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Abstract: Survival data with ultrahigh dimensional covariates, such as genetic mark-

ers, have been collected in medical studies and other fields. In this work, we propose

a feature screening procedure for the Cox model with ultrahigh dimensional covari-

ates. The proposed procedure is distinguished from existing sure independence

screening (SIS) procedures (Fan, Feng, and Wu (2010); Zhao and Li (2012)) in

that it is based on the joint likelihood of potential active predictors, and there-

fore is not a marginal screening procedure. The proposed procedure can effectively

identify active predictors that are jointly dependent but marginally independent of

the response without performing an iterative procedure. We develop a computa-

tionally effective algorithm to carry it out and establish its ascent property. We

further prove that the proposed procedure possesses the sure screening property:

with probability tending to one, the selected variable set includes the actual active

predictors. We conducted Monte Carlo simulation to evaluate the finite sample per-

formance of the proposed procedure and compare it with existing SIS procedures.

The proposed methodology is also demonstrated through an empirical analysis of

a data example.

Key words and phrases: Cox’s model, partial likelihood, penalized likelihood, ul-

trahigh dimensional survival data.

1. Introduction

Modeling high-dimensional data has become most important research topic.

Variable selection is fundamental in analysis of high-dimensional data. Feature

screening procedures that can effectively reduce ultrahigh dimensionality become

indispensable and have attracted considerable attentions in recent literature. Fan

and Lv (2008) proposed a marginal screening procedure for ultrahigh dimensional

Gaussian linear models, and further demonstrated that marginal screening pro-

cedures may possesses a sure screening property under certain conditions. Such a

procedure has been referred to as a sure independence screening (SIS) procedure.

The SIS procedure has been further developed for generalized linear models and

robust linear models in the presence of ultrahigh dimensional covariates (Fan,

Samworth, and Wu (2009); Li et al. (2012)). It has also been proposed for ul-

trahigh dimensional additive models (Fan, Feng, and Song (2011)) and ultrahigh
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dimensional varying coefficient models (Liu, Li, and Wu (2014); Fan, Ma, and

Dai (2014)). These authors showed that their procedures enjoy sure screening

property, in the language of Fan and Lv (2008), under settings in which the

sample consists of independently and identically distributed observations from a

population.

In many studies, survival data have primary outcomes or responses subject to

censoring. The Cox model (Cox (1972)) is the most commonly-used regression

model for survival data, and the partial likelihood method (Cox (1975)) has

become a standard approach to parameter estimation and statistical inference.

The penalized partial likelihood method has been proposed for variable selection

in the Cox model (Tibshirani (1997); Fan and Li (2002); Zhang and Lu (2007);

Zou (2008)). Many studies collect survival data as well as a large number of

covariates such as genetic markers. It is of great interest to develop new data

analytic tools for analysis of survival data with ultrahigh dimensional covariates.

Bradic, Fan, and Jiang (2011) extended the penalized partial likelihood approach

for the Cox model with ultrahigh dimensional covariates. Huang et al. (2013)

studied the penalized partial likelihood with the L1-penalty for the Cox model

with high dimensional covariates. In theory, the penalized partial likelihood

may be used to select significant variables in ultrahigh dimensional Cox models.

While, in practice, it may suffer from algorithm instability, statistical inaccuracy,

and high computational cost when the dimension of covariate vector is much

greater than the sample size. Feature screening can play a fundamental role

in analysis of ultrahigh dimensional survival data. Fan, Feng, and Wu (2010)

proposed a SIS procedure for the Cox model by measuring the importance of

predictors based on marginal partial likelihood. Zhao and Li (2012) further

developed a principled Cox SIS procedure which essentially ranks the importance

of a covariate by its t-value of its marginal partial likelihood estimate and selects

a cutoff to control the false discovery rate.

We propose a new feature screening procedure for ultrahigh dimensional

Cox models. It is distinguished from the SIS procedures (Fan, Feng, and Wu

(2010); Zhao and Li (2012)) in that it is based on the joint partial likelihood

of potentially important features rather than the marginal partial likelihood of

individual features. Non-marginal screening procedures have been demonstrated

to have their advantage over the SIS procedures in the context of generalized

linear models. For example, Wang (2009) proposed a forward regression approach

to feature screening in ultrahigh dimensional linear models. Xu and Chen (2014)

proposed a feature screening procedure for generalized linear models via the

sparsity-restricted maximum likelihood estimator. Wang (2009) and Xu and

Chen (2014) demonstrated that their approaches can perform significantly better

than the SIS procedures under some scenarios. But their methods are for linear



FEATURE SCREENING FOR COX’S MODEL 883

and generalized linear models. In this paper, we show that our procedure can
outperform the sure independence screening procedures for the Cox model.

We establish the screening property for the sure joint screening (SJS) proce-
dure. Despite the fact that the theoretical tools for penalized partial likelihood
for the ultrahigh dimensional Cox model cannot be utilized in our context. This
work is the first to employ Hoeffding inequality for a sequence of martingale dif-
ferences to establish a concentration inequality for the score function of partial
likelihood.

We have conducted Monte Carlo simulation studies to assess the finite sam-
ple performance of the proposed procedure and compared its performance with
existing sure screening procedure for ultrahigh dimensional Cox models. Our nu-
merical results indicate that the proposed SJS procedure outperforms the existing
SIS procedures. We also demonstrate the proposed joint screening procedure by
an empirical analysis of a data example.

The rest of this paper is organized as follows. In Section 2, we propose a
feature screening for the Cox model, and demonstrate the ascent property of
our proposed algorithm to carry it out. We also study the sampling property of
the proposed procedure and establish its sure screening property. In Section 3,
we present numerical comparisons and an empirical analysis of a data example.
Some discussion and concluding remarks are in Section 4. Technical proofs are
in the Appendix.

2. New Feature Screening Procedure for Cox’s Model

Let T and x be the survival time and its p-dimensional covariate vector,
respectively. Throughout, we consider the Cox proportional hazard model

h(t|x) = h0(t) exp(x
Tβ), (2.1)

where h0(t) is an unspecified baseline hazard functions and β is an unknown
parameter vector. Suppose the survival time is censored by the censoring time
C, and write the observed time by Z = min{T,C} and the event indicator by
δ = I(T ≤ C). We assume the censoring mechanism is noninformative in that,
given x, T and C are conditionally independent.

