maximizing values are

ŵk(θ) = min[
n(1 − c)
N − n

w̃k(θ), 1], k = 1, . . . , r, (5)
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where
w̃k(θ) = max

i≤k
min
k≤j≤r

ni + · · · + nj
n(pi(θ) + · · · + pj(θ))

, k = 1, . . . , r,

and 0 < c = c(θ) ≤ 1 is the unique solution to the equation

c =
r∑

k=1

pk(θ)min[
n(1 − c)
N − n

w̃(θ), 1].

(See the Appendix for the derivation.) Here κ[ŵ(θ), θ] = c, and c ≤ n(1−c)/(N−
n) from (A.7) in the Appendix. So, c ≤ n/N and, therefore,

κ[ŵ(θ), θ] ≤ n

N
(6)

for all θ ∈ Ω. This relation is needed in the proof of convergence in Section 5.
Conversely, for fixed w, l(w, θ) attains its maximum with respect to θ, at a

point θ̂(w) for which ∇l(w, θ) = 0, since θ′t̄−ψ(θ) → −∞ as either ||θ|| → ∞ or
θ approaches a boundary point of Ω. Differentiating the second line of (4), the
latter equation may be written

N +m

n+m
∇ψ(θ̂(w)) +

N − n

n+m

[
κ(w, θ̂(w))∇ψw(θ̂(w)) −∇ψ(θ̂(w))

1 − κ(w, θ̂(w))

]
= t̄. (7)

As shown in Section 5, the true maximum likelihood estimators of (w, θ) are in
the set {(w, θ) ∈ W × Ω : κ(w, θ) ≤ (n +m)/(N +m)} and l is concave on this
set. So, any solution of (7) in the set is a maximum point of l with respect to θ
given w.

These two special cases suggest an iterative procedure. Let ŵ0 denote an
initial guess–for example, ŵ0 = 1; and let

θ̂k = θ̂(ŵk−1) and ŵk = ŵ(θk) (8)

for k = 1, 2, . . ., where ŵ(θ) and θ̂(w) are defined by (5) and (7). It is shown in
Section 5 that the sequence is precompact and that any limit point is a maximum
likelihood estimator.

Unknown N . If N is unknown, then the conditional log likelihood function
given n is

l∗(w, θ) =
r∑
i=1

ni log[w(xi)] + (m+ n)[θ′t̄− ψ(θ)] − n log[κ(w, θ)]

=
r∑
i=1

ni log[w(xi)] + (m+ n)θ′t̄− [mψ(θ) + nψw(θ)] (9)
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for θ ∈ Ω and w ∈ W , using (3) again. It is clear that l∗(cw, θ) = l∗(w, θ)
for all w ∈ W , θ ∈ Ω and c > 0 for which cw ≤ 1. Thus, there cannot be a
unique maximum likelihood estimate for w. The lack of uniqueness foreshadows
problems with consistency. To overcome these, a penalized log-likelihood of the
form

l∗α(w, θ) = l∗(w, θ) − αn

κ(w, θ)
(10)

is considered (l∗α = l∗ if α = 0), where 0 < α = αn ≤ 1 may approach zero as
n → ∞, as in Woodroofe and Sun (1993). In (10), the log-likelihood function
has been penalized (made smaller) for small values of κ(w, θ), the probability of
observing an X. This term has been included to force some regularity of the
estimators. To the best of our knowledge, the use of the term “penalized” to
describe this process originated with the work of Good and Gaskins (1971). The
penalized log-likelihood is maximized subject to the constraints

w(y) ≥ ε, for all y ∈ Y and sup
y
w(y) = 1,

where ε > α represents a lower bound for the probability of observing a Y , given
its value. The condition that supy w(y) = 1 represents no real restriction.

Note that κ(w, θ) ≥ ε since w ≥ ε and that − log κ − α/κ decreases in κ
when κ > α. So, as above, for any θ ∈ Ω, l∗α(w, θ) is maximized when w is a step
function of the form w(y) = ε for y < x1 and w(y) = wk for xk ≤ y < xk+1, k =
1, . . . , r, where ε ≤ w1 ≤ · · · ≤ wr−1 ≤ wr = 1. Then w(xk) = wk, k = 1, . . . , r,
in (10), and

κ(w, θ) = εp0(θ) +
r−1∑
k=1

pk(θ)wk + pr(θ)

for all θ ∈ Ω.
It is again easy to maximize the (penalized) likelihood function with respect

to either variable when the other is held fixed. For fixed θ, the maximizing values
are ŵr(θ) = 1 and

ŵk(θ) = max
{
ε,min[

c2

c− α
w̃k(θ), 1]

}
, k = 1, . . . , r − 1, (11)

where

w̃k(θ) = max
i≤k

min
k≤j<r

ni + · · · + nj
n(pi(θ) + · · · + pj(θ))

, k = 1, . . . , r − 1,

and 0 < c = c(θ) < 1 is the largest solution to the equation

c = εp0(θ) +
r−1∑
k=1

pk(θ)max{ε, min[
c2

c− α
w̃k, 1]} + pr(θ). (12)
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See the Appendix for details.
Now consider a fixed w for which w1 ≥ ε > α ≥ 0 and, therefore, wk ≥ ε for

all k = 1, . . . , r. Then l∗α is strictly concave with respect to θ ∈ Ω. This may be
checked by differentiation using κ(w, θ) ≥ ε > α. (See (18) in Section 5 for a more
general result.) It follows that l∗α(w, θ) attains its maximum at a unique value,
θ̂(w) say, and that θ̂(w) is the unique solution to the equation ∇l∗α[w, θ(w)] = 0.
Differentiating the second line of (9), the latter equation may be written

m

m+ n
∇ψ[θ̂(w)] +

n

m+ n
∇ψw[θ̂(w)] − αn

m+ n

[
∇ψw(θ̂(w)) −∇ψ(θ̂(w))

κ(w, θ̂(w))

]
= t̄.

(13)
The iterative algorithm (8) is again suggested, and it may be shown that

(ŵk, θ̂k) converges to the penalized maximum likelihood estimator. (See Section
5.)

4. Examples and Simulations

In this section, we present two examples and some simulations. The first
example is for a Poisson model which is discrete with a one-dimensional pa-
rameter, and the second is for a (Log)normal model which is continuous with a
two-dimensional parameter. Two precisions are to be specified in applying our
procedure. One is for the (penalized) Maximum likelihood estimate of θ given w
and that for w given θ, the inner loop. The other is for the MM algorithm, the
outer loop. The inner precision should not be set too large, since it may cause
the outer loop to oscillate between two values.

Example 4 – Revisited. Aerial Moose Census Data. The moose data from
northeast Minnesota listed in Table 1 were collected by James Peek, University
of Minnesota, in 1969. Columns 1 and 2 give the group size and counts of moose,
with total 113 groups. Let Y = size−1 and w(y) be the probability that a group of
moose of size y+1 is seen. Following Cook and Martin (1974) and Patil and Rao
(1977), we suppose that Y has a Poisson distribution with an unknown intensity
parameter θ > 0. We also assume that w(y) is a non-decreasing function since a
smaller group has a smaller probability to be seen. In fact, a parametric form of
w is assumed in these two references. Specifically, in Cook and Martin (1974),
w(y) = 1 − qy+1 for some 0 < q < 1, while in Patil and Rao, w(y) = c(y + 1)
for some constant c > 0 (called length biased sampling). The other columns in
Table 1 are corresponding estimates of Cook and Martin (C-M), Patil and Rao
(P-R) with c = 1/6 and our estimates with αn = 0.4, 0.5, 0.6, 0.8 and 2.0. The
two precisions are 0.001 for the Moose data and our estimates required at most
12 iterations in the MM algorithm. For all choices of α, ŵ(1) < ŵ(2), but ŵ(k)
are nearly constant for k = 2, . . . , 5. This is consistent with Cook and Martin,
but not with Patio and Rao (cf. Table 1 and Figure 1).
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Table 1. The group size of moose

ŵ

size counts αn = 0.4 αn = 0.5 αn = 0.6 αn = 0.8 αn = 2 C-M P-R
1 45 0.4182 0.5268 0.6270 0.8225 0.9287 0.89 0.1667
2 46 0.4933 0.6092 0.7183 0.9327 1.0000 0.987 0.3333
3 15 0.4933 0.6092 0.7183 0.9327 1.0000 0.99867 0.5000
4 5 0.5111 0.6131 0.7183 0.9327 1.0000 0.99985 0.6667
5 1 0.5111 0.6131 0.7183 0.9327 1.0000 0.99998 0.8333
6 1 1.0000 1.0000 1.000 1.0000 1.0000 1.0000 1.0000

θ̂ 0.8152 0.8280 0.8336 0.8397 0.8587 0.84 0.505
κ̂ 0.4617 0.5741 0.6791 0.8852 0.9698

X-axis: x = size, Y -axis: y = w(x)

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

n∗a = 0.4
n∗a = 0.5
n∗a = 0.6
n∗a = 0.8
n∗a = 2
upper:C-M
lower:P-R

Figure 1. Estimates of w(x) for moose data
Notes. These are unsmoothed plots, i.e. interpolating between two points.

