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Abstract: We propose a new parsimonious version of the classical multivariate nor-

mal linear model, yielding a maximum likelihood estimator (MLE) that is asymp-

totically less variable than the MLE based on the usual model. Our approach is

based on the construction of a link between the mean function and the covariance

matrix, using the minimal reducing subspace of the latter that accommodates the

former. This leads to a multivariate regression model that we call the envelope

model, where the number of parameters is maximally reduced. The MLE from the

envelope model can be substantially less variable than the usual MLE, especially

when the mean function varies in directions that are orthogonal to the directions

of maximum variation for the covariance matrix.
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1. Introduction

A cornerstone of multivariate analysis is the multivariate linear regression
model

Y = α + βX + ε, (1.1)

where Y ∈ Rr is the random response vector, X ∈ Rp is a non-stochastic vector
of predictors, and the error vector ε ∈ Rr is normally distributed with mean 0
and unknown covariance matrix Σ ≥ 0 (see Christensen (2001) for background).
If X is random during sampling then the model is conditional on the observed
values of X. This conditioning, common practice in regression, was discussed by
Aldrich (2005) from an historical perspective. The intercept α ∈ Rr is an un-
known parameter vector and β is an unknown parameter matrix of dimensions
r×p. Model (1.1) has a total of r+pr+r(r+1)/2 unknown real parameters when
Σ > 0, and it may be a rather coarse tool if this number is large. Variations
have been developed to sharpen its abilities. Notable among them is the class of
reduced-rank regressions, which allow for the possibility that rank(β) < min(p, r)
(Reinsel and Velu (1998)). In this article we propose a new version of model (1.1)
that yields a maximum likelihood estimator (MLE) of β with the potential to be
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substantially less variable asymptotically than the usual MLE. In the remainder
of this section we discuss our motivation and describe its implications informally,
outline the rest of the article, and establish notation for the technical develop-
ments that begin in Section 2.

1.1. Motivation

Our primary motivation comes from the simple observation that some char-
acteristics of the response vector could be unaffected by changes in the predictors.
Multiple responses are incorporated in many regressions in an effort to encap-
sulate changes in the distribution of an experimental or sampling unit as the
predictors vary. For example, several anatomical measurements might be taken
on individual skulls to compare populations, milk production might be measured
on dairy cows at several points during the lactation cycle, hematological measures
might be taken on patients at several times following a drug treatment, or spec-
tral readings might be taken on samples at several wavelengths. In the same vein,
multiple distances and angular measurements are used to model human motion
in ergonomic studies (e.g., Faraway and Reed (2007)), and multiple biomarkers
are used as responses when studying dietary patterns that affect coronary artery
disease (Hoffmann et al. (2004)). In these types of multivariate regression it may
be reasonable to allow for the possibility that aspects of the response vector are
stochastically constant as the predictors vary.

Assuming model (1.1), suppose that we can find an orthogonal matrix (Γ,Γ0)
∈ Rr×r that satisfies the conditions: (i) span(β) ⊆ span(Γ), and (ii) ΓTY is con-
ditionally independent of ΓT

0 Y given X. Condition (i) is not restrictive by itself,
since at least one, and typically infinitely many semi-orthogonal matrices Γ exist
with a span containing span(β). Under this condition the marginal distribution
of ΓT

0 Y does not depend on X. However, ΓT
0 Y may still provide information

about the regression through its association with ΓTY. This possibility is ruled
out by condition (ii). Together (i) and (ii) imply that ΓT

0 Y is marginally indepen-
dent of X and conditionally independent of X given ΓTY. If (Γ,Γ0) were known
the analysis could be facilitated by using the transformed response (Γ,Γ0)TY,
and then backtransforming to the original scale after estimation. In practice we
would not normally know a suitable transformation; nevertheless the possibility
that such a transformation exists has important implications for the analysis. In
this setting it can be verified that

Σ = PΓΣPΓ + QΓΣQΓ, (1.2)

where PΓ is the projection onto span(Γ) in the usual inner product, and QΓ =
Ir −PΓ. More precisely, given condition (i), condition (ii) is equivalent to (1.2).
The crucial point here is that conditions (i) and (1.2) establish a parametric link
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between β and Σ that is the key for the new methodology proposed in this article.
However, this link is not now well-defined because there may still be infinitely
many subspaces span(Γ) that satisfy the conditions. Section 2 is devoted to
the algebraic background necessary to construct the unique smallest subspace
span(Γ) that satisfies (1.2) and contains span(β). This minimal subspace, which
we call the Σ-envelope of span(β) in full, and the envelope for brevity, is then used
as a parameter in the envelope model for multivariate linear regression defined
in Section 3. For now we proceed as if span(Γ) were the envelope.

The full space Rr = span(Ir) trivially contains span(β) and satisfies the
decomposition (1.2). If Rr is the envelope, then the entire response vector Y is
relevant to the regression, a finding that could be useful in its own right. We
expect Rr to be the envelope when r is small and the responses are carefully
chosen to reflect distinct aspects of the sampling units. However, we also expect
that redundant or irrelevant information is present in the kinds of applications
we have in mind, particularly when many responses are measured in an effort to
capture characteristics of the sampling units that vary with the predictors.

Instances of this may occur as a consequence of reasoning about underlying
processes. This is the case, for example, in the context of large-scale gene expres-
sion data from microarrays. Our argument is tantamount to that used by Leek
and Storey (2007) when proposing their method of surrogate variable analysis.
Suppose we would like to regress a vector Y of many (perhaps thousands) gene
expression readings on a set of covariates C (these may comprise environmental
factors, treatments or clinical outcomes). Assume that there is an “ideal” vector
ν ∈ Rd of latent variables connecting these covariates and the expression levels, so
that Y = µ+Γν+ε0 – where Γ is a semi-orthogonal matrix and Var (ε0) = σ2Ir,
as argued by Leek and Storey. Since ν is unobserved, we write ν = E(ν|C) + ε

and then substitute into the model to obtain Y = µ + ΓE (ν|C) + Γε + ε0. The
covariates C might provide only partial information on ν, so some coordinates
of E (ν|C) could be constant, with the consequence that E (ν|C) varies in fewer
than d dimensions. The modeling process can be viewed as providing a repre-
sentation for the unknown conditional mean E (ν|C) = γ0 + γX(C), where X is
the vector of predictors included in the model. As represented, X is a function of
C and might contain transformations of the measured covariates, or interactions
among them. Assuming that ε is independent of ε0 leads to the multivariate
linear model (1.1) with α = µ + Γγ0, β = Γγ, ε = Γε + ε0, and

Σ = ΓVar (ε)ΓT + σ2Ir

= Γ(Var (ε) + σ2Id)ΓT + σ2Γ0ΓT
0 . (1.3)

Since span(β) ⊆ span(Γ) we have an instance of (1.2) with PΓΣPΓ = Γ(Var (ε)+
σ2Id)ΓT and QΓΣQΓ = σ2Γ0ΓT

0 . The same essential reasoning can be applied in
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the context of multivariate calibration, where Y is the vector of spectral readings
and ν depends on the concentrations of interest and all other characteristics of
the sample that affect the readings.

Decomposition (1.2) implies that the eigenvectors of Σ fall in either the
envelope span(Γ) or its orthogonal complement span(Γ0). The corresponding
eigenvalues of Σ need not be partitioned in any particular order, since (1.2) does
not presume any relation between the magnitudes of the two terms comprising
Σ. The greatest gains in efficiency occur when the first term on the right of
(1.2), PΓΣPΓ, is associated with the smaller eigenvalues of Σ. However, effi-
ciency gains can also occur under (1.3), where the envelope captures the leading
eigenvectors of Σ. Relatedly, the estimated error covariance matrix Σ̂ for these
regressions often contains a few large eigenvalues followed by a large “tail space”
of relatively small eigenvalues of similar size. One can think of this as the sample
counterpart of a population error variability structure with a few leading direc-
tions, and a large tail space of approximately spherical spread. This structure
is a useful descriptor not just for microarray data, but also for other large-scale
genomic data; we recently described it for frequencies of short alignment pat-
terns in a comparative genomic study of regulatory elements (sections of nuclear
DNA that determine the activation of genes; Cook, Li and Chiaromonte (2007,
Figure 2)).