Suppose that {(xi, Zi, δi) : i = 1, . . . , n} is an independently and identically
distributed random sample from (2.1). Let t01 < · · · < t0N be the ordered observed
failure times. Let (j) provide the label for the subject failing at t0j so that the
covariates associated with the N failures are x(1), . . . ,x(N). Denote the risk set
right before the time t0j by Rj = {i : Zi ≥ t0j}. The partial likelihood function
(Cox (1975)) of the random sample is

ℓp(β) =

N∑
j=1

[xT
(j)β − log{

∑
i∈Rj

exp(xT
i β)}]. (2.2)
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2.1. A new feature screening procedure

Suppose the effect of x is sparse, and the true value of β is β∗. Sparsity

implies that ∥β∗∥0 is small, where ∥a∥0 is the number of nonzero elements of a. In

the presence of ultrahigh dimensional covariates, one may consider reducing the

ultrahigh dimensionality of β to a moderate one by an effective feature screening

method. In this section, we propose screening features in the Cox model by the

constrained partial likelihood

β̂m = argmax
β

ℓp(β) subject to ∥β∥0 ≤ m (2.3)

for a pre-specified m, assumed to be greater than the number of nonzero elements

of β∗. For high-dimensional problems, it is almost impossible to solve the con-

strained maximization problem (2.3) directly. Alternatively, we consider a proxy

of the partial likelihood function. By Taylor expansion for the partial likelihood

function ℓp(γ) at β in a neighbor of γ,

ℓp(γ) ≈ ℓp(β) + (γ − β)T ℓ′p(β) +
1

2
(γ − β)T ℓ′′p(β)(γ − β),

where ℓ′p(β) = ∂ℓp(γ)/∂γ|γ=β and ℓ′′p(β) = ∂2ℓp(γ)/∂γ∂γ
T |γ=β. When p < n

and ℓ′′p(β) is invertible, the computational complexity of calculating the inverse

of ℓ′′p(β) is O(p3). For large p and small n, ℓ′′p(β) is not invertible. Low compu-

tational costs are always desirable here. To deal with singularity of the Hessian

matrix and save computational costs, we use an approximation for ℓ′′p(γ),

g(γ|β) = ℓp(β) + (γ − β)T ℓ′p(β)−
u

2
(γ − β)TW (γ − β), (2.4)

where u is a scaling constant to be specified andW is a diagonal matrix. Through-

out, we use W = diag{−ℓ′′p(β)}, the matrix consisting of the diagonal elements

of −ℓ′′p(β). Thus we approximate ℓ′′p(β) by udiag{ℓ′′p(β)}.

Remark. Xu and Chen (2014) proposed a feature screening procedure by an

iterative hard-thresholding algorithm (IHT) for generalized linear models with

independently and identically distributed (iid) observations. They approximated

the likelihood function ℓ(γ) of the observed data by a linear approximation ℓ(β)+

(γ−β)T ℓ′(β), but they also introduced a regularization term −u∥γ−β∥2. Thus,
the g(γ|β) in Xu and Chen (2014) would coincide with that in (2.4) if one set

W = Ip, the p × p identity matrix, but our motivation indeed is different from

theirs, and the working matrix W is not set to Ip.

It can be seen that g(β|β) = ℓp(β) and under some conditions, g(γ|β) ≤
ℓp(β) for all γ. This ensures the ascent property. Since W is a diagonal matrix,
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g(γ|β) is an additive function of γj for any given β. The additivity enables us

to have a closed form solution for the maximization problem

max
γ

g(γ|β) subject to ∥γ∥0 ≤ m (2.5)

for given β and m. The maximizer of g(γ|β) is γ̃ = β + u−1W−1ℓ′p(β). Let

rj = wj γ̃
2
j with wj the j-th diagonal element of W for j = 1, . . . , p, and sort rj

so that |r(1)| ≥ |r(2)| ≥ · · · ≥ |r(p)|. The solution to (2.5) is the hard-thresholding

rule

γ̂j = γ̃jI{|rj | > |r(m+1)|}=̂H(γ̃j ;m). (2.6)

It enables us to effectively screen features by using the following algorithm

Step 1. Set the initial value β(0) = 0.

Step 2. Set t = 0, 1, 2, . . . and iteratively conduct Step 2a and Step 2b below

until the algorithm converges.

Step 2a. Calculate γ̃(t) = (γ̃
(t)
1 , . . . , γ̃

(t)
p )T = β(t)+u−1

t W−1(β(t))ℓ′p(β
(t)), and

β̃(t) = (H(γ̃
(t)
1 ;m), . . . , H(γ̃(t)p ;m))T =̂H(γ̃(t);m). (2.7)

Set St = {j : β̃(t)
j ̸= 0}, the nonzero index of β̃(t).

Step 2b. Update β by β(t+1) = (β
(t+1)
1 , . . . , β

(t+1)
p )T as follows. If j ̸∈ St,

set β
(t+1)
j = 0; otherwise, set {β(t+1)

j : j ∈ St} to be the maximum

partial likelihood estimate of the submodel St.

Unlike the screening procedures based on marginal partial likelihood methods,

our procedure iteratively updates β at Step 2. This enables the procedure to in-

corporate correlation information among the predictors through updating ℓ′p(β)

and ℓ′′p(β). Thus, our procedure should perform better than the marginal screen-

ing procedures when there are predictors that are marginally independent of the

survival time, but not jointly independent of the survival time. Meanwhile, since

each iteration in Step 2 can avoid large-scale matrix inversion, it can be carried

out at low computational cost. Based on our simulations, our procedures can be

implemented with less computing time than the marginal screening procedure

studied in Fan, Feng, and Wu (2010) and Zhao and Li (2012) in some scenarios

(see Tables 2 and 3 for details).

Theorem 1. Suppose that Conditions (D1)−(D4) in the Appendix hold, and let

ρ(t) = sup
β

[
λmax{W−1/2(β(t)){−ℓ′′p(β)}W−1/2(β(t))}

]
,

where λmax(A) stands for the maximal eigenvalue of a matrix A. If ut ≥ ρ(t),

then ℓp(β
(t+1)) ≥ ℓp(β

(t)), where β(t+1) is defined in Step 2b of the algorithm.
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Theorem 1 asserts the ascent property of the proposed algorithm if ut is

appropriately chosen. That is, the algorithm can improve the current estimate

within the feasible region, ∥β∥0 ≤ m, and the resulting estimate in the current

step can serve as a refinement of the last step. The result also provides some

insight about the choice of ut in practice settings. In our numerical studies, the

algorithm typically converged within six iterations. Still, the algorithm is not

guaranteed to converge to the global optimizer.

2.2. Sure screening property

For convenience of presentation, s denotes an arbitrary subset of {1, . . . , p},
thus a submodel with covariates xs = {xj , j ∈ s} and associated coefficients

βs = {βj , j ∈ s}. We use τ(s) to indicate the size of model s, and the true

model by s∗ = {j : β∗
j ̸= 0, 1 ≤ j ≤ pn} with τ(s∗) = ∥β∗∥0 = q. The objective

of feature selection is to obtain a subset ŝ such that s∗ ⊂ ŝ with a very high

probability.

We provide some justifications for the proposed feature screening procedure.