Example 5– Revisited. Oil Data. The field size Y of 58 oil discoveries (in
units of 106 BBLS ) listed in Table 2 are from Meisner and Demirmen (1981). As
indicated by both Bloomfield et al. (1979) and Meisner and Demirmen (1981),
the study of w(y), the probability of discovering a field of size y, is an important
component in a model of forecasting future discoveries. In this case, it is reason-
able to assume that Y has a Lognormal distribution, as in these two references.
Bloomfield et al. (1979) supposed that w(y) was a lower power function of y,
rather than proportional to y, and reported a much better fit than the linear fit
for the Kansas data therein. For the data of Meisner and Demirmen (1981), the
sample mean and the estimated standard deviation of log(size) are respectively
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3.848 and 1.332, using s(t̄, t) defined in (14) below. Several typical ŵ are pre-
sented in Table 2. They required at most 13 iterations in the MM algorithm.
The precisions for the inner and outer loops are 0.0001 and 0.001 throughout. It
is clear from our ŵ and Figure 2 that no power function of y fits the data well.
Indeed, to compensate this, Meisner and Demirmen (1981) assume that w(y) is
a power function of y, but the power decreases as the number of the drillings
increases.

Table 2. The size of oil fields
nα = 0.01 1 2 0.01 1 2

no size log(size) ŵ no size log(size) ŵ

1 5.9 1.775 0.238 0.439 0.596 ... ... ... ... ... ...

... ... ... ... ... ... 53 337 5.820 0.984 1.000

38 75 4.317 0.341 0.661 0.908 ... ... ... ... ... ...

... ... ... ... ... ... 57 775 6.653 1.000 1.000

45 125 4.828 0.478 0.819 ... ... ... ... ... ...

... ... ... ... ... ... 58 1328 7.191 1.000 1.000

46 154 5.037 0.497 0.825 µ̂ 3.848 3.319 3.357 3.406

... ... ... ... ... ... σ̂ 1.332 1.331 1.455 1.531

51 215 5.371 0.548 0.847 1.000 κ̂ 0.429 0.695 0.878

Notes. The dots indicate that the estimates are same as the next one. The
µ̂ and σ̂ are the estimates of the parameters in the Lognormal distribution
of Y .

2 3 4 5 6

X-axis: x = log(t), t=size; Y -axis: y = log(w(t))

7

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

n∗alpha=0.1
n∗alpha=1

Figure 2. Estimates log(ŵ(x)) for oil data

Notes. These are unsmoothed plots at log-scales. A straight line would
indicate that some power function of y fitted w well.
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Simulations. Simulation experiments were conducted for Normal and Poisson
data, n = 20, 50 and 100, and m = 0 and n/2 for both known and unknown
N . There were 1000 replications for each combination. Not all the results are
reported in detail. The choice of the smoothing parameter αn presents a difficult
problem for the case of unknown N . Some possible approaches to this question
are described in Section 7. In the simulation, αn is chosen to reduce the bias of
κ̂. The desirable αn for the case of m = 0 is bigger than that for m = n/2.

Poisson. Consider the case that Y has a Poisson distribution with mean µ,
i.e. Y ∼ Poisson(µ), and w(y) = (y + 1)/(y + 4), y = 1, 2, . . . Then the natural
parameter is θ = log(µ). The true κ value, κo, say, can be computed by

κo =
∞∑
i=0

i+ 1
i+ 4

µi

i!
e−µ,

which gives 0.4727 for µ = 2 and 0.7738 for µ = 10. When N is unknown the
penalized maximum likelihood estimator θ̂(w) = log(µ̂(w)) of θ given w is the
solution of e(µ) = 0 where

e(µ) := t̄− µ− µ

[
n

m+ n
− nα

m+ n

1
κ(w, θ)

]
κ′µ(w, θ)
κ(w, θ)

and κ′µ is the partial derivative of κ with respect to µ. It is easy to see that
e(0) > 0 and e(t̄) < 0. Thus, a simple bisection algorithm can be used to solve
this problem. When N is known the maximum likelihood estimator θ̂(w) is a
solution of e1(µ) = 0 where

e1(µ) := t̄− µ− µ

(
N − n

m+ n

)[
κ′µ(w, θ)

1 − κ(w, θ)

]
.

Given µ or θ, calculating ŵ follows from (5) or (11) directly, based on an inner
loop precision. The simulation results are presented in Table 3. The same random
numbers are used for two cases, known and unknown N , and precisions for the
inner and outer loops are 0.001. With unknown N , the average iteration number
for the MM algorithm is 7.3, 8.5, 9.4 for n = 20, 50, 100, respectively, when µ = 2;
and 5.3, 6.7, 7.4 when µ = 10. The average iteration number is smaller when N

is treated known. The results are fairly good even for n = 20. The estimate µ̂
is closer to the true µ when N is known. For bigger αn (than those used in the
table), say 0.8, 1.2, 1.6 for n = 20, 50, 100, respectively, and data from Poisson(2),
the corresponding sample means of µ̂ are 2.001, 2.010, 2.022 but those for κ̂ are
0.72, 0.73, 0.74 with smaller standard deviation than those reported in Table 3.
Hence, a bigger α (than those in Table 3) increases the bias and decreases the
variance of κ̂.
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Table 3. The summary statistics under the Poisson model

n Poisson(2), κo = 0.4727 Poisson(10), κo = 0.7738

m = n/2 m = 0 m = n/2 m = 0

Med Mean SD Med Mean SD Med Mean SD Med Mean SD

20 nαn = 0.08 αn = 0.03n−0.5 nαn = 1.2 αn = 0.24n−0.5

N 42.00 42.41 6.876 42.00 42.39 6.711 26.00 25.90 2.689 26.00 25.96 2.771

t̄ 2.233 2.231 0.255 2.350 2.344 0.314 10.13 10.15 0.586 10.20 10.21 0.700

µ̂ 1.883 1.882 0.288 1.684 1.706 0.338 9.734 9.718 0.636 9.357 9.320 0.765

1.924 1.918 0.276 1.89 1.90 0.327 9.749 9.745 0.606 9.58 9.56 0.727

d 0.375 0.398 0.088 0.375 0.377 0.063 0.525 0.512 0.068 0.525 0.514 0.066

0.300 0.317 0.060 0.300 0.308 0.062 0.625 0.608 0.074 0.625 0.607 0.076

κ̂ 0.432 0.470 0.232 0.337 0.375 0.166 0.782 0.772 0.142 0.674 0.680 0.123

0.471 0.476 0.075 0.466 0.472 0.077 0.761 0.762 0.078 0.755 0.757 0.081

50 nαn = 0.112 nαn = 1.34

N 105.0 105.3 10.49 106.0 106.0 10.64 64.00 64.50 4.178 64.00 64.65 4.237

t̄ 2.220 2.227 0.162 2.320 2.336 0.200 10.12 10.13 0.365 10.18 10.20 0.425

µ̂ 1.916 1.915 0.201 1.854 1.863 0.294 9.738 9.751 0.415 9.489 9.502 0.513

1.940 1.944 0.191 2.03 2.03 0.230 9.746 9.776 0.383 9.64 9.65 0.467

d 0.363 0.375 0.085 0.340 0.378 0.094 0.471 0.465 0.066 0.471 0.463 0.067

0.288 0.295 0.045 0.250 0.269 0.032 0.571 0.557 0.073 0.571 0.555 0.076

κ̂ 0.438 0.474 0.224 0.375 0.463 0.235 0.782 0.774 0.138 0.733 0.737 0.117

0.474 0.476 0.047 0.469 0.471 0.048 0.770 0.771 0.050 0.764 0.765 0.051

100 nαn = 0.185 nαn = 1.63

N 212.0 212.1 15.22 211.0 211.8 15.09 129.0 129.3 6.059 129.0 129.3 6.033

t̄ 2.227 2.226 0.115 2.340 2.338 0.137 10.13 10.13 0.249 10.19 10.20 0.309

µ̂ 1.943 1.945 0.160 1.991 1.977 0.261 9.798 9.793 0.307 9.627 9.618 0.400

1.965 1.963 0.152 2.11 2.11 0.167 9.813 9.815 0.277 9.73 9.73 0.352

d 0.333 0.352 0.074 0.359 0.399 0.119 0.416 0.426 0.067 0.423 0.427 0.068

0.273 0.282 0.037 0.250 0.256 0.015 0.500 0.516 0.077 0.500 0.518 0.077

κ̂ 0.449 0.472 0.206 0.467 0.565 0.274 0.785 0.774 0.133 0.778 0.774 0.107

0.470 0.472 0.034 0.470 0.472 0.034 0.771 0.771 0.036 0.766 0.768 0.036

Notes. That d is the Kolmogorov-Sminov distance between ŵ and wo (the true

value of w). The upper figures are the estimates when N is treated unknown and

the lower are these when N is known.