The connection with the eigenstructure of Σ can be used to provide some
intuition about the mechanisms that produce efficiency gains in our approach.
Consider a regression in which p = 1, and Σ > 0 is known, and has distinct
eigenvalues. Knowledge of Σ alone does not alter the MLE of β. However, if
we also know that β falls in the span of, say, the last eigenvector vr of Σ, then
span(vr) is the envelope and we can use a simple univariate linear regression
model with response vT

r Y to estimate the direction and length of β. If the
eigenvalue of Σ corresponding to vr is substantially smaller than the largest
eigenvalue, then the MLE based on vT

r Y will have substantially smaller variation
than the usual MLE. Gains can also be realized when Σ is unknown, but we can
infer that the envelope is contained in a subspace spanned by a proper subset of
the eigenvectors of Σ. In full generality, our envelope models are not limited to
regressions with p = 1, and do not constrain the rank of β. They do not require
Σ to have distinct eigenvalues, or even to be positive definite. However, to focus
on the main ideas, we assume throughout that Σ > 0.

Next, we use a data example to demonstrate the efficiency gains that are
possible with our approach. Consider data on r = 6 responses, the logarithms
of near infrared reflectance at six wavelengths across the range 1,680-2,310 nm,
measured on samples from two populations of ground wheat with low and high
protein content (24 and 26 samples, respectively). The mean difference µ1 − µ2
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corresponds to the parameter vector β in model (1.1), with X representing a
binary indicator: X = 0 for high protein wheat, and X = 1 for low protein wheat.
For these data, the standard errors of the six estimated mean differences based
on the usual normal-theory analysis under (1.1) range between 6.4 and 65.8 times
the standard errors of the corresponding estimates based on the envelope model.
In other words, to achieve comparable standard errors, normal-theory estimates
might have to use as many as 652 × 50 samples where envelope estimates use 50.
This example is revisited in Section 7.2.

Reducing redundancy in large data sets has become paramount in an era of
high-throughput technologies and fast computing. In many applications, costs
are accrued when increasing the number of units, while hundreds or thousands
of variables can be recorded on each unit at relatively low expense – which is
often done without articulating a specific design at the outset. The resulting
data may contain a considerable amount of information that is either irrelevant
or redundant for a given purpose. Contemporary statistical theories and method-
ologies are quickly evolving to adapt to this new reality, with rapid advances in
areas such as dimension reduction, sparse variable selection via regularization,
and “large-p-small-n” hypotheses testing. The envelope model we introduce uses
the error variability structure to create a minimal enclosing of the mean signal
in mutivariate data. If these constraints correspond to physical mechanisms, en-
veloping is a natural way to reflect them; if not, it can still be used as a means
of regularization. In either case, controlling the dimension of the envelope can
achieve a degree of “eigen sparsity” for the first two moments – arguably the
most important descriptors for a broad range of data analyses.

1.2. Outline

Envelopes, which arise from the concepts of invariant and reducing subspaces,
are introduced in Section 2. The results in this section, although technical in na-
ture, are immediately relevant to the core developments of the paper. Envelope
models for multivariate linear regression are described in Section 3, and maxi-
mum likelihood estimation of their parameters is developed in Section 4. Selected
asymptotic results are presented in Section 5, and a discussion to aid their inter-
pretation is given in Section 6. Section 7 contains simulation and data analysis
results. The envelope theory and methods described in Sections 3−7 make use of
the error covariance matrix associated with model (1.1), i.e., the intra-population
covariance matrix Σ = Var (Y|X). They do not involve the marginal covariances
ΣY = Var (Y) and ΣX = Var (X). In Section 3.2 we consider some connec-
tions among envelopes based on different matrices, and in Section 8 we discuss
other contexts in which envelopes might be useful, including reduced rank mul-
tivariate models, discriminant analysis, sufficient dimension reduction, and some
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multivariate methods that involve either ΣY or ΣX. Section 9 contains some
concluding remarks. An on-line supplement to this article with proofs and other
technical details is available at http://www.stat.sinica.edu.tw/statistica.

1.3. Notation and definitions

The following notation and basic definitions are used repeatedly in our expo-
sition. For positive integers r and p, Rr×p stands for the class of all matrices of
dimension r × p, and Sr×r denotes the class of all symmetric r × r matrices. For
A ∈ Rr×r and a subspace S ⊆ Rr, AS ≡ {Ax : x ∈ S}. For B ∈ Rr×p, span(B)
denotes the subspace of Rr spanned by the columns of B. A basis matrix for a
subspace S is any matrix whose columns form a basis for S. A semi-orthogonal
matrix A ∈ Rr×p has orthogonal columns, ATA = Ip. A sum of subspaces of
Rr is indicated with the notation ‘⊕’: S1 ⊕ S2 = {x1 + x2 : x1 ∈ S1,x2 ∈ S2}.
For a positive definite matrix Σ ∈ Sr×r, the inner product in Rr defined by
〈x1,x2〉Σ = xT

1 Σx2 is referred to as the Σ inner product; when Σ = Ir, the
r by r identity matrix, this inner product is called the usual inner product. A
projection relative to the Σ inner product is the projection operator in the in-
ner product space {Rr, 〈·, ·〉Σ}; that is, if B ∈ Rr×p, then the projection onto
span(B) relative to Σ has the matrix representation PB(Σ) ≡ B(BTΣB)†BTΣ,
where † indicates the Moore-Penrose inverse. The projection onto the orthogonal
complement of span(B) relative to the Σ inner product, Ir−PB(Σ), is denoted by
QB(Σ). Projection operators employing the usual inner product are written with
a single subscript argument P(·), where the subscript describes the subspace, and
Q(·) = Ir −P(·). The orthogonal complement S⊥ of a subspace S is constructed
with respect to the usual inner product, unless indicated otherwise.

2. Envelopes

The discussion revolves around the parameterization of a covariance matrix
in reference to a subspace that contains a conditional mean vector. Specifically,
as we saw in (1.2), this is achieved by decomposing the covariance matrix into the
sum of two matrices, each of whose column spaces either contains or is orthogonal
to the subspace containing the mean. The only way to do this is to create a split
based on the eigenvectors of the covariance. This leads us naturally to invariant
and reducing subspaces of a matrix, from which the concept of an envelope arises.

2.1. Invariant and reducing subspaces

Recall that a subspace R of Rr is an invariant subspace of M ∈ Rr×r if
MR ⊆ R; so M maps R to a subset of itself. R is a reducing subspace of M
if, in addition, MR⊥ ⊆ R⊥. If R is a reducing subspace of M, we say that R

http://www.stat.sinica.edu.tw/statistica
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reduces M. Some intuition may be provided here by describing how invariant
subspaces arise in Zyskind’s (1967) pioneering work on linear models. Consider n

observations on a univariate linear model written in terms of the n × 1 response
vector W = Fα + ε, where F ∈ Rn×p is known, α ∈ Rp is the vector we
would like to estimate, and V = Var (ε) ∈ Rn×n denotes the error covariance
matrix. The rank of F may be less than p and V may be singular. Let aT α

be an estimable linear combination of the coefficients α. Zyskind (1967) showed
that the ordinary least squares estimator of aT α is equal to the corresponding
generalized least squares estimator for every a ∈ Rp if and only if span(F) is an
invariant subspace of V. Our approach is distinct from Zyskind’s since we are
working with multivariate models and have quite different goals. Additionally,
Zyskind’s dimensions grow with n, while ours remain fixed.

The next proposition characterizes a matrix M in terms of projections on
its reducing subspaces, and gives exactly the kind of decomposition we seek.

Proposition 2.1. R reduces M ∈ Rr×r if and only if M can be written in the
form

M = PRMPR + QRMQR. (2.1)

Corollary 2.1 describes the consequences of Proposition 2.1 (and Lemma A.1
reported in the Supplement), including a relationship between reducing subspaces
of M and M−1, when M is non-singular.

Corollary 2.1. Let R reduce M ∈ Rr×r, let A ∈ Rr×u be a semi-orthogonal
basis matrix for R, and let A0 be a semi-orthogonal basis matrix for R⊥. Then

1. M and PR, and M and QR commute.

2. R ⊆ span(M) if and only if ATMA is full rank.

3. If M is full rank, then

M−1 = A(ATMA)−1AT + A0(AT
0 MA0)−1AT

0 . (2.2)

As mentioned in the preamble to this section, there is a connection between
the eigenstructure of a symmetric matrix M and its reducing subspaces. By
definition, any invariant subspace of M ∈ Sr×r is also a reducing subspace of
M. In particular, it follows from Proposition 2.1 that the subspace spanned by
any set of eigenvectors of M is a reducing subspace of M. This connection is
formalized as follows.

Proposition 2.2. Let R be a subspace of Rr and let M ∈ Sr×r. Assume that M
has q ≤ r distinct eigenvalues, and let Pi, i = 1, . . . , q, indicate the projections
on the corresponding eigenspaces. Then the following statements are equivalent:
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1. R reduces M,

2. R = ⊕q
i=1PiR,

3. PR =
∑q

i=1 PiPRPi,

4. M and PR commute.

2.2. M-envelopes

Since the intersection of two reducing subspaces of a matrix M ∈ Sr×r is
itself a reducing subspace, it makes sense to talk about the smallest reducing
subspace of M that contains a certain subspace S.