The sure screening property (Fan and Lv (2008)) is referred to as

Pr(s∗ ⊂ ŝ) −→ 1, as n → ∞. (2.8)

We need some additional notation. For any model s, let ℓ′(βs) = ∂ℓ(βs)/∂βs

and ℓ′′(βs) = ∂2ℓ(βs)/∂βs∂β
T
s be the score function and the Hessian matrix

of ℓ(·) as a function of βs, respectively. Assume that a screening procedure

retains m out of p features such that τ(s∗) = q < m. We take Sm
+ = {s : s∗ ⊂

s; ∥s∥0 ≤ m} and Sm
− = {s : s∗ ̸⊂ s; ∥s∥0 ≤ m} as the collections of the

over-fitted models and the under-fitted models. We investigate the asymptotic

properties of β̂m under the scenario in which p, q, m, and β∗ are allowed to

depend on the sample size n. We impose the following conditions, some of which

are technical and only serve to facilitate understanding of the proposed feature

screening procedure.

(C1) There exist w1, w2 > 0 and some non-negative constants τ1, τ2 such that

τ1 + τ2 < 1/2 with min
j∈s∗

|β∗
j | ≥ w1n

−τ1 and q < m ≤ w2n
τ2 .

(C2) log p = O(nκ) for some 0 ≤ κ < 1− 2(τ1 + τ2).

(C3) There exist constants c1 > 0, δ1 > 0, such that for sufficiently large n,

λmin[−n−1ℓ′′p(βs)] ≥ c1 for βs ∈ {β : ∥βs−β∗
s∥2 ≤ δ1} and s ∈ S2m

+ , where

λmin[·] denotes the smallest eigenvalue of a matrix.

Condition (C1) dictates the sparsity of β∗ which makes the sure screening pos-

sible with τ(ŝ) = m > q; it requires that the minimal component in β∗ does not

degenerate too fast, so that the signal is detectable in the asymptotic sequence.
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Together with (C3), it sets an appropriate order of m that guarantees the iden-

tifiability of s∗ over s for τ(s) ≤ m. Condition (C2) has p diverge with n at up

to an exponential rate.

Theorem 2. Suppose that Conditions (C1)−(C3) and Conditions (D1)−(D7) in

the Appendix hold. If ŝ is the model obtained by (2.3) as size m,

Pr(s∗ ⊂ ŝ) → 1, as n → ∞.

The proof is given in the Appendix. One has to specify the value of m in

practical implementation. In the literature, it is typical to set m = [n/ log(n)]

(Fan and Lv (2008)). Although an ad hoc choice, this works reasonably well in

our numerical examples. With this choice of m, one is ready to further apply

existing methods such as the penalized partial likelihood method (See, for exam-

ple, Tibshirani (1997); Fan and Li (2002)) to further remove inactive predictors.

We set m = [n/ log(n)] throughout the numerical studies of this paper. To be

distinguished from the SIS procedure, the proposed procedure is referred to as

the sure joint screening (SJS) procedure.

3. Numerical Studies

We evaluated the finite sample performance of the proposed feature screen-

ing procedure via Monte Carlo simulations, and applied it to a data set. All

simulations were conducted by using R codes.

3.1. Simulation studies

We compared the performance of the SJS with the SIS procedure for the Cox

model (Cox-SIS) proposed by Fan, Feng, and Wu (2010) and further studied by

Zhao and Li (2012). To make a fair comparison, we set the model size of Cox-SIS

to be the same as that of our procedure. In simulations, the predictor variable

x was generated from a p-dimensional normal distribution with mean zero and

covariance matrix Σ = (σij). Two commonly-used covariance structures were

adopted.

(S1) Σ is compound symmetric in that σij = ρ for i ̸= j and equal 1 for i = j.

We took ρ = 0.25, 0.50 and 0.75.

(S2) Σ has the autoregressive structure. σij = ρ|i−j|. Again with ρ = 0.25, 0.5,

and 0.75.

We generated the censoring time from an exponential distribution with mean

10, and the survival time from the Cox model with h0(t) = 10 and (b1) β1 =

β2 = β3 = 5, β4 = −15ρ, and other βjs equal 0, or (b2) βj = (−1)U (a+ |Vj |) for
j = 1, 2, 3 and 4, where a = 4 log n/

√
n, U ∼ Bernoulli(0.4) and Vj ∼ N (0, 1).
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Table 1. Censoring Rates.

ρ = 0.25 ρ = 0.50 ρ = 0.75
Σ β in (b1) β in (b2) β in (b1) β in (b2) β in (b1) β in (b2)
S1 0.329 0.163 0.317 0.148 0.293 0.239
S2 0.323 0.181 0.353 0.135 0.342 0.227

Under the setting (S1) and (b1), X4 is jointly dependent but marginally

independent of the survival time for all ρ ̸= 0; this setting is designed to challenge

the marginal SIS procedures. The coefficients in (b2) were used in Fan and Lv

(2008), and we adopt them for survival data.

In our simulation, we considered the sample sizes n = 100 and 200, and

the dimensions p=2,000 and 5,000. For each combination, we conducted 1,000

replicates of Monte Carlo simulation. We compared the performance of feature

screening procedures using Ps: the proportion of times an individual active pre-

dictor was selected for a given model size m in the 1,000 replications, and Pa: the

proportion of times all active predictors were selected for a given model size m in

the 1,000 replications. We can expect Ps and Pa both be close to one when the

estimated model size m is sufficiently large. We chose m = [n/ logn] throughout

our simulations.

It is expected that the performance of SJS depends on: the structure of

the covariance matrix, the values of β, the dimension of all candidate features

and the sample size n. For survival data analysis, performance depends also on

the censoring rate. Table 1 gives the censoring rates for the 12 combinations of

covariance structure, the values of ρ and β.

Table 2 reports Ps for the active predictors and Pa under S1. Table 2 also

gives the average computing time for each replication. Under S1 and (b1), X4 is

jointly dependent but marginally independent of the survival time for all ρ ̸= 0.

This setting is designed to challenge all screening procedures, in particularly the

marginal screening procedures. From Table 2, Cox-SIS fails to identify X4 as an

active predictor completely under (b1). This is expected. The SJS procedure,

on the other hand, includes X4 with nearly always. In addition, SJS has Pa very

close to one for every case under (b1). Thus, SJS outperforms Cox-SIS easily in

this setting.

We next consider the performance under S1 and (b2). In this setting, there

is no predictor that is marginally independent of, but jointly dependent with the

response. Table 2 clearly shows how performances are affected by sample size,

dimension of predictors, and ρ. Overall, SJS outperforms Cox-SIS in all cases

in terms of Ps and Pa. The margin is quite significant when the sample size is

small (n = 100) or when ρ = 0.75. The performance of SJS becomes better as

the sample size increases.
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Table 2. The proportions of Ps and Pa with Σ = (1− ρ)I + ρ11T .