Normal. Consider the case that Y ∼ N(µ, σ2), and w(y) = (ey + 1)/(ey + 4)
for y ∈ IR. Then the natural parameter is θ = (θ1, θ2) where θ1 = µ/σ2 and
θ2 = 1/σ2. The κo is 0.429 for N(0, 1) and 0.475 for N(0, 4). When N is
unknown the maximum likelihood estimator θ̂(w) of θ given w is the solution of
equations:

µ = z̄(t) − σ2
[ n

m+ n
− α

m+ n

1
κ(w, θ)

]κ′µ(w, θ)
κ(w, θ)

,

σ2 = s2(µ, t)
{
1 + 2σ2

[ n

m+ n
− α

m+ n

1
κ(w, θ)

]κ′σ2(w, θ)
κ(w, θ)

}−1
,
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where κ′µ and κ′σ2 are partial derivatives of κ with respect to µ and σ2 and

z̄(t) =
∑
xi +

∑
yj

m+ n
, s2(µ, t) =

1
m+ n

[ n∑
i=1

(xi − µ)2 +
m∑
j=1

(yj − µ)2
]
. (14)

These equations can be used to define an iterative algorithm for calculating θ̂,
i.e. a little MM algorithm in the inner loop. When N is known, θ̂ is the solution
of equations:

µ = z̄(t) − σ2
(N − n

m+ n

)[ κ′µ(w, θ)
1 − κ(w, θ)

]
,

σ2 = s2(µ, t)
/{

1 + 2σ2
(N − n

m+ n

)[κ′σ2(w, θ)
κ(w, θ)

]}
,

Table 4. The summary statistics under the Normal(0,4), κo = 0.475

Med Mean SD Med Mean SD Med Mean SD Med Mean SD

Unknown N Known N

m = n/2 m = 0 m = n/2 m = 0

nαn = 0.25 αn = 0.037n−0.5 n = 20

N 41.00 41.88 6.86 42.0 42. 6.890 41.00 41.88 6.859 42.00 42. 6.891

t̄ 0.541 0.545 0.38 0.83 0.82 0.440 0.541 0.545 0.380 0.827 0.82 0.441

s(t) 1.960 1.974 0.26 1.9 1.9 0.315 1.960 1.974 0.257 1.940 1.9 0.316

µ̂ -0.061 -0.060 0.42 -0.007 -0.007 0.488 -0.057 -0.053 0.417 -0.025 -0.028 0.491

σ̂ 1.900 1.907 0.26 1.8 1.8 0.311 1.930 1.929 0.255 1.850 1.9 0.317

d 0.311 0.323 0.11 0.32 0.33 0.101 0.290 0.321 0.083 0.290 0.32 0.084

κ̂ 0.446 0.475 0.12 0.38 0.39 0.054 0.456 0.461 0.075 0.453 0.46 0.077

nαn = 0.26 n = 50

N 105.0 105.5 11.05 0.01 110. 11.16 105.0 105.5 11.05 105.0 100. 11.16

t̄ 0.566 0.549 0.23 0.82 0.82 0.284 0.566 0.549 0.232 0.816 0.82 0.284

s(t) 2.010 2.009 0.17 2.0 2.0 0.198 2.010 2.009 0.166 1.970 2.0 0.198

µ̂ 0.035 0.032 0.27 0.12 0.12 0.318 -0.043 -0.041 0.267 -0.003 0.002 0.319

σ̂ 1.940 1.948 0.17 1.9 1.9 0.205 1.950 1.947 0.170 1.870 1.9 0.199

d 0.304 0.320 0.11 0.31 0.32 0.103 0.255 0.288 0.056 0.250 0.28 0.053

κ̂ 0.484 0.502 0.11 0.46 0.46 0.062 0.461 0.464 0.049 0.461 0.46 0.050

nαn = 0.28 n = 100

N 210.0 210.2 15.27 210 210. 15.71 210.0 210.2 15.27 211.0 210. 15.71

t̄ 0.536 0.545 0.16 0.83 0.82 0.205 0.536 0.545 0.165 0.829 0.82 0.205

s(t) 2.030 2.027 0.12 2.0 2.0 0.142 2.030 2.027 0.117 1.980 2.0 0.142

µ̂ 0.059 0.066 0.19 0.21 0.22 0.234 -0.042 -0.035 0.189 0.051 0.054 0.234

σ̂ 1.950 1.951 0.12 1.9 1.9 0.145 1.950 1.948 0.117 1.850 1.9 0.141

d 0.305 0.322 0.11 0.32 0.33 0.098 0.250 0.270 0.039 0.250 0.27 0.035

κ̂ 0.470 0.487 0.10 0.48 0.48 0.049 0.466 0.468 0.035 0.462 0.47 0.035

Notes. The case m = 0 is the worst scenario.

which can also be used to define an iterative procedure. Given θ, calculating
ŵ is again straightforward from (5) or (11). The equation (12) has a unique
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solution c ∈ (0, 1) for reasonable α. However, there are many small values of
c for which the two sides of (12) are fairly close for some α – false solutions.
So, it is important that the precision value given to this equation is very small.
To have an automatic algorithm to ensure that κ̂ is the largest solution of the
c ∈ (0, 1) in (12), we use the Golden section method (towards larger values)
to find a solution of (12) and then 4 further random searches beyond the first
solution. Hence, if the same random number generator is used in both generating
the data and random searches, the data are slightly different in known N (no
need for random searches) and unknown N cases, even if the same random seed
is used. This presents no barrier in assessing performance of our estimates in
the finite sample situation. The simulation results are presented in Table 4.
With unknown N , the average iteration number used in the MM algorithm is
4.9, 7.5, 10.4 respectively for n = 20, 50, 100 when (µ, σ) = (0, 1), and 3.7, 4.1, 5.8
when (µ, σ) = (0, 2). Again, the iteration number is smaller when N is treated
known. All the estimates get closer to the true values as n increases.

Remark. The distribution of κ̂, based on αn = 0.03n−1/2 for the case of un-
known N and model Poisson(2), is skewed (for all n) and bimodal (for n =
50, 100), while those in Poisson(10), N(0,1) and N(0, 4) are quite symmetric and
unimodal. This may be related to the fact that there are few distinct data points
from Poisson(2) and hence κ is harder to estimate. So, in the case of Poisson(2),
the median is a better measurement than the mean in terms of the goodness fit
of κ̂ to κo.

5. The MM Algorithm

The iterative algorithm in (8) (with different definitions for θ̂ and ŵ in the two
cases, N is known or unknown) is called the MM (maximization-maximization)
algorithm, following the convention for the EM algorithm. The convergence of
the iterates (ŵk, θ̂k), k ≥ 1, to the (penalized) maximum likelihood estimators
may be deduced from the following simple results which have other applications.
They are similar to Wu (1983) in some ways, but not in others – notably, the
maximizing values may be boundary points.

Assumptions. Let X and Y denote metric spaces and let ρ : X×Y → IR∪{∞}
be a function which is bounded below, not identically +∞, and continuous (with
respect to the topology of IR ∪ {∞}). Suppose that

inf
y′
ρ(x, y′) <∞ and inf

x′
ρ(x′, y) <∞, for all x, y,

and that these infima are attained. Then the sets

Ψ(x) = {y ∈ Y : ρ(x, y) = inf
y′
ρ(x, y′)}
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and
Φ(y) = {x ∈ X : ρ(x, y) = inf

x′
ρ(x′, y)}

are non empty for each x ∈ X and y ∈ Y. Of course, Ψ(x) and Φ(y) are closed
subsets of IR for all x and y.

Lemma 3. The Ψ and Φ enjoy the following continuity properties: suppose that
xk → x ∈ X and yk → y ∈ Y as k → ∞ ;
(i) if yk ∈ Ψ(xk), for all k ≥ 1, then y ∈ Ψ(x);
(ii) if xk ∈ Φ(yk), for all k ≥ 1, then x ∈ Φ(y).