Definition 2.1. Let M ∈ Sr×r and let S ⊆ span(M). The M-envelope of S,
to be written as EM(S), is the intersection of all reducing subspaces of M that
contain S.

This definition requires that S ⊆ span(M). Since the column space of M is
itself a reducing subspace of M, this containment guarantees existence of the M-
envelope, and is assumed throughout. Note that the containment holds trivially
if M is full rank, i.e, if span(M) = Rr. Moreover, closure under intersection
guarantees that the M-envelope is in fact a reducing subspace of M. Thus the
M-envelope of S can be interpreted as the unique smallest reducing subspace of
M that contains S, and represents a well-defined parameter in some statistical
problems.

To develop some intuition on EM(S), consider the case where all the r eigen-
values of M are distinct. Then, among the 2r ways of dividing the eigenvectors of
M into two groups, there is one and only one way in which one of the two groups
spans a subspace of minimal dimension that contains S. This minimal subspace
is EM(S). Thus, in this case, EM(S) is the smallest subspace that contains S and
that is aligned with the eigenstructure of M. Of course, the situation becomes
more complicated if M has less than r distinct eigenvalues, and that is why we
use reducing subspaces in the general definition of EM(S).

The M-envelope of any reducing subspace is the reducing subspace itself;
that is, EM(R) = R if R reduces M. A special case of this statement is that, for
any subspace S of span(M), EM(EM(S)) = EM(S). Thus, as an operator, EM(·)
is idempotent. Additionally, since an envelope is a reducing subspace, the results
in Section 2.1 are applicable.

The following proposition, derived from Proposition 2.2 and Definition 2.1,
gives a characterization of M-envelopes.

Proposition 2.3. Let M ∈ Sr×r, let Pi, i = 1, . . . , q, be the projections onto the
eigenspaces of M, and let S be a subspace of span(M). Then EM(S) = ⊕q

i=1PiS.
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We next investigate how the M-envelope is modified by linear transforma-
tions of S. While an envelope does not transform equivariantly for all linear
transformations, it does so for symmetric linear transformations that commute
with M.

Proposition 2.4. Let K ∈ Sr×r commute with M ∈ Sr×r, and let S be a
subspace of span(M). Then KS ⊆ span(M) and

EM(KS) = KEM(S). (2.3)

If, in addition, S ⊆ span(K) and EM(S) reduces K, then

EM(KS) = EM(S). (2.4)

We conclude this section by exploring a useful consequence of (2.4). Starting
with any function f : R → R, we can create f∗ : Sr×r → Sr×r as follows. Let
mi and Pi, i = 1, . . . , q, indicate the distinct eigenvalues and the projections
on the corresponding eigenspaces for a matrix M ∈ Sr×r, and let f∗(M) =∑q

i=1 f(mi)Pi. If f(·) is such that f(0) = 0 and f(x) 6= 0 whenever x 6= 0,
then it is easy to verify that (i) f∗(M) commutes with M, (ii) any subspace
S ⊆ span(M) satisfies S ⊆ span{f∗(M)}, and (iii) EM(S) reduces f∗(M). Hence,
by Proposition 2.4 we have EM(f∗(M)S) = EM(S). In particular, this guarantees
invariance for any power of M:

EM(MkS) = EM(S) for all k ∈ R. (2.5)

3. Envelope Models

3.1. Theoretical formulation of envelope models

We are now in a position to refine model (1.1) by using an envelope to
connect β and Σ. Let B = span(β), d = dim(B) and, to exclude the trivial
case, assume d > 0. Consider the Σ-envelope of B, EΣ(B), of dimension u,
so that 0 < d ≤ u ≤ r. We use this envelope as a well-defined parameter to
link the mean and variance structures of the multivariate linear model. Since
EΣ(B) is unknown, it needs to be estimated, and this is facilitated by writing
formal model statements that incorporate it as a parameter. We give two such
statements: a coordinate-free version that uses EΣ(B) as the parameter, and a
coordinate version that uses a semi-orthogonal basis matrix Γ ∈ Rr×u for EΣ(B).
Each has advantages, depending on the phase of the analysis. For instance, the
coordinate version is necessary for computation. Our use of “coordinate-free”
and “coordinate” terminology applies only to the representation of EΣ(B), and
not to the rest of the model.
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Since Σ is a positive definite matrix reduced by EΣ(B), all of the results in
Section 2 apply. In particular, Σ can be written in the form given by Proposi-
tion 2.1 with R = EΣ(B), its inverse can be expressed as in part 3 of Corollary 2.1,
and ΣkEΣ(B) = EΣ(ΣkB) = EΣ(B) for all k ∈ R, because of Proposition 2.4.
The following corollary gives a coordinate-free version of Proposition 2.1, making
use of the additional properties characterizing a covariance matrix.

Corollary 3.1. A subspace R of Rr reduces Σ if and only if Σ can be written
in the form Σ = Σ1 +Σ2, where Σ1 and Σ2 are symmetric positive semi-definite
matrices such that Σ1Σ2 = 0 and R = span(Σ1).

The coordinate-free representation of the envelope model is model (1.1) with
error covariance matrix satisfying

Σ = Σ1 + Σ2, Σ1Σ2 = 0, EΣ(B) = span(Σ1). (3.1)

Since reducing subspaces are specified by this decomposition of Σ, we could
equivalently replace the requirement EΣ(B) = span(Σ1) with the condition that
span(Σ1) has minimal dimension under the constraint B ⊆ span(Σ1). However,
it is important to note that (3.1), per se, does not restrict the scope of model
(1.1). If u = r, then we must have Σ1 = Σ and Σ2 = 0. If r ≤ p and d = r,
then the envelope model coincides with the standard multivariate linear model,
since there are evidently no linear redundancies in (1.1), and thus no reduction
is possible with the new parameterization. On the other hand, if u < r there is
a potential for the envelope model expressed through (3.1) to yield substantial
gains. As an extension of the ideas presented here, alternative uses of envelopes
that allow reduction when r ≤ p and d = r are described in Section 8.4.

To write the coordinate version of the envelope model, let Γ ∈ Rr×u be a
semi-orthogonal basis matrix for EΣ(B), and let (Γ,Γ0) ∈ Rr×r be an orthogonal
matrix. Then there is an η ∈ Ru×p such that β = Γη. Additionally, let Ω =
ΓTΣΓ ∈ Su×u and let Ω0 = ΓT

0 ΣΓ0 ∈ S(r−u)×(r−u). Then, using Proposition 2.1
and Corollary 3.1, we can write

Y = α + ΓηX + ε, (3.2)

Σ = Σ1 + Σ2 = ΓΩΓT + Γ0Ω0ΓT
0 ,

where ε is normally distributed with mean 0 and variance Σ. The matrices Ω
and Ω0 can be thought of as coordinate matrices, since they carry the coordinates
of Σ1 and Σ2 relative to Γ and Γ0, just as η contains the coordinates of β relative
to Γ.

The total number N of parameters needed to estimate (3.2) is

N = r + pu + u(r − u) +
u(u + 1)

2
+

(r − u)(r − u + 1)
2

.
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The first term on the right hand side corresponds to the intercept α ∈ Rr; the
second term corresponds to the unconstrained coordinate matrix η ∈ Ru×p; the
last two terms correspond to Ω and Ω0. Their parameter counts arise because,
for any integer k > 0, it takes k(k + 1)/2 numbers to specify a nonsingular
matrix in Sk×k. The third term, u(r−u), which corresponds roughly to Γ, arises
as follows. The matrix Γ is not identified, since, for any orthogonal matrix A,
replacing Γ with ΓA results in an equivalent model. However, span(Γ) = EΣ(B)
is identified and estimable. The parameter space for EΣ(B) is a Grassmann
manifold Gr×u of dimension u in Rr; that is, the collection of all u-dimensional
subspaces of Rr. From basic properties of Grassmann manifolds it is known that
u(r − u) parameters are needed to specify an element of Gr×u (Edelman, Tomás
and Smith (1998)). Once EΣ(B) is determined, so is its orthogonal complement
span(Γ0), and no additional free parameters are required.

Simplifying the above expression for N , we obtain N = r + pu + r(r + 1)/2.
The difference between the total parameter count for the full model (1.1) with
r = u and the envelope model (3.2) with u < r is therefore p(r − u).

Note that a specific envelope model is identified by the value of u, with the
full model (1.1) occurring when u = r. All envelope models are nested within the
full model, but two envelope models with different values of u are not necessarily
nested. To see this, it is enough to realize that the number of free parameters
needed to specify an element of Gr×u is the same for u = 1 and u = r− 1. In full
generality, u is a model selection parameter that can be chosen using traditional
reasoning, as discussed in Section 7.1.