Cox-SIS SJS
Ps Pa Time Ps Pa Time

ρ β X1 X2 X3 X4 ALL (s) X1 X2 X3 X4 ALL (s)
n = 100 and p = 2, 000

0.25 b1 0.984 0.991 0.991 0 0 13.07 0.999 0.995 0.997 0.981 0.975 7.54
b2 0.826 0.817 0.826 0.842 0.437 12.94 0.993 0.992 0.993 0.997 0.984 7.81

0.50 b1 0.951 0.948 0.937 0.001 0.001 13.07 0.961 0.962 0.962 0.983 0.937 8.31
b2 0.73 0.707 0.707 0.734 0.236 12.95 0.981 0.976 0.977 0.976 0.936 8.47

0.75 b1 0.761 0.783 0.775 0.008 0.005 12.09 0.954 0.943 0.942 0.987 0.898 8.36
b2 0.611 0.638 0.619 0.620 0.134 9.22 0.887 0.891 0.900 0.898 0.717 6.07

n = 100 and p = 5, 000
0.25 b1 0.977 0.975 0.981 0 0 32.00 0.988 0.981 0.984 0.925 0.912 26.00

b2 0.739 0.788 0.763 0.769 0.317 27.76 0.972 0.974 0.978 0.975 0.938 54.98
0.50 b1 0.892 0.900 0.894 0 0 42.82 0.871 0.861 0.862 0.948 0.805 31.89

b2 0.636 0.619 0.643 0.629 0.127 28.25 0.919 0.922 0.934 0.923 0.812 59.68
0.75 b1 0.701 0.696 0.659 0.008 0.002 30.94 0.829 0.838 0.828 0.988 0.724 36.73

b2 0.501 0.501 0.488 0.472 0.045 25.90 0.780 0.799 0.784 0.783 0.486 49.65
n = 200 and p = 2, 000

0.25 b1 1 1 1 0 0 15.90 1 1 1 1 1 16.32
b2 0.977 0.971 0.979 0.964 0.897 6.99 1 1 1 1 1 5.94

0.50 b1 0.999 1 1 0 0 12.20 1 1 1 1 1 12.54
b2 0.950 0.946 0.932 0.942 0.786 16.29 1 1 1 1 1 16.46

0.75 b1 0.989 0.990 0.994 0.001 0.001 15.79 1 1 1 1 1 17.70
b2 0.887 0.873 0.883 0.909 0.597 18.34 1 0.998 1 1 0.998 20.33

n = 200 and p = 5, 000
0.25 b1 1 1 1 0 0 34.32 1 1 1 1 1 160.33

b2 0.952 0.962 0.949 0.958 0.825 42.47 1 1 1 1 1 211.99
0.50 b1 0.999 0.998 1 0 0 32.71 1 1 1 1 1 181.90

b2 0.904 0.903 0.892 0.885 0.637 30.38 1 1 1 1 1 152.62
0.75 b1 0.978 0.976 0.985 0.004 0.004 34.83 1 1 1 0.999 0.999 218.22

b2 0.823 0.832 0.832 0.812 0.431 28.40 0.998 0.999 0.997 0.999 0.993 146.69

Table 2 also has the performance of Cox-SIS better as the sample size in-

creases, the feature dimension decreases or ρ decreases. Still, these factors have

less impact on the performance of SJS. In terms of computing time, SJS and

Cox-SIS are comparable. For p = 2, 000, SJS needs slightly less computing time

than Cox-SIS, while SJS needs more for p = 5, 000.

Table 3 gives the simulation results for S2. Here with (b1) or (b2), none of

the active predictors X1, . . . , X4 is marginally independent of the survival time.

Thus, one expects the Cox-SIS to work well for (b1) and (b2). Table 3 indicates

that both Cox-SIS and SJS perform well under (b2). On the other hand, the

Cox-SIS has low Pa when n = 100 under (b1), although Pa is much higher
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Table 3. The proportions of Ps and Pa with Σ = (ρ|i−j|).

Cox-SIS SJS
Ps Pa Time Ps Pa Time

ρ β X1 X2 X3 X4 ALL (s) X1 X2 X3 X4 ALL (s)
n = 100 and p = 2, 000

0.25 b1 1 1 0.997 0.183 0.182 10.46 1 1 1 0.989 0.989 5.84
b2 0.989 1 0.999 0.983 0.971 10.60 1 1 1 1 1 5.55

0.50 b1 1 1 0.941 0.446 0.394 10.61 0.998 0.997 0.936 0.970 0.931 5.91
b2 1 1 1 0.999 0.999 12.29 1 1 1 1 1 6.31

0.75 b1 1 1 0.525 0.364 0.048 6.57 0.985 0.927 0.641 0.907 0.615 3.77
b2 1 1 1 1 1 10.71 1 1 1 1 1 5.47

n = 100 and p = 5, 000
0.25 b1 1 1 0.991 0.135 0.131 32.23 1 1 1 0.965 0.965 59.62

b2 0.981 0.999 1 0.975 0.955 40.31 0.999 1 1 0.999 0.999 74.80
0.50 b1 1 1 0.888 0.296 0.214 38.82 0.992 0.981 0.821 0.896 0.811 70.76

b2 0.999 1 1 0.999 0.998 42.13 1 1 1 1 1 71.58
0.75 b1 1 1 0.439 0.23 0.019 29.09 0.959 0.82 0.449 0.783 0.415 53.55

b2 1 1 1 1 1 31.05 1 1 1 1 1 52.37
n = 200 and p = 2, 000

0.25 b1 1 1 1 0.592 0.592 12.93 1 1 1 1 1 11.62
b2 1 1 1 1 1 13.20 1 1 1 1 1 13.11

0.50 b1 1 1 0.999 0.869 0.868 12.96 1 1 1 1 1 10.47
b2 1 1 1 1 1 12.78 1 1 1 1 1 11.39

0.75 b1 1 1 0.921 0.757 0.678 12.91 1 1 0.999 0.999 0.998 11.17
b2 1 1 1 1 1 14.26 1 1 1 1 1 12.39

n = 200 and p = 5, 000
0.25 b1 1 1 1 0.450 0.450 37.59 1 1 1 1 1 192.79

b2 1 1 1 1 1 35.63 1 1 1 1 1 166.09
0.50 b1 1 1 1 0.790 0.790 38.47 1 1 1 1 1 166.29

b2 1 1 1 1 1 27.90 1 1 1 1 1 132.96
0.75 b1 1 1 0.880 0.674 0.554 47.62 1 1 0.993 0.997 0.991 235.95

b2 1 1 1 1 1 34.52 1 1 1 1 1 163.85

n = 200. In summary, SJS outperforms Cox-SIS throughout Table 3. In terms

of computing time, the pattern is similar to that in Table 2.

We compared SJS with the iterative Cox-SIS. Table 2 indicates that Cox-SIS

fails to identify the active predictorX4 under S1 and (b1) because this setting has

X4 jointly dependent but marginally independent of the survival time. Fan, Feng,

and Wu (2010) proposed iterative SIS for the Cox model (abbreviated as Cox-

ISIS), and we compared our procedure with the Cox-ISIS. We did simulations

under S1, (b1) with n = 100. We also investigate the impact of signal strength on

the performance of our procedure by considering β1 = β2 = β3 = 5τ , β4 = −15τρ,

and all other βj = 0. We took τ = 1, 0.75, 0.5, and 0.25. To make a fair
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Table 4. Comparison with Cox-ISIS.