Proof. If yk ∈ Ψ(xk), for all k ≥ 1, then

ρ(x, y) = lim
k→∞

ρ(xk, yk) = lim
k→∞

inf
y′
ρ(xk, y′)

≤ inf
y′

lim
k→∞

ρ(xk, y′) = inf
y′
ρ(x, y′),

so that y ∈ Ψ(x). This proves (i). The proof of (ii) is similar.

The Algorithm. Given an initial point x0 ∈ X , let y0 ∈ Ψ(x0),

xk ∈ Φ(yk−1) and yk ∈ Ψ(xk), for all k ≥ 1.

Then the following properties hold:

Property 1. The sequence ρ(xk, yk), k ≥ 0, is non-increasing, since

ρ(xk, yk) ≤ ρ(xk, yk−1) ≤ ρ(xk−1, yk−1), for all k ≥ 1.

So,
ρ# = lim

k→∞
ρ(xk, yk) = lim

k→∞
ρ(xk, yk−1) exists.

Property 2. If {(x, y) : ρ(x, y) ≤ c} is compact for some c > infx,y ρ(x, y) and
if ρ(x0, y0) ≤ c, then the sequence (xk, yk), k ≥ 1, is precompact (so that every
subsequence contains a convergence subsequence).

Property 3. If (x#, y#) is any limit point of the sequence (xk, yk), k ≥ 0, then

ρ(x#, y#) = ρ#, y# ∈ Ψ(x#) and x# ∈ Φ(y#).

Proof. The first two assertions are clear from continuity of ρ and the continuity
properties of Φ and Ψ in Lemma 3. For the third, let K ⊆ {1, 2, . . .} be a
subsequence for which (xk, yk) → (x#, y#) as k → ∞ through K. Then

ρ(x#, y#) = ρ# = lim
k∈K

ρ(xk+1, yk) = lim
k∈K

inf
x′∈X

ρ(x′, yk)

≤ inf
x′∈X

lim
k∈K

ρ(x′, yk) = inf
x′
ρ(x′, y#),
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so that x# ∈ Φ(y#).

For the next three properties suppose X and Y are convex subsets of Eu-
clidean spaces IRp and IRq, and that ρ is differentiable on the set Z = {(x, y) :
ρ(x, y) <∞}.
Property 4. Any limit point (x#, y#) of (xk, yk), k ≥ 1, satisfies

∂ρ

∂x
(x#, y#)′(x− x#) ≥ 0, for all x ∈ X , (15)

and
∂ρ

∂y
(x#, y#)′(y − y#) ≥ 0, for all y ∈ Y. (16)

These are obvious necessary conditions for y# ∈ Ψ(x#) and x# ∈ Φ(y#). For
example, if y ∈ Y and yε = εy + (1 − ε)y# for 0 < ε < 1, then (x#, yε) ∈ Z for
sufficiently small ε. For such ε, ρ(x#, y#) ≤ ρ(x#, yε) and, therefore,

0 ≤ lim
ε↘0

ρ(x#, yε) − ρ(x#, y#)
ε

=
∂ρ

∂y
(x#, y#)′(y − y#).

The term “convex function” below is used in the following extended sense:
if B ⊆ X × Y is a (not necessarily convex) set, then a function f : X × Y →
IR ∪ {∞} is said to be convex on B iff f(αw + βz) ≤ αf(w) + βf(z) whenever
w, z ∈ B, α, β ≥ 0, and α+ β = 1.

Property 5. If, in addition (to the conditions of Property 4), there is a closed
set B ⊆ Z for which ρ is convex on B and

{(x, y) : y ∈ Ψ(x)} ⊆ B, (17)

then ρ is minimized at any limit point (x#, y#) of (xk, yk), k ≥ 1.

Proof. Clearly, (x#, y#) ∈ B by Property 3 and (17); and infx,y ρ(x, y) =
inf(x,y)∈B ρ(x, y) by (17). So, it suffices to show that ρ(x#, y#) ≤ ρ(x, y) for
all (x, y) ∈ B. This follows from (15), (16) and the assumed convexity. For if
(x, y) ∈ B, xε = εx+ (1 − ε)x#, and yε = εy + (1 − ε)y#, 0 < ε < 1, then

ρ(x, y) − ρ(x#, y#) ≥ ρ(xε, yε) − ρ(x#, y#)
ε

, for all 0 < ε < 1,

→∇ρ(x#, y#)′
(
x− x#

y − y#

)
≥ 0, as ε↘ 0.

Property 6. If the conditions in Property 2 and 5 hold and if ρ attains its global
minimum at a unique point (x0, y0), say, and ρ(x0, y0) ≤ c, then (xk, yk) →
(x0, y0) as k → ∞.
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This is clear.

Application to the Maximum Likelihood Estimators. To apply this result to
the log likelihood functions of Section 2, write wi = eξi , i = 1, . . . , r, and

ρ(ξ, θ) = −l(w, θ) and ρ∗(ξ, θ) = −l∗α(w, θ),

for ξ∈Ξ={ξ∈ IRr :−∞<ξ1≤· · ·≤ξr≤0} and θ∈Ω. Then Ξ and Ω are convex,
and ρ and ρ∗ are bounded below and continuously differentiable. So, it remains
to verify the compactness and convexity conditions in Properties 2 and 5.

Known N . For the case of known N , the compactness condition in Property
2 is clear, since supw l(w, θ) ≤ (m + n)[θ′t̄ − ψ(θ)], which approaches −∞ as
||θ|| → ∞ or θ approaches a boundary point of Ω, and supθ∈K l(w, θ) → −∞ as
w1 ↘ 0 for any compact K ⊆ Ω. It is shown below that the convexity condition
in Property 5 is satisfied with

B =
{
(ξ, θ) : κ(w, θ) ≤ n+m

N +m

}
,

which is a closed but not necessarily convex subset of Ξ × Ω.
First, observe that [ŵ(θ), θ] ∈ B, for all θ ∈ Ω, by (6). Next, write φ(ξ, θ) =

ψw(θ) and let Si be the indicator of [xi, xi+1), i = 1, . . . , r. Then ,

φ(ξ, θ) = log
{∫

[x1,∞)
exp(θ′T + ξ′S)dΛ

}
,

which is ( jointly) convex in (ξ, θ). In fact, φ is strictly convex w.p.1. Now, simple
algebra yields,

ρ(ξ, θ) = −
r∑
i=1

niξi − (m+ n)θ′t̄+ g[φ(ξ, θ), ψ(θ)], for all ξ ∈ Ξ, θ ∈ Ω,

where

g(x, y) = −(N −n) log[ey − ex] + (N +m)y = −(N −n) log[1− ex−y] + (m+n)y

for all −∞ < x < y <∞. It is easily seen that g is convex on −∞ < x < y <∞
and that g is non-decreasing in each variable on the set

A = {(x, y) ∈ IR2 : x− y ≤ log(
n+m

N +m
)};

that is, if (x1, y1), (x2, y2) ∈ A,x1 ≤ x2, y1 ≤ y2, then g(x1, y1) ≤ g(x2, y2).
Next observe that [φ(ξ, θ), ψ(θ)] ∈ A whenever (ξ, θ) ∈ B. It follows easily
that g[φ(ξ, θ), ψ(θ)] is convex in (ξ, θ) ∈ B. To see this, let (ξ1, θ1), (ξ2, θ2) ∈
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B,α1, α2 ≥ 0, α1 + α2 = 1, and (ξ, θ) = α1(ξ1, θ1) + α2(ξ2, θ2). Then, with
obvious notational conventions,

x ≡ φ(ξ, θ) ≤ α1φ(ξ1, θ1) + α2φ(ξ2, θ2) = α1x1 + α2x2,

y ≡ ψ(θ) ≤ α1ψ(θ1) + α2ψ(θ2) = α1y1 + α2y2

by convexity of φ and ψ, and

g(x, y) ≤ g(α1x1 + α2x2, α1y1 + α2y2) ≤ α1g(x1, y1) + α2g(x2, y2),

since g is non-decreasing on A. Therefore, the iterates (ŵk, θ̂k) defined by (5), (7)
and (8) are precompact and any limit point is a maximum likelihood estimator
of w, θ, using Properties 1-5.