3.2. Alternative envelopes for random designs

The models introduced so far are parameterized in terms of EΣ(B), the Σ-
envelope of B, in coordinate-free and coordinate versions. While this seems to
be the natural route when X is chosen by design, other choices are available
when X is random. For instance, we might create a parameterization in terms
of EΣY

(B), the envelope of B based on the marginal response covariance matrix
ΣY = Var (Y). The next proposition states the equality of several envelopes.
The first equality shows an important equivalence between enveloping in reference
to the error variability Σ and the response variability ΣY. The other equalities
will be relevant in Section 8.

Proposition 3.1. Assume model (1.1). Then Σ−1B = Σ−1
Y B, and

EΣ(B) = EΣY
(B) = EΣ(Σ−1B) = EΣY

(Σ−1
Y B) = EΣY

(Σ−1B) = EΣ(Σ−1
Y B).
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4. Maximum Likelihood Estimation

Before deriving the MLEs for the envelope model, we give a few preliminary
results in Section 4.1. These are intended primarily to facilitate derivations in
Section 4.2 but, like the results in Section 2, may have wider applicability. The
calculations necessary to obtain the estimates are summarized in Section 4.3.

4.1. Preliminary results

Lemma 4.1. Let U ∈ Rn×p, V ∈ Rn×r, and W ∈ Rp×d be known matrices.
Let Λ be a positive semi-definite matrix in Rp×p such that span(W) ⊆ span(Λ).
Then the minimizer of

tr
[
(U − A)Λ(U − A)T

]
(4.1)

over the set of matrices A = {A : span(A) ⊆ span(V), span(AT ) ⊆ span(W)}
is A∗ = PVUPT

W(Λ), and the corresponding minimum of (4.1) is

tr(UΛUT ) − tr(PVUPT
W(Λ)ΛPW(Λ)U

TPV).

For a nonzero A ∈ Sr×r (i.e., an r× r symmetric matrix whose entries are not all
equal to 0), we denote by det0(A) the product of its non-zero eigenvalues. Note
that, for any constant c, det0(cA) = ckdet0(A), where k is the rank of A. The
next lemma facilitates analysis with the structure introduced in Corollary 3.1.

Lemma 4.2. If A1 and A2 are nonzero symmetric matrices such that A1A2 =0,
then

1. det0(A1 + A2) = det0(A1) × det0(A2),

2. (A1 + A2)† = A†
1 + A†

2, and

3. (A1 + A2)r = Ar
1 + Ar

2, for any r > 0.

Finally, we introduce a lemma that gives an explicit expression for the MLE
of the covariance matrix in a multivariate normal likelihood when the column
space of the covariance is fixed and the mean is known.

Lemma 4.3. Let A be a class of p × p positive semi-definite matrices having
the same column space of dimension k, 0 < k ≤ p, and let P be the projection
onto the common column space. Let U be a matrix in Rn×p, and let L(A) =
[det0(A)]−n/2e−1/2 tr(UA†UT ). Then the maximizer of L(A) over A is the matrix
n−1PUTUP, and the maximum value of L(A) is nnk/2e−nk/2[det0(PUTUP)]−n/2.
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4.2. Coordinate-free representation of the MLE

Derivation of the MLE is easier using the coordinate-free representation of
the envelope model, as given by (1.1) and (3.1). We assume that the observations
Yi, i = 1, . . . , n, are independent, and that Yi is sampled from the conditional
distribution of Y|Xi, i = 1, . . . , n, with X̄ = 0. We assume also that n > r + p.
Let G be the n × r matrix whose ith row is YT

i , F be the n × p matrix whose
ith row is XT

i , and 1n be the n × 1 vector with all entries 1.
For a Σ-envelope with fixed dimension u, 0 < u < r, the likelihood based on

Y1, . . . ,Yn is

L(u)(α, β,Σ1,Σ2) = [det(Σ1 + Σ2)]−n/2

× etr[−1
2
(G − αT ⊗ 1n − FβT )(Σ1 + Σ2)−1(G − αT ⊗ 1n − FβT )T ],

(4.2)

where etr(·) denotes the composite function exp ◦ tr(·), and ⊗ the Kronecker
product. This likelihood is to be maximized over α, β,Σ1 and Σ2 subject to the
constraints

span(β) ⊆ span(Σ1), Σ1Σ2 = 0. (4.3)

By Lemma 4.2, and using the relation Σ2β = 0, the likelihood in (4.2) can be
factored as L

(u)
1 (α, β,Σ1) × L

(u)
2 (α,Σ2), where

L
(u)
1 (α,β,Σ1) = [det0(Σ1)]−n/2

× etr[−1
2
(G − αT ⊗ 1n − FβT )Σ†

1(G − αT ⊗ 1n − FβT )T ],

L
(u)
2 (α,Σ2) = [det0(Σ2)]−n/2 × etr[−1

2
(G − αT ⊗ 1n)Σ†

2(G − αT ⊗ 1n)T ].

(4.4)

Based on this factorization and the constraints in (4.3), we can decompose the
likelihood maximization into the following steps.

1. Fix Σ1, Σ2, and β, and maximize L(u) in (4.2) over α; substitute the optimal
α into L

(u)
1 and L

(u)
2 in (4.4) to obtain L

(u)
11 (β,Σ1) and L

(u)
21 (Σ2). The required

maximizer is the sample mean of {Yi −βXi : i = 1, . . . , n} which, because X
has sample mean zero, is simply Ȳ. Hence, if we let U be the n × r matrix
whose ith row is (Yi − Ȳ)T , the partially maximized L

(u)
1 and L

(u)
2 are

L
(u)
11 (β,Σ1) =[det0(Σ1)]−n/2 × etr[−1

2
(U − FβT )Σ†

1(U − FβT )T ],

L
(u)
21 (Σ2) =[det0(Σ2)]−n/2 × etr(−1

2
UΣ†

2U
T ).

(4.5)
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2. Fix Σ1, and further maximize the function L
(u)
11 from step 1 over β, subject

to the first constraint in (4.3), to obtain L
(u)
12 (Σ1). For this maximization we

use Lemma 4.1, with the relevant quadratic form given by

tr[(U − FβT )Σ†
1(U − FβT )T ] ≡ tr[(U − FβT Ir)Σ

†
1(U − FβT Ir)T ].

Thus, the optimal FβT Ir is PFUPT
Ir(Σ†

1)
= PFUPΣ1 . This implies that

β = PΣ1β̂fm, (4.6)

where β̂fm = UTF(FTF)−1 is the MLE of β from the full model (1.1). Con-
sequently, we see that β̂ is the projection of β̂fm onto the MLE of EΣ(B).
Substituting this into (4.5), and using the relation PΣ1Σ

†
1 = Σ†

1, we see that
the maximum of L

(u)
11 (β,Σ1) for fixed Σ1 over β is

L
(u)
12 (Σ1) =[det0(Σ1)]−n/2 × etr[−1

2
(U − PFU)Σ†

1(U − PFU)T ]

=[det0(Σ1)]−n/2 × etr(−1
2
QFUΣ†

1U
TQF), (4.7)

where QF = In − PF.

3. Using Lemma 4.3, maximize L
(u)
12 (Σ1) over all Σ1’s having the same col-

umn space to obtain L
(u)
13 (PΣ1), which is proportional to [det0(PΣ1U

TQFU
PΣ1)]

−n/2. Similarly, maximize L
(u)
21 (Σ2) over all Σ2’s having the same column

space to obtain L
(u)
22 (PΣ2), which is proportional to

[
det0(PΣ2U

TUPΣ2)
]−n/2

.

Note that L
(u)
13 depends only on the column space of Σ1, and L

(u)
22 only on the

column space of Σ2.

4. Optimize the partially maximized likelihood L
(u)
13 (PΣ1)×L

(u)
22 (PΣ2), which is

proportional to

[det0(PΣ1U
TQFUPΣ1)]

−n/2 × [det0(PΣ2U
TUPΣ2)]

−n/2

= [det0(PΣ1U
TQFUPΣ1 + PΣ2U

TUPΣ2)]
−n/2. (4.8)

Because PΣ2 = Ir − PΣ1 = QΣ1 , the above depends on PΣ1 alone. Addi-
tionally, UTU is n times the marginal sample covariance matrix Σ̂Y of the
responses, and UTQFU is n times the sample covariance matrix Σ̂res of the
residuals from the fit of the full model (1.1). Since we have assumed that
n > r + p, it follows that rank(Σ̂res) = rank(Σ̂Y) = r with probability 1.
Therefore det0(·) in (4.8) can be replaced by det(·), the usual determinant,
and we need to minimize the function

D = D(span(Σ1)) ≡ det(PΣ1Σ̂resPΣ1 + QΣ1Σ̂YQΣ1) (4.9)
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over the Grassmann manifold Gr×u, subject to the constraint that rank
(PΣ1Σ̂resPΣ1) = u – which arises because rank(Σ1) = u < r.