Cox-ISIS SJS
Ps Pa Time Ps Pa Time

p ρ X1 X2 X3 X4 ALL (s) X1 X2 X3 X4 ALL (s)
τ = 1

2,000 0.25 0.998 0.998 0.999 1 0.996 23.34 0.999 0.996 0.995 0.979 0.975 5.75
0.5 0.898 0.894 0.897 1 0.708 21.47 0.970 0.968 0.975 0.983 0.952 6.05
0.75 0.697 0.696 0.694 1 0.303 19.03 0.952 0.949 0.953 0.993 0.903 5.72

5,000 0.25 0.998 0.994 0.999 0.992 0.983 36.47 0.988 0.981 0.984 0.925 0.912 26.00
0.5 0.819 0.833 0.853 1 0.562 37.81 0.871 0.861 0.862 0.948 0.805 31.89
0.75 0.579 0.583 0.611 1 0.177 38.81 0.829 0.838 0.828 0.988 0.724 36.73

τ = 0.75
2,000 0.25 1 0.997 1 0.999 0.996 14.19 0.999 0.998 1 0.980 0.978 3.85

0.5 0.896 0.899 0.904 1 0.712 14.10 0.970 0.969 0.970 0.987 0.952 4.47
0.75 0.709 0.687 0.724 1 0.334 22.99 0.936 0.938 0.942 0.990 0.882 7.33

5,000 0.25 0.991 0.996 0.990 0.990 0.972 42.64 0.983 0.985 0.988 0.931 0.914 52.50
0.5 0.840 0.823 0.844 1 0.563 44.85 0.895 0.89 0.896 0.956 0.848 43.96
0.75 0.566 0.584 0.555 1 0.167 50.80 0.832 0.819 0.836 0.985 0.7 55.27

τ = 0.5
2,000 0.25 0.997 0.997 0.999 1 0.994 14.45 1 0.997 0.998 0.981 0.978 3.99

0.5 0.891 0.888 0.899 1 0.702 26.78 0.957 0.962 0.963 0.987 0.943 8.81
0.75 0.672 0.678 0.665 1 0.273 13.95 0.883 0.889 0.889 0.990 0.772 4.79

5,000 0.25 0.993 0.995 0.990 0.993 0.975 41.41 0.977 0.983 0.989 0.912 0.897 34.82
0.5 0.806 0.847 0.805 1 0.527 56.10 0.874 0.867 0.855 0.946 0.803 57.31
0.75 0.560 0.574 0.544 1 0.161 40.54 0.738 0.761 0.746 0.975 0.564 61.49

τ = 0.25
2,000 0.25 0.970 0.972 0.976 0.973 0.902 14.40 0.971 0.971 0.981 0.853 0.824 3.72

0.5 0.822 0.806 0.819 1 0.534 14.45 0.866 0.845 0.833 0.966 0.748 5.00
0.75 0.528 0.536 0.526 1 0.126 14.48 0.552 0.566 0.564 0.952 0.238 4.72

5,000 0.25 0.941 0.936 0.934 0.949 0.805 43.85 0.901 0.914 0.897 0.675 0.592 59.46
0.5 0.731 0.736 0.709 0.999 0.366 45.25 0.664 0.671 0.645 0.860 0.475 50.66
0.75 0.466 0.432 0.419 1 0.067 49.79 0.427 0.389 0.372 0.958 0.1 118.30

comparison, the Cox-ISIS was implemented by iterating Cox-SIS twice (each with

the size m/2) so that the number of included predictors was m = [n/ log(n)] = 22

for both Cox-SIS and the SJS.

The simulation results are summarized in Table 4, in which we also report the

computing time consumed the procedures. Table 4 indicates that when ρ = 0.25

is small, both Cox-ISIS and SJS work quite well, while SJS takes less time. When

ρ = 0.5 and 0.75, SJS significantly outperforms Cox-ISIS. SJS has less computing

time than Cox-ISIS when p = 2, 000, and is comparable in computing time to

Cox-ISIS when p = 5, 000.
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Table 5. Four-three Gene IDs selected by Cox-SJS, Cox-ISIS and Cox-SIS.

SJS Cox-ISIS Cox-SIS
Gene 269 3811 6156 427 2108 4548 1072 1841 5027
IDs 807 3818 6517 655 2109 4721 1188 2437 5054

1023 3819 6607 1188 2244 4723 1439 2579 5055
1191 3820 6758 1456 2246 5034 1456 2672 5297
1662 3821 6844 1579 2361 5055 1660 3799 5301
1664 3824 6908 1662 2579 5301 1662 3810 5614
1682 3825 6956 1671 3799 5614 1663 3811 5950
1825 3826 7068 1681 3811 5649 1664 3812 5953
2115 4025 7070 1682 3813 5950 1671 3813 6365
3332 4216 7175 1825 3822 6956 1672 3820 6519
3372 4317 7343 1878 3824 7098 1678 3821 7096
3373 4401 7357 1996 3825 7343 1680 3822 7343
3497 4545 7380 2064 4131 7357 1681 3824 7357
3791 4595 2106 4317 1682 3825
3810 5668 2107 4448 1825 4131

3.2. An application

We applied the proposed feature screening procedure in an analysis of mi-

croarray diffuse large-B-cell lymphoma (DLBCL) data (Rosenwald et al. (2002)).

Given that DLBCL is the most common type of lymphoma in adults, with a sur-

vival rate of only about 35 to 40 percent after standard chemotherapy, there is

interest in understanding the genetic markers that may have impacts on survival.

The data set consists of the survival time of n = 240 DLBCL patients after

chemotherapy, with p =7,399 cDNA microarray expressions of each individual

patient as predictors. Given such a large number of predictors and the small

sample size, feature screening is a necessary initial step for a statistical modeling

procedure that cannot deal with high dimensional survival data. All predictors

were standardized so that they had mean zero and variance one.

Five patients had survival times being close to 0. After removing them,

our analysis in this example is based on the sample of 235 patients. Cox-SIS,

Cox-ISIS, and SJS were all applied to the data to obtain a reduced model with

[235/ log(235)] = 43 genes. The IDs of genes selected by the three screening pro-

cedures are listed in Table 5. The maximum of partial likelihood function of the

three corresponding models obtained by SJS, Cox-ISIS, and Cox-SIS procedures

were −536.9838, −561.8795, and −600.0885, respectively. This has both SJS and

Cox-ISIS performing much better than Cox-SIS, with SJS performing the best.

We applied penalized partial likelihood with the L1 penalty (Tibshirani

(1997)) and with SCAD (Fan and Li (2002)) for the models obtained from the

screening stage, Lasso and SCAD for short. The tuning parameters in the SCAD
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Table 6. IDs of Selected Genes by SCAD and Lasso.