Unknown N . Suppose that ε ≥ α > 0. Then the compactness condition in
Property 2 is clear for unknown N . For in this case Ξ is replaced by Ξ = {ξ ∈
IRr : log(ε) ≤ ξ1 ≤ · · · ≤ ξr−1 ≤ ξr = 0}, and ψ(θ) − θ′t̄ → ∞ as ||θ|| → ∞ or θ
approaches a boundary point of Ω. For the convexity, note that

ρ∗(ξ, θ) = −
r∑
i=1

niξi + n[φ(ξ, θ) − θ′t̄ ] +m[ψ(θ) − θ′t̄ ] +
αn

κ
,

where κ = exp[φ(ξ, θ)−ψ(θ)]. Taking its gradient with respect to (ξ, θ), we have

∇ρ∗ = n∇φ+m∇ψ − αn

[∇φ−∇ψ
κ

]
+ C,

where C is a constant with respect to ξ and θ, and

∇2ρ∗ = n∇2φ+m∇2ψ − αn

[
∇2φ−∇2ψ

κ
− (∇φ−∇ψ)(∇φ−∇ψ)′

κ

]

= n

(
1 − α

κ

)
∇2φ+

(
m+

αn

κ

)
∇2ψ + αn

[
(∇φ−∇ψ)(∇φ−∇ψ)′

κ

]
(18)

which is positive definite as κ ≥ ε > α. In other words, ρ∗ is strictly convex
and has a unique minimum. Therefore, the iterates (ŵk, θ̂k) defined by (11), (13)
and (8) approach the unique maximum likelihood estimator of (w, θ), as k → ∞,
using Properties 1-6.

6. Consistency

Identifiability. The family {f∗w,θ : w ∈ W, θ ∈ Ω} is not identifiable, because
f∗w,θ = f∗cw,θ for any w ∈W, θ ∈ Ω, and c > 0 for which cw ≤ 1. A positive result
is presented next.



BIASED SAMPLING 563

Proposition 1. Suppose that

lim sup
y→∞

|(η − θ)′T (y)| = ∞, for all η 
= θ. (19)

If u,w ∈W, η, θ ∈ Ω, and f∗u,η = f∗w,θ a.e. (Λ), then η = θ and u = cw a.e. (Λ)
for some c > 0.

Proof. If u,w ∈W, η, θ ∈ Ω and f∗u,η = f∗w,θ a.e. (Λ), then

u(y) exp[η′T (y)] = cw(y) exp[θ′T (y)] a.e. y (Λ), (20)

where c = κ(u, η) exp[ψ(η)−ψ(θ)]/κ(w, θ), a positive constant. If y is sufficiently
large, then both sides of (20) are positive, and∣∣∣∣log

[
u(y)
w(y)

]∣∣∣∣ = |(θ − η)′T (y) + log(c)|. (21)

The left side of (21) has a finite limit as y → ∞, and the right side has an infinite
limit superior if η 
= θ by (19). So, η = θ. That u = cw a.e. (Λ) then follows
directly from (20).

Corollary 1. If κ(u, η)=κ(w, θ) (in addition to the conditions of the proposition),
then η = θ and u = w.

For a one parameter exponential family ( p = 1), condition (19) is satisfied,
if lim supy→∞ |T (y)| = ∞. In particular, (19) is satisfied if T (y) = y. For p ≥ 2,
sufficient conditions for (19) are that

lim
y→∞ |Tj(y)| = ∞ and lim

y→∞
|Tj(y)|
|Tj+1(y)| = 0, for all j = 1, . . . , p− 1. (22)

For example, suppose that (22) holds with p = 2. Then |(η − θ)′T (y)| = |(η1 −
θ1)T1(y) + (η2 − θ2)T2(y)| → ∞ if either η2 
= θ2 or η2 = θ2 and η1 
= θ1; that is,
if η 
= θ. It is easily verified that (22) is satisfied by the two parameter normal
family, with T (y) = (y,−y2/2)′,−∞ < y < ∞, and the two parameter gamma
family, with T (y) = [log(y),−y]′, 0 < y <∞.

Distance in W . To discuss consistency, it is necessary to define distance in
W . Two functions v,w ∈ W are regarded as equivalent if v = w a.e. (Λ). The
same symbol w is used to denote a function and the equivalence class containing
it. If G is any probability distribution which has the same null sets as Λ, then

d(v,w) = dG(v,w) =
∫
Y
|v − w|dG, for all v,w ∈W,

defines a metric for W . It is easily seen that all such metrics generate the
same topology and that κ is a continuous function on the product space W ×Ω.
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The same symbol H is used for both a probability distribution on Y and its
distribution function in the next lemma.

Lemma 4. Let H be a probability distribution for which H << Λ; and let
Hk, k ≥ 1, be probability distributions for which supy∈Y |Hk(y) − H(y)| → 0,
as k → ∞. Further, let δ > 0, and w1, w2, . . . ∈ W be functions for which∫
Y wkdHk ≥ δ a.e. for k (all but a finite number). If K ⊆ {1, 2, . . .}, then there

is a subsequence K0 ⊆ K and a w ∈ W for which
∫
Y wdH ≥ δ and wk → w, as

k → ∞ through K0. In particular, {w ∈ W :
∫
Y wdH ≥ δ} is compact for any

δ > 0 and any H << Λ.

Proof. By a simple diagonalization argument, there is a subsequence K0 ⊆ K
and a w ∈ W ∪ {0} for which wk(x) → w(x) as k → ∞ through K0, at all
continuity points x of w and at all atoms x of Λ. Then∫

Y
wkdHk −

∫
Y
wdH =

∫
Y
(H −Hk)dwk +

∫
Y
(wk − w)dH,

which approaches zero as k → ∞ through K0, by the assumed uniform con-
vergence of Hk to H and the Bounded Convergence Theorem. It follows that∫
Y wdH ≥ δ and, therefore, that w ∈ W . Another application of the Bounded

Convergence Theorem shows that dG(w,wk) → 0, as k → ∞ through K0, for any
probability distribution G << Λ; that is, wk → w, as k → ∞ through K0. This
establishes the first assertion of the lemma, and the second follows by specializing
the first to Hk = H, for all k ≥ 1.

Consistency. To simplify the notation, denote the true values of w and θ by
wo and θo, let κo = κ(wo, θo), and write f and f∗ for fθo and f∗wo,θo respectively. It
is convenient (and efficient) to suppose that there are three independent sequences
of random variables X1,X2, . . . , Y1, Y2, . . ., and n = nN , N ≥ 1, defined on an
appropriate probability space, for which X1,X2, . . . ∼ f∗ are i.i.d., Y1, Y2, . . . ∼ f

are i.i.d., and n ∼ Binomial(N,κo) for all N ≥ 1. (The dependence of n on N is
suppressed in the notation.) For the limiting operations N → ∞ and m = mN

depends on N in such a manner that m/N → γκo, where γ ≥ 0. Of course,
n/N → κo w.p.1.

If n,X1, . . . ,Xn and Y1, . . . , Ym are observed, then the log likelihood function
and conditional (penalized) log likelihood function given n may be written as

lm,n(w, θ) = Rn(w) + Sm,n(θ) + (N − n) log[1 − κ(w, θ)],

l∗α,m,n(w, θ) = Rn(w) + Sm,n(θ) − n log[κ(w, θ)] − αn

κ(w, θ)
,

where

Rn(w) =
n∑
i=1

log[w(Xi)]
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and

Sm,n(θ) =
n∑
i=1

θ′T (Xi) +
m∑
j=1

θ′T (Yj) − (m+ n)ψ(θ),

for w ∈W and θ ∈ Ω. For ε ≥ 0, w ∈W, θ ∈ Ω, and n ≥ 1, let

Rε,k(w) =
k∑
i=1

log[ε ∨ w(Xi)], k ≥ 1,

rε(w) =
∫
Y

log[ε ∨ w(y)]f∗(y)Λ(dy),

and
s(θ) = θ′∇ψwo(θo) + γθ′∇ψ(θo) − (1 + γ)ψ(θ).

Lemma 5. For any compact K ⊆ Ω,

sup
θ∈K

∣∣∣∣Sm,n(θ)N
− κos(θ)

∣∣∣∣→ 0, w.p.1. as N → ∞. (23)

Further, if m/N − γκ0 = O(N−1/2), as N → ∞, and

Kn = {θ ∈ Ω : ψ(θ) ≤ c log n},

where 0 < c <∞, then

sup
θ∈Kn

∣∣∣∣Sm,n(θ)N
− κos(θ)

∣∣∣∣ = O

(
log2 n√

n

)
, w.p.1. as N → ∞. (24)

Proof. The first statement in (23) follows easily from the law of large numbers,
applied to X1,X2, . . . and Y1, Y2, . . . The second in (24) is nearly as transparent
from the law of the iterated logarithm and the relation ||θ|| ≤ O[ψ(θ)] as ||θ|| →
∞, using Lemma 2.

Lemma 6. For all 0 < ε < 1,

sup
w∈W

∣∣∣∣1kRε,k(w) − rε(w)
∣∣∣∣→ 0, w.p.1. as k → ∞.