4.3. Implementation of the MLE

The MLE described in Section 4.2 hinges on being able to minimize log D

over the Grassmann manifold Gr×u, where D is as defined in (4.9). Available
gradient-based algorithms for Grassmann optimization (see Edelman, Tomás and
Smith (1998); Liu, Srivastava and Gallivan (2004)) require a coordinate version
of the objective function which must have continuous directional derivatives. A
coordinate version of objective function (4.9) satisfies this continuity require-
ment when Σ > 0. Recall that Γ and Γ0 are semi-orthogonal basis matrices
of span(Σ1) = EΣ(B) and its orthogonal complement, respectively. Let Γ̂ and
Γ̂0 be semi-orthogonal bases for span(Σ̂1) and its orthogonal complement. Then
η̂ = Γ̂T β̂fm, Ω̂ = Γ̂T Σ̂resΓ̂, and Ω̂0 = Γ̂T

0 Σ̂YΓ̂0. Since Σ̂res and Σ̂Y have
rank r almost surely, the matrices ΓT Σ̂resΓ and ΓT

0 Σ̂YΓ0 are positive definite
almost surely. Let log det(·) denote the composite function log ◦det(·). Then the
coordinate form of log D is

log D = log det[ΓΓT Σ̂resΓΓT + (Ir − ΓΓT )Σ̂Y(Ir − ΓΓT )]

= log det(ΓT Σ̂resΓ) + log det(ΓT
0 Σ̂YΓ0). (4.10)

In summary, maximum likelihood estimation for the parameters involved in the
envelope model can be implemented as follows.

a. Obtain the sample version Σ̂Y of the marginal covariance matrix of Y, and
obtain the residual covariance matrix Σ̂res and the MLE β̂fm of β from the fit
of the full model (1.1).

b. Estimate PΣ1 by minimizing the objective function (4.10) over the Grassmann
manifold Gr×u, and denote the result by P̂Σ1 . Estimate PΣ2 by P̂Σ2 =
Ir − P̂Σ1 .

c. Estimate β by β̂ = P̂Σ1β̂fm.

d. Estimate Σ1 and Σ2 by Σ̂1 = P̂Σ1Σ̂resP̂Σ1 and Σ̂2 = (Ir−P̂Σ1)Σ̂Y (Ir−P̂Σ1).

We assumed at the outset of this derivation that u < r. If u = r then P̂Σ1 = Ir

and β̂ reduces to the usual MLE based on (1.1). Generally, objective functions
defined on Grassmann manifolds can have multiple local optima, but we have
not noticed local minima to be an issue for (4.10).
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5. Asymptotic Variances

There is a multitude of approaches for dealing with dimensionality issues in
multivariate regression. Many of these, ranging from various versions of princi-
pal components to a multivariate implementation of sliced inverse regression (Li
et al. (2003)) are algorithmic in nature, making it difficult to determine post-
application standard errors and other inference-related quantities. Unlike these
approaches, our analysis of envelope models is based entirely on the likelihood.
We are therefore able to pursue inference classically, with methodology that in-
herits optimal properties from general likelihood theory.

5.1. Estimable functions

The parameters in the coordinate representation (3.2) of the envelope model
can be combined into the vector

φ =


vec(η)
vec(Γ)
vech(Ω)
vech(Ω0)

 ≡


φ1

φ2

φ3

φ4

 , (5.1)

where the “vector” operator vec : Rr×p → Rrp stacks the columns of the argument
matrix. On the symmetric matrices Ω and Ω0 we use the related “vector half”
operator vech : Sr×r → Rr(r+1)/2, which extracts their unique elements (vech
stacks only the unique part of each column that lies on or below the diagonal).
vec and vech are related through a “contraction” matrix Cr ∈ Rr(r+1)/2×r2

and
an “expansion” matrix Er ∈ Rr2×r(r+1)/2, which are defined so that vech(A) =
Crvec(A) and vec(A) = Ervech(A) for any A ∈ Sr×r. These relations uniquely
define Cr and Er, and imply CrEr = Ir(r+1)/2. For further background on these
operators, see Henderson and Searle (1979).

Selected elements of φ might be of interest in some applications, but here
we focus on some specific estimable functions under the envelope model:

h(φ) ≡
(

vec(β)
vech(Σ)

)
=

(
vec(Γη)

vech(ΓΩΓT + Γ0Ω0ΓT
0 )

)
≡

(
h1(φ)
h2(φ)

)
.

We have neglected the intercept α in this setup. This induces no loss of generality
because the intercept is not involved in h, and its maximum likelihood estimate
is asymptotically independent of the other parameter estimates.

If the gradient matrix

H =


∂h1

∂φT
1

· · · ∂h1

∂φT
4

∂h2

∂φT
1

· · · ∂h2

∂φT
4

 (5.2)
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were of full rank when evaluated at the true parameter values, then standard
methods could be used to find the asymptotic covariance matrices for ĥ1 = h1(φ̂)
and ĥ2 = h2(φ̂). However, because of the over-parameterization in Γ, H is not
of full rank, and standard methods do not apply directly. Nevertheless, h is
identified and estimable, which enables us to use a result by Shapiro (1986,
Proposition 4.1) to derive the asymptotic distribution and efficiency gain of the
envelope model, as given by the following theorem.

Theorem 5.1. Suppose X̄ = 0. Let J be the Fisher information for (vecT (β),
vechT (Σ))T in the full model (1.1):

J =
(
ΣX ⊗ Σ−1 0

0 1
2E

T
r (Σ−1 ⊗ Σ−1)Er

)
,

where ΣX = limn→∞
∑n

i=1 XiXT
i /n, and let V = J−1 be the asymptotic variance

of the MLE under the full model. Then
√

n(ĥ − h) D−→ N(0,V0), (5.3)

where V0 = H(HTJH)†HT and H is given by(
Ip ⊗ Γ ηT ⊗ Ir 0 0

0 2Cr(ΓΩ ⊗ Ir−Γ ⊗ Γ0Ω0ΓT
0 ) Cr(Γ ⊗ Γ)Eu Cr(Γ0 ⊗ Γ0)E(r−u)

)
.

(5.4)

Moreover, V−1/2(V −V0)V−1/2 = QJ1/2H ≥ 0, so the envelope model decreases
the asymptotic variance by the fraction QJ1/2H.

We next present an alternative form for V0 that may facilitate computing
and that will be helpful in the next section. Since V0 in (5.3) depends only on the
column space of H we can replace H by any matrix H1 that has the same column
space as H. The most convenient and interpretable choice of H1 is one that makes
HT

1 JH1 block-diagonal, with blocks corresponding to the parameters in (5.1). We
now give such a construction. Let H1 be the {pr+r(r+1)/2}×{pu+r(r+1)/2}
matrix

H1 =
(
Ip ⊗ Γ ηT ⊗ Γ0 0 0

0 2Cr(ΓΩ ⊗ Γ0 − Γ ⊗ Γ0Ω0) Cr(Γ ⊗ Γ)Eu Cr(Γ0 ⊗ Γ0)Er−u

)
≡

(
H11 H12 H13 H14

)
, (5.5)

and let H2 be the {pu+ r(r+1)/2}×{pu+ r(r+1)/2+u2} matrix whose blocks
conform to those of H1:

H2 =


Ipu ηT ⊗ ΓT 0 0
0 Iu ⊗ ΓT

0 0 0
0 2Cu(Ω ⊗ ΓT ) Iu(u+1)/2 0
0 0 0 I(r−u)(r−u+1)/2

 .