Gene IDs

SJS-SCAD
1023 1662 1664 1682 1825 2115 3332 3373 3497 3791 3810
3811 3818 3819 3820 3821 3824 4317 4545 4595 5668 6156
6517 6607 6758 6844 6908 7343 7357 7380

SJS-Lasso

269 807 1023 1191 1664 1682 1825 2115 3332 3373 3497
3791 3810 3811 3819 3820 3821 4025 4216 4317 4401 4545
4595 5668 6156 6517 6607 6758 6844 6908 7068 7070 7157
7343 7357 7380

ISIS-SCAD
1188 1456 1662 1681 1682 1825 1878 2108 3811 3812 3813
3822 3824 3825 4317 4448 4548 4723 5034 5055 5649 5950
6956 7098 7343 7357

ISIS-Lasso
427 655 1188 1456 1579 1662 1671 1681 1825 1878 2106

2107 2108 2109 2246 2361 3813 3822 3825 4131 4317 4448
4548 4723 5034 5055 5301 5614 5649 5950 6956 7098 7343
7357

SIS-SCAD 1671 1672 1825 3799 3810 3822 3824 7069 7357

SIS-Lasso
1188 1456 1664 1671 1825 2437 3821 4131 5027 5297 6519
7069 7343 7357

Table 7. Likelihood, DF, AIC and BIC of Resulting Models.

Likelihood df BIC AIC
SJS-SCAD -546.1902 30 1256.168 1152.380
SJS-Lasso -542.9862 36 1282.518 1157.972
ISIS-SCAD -575.7148 26 1293.379 1203.430
ISIS-Lasso -567.6035 34 1320.833 1203.207
SIS-SCAD -622.5386 9 1294.213 1263.077
SIS-Lasso -610.6605 14 1297.755 1249.321

and the Lasso were selected by the BIC tuning parameter selector, a direct ex-

tension of Wang, Li, and Tsai (2007). The IDs of genes selected by the SCAD

and the Lasso are listed in Table 6. The likelihood, the degree of freedom (df),

the BIC score, and the AIC score of the resulting models are listed in Table 7,

from which SJS-SCAD results in the best fit model in terms of the AIC and

BIC. The partial likelihood ratio test for comparing the model selected by SJS-

SCAD and SJS without SCAD was 18.41286 with df=13. The P-value of this

partial likelihood ratio test was 0.142. This favors the model selected by SJS-

SCAD, compared with the one obtained in the screening stage. The resulting

estimates and standard errors of the model selected by SJS-SCAD are in Ta-

ble 8, which indicates that most selected genes have significant impact on the

survival time. Comparing Tables 5 and 8, we find that Gene 4317 was selected by

both SJS and Cox-ISIS, but not by Cox-SIS. From Tables 6, this gene was also

included in models selected by SJS-SCAD, SJS-Lasso, Cox-ISIS-SCAD and Cox-
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Table 8. Estimates and Standard Errors (SE) based on SJS-SCAD.

Gene ID Estimate(SE) P-value Gene ID Estimate(SE) P-value
1023 0.4690(0.1289) 2.74e-04 3821 -0.8668 (0.5901) 0.142
1662 -0.7950(0.3388) 1.90e-02 3824 0.2176 (0.0791) 5.97e-03
1664 1.3437(0.3227) 3.14e-05 4317 0.4471 (0.1153) 1.05e-04
1682 0.3468(0.1464) 1.79e-02 4545 0.04761(0.0181) 8.23e-03
1825 0.7459(0.1306) 1.13e-08 4595 0.4751 (0.0977) 1.16e-06
2115 -0.5097(0.1168) 1.29e-05 5668 -0.6518 (0.1314) 6.99e-07
3332 -0.4340(0.1100) 8.00e-05 6156 -0.4751 (0.1142) 3.19e-05
3373 0.1713(0.0608) 4.84e-03 6517 -0.0156 (0.0068) 2.15e-02
3497 0.4417(0.1076) 4.06e-05 6607 0.6265 (0.1196) 1.64e-07
3791 0.1260(0.0454) 5.59e-03 6758 -0.5383 (0.1075) 5.64e-07
3810 1.2120(0.3697) 1.05e-03 6844 0.7052 (0.1171) 1.72e-9
3811 -0.9292(0.3262) 4.39e-03 6908 -0.3667 (0.1221) 2.68e-03
3818 0.7600(0.4598) 0.098 7343 -0.3411 (0.1143) 2.84e-03
3819 1.1895(0.3824) 1.87e-03 7357 -0.8760 (0.1152) 2.88e-14
3820 -2.0650(0.4843) 2.01e-05 7380 0.3791 (0.1031) 2.37e-04

Table 9. Likelihood, AIC and BIC of Models with and without Gene 4,317.

SJS SJS-SCAD SJS-Lasso ISIS ISIS-SCAD ISIS-Lasso
LKHD with Gene4317 -536.9838 -546.1902 -542.9862 -561.8795 -575.7148 -567.6035
LKHD w/o Gene4317 -544.1571 -549.4587 -547.8609 -568.8975 -580.2026 -572.1035

df 1 1 1 1 1 1
BIC w/o Gene4317 1317.617 1257.245 1286.807 1367.098 1296.895 1324.373
AIC w/o Gene4317 1172.314 1156.917 1165.722 1221.795 1210.405 1210.207
p-value of LRT 1.50e-04 0.0106 0.0018 1.70e-04 0.0027 0.0027

ISIS-Lasso, suggesting investigation of this variable. Table 5 presents likelihoods

and AIC/BIC scores for models with and without Gene 4,317. The P-values

of the likelihood ratio tests indicate that Gene 4,317 should be included in the

models, while Cox-SIS fails to identify it.

4. Discussions

We have proposed a sure joint screening (SJS) procedure for feature screen-

ing in the Cox model with ultrahigh dimensional covariates. The proposed SJS

is distinguished from the existing Cox-SIS and Cox-ISIS in that SJS is based on

the joint likelihood of potential candidate features. We propose an effective algo-

rithm to carry out the feature screening procedure, and show that the proposed

algorithm possesses an ascent property. We study the sampling property of SJS,

and establish the sure screening property for SJS.

Theorem 1 ensures the ascent property of the proposed algorithm under cer-

tain conditions, but it does not implies that the proposed algorithm converges
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to the global optimizer. If the proposed algorithm converges to a global maxi-
mizer of (2.3), then Theorem 2 shows that such a solution enjoys the sure screen
property. We have simply set m = [n/ log(n)] in our numerical studies. It is of
interest to derive a data-driven method to determine m and reduce false positive
rate in the screening stage.
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Appendix

Most of our notation is adapted from Andersen and Gill (1982), where
counting processes were introduced for the Cox model, and consistency and
asymptotic normality of the partial likelihood estimate were established. Let
N i(t) = I{Ti ≤ t, Ti ≤ Ci} and Ri(t) = {Ti ≥ t, Ci ≥ t}. Assume no two
component processes Ni(t) jump at the same time. For simplicity, we work
on the interval [0, τ ]. In Cox’s model, such properties of stochastic processes,
such as being a local martingale or a predictable process are relative to a right-
continuous nondecreasing family (Ft : t ∈ [0, τ ]) of sub σ-algebras on a sample
space (Ω,F ,P); Ft to encompass everything that happens up to time t. Take
Λ0(t) =

∫ t
0 h0(u) du.