Furthermore, if ε = εk → 0 as k → ∞ and log ε−1
k = O(log k), then

sup
w∈W

∣∣∣∣1kRε,k(w) − rε(w)
∣∣∣∣ = O(

log2 k√
k

), w.p.1. as k → ∞.
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Proof. Let F ∗ denote the distribution function of X1 and let Fk be the empirical
distribution function of X1, . . . ,Xk. Then∣∣∣∣1kRε,k(w) − rε(w)

∣∣∣∣ = |
∫ ∞

−∞
log(ε ∨w)d(Fk − F ∗)|

= |
∫ ∞

−∞
(Fk − F ∗)d log(ε ∨w)| ≤ sup

x
|Fk(x) − F ∗(x)| · log(

1
ε
)

which goes to zero w.p.1. for fixed ε > 0 as k → ∞, using the Glivenko-Cantelli
theorem. The second assertion follows from the law of the iterated logarithm for
supx |Fk(x) − F ∗(x)| if F ∗ is continuous. (See, for example, Csörgő and Revesz
(1981), pp 157.) If F ∗ is discrete and the probability space is sufficiently rich,
then supx |Fk(x) − F ∗(x)| ≤ supu |Gk(u) − G(u)| for a uniform distribution G

and some uniform empirical distributions Gk, and we can apply the iterated
logarithm to supu |Gk(u) −G(u)|.

Known N . For the first theorem, let ŵN and θ̂N denote approximate maxi-
mum likelihood estimators, so that

lm,n(ŵN , θ̂N ) ≥ sup
w∈W,θ∈Ω

lm,n(w, θ) − δN w.p.1., (25)

where δ1, δ2, . . . is a sequence of real numbers for which δ = o(N).

Theorem 1. If the conditions (19) and (25) are satisfied, then

lim
N→∞

[ŵN , θ̂N ] = (wo, θo) w.p.1.

Proof. It is first shown that there are compact U ⊆W and K ⊆ Ω for which

(ŵN , θ̂N ) ∈ U ×K and lm,n(ŵN , θ̂N ) ≥ sup
w∈U,θ∈K

lm,n(w, θ)− δN w.p.1. (26)

a.e. for N (all but a finite number). To see this first observe that lm,n(ŵN , θ̂N )/N
≥ lm,n(wo, θo)/N +o(1) → κor0(wo)+κos(θo)+(1−κo) log(1−κo) > −∞ w.p.1.
as N → ∞. So, there is a 1 ≤ C <∞ for which

lm,n(ŵN , θ̂N ) ≥ −CN (27)

a.e. for N . Next, by Lemma 1, there is a compact J ⊆ ∇ψ(Ω) for which t̄N =
[T (X1) + · · · + T (Ym)]/(m + n) ∈ J a.e. for N w.p.1. By Lemma 2, there is a
compact K ⊆ Ω for which Sm,n(θ)/N ≤ −2C for all θ 
∈ K a.e. for N . Finally,

lm,n(w, θ) = Rn(w) + Sm,n(θ) + (N − n) log[1 − κ(w, θ)]

≤ Rn(w) + Sm,n(θ) ≤ Sm,n(θ) (28)
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for all w ∈ W and θ ∈ Ω. Since the right side of (28) is less than the right side
of (27) for θ 
∈ K a.e. for N w.p.1., it follows that θ̂N ∈ K a.e. for N , w.p.1.
Next, letting B = κo supθ∈K |s(θ)| + 1, it follows that −CN ≤ lm,n(ŵN , θ̂N ) ≤
Rn(ŵN ) +BN a.e. for N . So, by Lemma 6 and Jensen’s Inequality,

−(B + C) ≤ n

N

1
n
Rn(ŵN ) ≤ κo

2
log(

∫
Y
ŵNdFn)

a.e. for N , w.p.1., where Fn denotes the empirical distribution function. That
is, the sequences ŵN , N ≥ 1, and Fn satisfy the conditions of Lemma 4 with
δ = exp[−2(B + C)/κ0], w.p.1. It follows that ŵN is in the compact set U =
{w ∈W : κ(w, θo) ≥ δ/2} a.e. for N . Relation (26) follows.

By (26), (ŵN , θ̂N ) is relatively compact w.p.1. It is also clear that for all
ε > 0 and N a.e.

1
N
lm,n(ŵN , θ̂N ) ≤ sup

w∈U,θ∈K
1
N

{Rε,n(w) + Sm,n(θ) + (N − n) log[1 − κ(w, θ) + ε],

→ sup
w∈U,θ∈K

{κorε(w) + κos(θ) + (1 − κo)[1 − κ(w, θ) + ε]}

w.p.1. as N → ∞; and the right side approaches supw∈U,θ∈K{κor0(w)+κos(θ)+
(1 − κo)[1 − κ(w, θ)]} as ε ↘ 0, by Dini’s Theorem. If (ŵ, θ̂) denotes any limit
point (possibly random) of the sequence (ŵN , θ̂N ), N ≥ 1, and κ̂ = κ(ŵ, θ̂), then
by the dominated convergence theorem,

κo{r0(ŵ) − r0(wo)} + (1 − κo) log[
1 − κ̂

1 − κo
] + κo[s(θ̂) − s(θo)] ≥ 0.

Letting f̂∗ = f∗
ŵ,θ̂
, f̂ = fŵ,θ̂ and κ̂ = κ(ŵ, θ̂), this inequality may be rewritten

κo
∫
Y

log(
f̂∗

f∗
)f∗dΛ + γκo

∫
Y

log(
f̂

f
)fdΛ + κo log(

κ̂

κo
) + (1 − κo) log(

1 − κ̂

1 − κo
) ≥ 0.

Finally, the latter inequality requires κ̂ = κo and f̂∗ = f∗ by Jensen’s Inequality,
and, therefore, (ŵ, θ̂) = (wo, θo) by Proposition 1. Thus, (wo, κo) is the unique
limit point of (ŵN , θ̂N ), N ≥ 1, w.p.1.

Unknown N . In the second theorem, let α = αn, where 0 < α1, α2, . . . , ε1, ε2,

. . . are sequences for which εk > αk for all k ≥ 1, εk → 0, and α−1
k =o(k1/2/ log2 k)

as k → ∞. Suppose also that m/N = γκo+O(N−1/2) as N → ∞. As in the case
of known N , let ŵN and θ̂N denote approximate conditional penalized maximum
likelihood estimators so that

l∗α,m,n(ŵN , θ̂N ) ≥ sup
εn≤w∈W,θ∈Ω

l∗α,m,n(w, θ) − δN w.p.1., for all N ≥ 1, (29)
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where δ1, δ2, . . . is a sequence of real numbers for which δN = O(N1/2 logN).

Theorem 2. If wo(∞) = 1, condition (19) and those in the previous paragraph
are satisfied, then

lim
N→∞

[ŵN , θ̂N ] = (wo, θo) w.p.1.

Proof. The proof is similar to that of Theorem 1, but the proof of the relative
compactness is more complicated. In this proof, the following inequalities are
needed. If J is any compact subset of ∇ψ(Ω), then there are a B = BJ > 0 and
a η = ηJ , 0 < η < 1 for which

θ′t ≤ B + (1 − η) ψ(θ), for all θ ∈ Ω, t ∈ J.

This follows easily from Lemma 3.5 and Lemma 5.3 of Brown (1986), pp. 73-74
and pp. 146 as our Lemma 2 does. So, for ε > 0 simple algebra yields{

(w, θ) ∈W × Ω : κ(w, θ) ≥ ε, l∗α,m,n(w, θ) ≥ −CN
}

⊆
{

(w, θ) ∈W × Ω : ψ(θ) ≤ η−1
[
B +

n

m+ n
log κ−1 +

CN

m+ n

]}
. (30)

The above inclusion also holds with log κ−1 replaced by log ε−1, obviously.
Next, it is shown that there are compact U1, U2, . . . ⊆W and K1,K2, . . . ⊆ Ω

for which (ŵN , θ̂N ) ∈ Un ×Kn for a.e. N , w.p.1. Let Uk = {w ∈ W : w ≥ εk},
k = 1, 2, . . . Then clearly ŵN ∈ Un for all N . As in the proof of Theorem 1,
there are a compact J ⊆ Ω and a constant 0 < C < ∞ for which t̄N ∈ J and
l∗α,m,n(ŵN , θ̂N ) ≥ −CN for a.e. N , w.p.1. Moreover, N/n ≤ 2/κo for a.e. N ,
w.p.1. It follows from (30) that (ŵN , θ̂N ) ∈ Un ×Kn with