944 R. DENNIS COOK, BING LI AND FRANCESCA CHIAROMONTE

Then, by direct computation using the relation Cr(Γ ⊗ Γ) = Cr(Γ ⊗ Γ)EuCu

(Henderson and Searle (1979)), we have H = H1H2. Because H2 has full row
rank, we have span(H) = span(H1). Furthermore, by straightforward multipli-
cation we see that HT

1 JH1 is the desired block-diagonal matrix. Thus, we can
now write

V0 = H1(HT
1 JH1)†HT

1 =
4∑

j=1

H1j(HT
1jJH1j)†HT

1j . (5.6)

5.2. Regression coefficients

Henceforth we write an asymptotic covariance matrix as avar(·); that is, if
√

n(T − θ) D→ N(0,A), then avar(
√

nT) = A. We now focus our attention
on the asymptotic covariance matrix avar[

√
nvec(β̂)] of the estimate vec(β̂) of

vec(β) under the envelope model, since this will likely be of most use in practice.
This matrix is the upper pr × pr block diagonal of V0 = avar(

√
nĥ). Since the

first blocks of H13 and H14 are both 0, we have (see Supplement, Section D)

avar[
√

nvec(β̂)]=(Ip ⊗ Γ)(HT
11JH11)†(Ip ⊗ ΓT )+(ηT ⊗ Γ0)(HT

12JH12)†(η ⊗ ΓT
0 )

=Σ−1
X ⊗ ΓΩΓT + (ηT ⊗ Γ0)(HT

12JH12)†(η ⊗ ΓT
0 ), (5.7)

where HT
12JH12 = ηΣXηT ⊗Ω−1

0 + Ω⊗Ω−1
0 + Ω−1 ⊗Ω0 − 2Iu ⊗ Ir−u. If u = r,

then ΓΩΓT = Σ, and the second term on the right hand side of (5.7) does not
appear. The first term on the right hand side of (5.7) is the asymptotic variance
of β̂ when Γ is known, and the second term can be interpreted as the “cost” of
estimating EΣ(B). The total on the right does not exceed Σ−1

X ⊗Σ, which is the
asymptotic variance of β̂ from the full model. A transparent decomposition of
this asymptotic variance will be given in the next section.

Although we do not have a full proof, we expect that HT
12JH12 will be of

full rank, so that regular inverses can be used. This expectation is based on
the following reasoning for two extreme cases. Suppose that Ω and Ω0 have no
eigenvalues in common. Then it can be shown that (Ω ⊗ Ω−1

0 + Ω−1 ⊗ Ω0 −
2Iu ⊗ Ir−u) > 0. Since ηΣXηT ⊗Ω−1

0 ≥ 0, it follows that HT
12JH12 > 0. On the

other extreme, suppose that Ω = Iu and Ω0 = Ir−u, so that all their eigenvalues
are identical. Then HT

12JH12 = ηΣXηT ⊗ Ir−u, but in this case η must have full
row rank equal to d, and again HT

12JH12 > 0.

5.3. Fitted values and predictions

From the above asymptotic results we can derive the asymptotic distribution
of the fitted values, as well as the asymptotic prediction variance. In our context
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the fitted values at a particular X can be written as Ŷ = β̂X = (XT ⊗Ir)vec(β̂).
Hence the fitted value Ŷ has the following asymptotic distribution

√
n(Ŷ − E (Ŷ)) L−→ N(0, (XT ⊗ Ir)avar[

√
nvec(β̂)](X ⊗ Ir)). (5.8)

The asymptotic mean squared error for prediction at X can be deduced similarly.
Suppose that, at some value of X, we observe a new Y – independently of the
past observations (X1,Y1), . . . , (Xn,Yn). Then

E [(Ŷ − Y)(Ŷ − Y)T ]

= E [(Ŷ − E (Ŷ))(Ŷ − E (Ŷ))T ] + E [(E (Ŷ) − Y)(E (Ŷ) − Y)T ],

where the cross-product terms vanish because Y and Ŷ are independent. Com-
bining this with expression (5.8), we see that the mean squared error of the
prediction is approximated by

E [(Ŷ − Y)(Ŷ − Y)T ] = n−1(XT ⊗ Ir)avar[
√

nvec(β̂)](X ⊗ Ir) + Σ + o(n−1).

6. Interpretations

To gain further insight into the structure of our envelope model for multivari-
ate linear regression, we now provide interpretations for the various quantities
in the asymptotic variance of

√
nvec(β̂) derived in the last section. The key to

understanding this variance structure is the special structure of the joint Fisher
information for φ = (φT

1 , . . . , φT
4 )T , as defined in (5.1). Let `(φ1, . . . , φ4) denote

the likelihood function for the φ’s. We adopt the notation

Jηη = −E
[
∂2`(φ1, . . . , φ4)

∂φ1∂φT
1

]
, JηΓ = −E

[
∂2`(φ1, . . . , φ4)

∂φ1∂φT
2

]
, (6.1)

and so on. Although it may be more technically correct to use notation such
as Jφ1φ2 , we nevertheless use (6.1) to keep track of the original parameters.
Furthermore, we use notations such as J(η,Γ)(η,Γ) to denote the joint information
for parameter sub-vectors such as (φT

1 ,φT
2 )T .

From the discussion in Section 5 it can be deduced that the Fisher informa-
tion for (φ1, . . . , φ4), HTJH, has the form

Jηη JηΓ 0 0
JΓη JΓΓ JΓΩ 0
0 JΩΓ JΩΩ 0
0 0 0 JΩ0Ω0

 , (6.2)
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with specific expressions for the non-zero blocks given in the Supplement, Section
E. What is special about this form is that, if we cross out the second row and sec-
ond column, the remaining matrix is block-diagonal with three diagonal blocks;
Jηη, JΩΩ, and JΩ0Ω0 . Similarly, if we cross out the first row and first column,
the remaining matrix is block-diagonal with two diagonal blocks; J(Γ,Ω)(Γ,Ω) and
JΩ0 . This implies two important facts.

1. If Γ is known, then the asymptotic variance of the MLE of η, say η̂Γ, is
simply J−1

ηη. The other two parameters, Ω and Ω0, have no plugging-in
effect.

2. If η is known, then the asymptotic variance of the MLE of Γ, say Γ̂η, is(
JΓΓ − JΓΩJ−1

ΩΩJΩΓ

)−1
, (6.3)

that is, Ω0 has no plugging-in effect on Γ̂0.

Interestingly, the asymptotic variance of
√

nvec(β̂) can be written as a simple
and transparent linear combination of avar[

√
nvec(η̂Γ)] and avar[

√
nvec(Γ̂η)].

Explicit forms for these asymptotic variances can be computed from (6.3) and
the formulas for the information blocks given in the Supplement, as

avar[
√

nvec(η̂Γ)] =Σ−1
X ⊗ Ω,

avar[
√

nvec(Γ̂η)] =[ηΣXηT ⊗ Σ−1 + (Ω ⊗ Γ0Ω−1
0 ΓT

0 ) − 2(Iu ⊗ Γ0ΓT
0 )

+ (Ω−1 ⊗ Γ0Ω0ΓT
0 )]−1.

(6.4)

The first equality can be obtained straightforwardly from HTJH, but the deriva-
tion of the second is quite involved – a detailed proof of (6.4) can be found in the
Supplement, Section E. Also in the Supplement is a proof of how the theorem
below follows from these equalities.

Theorem 6.1. The asymptotic variance of
√

nvec(β̂) can be written as

avar[
√

nvec(β̂)] = (Ip ⊗ Γ)avar[
√

nvec(η̂Γ)](Ip ⊗ ΓT )

+ (ηT ⊗ Γ0ΓT
0 )avar[

√
nvec(Γ̂η)](η ⊗ Γ0ΓT

0 ). (6.5)

This representation can be made even more transparent if we recognize the
following: if Γ is known, then Γη̂Γ is just β̂Γ, the maximum likelihood estimate
of β; for the second term in (6.5) we have

(ηT ⊗ Γ0ΓT
0 )avar[

√
nvec(Γ̂η)](η ⊗ Γ0ΓT

0 ) = avar[
√

n(η ⊗ Γ0ΓT
0 )vec(Γ̂η)]

= avar[
√

nvec(QΓΓ̂ηη)].

However, Γ̂ηη is simply the maximum likelihood estimator of β when η is known.
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Corollary 6.1. The asymptotic variance of
√

nvec(β̂) satisfies avar[
√

nvec(β̂)]
= avar[

√
nvec(β̂Γ)] + avar[

√
nvec(QΓβ̂η)].

Intuitively, the asymptotic variance of
√

nvec(β̂) comprises those of
√

nvec(β̂Γ)
and

√
nvec(β̂η); the role played by QΓ is to orthogonalize these random vectors

so that their contributions to the net asymptotic variance are additive.
Finally, to provide some insight on situations in which our estimator can be

particularly effective, we compare avar[
√

nvec(β̂)] and Σ−1
X ⊗Σ, the asymptotic

variance of the usual MLE, in a relatively simple setting. Let p = 1, Ω = σ2Iu,
and Ω0 = σ2

0Ir−u. In this case it can be shown that

{avar(
√

nβ̂)}−1/2{Σ/σ2
X}{avar(

√
nβ̂)}−1/2 = Ir +

(σ2
0 − σ2)2

σ2
Xσ2‖β‖2

Γ0ΓT
0 (6.6)

where we have used σ2
X in place of ΣX to emphasize that p = 1. This result indi-

cates that the difference between our estimator and the standard MLE decreases
when the signal (‖β‖ or σ2

X) increases, and increases when the variability (σ2

or σ2
0) increases. Equation (6.6) says also that the two approaches are equally

efficient asymptotically when σ2 = σ2
0, a fact that is supported by the simula-

tion results in Section 7. In full generality, (6.6) suggests that our estimator will
provide the most gains in efficiency when the envelope EΣ(B) can be constructed
from eigenspaces of Σ with relatively small eigenvalues (cf. Proposition 2.3).
In particular, the size of u seems less important than the relative sizes of these
eigenvalues, provided u < r.