By stating that N i(t) has intensity process hi(t)=̂h(t|xi), we mean that the
processes Mi(t) defined by

Mi(t) = N i(t)−
∫ t

0
hi(u)du, i = 1, . . . , n,

are local martingales on the time interval [0, τ ].
Let

A(k)(β, t) =
1

n

n∑
i=1

Ri(t) exp{xT
i β}x⊗k

i , a(k)(β, t) = E[A(k)(β, t)] for k = 0, 1, 2,

E(β, t) =
A(1)(β, t)

A(0)(β, t)
, V (β, t) =

A(2)(β, t)

A(0)(β, t)
−E(β, t)⊗2,
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where x⊗0
i = 1, x⊗1

i = xi, and x⊗2
i = xix

T
i . Here A(0)(β, t) is a scalar, A(1)(β, t)

and E(β, t) are p-vector, and A(2)(β, t) and V (β, t) are p× p matrices.

Define

Qj =

n∑
i=1

∫ tj

0

[
xi −

∑
i∈Rj

xi exp(x
T
i β)∑

i∈Rj
exp(xT

i β)

]
dMi.

Here E[Qj |Fj−1] = Qj−1 or E[Qj − Qj−1|Fj−1] = 0. If bj = Qj − Qj−1, then

(bj)j=1,2,... is a sequence of bounded martingale differences on (Ω,F , P ), so bj is

bounded almost surely (a.s.) and E[bj |Fj−1] = 0 a.s. for j = 1, 2, . . ..

(D1) (Finite interval). Λ0(τ) =
∫ τ
0 h0(t)dt < ∞.

(D2) (Asymptotic stability). There exists a neighborhood B of β∗ and scalar,

vector and matrix functions a(0),a(1) and a(2) defined on B × [0, τ ] such

that for k = 0, 1, 2 supt∈[0,τ ],β∈B ∥A(k)(β, t)− a(k)(β, t)∥ p→ 0.

(D3) (Lindeberg condition). There exists δ > 0 such that n−1/2 supi,t |xi|Ri(t)

I{β′
0xi > −δ|xi|}

p→ 0.

(D4) (Asymptotic regularity conditions). Let B, a(0), a(1) and a(2) be as in

Condition (D2) and take e = a(1)/a(0) and v = a(2)/a(0) − e⊗2. For all

β ∈ B, t ∈ [0, τ ];

a(1)(β, t) =
∂

∂β
a(0)(β, t), a(2)(β, t) =

∂2

∂β2
a(0)(β, t),

a(0)(·, t), a(1)(·, t) and a(2)(·, t) are continuous functions of β ∈ B, uniformly

in t ∈ [0, τ ], a(0), a(1) and a(2) are bounded on B × [0, τ ]; a(0) is bounded

away from zero on B × [0, τ ], and A is positive definite with

A =

∫ τ

0
v(β0, t)a

(0)(β0, t)h0(t)dt.

(D5) The functions A(0)(β∗, t) and a(0)(β∗, t) are bounded away from 0 on [0, τ ].

(D6) There exist constants C1, C2 > 0, such that maxij |xij | < C1 and

maxi |xT
i β

∗| < C2.

(D7) {bj} is a sequence of martingale differences and there exit nonnegative

constants cj such that for every real number t,

E{exp(tbj) | Fj−1} ≤ exp
(c2j t2

2

)
a.s. (j = 1, 2, . . . , N).

For each j, the minimum of those cj is denoted by η(bj). |bj | ≤ Kj a.s.

for j = 1, . . . , N and E{bj1 , bj2 , . . . , bjk} = 0 for bj1 < bj2 < · · · < bjk ;k =

1, 2, . . ..
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The partial derivative conditions on a(0), a(1) and a(2) are satisfied by A(0),

A(1), and A(2); and A is automatically positive semidefinite. Furthermore the

interval [0, τ ] in the conditions may everywhere be replaced by the set {t : h0(t) >
0}.

Conditions (D1)—(D5) are standard for the proportional hazards model (An-

derson and Gill (1982)); they are weaker than those required by Bradic, Fan, and

Jiang (2011) and A(k)(β0, t) converges uniformly to a(k)(β0, t). Condition (D6)

is routine, needed to apply the concentration inequality for general empirical

processes. The bounded covariate assumption is used by Huang et al. (2013)

for discussing the Lasso estimator of proportional hazards models. Condition

(D7) is needed for the asymptotic behavior of the score function ℓ′p(β) of partial

likelihood.

Proof of Theorem 1. Applying a Taylor expansion to ℓp(γ) at γ = β,

ℓp(γ) = ℓp(β) + ℓ′p(β)(γ − β) +
1

2
(γ − β)T ℓ′′p(β̃)(γ − β),

where β̃ lies between γ and β,

(γ − β)T {−ℓ′′p(β̃)}(γ − β)

≤ (γ − β)TW (β)(γ − β)λmax[W
−1/2(β){−ℓ′′p(β̃)}W−1/2(β)].

Thus if u > λmax[W
−1/2(β){−ℓ′′p(β̃)}W−1/2(β)], non-negative since −ℓ′′p(β) is

non-negative definite, then

ℓp(γ) ≥ ℓp(β) + ℓ′p(β)(γ − β)− u

2
(γ − β)TW (β)(γ − β).

Thus it follows that ℓp(γ) ≥ g(γ|β) and ℓp(β) = g(β|β) by definition of g(γ,β).

Hence, under the conditions of Theorem 1, it follows that

ℓp(β
(t+1)
∗ ) ≥ g(β

(t+1)
∗ |β(t)) ≥ g(β(t)|β(t)) = ℓ(β(t)).

The second inequality is due to the fact that ∥β(t+1)
∗ ∥0 = ∥β(t)∥0 = m, and

β
(t+1)
∗ = argmaxγ g(γ|β(t)) subject to ∥γ∥0 ≤ m. By definition of β(t+1),

ℓp(β
(t+1)) ≥ ℓp(β

(t+1)
∗ ) and ∥β(t+1)∥0 = m. This proves Theorem 1.

Proof of Theorem 2. Let β̂s be the partial likelihood estimate of βs based on

model s. The theorem follows if Pr{ŝ ∈ Sm
+ } → 1. Thus, it suffices to show that,

as n → ∞,
Pr

{
max
s∈Sm

−
ℓp(β̂s) ≥ min

s∈Sm
+

ℓp(β̂s)

}
→ 0.