Kj =
{
θ ∈ Ω : ψ(θ) ≤ η−1

[
B + log κ−1

j +
2C
κo

]}

⊆
{
θ ∈ Ω : ψ(θ) ≤ η−1

[
B + log ε−1

j +
2C
κo

]}
. (31)

Observe that rε(w) = r0(w) if w ≥ ε. So, by the second part of Lemma 5,
Lemma 6, and the law of the iterated logarithm,

1
N
l∗α,m,n(ŵN , θ̂N ) = κo{r0(ŵN ) + s(θ̂N ) − log κ̂N − α

κ̂N
} +O(

log2 n√
n

),

1
N
l∗α,m,n(w

o ∨ εn, θo) ≥ κo{r0(wo) + s(θo) − log κo − α

κo
} +O(

log2 n√
n

),
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w.p.1. as N → ∞. Since l∗α,m,n(ŵN , θ̂N ) ≥ l∗α,m,n(wo ∨ εn, θo) − δN and

r0(ŵN ) + s(θ̂N ) − log κ̂N ≤ r0(wo) + s(θo) − log κo ,

by the information inequality, as before, it follows from (29) that

α

κo
− α

κ̂N
≥ −δN

N
+O(

log2 n√
n

) = O(
log2 n√

n
), w.p.1.

and, therefore, that
lim inf
N→∞

κ̂N ≥ κo, w.p.1. (32)

in view of the assumptions on α. It then follows easily from (31) and Lemma 4
that (ŵN , θ̂N ), N ≥ 1, is relatively compact.

Letting (ŵ, θ̂) denote any limit point of (ŵN , θ̂N ), N ≥ 1, and arguing as in
the proof of Theorem 1, we find that

κo
∫
Y

log(
f̂∗

f∗
)f∗dΛ + γκo

∫
Y

log(
f̂

f
)fdΛ ≥ 0

and hence by Jensen’s inequality,

θ̂ = θo, and
ŵ

κ̂
=
wo

κo
, a.e. (Λ).

Clearly, κ̂ ≥ κo by (32); and κ̂ ≤ κo by the above equation, since ŵ(∞) ≤ 1 and
wo(∞) = 1. That is, κ̂ = κo, ŵ = wo, and θ̂ = θo. The theorem follows.

7. Concluding Remarks

Two important questions were left unanswered, asymptotic distributions of
the estimators and the choice of the smoothing parameter αn. These are related.
Some possible approaches are described below.

Asymptotic Distributions. If θ were known, then the asymptotic distribution
of ŵn could be determined. For example, if θ is known, the distribution Fθ of fθ
is continuous, and X ∼ F ∗

θ , then Z = 1 − Fθ(X) has density

g(z) =
w[F−1(1 − z)]

κ(w, θ)
,

and the problem becomes one of estimating a non-increasing density. This prob-
lem may be solved by using strong approximation, as in Groeneboom (1985), and
n1/3[ĝn(z)−g(z)] has a (fairly complicated) limiting distribution, if g is sufficiently
smooth near z. (See Woodroofe and Sun (1993) for details.) It seems reason-
able to conjecture that similar results may be obtained for the unknown θ case
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provided that there is enough good data; and examination of the proofs suggests
that “enough” means that n/m3/2 → 0. Return to the case of known θ and con-
tinuous Fθ; and let ln(w, θ) denote the log-likelihood function of Z1, . . . , Zn ∼ g.
It may be shown that

sup
w∈W

[ln(w, θ) − ln(1, θ)] = Op(log n), (33)

even without smoothing, by using results of Groeneboom and Pyke (1983) and
equations like ∫ ∞

0
log f̃ndFn =

∫ ∞

0
log f̃ndF̃n

of Woodroofe and Sun (1993), p510. Here f̃n, F̃n are the nonparametric max-
imum likelihood estimates of the density and distribution under the monotone
constraint and Fn is the empirical distribution function. Moreover, if an appro-
priate smoothing parameter is included in the log-likelihood, then an asymptotic
distribution may be obtained for the left side of (33). Results like this could be
used to construct likelihood ratio tests for the presence of a bias.

The Choice of αn. The choice of αn presents a thorny question when N is
unknown. If αn is too small, then κ̂ has a negative bias and is highly variable,
due largely to some very small values; and too large values of αn lead to a
substantial positive bias in κ̂ and a flat ŵ. For estimating a non-increasing
density, Sun and Woodroofe (1996) used the asymptotic distributions to show
that the asymptotically optimal choice of αn is of the form cn−2/3, and they
proposed some adaptive estimators of c. It is not clear that their conditions are
satisfied in the present context, however, even if θ is known or m is large (so that
θ may be estimated accurately). Some rough knowledge of κ may be necessary
to choose c intelligently.

Knowledge of κ was used in the simulation studies reported in Section 4 in
that αn was chosen to make κ̂ have a small bias.

An approach which does not require exact knowledge of κ is to use a jackknife
(on κ) and/or least squares cross validation (on f∗ and g). For example, if
αn = cn−0.5, then c might be chosen to minimize an expression like

1
κ̂c(1 − κ̂c)

{
n− 1
n

∑
(κ̂−i,c − κ̂·,c)2 + (n− 1)2(κ̂c − κ̂·,c)2

}
,

where the subscript “−i” means that the ith data point has been omitted and
the subscript “·” denotes an average of ∗−i’s, and rough knowledge of κ might
be used to restrict the range of the search for c. The authors have conducted
simulation studies of this alternative (not reported in detail here) for the Poisson
and normal examples. It works in about 90% of the cases, and the results from
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the cross validation usually have smaller variance than those from the jackknife.
A general warning for cross validation/jackknife is that specifying the range of
the search is important. (See, for example, Silverman (1986), p48ff.) Here, we
searched c over (0.01, 0.05) for κ ≤ 0.5 and over (0.06, 0.3) for κ > 0.5. The
estimated c depends on the data (no longer a fixed value as in Tables 3 and
4). The distribution of the corresponding κ̂ became unimodal for all cases we
considered (cf. the remark at the end of Section 4).

Rough knowledge about the shape of w may also be useful for the choice of
αn. To see how, observe the following two artifacts of the estimators: it is always
the case that ŵn(xn) = 1 even if ŵn(xn−1) is small; and it is often the case that
ŵ is flat if αn is too large. If either of these features seems too pronounced, then
the choice of αn may be too large or too small. For example, for the moose data
in Table 1, the choice nαn = .4 leads to an estimator for which ŵn(6) = 1, but
ŵn(5) = .5111; and the choice nαn = .8 leads to ŵn(2) ≈ ŵn(6). Both of these
conclusions seem questionable. Thus, it may be useful to examine the estimators
for several values of nαn. This approach has been advocated by Silverman (1986)
in a related context.
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A. Appendix: An Optimization Theorem

Let r > r0 be two non-negative integers; and let Ξ = {ξ ∈ IRr : −∞ < ξ1 ≤
· · · ≤ ξr <∞}. Next let g be a concave function on Ξ with partial derivatives:

∂g

∂ξk
= zk − cpkwk for all k = 1, . . . , r, (A.1)

where c > 0, p1, . . . , pr ≥ 0 and z1, . . . , zr are known constants, wk = h(ξk) and
h is a known strictly increasing function. Finally let h−1 denote the inverse
function of h and let

w̃k = max
i≤k

min
k≤j≤r−r0

zi + · · · + zj
pi + . . .+ pj

, for all k = 1, . . . , r − r0. (A.2)

Then g is maximized on Ξ by ξ̃ where ξ̃k = h−1(w̃k) for k = 1, . . . , r, where
r0 = 0. (See, for example, Theorem 1.4.4 of Robertson, Wright, and Dykstra
(1988) (RWD thereafter).) We have the following extension theorem.
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Theorem 3. With the notations above, g is maximized in

Ξa,b = {ξ ∈ Ξ : a ≤ ξ1 ≤ · · · ≤ ξr−r0+1 = · · · = ξr = b},
by ξ̂, where ξ̂r−r0+1 = ξ̂r = b and ξ̂k = h−1(ŵk(c)) for k = 1, . . . , r − r0, with

ŵk(c) = max{h(a),min[
w̃k
c
, h(b)]} (A.3)

and w̃k in (A.2).
Moreover, if c = H(w) in (A.1) and the equation c = H(ŵ(c)) has a positive

solution, say c = ĉ, then g is maximized by ξ̂ where

ξ̂k = h−1(ŵk(ĉ)) for k = 1, . . . , r − r0, and ξ̂r−r0+1 = ξ̂r = b (A.4)

with ŵk(c) defined in (A.3).