7. Comparing Two Normal Means: Simulation and Data Analysis
Results

We use the classic setting of comparing the means µ1 and µ2 of two multi-
variate normal populations to illustrate the potential benefits of envelope models,
and to verify our asymptotic calculations. In terms of model (1.1), the two-means
comparison can be represented by taking α = µ1, β = µ2 − µ1, and X ∈ {0, 1}.
Since p = 1, we again use σ2

X in place of ΣX when describing various results.
In our simulations we tracked both small sample bias and variability. Since no

appreciable bias was detected, Section 7.1 reports only variability comparisons,
summarized using versions of the generalized standard deviation ratio

T = {tr(∆−1/2
em ∆fm∆−1/2

em )/r}1/2, (7.1)

where ∆fm represents the covariance matrix of β̂fm, the estimator of β from the
full model (1.1), and ∆em represents the covariance matrix of β̂em, the estimator
of β from the envelope model (3.2) (for consistency of notation we use β̂em instead
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of β̂ to denote the envelope estimator in this section). T 2 can be interpreted as
the average variance E (`T∆fm`), where the average is computed over all ` ∈ Rr

subject to the constraint that `T∆em` = 1. Values of T > 1 indicate that the
envelope model (3.2) produces smaller standard deviations on average than the
full model.

7.1. Simulation results

All results reported here were based on 200 replications from simulation
models with n/2 observations per population, r = 10, βT = (

√
10, . . . ,

√
10),

u = 1, and variance Σ = σ2ΓΓT + Γ0Ω0ΓT
0 . Two versions of T were used. In

the first, Tpop, we set ∆em = avar(
√

nβ̂em) (see (5.7)) and ∆fm = Σ/σ2
X , with

all parameters at the values used in the simulations. It follows immediately from
(6.6) that

T 2
pop = 1 + (1 − r−1)

(σ2 − σ2
0)

2

‖β‖2σ2
Xσ2

.

In the second version, Tn, we set ∆em and ∆fm to be the sample covariance
matrices of the 200 replications of β̂em and β̂fm. If our asymptotic calculations
are correct, then for a sufficiently large n we should have Tpop ≈ Tn.

The simulated data underlying Figure 7.1a were drawn using σ2 = 1 and
Ω0 = σ2

0I9. We used the true value u = 1 when forming the estimate β̂em based
on (3.2). The upper curve, identified by the open circles, is a plot of Tpop for
various values of σ0. The other curves correspond to Tn for four samples sizes.
As n increases Tn evidently approaches Tpop from below, with T80 being quite
close to Tpop. The unlabeled curve that lies between Tpop and T80 was obtained
with n = 160. The results in Figure 7.1a show that estimates from the envelope
model can be much more efficient than the usual full-model estimates. They
also support our previous conclusion that there is little difference between the
methods when σ ≈ σ0.

Figure 7.1b was constructed as Figure 7.1a except that, for the Tn curves, u

was estimated as follows for each of the 200 simulated data sets. The hypothesis
u = u0 can be tested by using the likelihood ratio statistic Λ(u0) = 2(L̂fm−L̂(u0)),
where L̂fm denotes the maximum value of the log likelihood for the full model,
and L̂(u0) the maximum value of the log likelihood for (3.2). Following standard
likelihood theory, under the null hypothesis Λ(u0) is distributed asymptotically as
a chi-squared random variable with p(r − u0) degrees of freedom. We employed
the statistic Λ(u0) in a sequential scheme to choose u. Using a common test
level of 0.01 and starting with u0 = 0, we chose the estimate û of u as the first
hypothesized value that was not rejected. The results in Figure 7.1b show as
expected that estimating u increases the variability of β̂em, but substantial gains
are still possible for modest sample sizes. The drop for n = 20 is due mainly to
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Figure 7.1. Simulation results for comparing the means of two multivariate
normal populations.

the tendency of the likelihood ratio test to reject too frequently for small samples.
The bounding dimension u could also be selected using an information criterion
like AIC or BIC. Our intent here is to demonstrate only that reasonable inference
on u is possible, without recommending a particular method.

Figures 7.1c and 7.1d were constructed as were Figures 7.1a and 7.1b, except
that Ω0 = σ2

0I9 was replaced by Ω0 = σ2
0A

TA/9, where A ∈ R9×9 was gener-
ated once as a matrix of standard normal variates. The range of the y-axis in
Figures 7.1c and 7.1d is nearly twice that for Figures 7.1a and 7.1b, suggesting



950 R. DENNIS COOK, BING LI AND FRANCESCA CHIAROMONTE

that correlation improves the performance of β̂em relative to β̂fm.

7.2. Data analysis

We applied the proposed methodology to a number of data sets from the
literature and found an advantage in most of them, suggesting that envelope
models may have wide applicability. We present two brief illustrations in this
section, one with a real but modest gain for envelope models, and one with a
dramatic gain.

In a sample of 172 New Zealand mussels, 61 were found to have pea crabs
living within the shell and 111 were free of pea crabs. We compared the means of
these two populations on r = 6 response variables: the logarithms of shell height,
shell width, shell length, shell mass, muscle mass, and viscera mass. Bartlett’s
test statistic for equality of covariance matrices has the value 27.8 on 21 degrees
of freedom, so the assumption of equal covariance matrices seems reasonable.
The p-values for the likelihood ratio tests of u = 1 and u = 2 were 0.024 and
0.18, suggesting that either of these values might be appropriate. Letting T̂

denote the estimate of T by using the plug-in method, we found that T̂ = 4.7
for u = 1 and T̂ = 2.9 for u = 2. In either case, it seems that the estimate of
the mean difference from model (3.2) is notably less variable than the full-model
estimate. Even with u = 2 these results indicate that it would take a sample
about 2.92 = 8.41 times as large for the efficiency of β̂fm to equal that of β̂em

with the present sample size. The T̂ summary reflects the ratio of standard
errors over all linear combinations of the coefficients. The standard error ratios
are more modest when considering only individual coefficients, the individual
standard errors for the full-model estimates ranging between 1.18 and 1.05 times
the respective standard errors for the envelope estimates. For the largest of these,
the envelope estimates achieve a reduction equivalent to full-model estimates with
roughly a 40 percent increase in sample size. We expect that this would be judged
worthwhile in most analyses.

The second data set is the infrared reflectance example described in the
Introduction. We chose this data set because the marginal response correlations
are high, ranging between 0.9118 and 0.9991. This is the kind of situation in
which the proposed methodology might give massive gains over a full-model
analysis. The likelihood ratio test statistic for the hypothesis u = 1 has the value
1.09 on 5 degrees of freedom for a p-value of 0.95. With u = 1, T̂ = 219.2. The
standard deviation ratios for the individual mean differences were described in
the Introduction.

To confirm the results for the infrared reflectance data we constructed a
simulation model using all of the estimates from the original data as the popula-
tion values. The population standard deviation ratio for this simulation scenario
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is Tpop = 219.2, which is the same as the plug-in estimate from the original
data. We then constructed estimates based on 24 low protein observations and
26 high protein observations from the simulation model, repeating the process
200 times. This gave Tn = 221.6 and average plug-in estimate T̂ = 240.4, which
seems to support the results of the original analysis. To see if the high response
correlations might introduce a notable small sample bias in β̂em we computed
(ave(β̂em) − β)/β element-wise, where ave(β̂em) denotes the replication average
of β̂em. These six ratios ranged between −0.018 and 0.011. The same calculations
using the 200 replications of β̂fm produced six ratios ranging between −0.122 and
0.175.

The fit of model (3.2) to the original reflectance data gave Σ̂ = Σ̂1 + Σ̂2,
where Σ̂1 had rank 1 with non-zero eigenvalue 7.88, and Σ̂2 had rank 5 with
eigenvalues 6, 516.61, 208.29, 20.08, 0.42, and 0.27. Evidently, the proposed
method offers truly substantial gains in this example because the collinearity in
Σ is quite large, and because EΣ(B) is inferred to lie in an eigenspace of Σ with
a relatively small eigenvalue.