For any s ∈ Sm
− , define s′ = s∪ s∗ ∈ S2m

+ . Under (C1), we consider βs′ close

to β∗
s′ such that ∥βs′ − β∗

s′∥ = w1n
−τ1 for some w1, τ1 > 0. Clearly, when n is
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sufficiently large, βs′ falls into a small neighborhood of β∗
s′ , so that (C3) becomes

applicable. Thus, it follows by (C3) and the Cauchy-Schwarz inequality that

ℓp(βs′)− ℓp(β
∗
s′) = [βs′ − β∗

s′ ]
T ℓ′p(β

∗
s′) +

1

2
[βs′ − β∗

s′ ]
T ℓ′′p(β̃s′)[βs′ − β∗

s′ ]

≤ [βs′ − β∗
s′ ]

T ℓ′p(β
∗
s′)− (

c1
2
)n∥βs′ − β∗

s′∥22

≤ w1n
−τ1∥ℓ′p(β∗

s′)∥2 − (
c1
2
)w2

1n
1−2τ1 , (A.1)

where β̃s′ is an intermediate value between βs′ and β∗
s′ . Thus we have

Pr{ℓp(βs′)− ℓp(β
∗
s′) ≥ 0} ≤ Pr

{
∥ℓ′p(β∗

s′)∥2 ≥
(c1w1

2

)
n1−τ1

}
= Pr

{∑
j∈s′

[ℓ′j(β
∗
s′)]

2 ≥
(c1w1

2

)2
n2−2τ1

}
≤

∑
j∈s′

Pr
{
[ℓ′j(β

∗
s′)]

2 ≥ (2m)−1
(c1w1

2

)2
n2−2τ1

}
.

Also, by (C1), we have m ≤ w2n
τ2 , and

Pr
{
ℓ′j(β

∗
s′)≥(2m)−1/2

(c1w1

2

)
n1−τ1

}
≤ Pr

{
ℓ′j(β

∗
s′) ≥ (2w2n

τ2)−1/2
(c1w1

2

)
n1−τ1

}
= Pr

{
ℓ′j(β

∗
s′) ≥ cn1−τ1−0.5τ2

}
= Pr

{
ℓ′j(β

∗
s′) ≥ ncn−τ1−0.5τ2

}
, (A.2)

where c = c1w1/(2
√
2w2) denotes some generic positive constant. Recall (2.2),

by differentiation and rearrangement of terms it can be shown, as in Andersen
and Gill (1982), that the gradient of ℓp(β) is

ℓ′p(β) ≡
∂ℓp(β)

∂β
=

1

n

n∑
i=1

∫ ∞

0
[xi − x̄n(β, t)] dN i(t), (A.3)

where x̄n(β, t) =
∑

i∈Rj
xi exp(x

T
i β)/

∑
i∈Rj

exp(xT
i β). As a result, the partial

score function ℓ′p(β) no longer has a martingale structure, and the large deviation
results for continuous time martingale in Bradic, Fan, and Jiang (2011) and
Huang et al. (2013) are not directly applicable. The martingale process associated
with N i(t) is Mi(t) = N i(t)−

∫ t
0 Ri(s) exp(x

Tβ∗)dΛ0(u).
Let tj be the time of the jth jump of the process

∑n
i=1

∫∞
0 Ri(t)dN i(t),

j = 1, . . . , N and t0 = 0. The tj are stopping times. For j = 0, 1, . . . , N , define

Qj =

n∑
i=1

∫ tj

0
bi(u)dN i(u) =

n∑
i=1

∫ tj

0
bi(u)dMi(u), (A.4)



FEATURE SCREENING FOR COX’S MODEL 899

where bi(u) = xi−x̄n(β, u), i = 1, . . . , n are predictable, under no two component

processes jumping at the same time and (D6), and satisfy |bi(u)| ≤ 1.

Since the Mi(u) are martingales and the bi(u) are predictable, {Qj , j =

0, 1, . . .} is a martingale with the difference |Qj − Qj−1| ≤ maxu,i |bi(u)| ≤ 1.

With the N in Section 2, we define C2
0n ≤ N , where C0 is a constant. The

martingale version of the Hoeffding’s inequality (Azuma (1967)) and under (D7),

we have

Pr(|QN | > nC0x) ≤ 2 exp
{
− n2C2

0x
2

2N

}
≤ 2 exp

(
− nx2

2

)
. (A.5)

By (A.4), QN = nℓ′p(β) if and only if
∑n

i=1

∫∞
0 Ri(t)dN i(t) ≤ N . Thus, the

left-hand side of (3.15) in Lemma 3.3 of Huang et al. (2013) is no greater than

Pr(|QN | > nC0x) ≤ 2 exp(−nx2/2).

Now (A.2) can be rewritten as.

Pr
{
ℓ′j(β

∗
s′) ≥ ncn−τ1−0.5τ2

}
≤ exp{−0.5nn−2τ1−τ2} = exp{−0.5n1−2τ1−τ2}.

(A.6)

By the same arguments, we have

Pr
{
ℓ′j(β

∗
s′) ≤ −m−1/2

(c1w1

2

)
n1−τ1

}
≤ exp{−0.5n1−2τ1−τ2}. (A.7)

The inequalities (A.6) and (A.7) imply that

Pr{ℓp(βs′) ≥ ℓp(β
∗
s′)} ≤ 4m exp{−0.5n1−2τ1−τ2}.

Consequently, by the Bonferroni inequality, and under (C1) and (C2), we have

Pr

{
max
s∈Sm

−
ℓp(βs′)≥ℓp(β

∗
s′)

}
≤

∑
s∈Sm

−

Pr{ℓp(βs′) ≥ ℓp(β
∗
s′)}

≤ 4mpm exp{−0.5n1−2τ1−τ2}
= 4 exp{logm+m log p− 0.5n1−2τ1−τ2}
≤ 4 exp{logw2+τ2 logn+w2n

τ2 c̃nκ−0.5n1−2τ1−τ2}
= 4w2 exp{τ2 log n+ w2c̃n

τ2+κ − 0.5n1−2τ1−τ2}
= a1 exp{τ2 log n+ a2n

τ2+κ − 0.5n1−2τ1−τ2}
= o(1) as n → ∞ (A.8)

for some generic positive constants a1 = 4w2 and a2 = w2c̃. By Condition (C3),

ℓp(βs′) is concave in βs′ , (A.8) holds for any βs′ such that ∥βs′ −β∗
s′∥ ≥ w1n

−τ1 .

For any s ∈ Sm
− , let β̆s′ be β̂s augmented with zeros corresponding to the

elements in s′/s∗, s′ = {s∪(s∗/s)}∪(s′/s∗). By (C1), ∥β̆s′−β∗
s′∥2 = ∥β̆s∗∪(s′/s∗)−
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β∗
s∗∪(s′/s∗)∥2 = ∥β̆s∗∪(s′/s∗) − β∗

s∗∥2 ≥ ∥β∗
s∗∪(s′/s∗) − β∗

s∗∥2 ≥ ∥β∗
s′/s∗∥2 ≥ w1n

−τ1 .

Consequently,

Pr
{
max
s∈Sm

−
ℓp(β̂s) ≥ min

s∈Sm
+

ℓp(β̂s)
}
≤ Pr

{
max
s∈Sm

−
ℓp(β̆s′) ≥ ℓp(β

∗
s′)

}
= o(1).

Theorem is proved.
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