Proof. We prove the more general result (A.4) directly and shall write ŵ for
ŵ(ĉ). As g is concave in ξ on Ξa,b, a necessary and sufficient condition for ξ̂ ∈ Ξa,b
to maximize g is that

r−r0∑
k=1

[zk −H(ŵ)pkŵk] (ξk − ξ̂k) ≤ 0, for all ξ ∈ Ξa,b. (A.5)

By Theorems 1.3.2 and 1.3.6 of RWD, for w̃ defined in (A.2) and any real valued
function Ψ
r−r0∑
k=1

[zk − pkw̃k] (ξk−Ψ(w̃k)) ≤ 0, for all −∞ < ξ1 ≤ · · · ≤ ξr−r0 <∞. (A.6)

Besides, if J is any set of the form J = {k : w̃k = u} for some u ∈ IR, then∑
k∈J

pkw̃k =
∑
k∈J

zk. (A.7)

(See, for example, Theorem 1.3.5 of RWD). Of course, (A.7) then holds for any
J of the form J = {k : d1 ≤ w̃k ≤ d2} for d1, d2 ∈ IR.

It is shown next that the necessary and sufficient condition (A.5) is satisfied
with the choice of ŵk, k = 1, . . . , r, given in (A.4). Fix a ξ ∈ Ξa,b and c = ĉ =
H(ŵ) throughout the verification. Three cases are considered below.

Case (i). If h(a) ≤ w̃1/c ≤ w̃r−r0/c ≤ h(b), then ŵk = w̃k/c or ξ̂k =
h−1(w̃k/c) for k = 1, . . . , r − r0. So, the necessary and sufficient condition (A.5)
follows easily from (A.6) with Ψ(x) = h−1(x/c).

Case (ii). Suppose that there are two integers 1 < t < s ≤ r − r0 for which

w̃t−1 < h(a)c, w̃t ≥ h(a)c and w̃s−1 ≤ h(b)c, w̃s > h(b)c.
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In this case there are three groups of ŵk: ŵk = h(a) for k = 1, . . . , t−1, ŵk = w̃k/c

for k = t, . . . , s− 1, and ŵk = h(b) for k = s, . . . , r. By (A.7),

t−1∑
k=1

pkh(a)c ≥
t−1∑
k=1

pkw̃k =
t−1∑
k=1

zk,

and hence
t−1∑
k=1

(zk − cpkŵk) (ξk − ξ̂k) =
t−1∑
k=1

(zk − pkh(a)c) (ξk − a)

≤
t−1∑
k=1

(zk − pkw̃k) (ξk − a) =
t−1∑
k=1

(zk − pkw̃k) ξk ≤ 0,

where the first inequality follows from ξk ≥ a and w̃k < h(a)c for k = 1, . . . , t−1;
the second equality follows from (A.7). The second inequality follows from (A.6)
with ξ in (A.6) replaced by (ξ1+Ψ(w̃1), . . . , ξt−1+Ψ(w̃t−1),Ψ(w̃t), . . . ,Ψ(w̃r−r0)),
where Ψ is any nondecreasing function for which ξt−1 + Ψ(w̃t−1) ≤ Ψ(w̃t). Next,

s−1∑
k=t

(zk − cpkŵk) (ξk − ξ̂k) =
s−1∑
k=t

(zk − pkw̃k) (ξk − h−1(w̃k/c)) ≤ 0,

where the inequality follows from (A.6) with ξ in (A.6) replaced by (Ψ(w̃1),
. . . ,Ψ(w̃t−1), ξt, . . . , ξs−1,Ψ(w̃s), . . . ,Ψ(w̃r−r0)) and with Ψ(x) = h−1(x/c). For
the last segment, note that

r−r0∑
k=s

(zk − cpkŵk) (ξk − ξ̂k) =
r−r0∑
k=s

(zk − pkh(b)c) (ξk − b)

= (ξr−r0 − b)
r−r0∑
k=s

(zk − pkh(b)c) −
r−r0∑
j=s+1

(ξj − ξj−1)
j−1∑
k=s

(zk − pkh(b)c),

by summation by parts. On the other hand,

h(b)c < w̃s = max
i≤s

min
s≤j≤r−r0

zi + · · · + zj
pi + · · · + pj

= min
s≤j≤r−r0

zi + · · · + zj
pi + · · · + pj

,

since xs is a jump point of w̃. So,

t∑
k=s

zk ≥ h(b)c
t∑

k=s

pk, for all t = s, . . . , r − r0.

That
r−r0∑
k=s

(zk − cpkŵk) (ξk − ξ̂k) ≤ 0, for all ξ ∈ Ξa,b,
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follows immediately, and (A.4) is an easy consequence from summing the three
segments.

Case (iii). When there are only two of the three groups of ŵk, (A.4) can be
checked similarly as in Case (ii). The theorem follows.

Applications to l and l∗α. Let zk = nk/n, h(x) = ex and β(w) =
∑r
i=0wipi.

When N is known, let g = l, r0 = 0, a = −∞ and c = H(w) = (N − n)/[n(1 −
β(w))]. When N is unknown, take g = l∗α, r0 = 1, ε = h(a) ≥ α > 0 and
c = H(w) = [β(w) − α]/β2(w). Then ŵ in (5) and (11) are the (penalized)
maximum likelihood estimator of w given θ, by Theorem 3.
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Csörgő, M. and Revesz, P. (1981). Strong Approximation in Probability and Statistics. Academic

Press.

Gill, R. D., Vardi, Y. and Wellner, J. A. (1988). Large sample theory of empirical distributions

in biased sampling models. Ann. Statist. 16, 1069-1112.

Groeneboom, P. (1985). Estimating a monotone density. In Proc. Conf. in Honor of Jerzy

Neyman and Jack Kiefer 2 (Edited by L. M. LeCam and R. A. Olshen), 539-555.

Groeneboom, P. and Pyke, R. (1983). Asymptotic normality of statistics based on the convex

minorants of empirical distribution functions. Ann. Probab. 11, 328-345

Good, I. J. and Gaskins, R. A. (1971). Nonparametric roughness penalties for probability

densities. Biometrika 58, 255-277.

Gordon, L. (1993). Estimation for large successive samples with unknown inclusion probabilities.

Adv. Appl. Math. 14, 89-122.

Lynden-Bell, D. (1993). Eddington-Malmquist bias, streaming motions, and the distribution of

galaxies. In Statistical Challenges in Modern Astronomy (Edited by G. J. Babu and E. D.

Feigelson), 201-220.

Manski, C. F. (1993). The selection problem in econometrics and statistics. In Econometrics

(Edited by G. S. Maddala, C. R. Rao and H. D. Vinod), 73-84. Amsterdam; North-Holland,

New York.

Meisner, J. and Demirmen F. (1981). The creaming method: a Bayesian procedure to forecast

future oil and gas discoveries in mature exploration provinces. J. Roy. Statist. Soc. Ser.

A. 144, 1-31.

Patil, G. P. and Rao, C. R. (1976). The weighted distributions: a survey of their applications. In

Applications of Statistics. Proceedings of the symposium held at Wright State University,



BIASED SAMPLING 575

Dayton, Ohio, 14-18 June 1976 (Edited by P. R. Krishnaiah), 383-405. North-Holland,

Amsterdam.

Robertson, T., Wright, F. and Dykstra R. (1988). Order Restricted Inference. John Wiley.

Robbins, H. and Zhang, C. H. (1988). Estimating a treatment effect under biased sampling.

Proc. Nat. Acad. Sci. 85, 3670-3672.

Silverman, B. W. (1986). Density Estimation. Chapman and Hall.

Vardi, Y. (1982). Nonparametric estimation in the presence of length bias. Ann. Statist. 10,

616-620.

Vardi, Y. (1985). Empirical distributions in selection bias models. Ann. Statist. 13, 178-205.

Vardi, Y. and Zhang, C. H. (1992). Large sample study of empirical distributions in a random-

multiplicative censoring model. Ann. Statist. 20, 1022-1039.

Woodroofe, M. (1993). Discussion of “Eddington Malmquist bias, streaming motions, and the

distribution of galaxies”. In Statistical Challenges in Modern Astronomy (Edited by G. J.

Babu and E. D. Feigelson), 217-220.

Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of f(0+) when

f is non-increasing. Statist. Sinica 3, 501-515.

Sun, J. and Woodroofe, M. (1996). Adaptive smoothing for a penalized npmle of a non-

increasing density. J. Statist. Plann. Inference 52, 143-159.

Wu, C. F. J. (1983). Convergence properties of the EM algorithm. Ann. Statist. 11, 95-103.

Department of Statistics, Case Western Reserve University, Cleveland, OH 44106, U.S.A.

E-mail: jiayang@sun.cwru.edu

E-mail: michaelw@stat.lsa.umich.edu

(Received November 1994; accepted February 1996)