8. Extensions and Relationships with Other Theory and Methods

In the previous sections we focused on one way in which the notion of en-
veloping can be employed; namely, creating a parsimonious, alternative parame-
terization for the multivariate linear model. However, envelopes can be used in
other ways and in other contexts to allow more control over parameterizations,
and to develop methodology affording substantial gains in efficiency. We expect
enveloping to have considerable potential in multivariate analysis: whenever we
are dealing with a random vector U and an associated covariance matrix Λ, we
can consider a parsimonious parameterization of the latter in reference to the
former. Mathematically, the essence of enveloping is to find the smallest reduc-
ing subspace of Λ to which U belongs almost surely. In this section, we offer
conjectures about a number of multivariate analysis contexts that share this form
– the discussion is largely at the population level.

8.1. Reduced rank envelope models

Maximum likelihood estimation under model (1.1) does not require the co-
efficient matrix β to be of full rank min(r, p). Similarly, the envelope models
introduced in the previous sections permit the rank of β to be less than min(r, p).
In some regressions it may be useful to explicitly fit an envelope model with a
specified rank d for β. This, in effect, combines envelope models with models for
multivariate reduced rank regression (Anderson (1951); Izenman (1975); Davies
and Tso (1982); Bura and Cook (2003)).
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Recall from (3.2) that the mean function for the envelope model is E (Y|X) =
α + ΓηX, where Γ ∈ Rr×u is a semi-orthogonal basis matrix for EΣ(B). If we
restrict β = Γη to have rank d < min(r, p), then η ∈ Ru×p must have rank d and
thus can be factored as η = γφ, where γ ∈ Ru×d is a semi-orthogonal matrix
and φ ∈ Rd×p is unconstrained. This gives a reduced rank version of envelope
model (3.2):

Y = α + ΓγφX + ε (8.1)

Σ = ΓΩΓT + Γ0Ω0ΓT
0 .

As before, Γ is not identified but span(Γ) = EΣ(B) is identified and estimable.
Similarly, span(γ) ∈ Gu×d and φ are identified and estimable. Like the enve-
lope version of model (1.1), this model has the potential for substantial gains
in efficiency relative to the usual multivariate reduced rank model. Maximum
likelihood and other methods of estimation for this model are currently under
study.

It may be clear that we do not view reduced rank and envelope models as
direct competitors, since combining them leads to (8.1) which is a more versatile
model than either one alone, and allows for more control over dimensionality.
Similarly, many other methods for reducing dimensionality, like factor analysis,
variable selection, and coefficient penalization (Yuan et al. (2007)), could be
extended for use with envelope models.

8.2. Discriminant analysis

Consider classifying a new observation y on a feature vector Y ∈ Rr into
one of two normal populations C1 and C2, with means µ1 and µ2 and common
covariance matrix Σ. Assuming equal prior probabilities, the optimal population
rule, which is the same as Fisher’s linear discriminant (Seber (1984, p. 331)), is
to classify y as arising from C1 if

(µ1 − µ2)TΣ−1y >
1
2
(µ1 − µ2)TΣ−1(µ1 + µ2).

Letting Γ ∈ Rr×u, u ≤ r, denote a semi-orthogonal basis matrix for EΣ(span(µ1−
µ2)), it follows from Corollary 2.1 that Σ−1 is of the form Σ−1 = ΓΩ−1ΓT +
Γ0Ω−1

0 ΓT
0 . The optimal population rule expressed in terms of EΣ(span(µ1−µ2))

is to classify into C1 if

(µ1 − µ2)TΓΩ−1ΓTy >
1
2
(µ1 − µ2)TΓΩ−1ΓT (µ1 + µ2).

Estimates of u, Γ and Ω can be found using the methods discussed in previous
sections, specifying Y as the response vector. When u ¿ p or the eigenvalues of
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Ω are substantially larger than those of Ω0, we expect misclassification rates for
this rule to be significantly lower than those for the standard rule. In cases where
u = 1, EΣ(span(µ1−µ2)) = span(µ1−µ2) and, assuming that (µ1−µ2)TΓ > 0,
the rule simplifies to (µ1−µ2)Ty > (µ1−µ2)T (µ1+µ2)/2. Extension to multiple
populations with common covariance matrix seems straightforward conceptually.

Principal components have long been considered for dimension reduction
prior to discriminant analysis. The first two methods discussed by Jolliffe (2002,
Sec. 9) reduce Y by using the first few principal components from either the
intra-population covariance matrix or the marginal covariance of Y, computed
without regard to population membership. Neither method is entirely satisfac-
tory because there is no guarantee that the first few principal components will
be the “best” for discrimination. The envelope approach proposed here has the
potential to achieve what has long been attempted through principal component
methodology.

8.3. Principal components

There are numerous ways to motivate the use of principal components for
the reduction of a multivariate vector Y ∈ Rr (Jolliffe (2002)). In this section
we describe how an envelope construction might aid us in understanding a foun-
dation for principal components based on latent variables (Tipping and Bishop
(1999)).

Again consider model (1.1), only now with X ∈ Rp as an unobserved vector
of latent variables, standardized to have mean 0 and variance Ip, and with β

assumed to have rank p < r. The latent vector represents extrinsic variation
in Y, while the error ε represents intrinsic variation. The goal is to reduce
the dimension of Y accounting for its extrinsic variation. Under this model it
can be shown that Y X|βTΣ−1Y (Cook (2007)), and thus R = βTΣ−1Y is
the reduction we would like to estimate. Any full rank linear transformation A
of R results in an equivalent reduction; Y X|R if and only if Y X|AR,
so it is sufficient to estimate S = span(Σ−1β). Additionally S is minimal, if
Y X|BTY then S ⊆ span(B). Note that here we focus on estimating S,
though additional considerations may be necessary to translate knowledge about
S into actions, depending on the application context.

Since X is not observed, only the marginal distribution of Y is available for
the purpose of estimating S. Following Tipping and Bishop (1999) we assume
that X is normally distributed, and thus Y is normal with mean α and variance
ΣY = Σ+ββT . The maximum likelihood estimator of α is just the sample mean
of Y, but Σ and β are confounded and cannot be separated without additional
structure. Tipping and Bishop (1999) assumed isotropic errors, i.e., Σ = σ2Ir,
and it follows from their results that the maximum likelihood estimator of S =
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span(β) is the span of the first p eigenvectors of Σ̂Y, the sample version of ΣY.
Consequently, R is estimated by the first p principal components of the marginal
variance of Y when the errors are isotropic.

The assumption of isotropic errors is limiting relative to the range of appli-
cations where it may be desirable to reduce multivariate observations. In the
envelope parameterization of model (3.2), S = span(ΓΩ−1η) and Y is normally
distributed with mean α and ΣY = Γ(Ω + ηηT )ΓT + Γ0Ω0ΓT

0 . The coefficients
η are not identified since they are confounded with Ω, so it is still not possible
to estimate S. However, Y X|ηTΩ−1ΓTY implies that Y X|ΓTY, so EΣ(B)
provides an upper bound on the space of interest, S ⊆ EΣ(B). With isotropic
errors, we have S = EΣ(B). We conjecture that, with a sufficiently large intrinsic
signal η, EΣ(B) can be estimated from the marginal of Y. The envelope model
(3.2) with X as a latent vector would then allow estimation of the upper bound
EΣ(B), which may be helpful in some applications, and could provide insights
onto the usefulness of principal components under a general error structure.

8.4. Envelopes in the predictor space

Recall from the discussion in Section 3 that the envelope model expressed
by (3.2) has the greatest potential for improvement in regressions with many
responses (r) and relatively few predictors (p). The novel parametrization we
propose has nothing to offer when r ≤ p and d = dim(B) = r. This is the case,
for example, in univariate linear regression (r = 1). Nevertheless, it may still
be possible to achieve efficiency gains by using an envelope construction in the
predictor space.

Assuming that X is random, the population coefficient matrix β can be
represented as βT = Σ−1

X Cov (X,Y), where ΣX = Var (X) is the marginal
variance of X. Let C = span(Cov (X,Y)) ⊆ Rp and let χ be a semi-orthogonal
basis matrix for EΣX

(C), the ΣX-envelope of C. Then the coefficient matrix can
be written as βT = Pχ(ΣX)β

T . This suggests that we estimate βT by projecting
the usual maximum likelihood estimate onto an estimate of EΣX

(C), using the
sample version of ΣX for the inner product. We would again expect notable
efficiency gains if dim(EΣX

(C)) < p and we can find a good way to estimate
EΣX

(C). One method of estimating EΣX
(C) that permits n < p is described in

Section 8.7.

8.5. Simultaneous envelopes

There is also the possibility of combining predictor space envelopes EΣX
(C) ⊆

Rp with response space envelopes EΣ(B) ⊆ Rr in a single multivariate regres-
sion. The predictor space envelopes of Section 8.4 rely on the identity βT =
Σ−1

X Cov (X,Y), which connects the coefficient matrix with population moment
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matrices. The corresponding expression for the envelope model (3.2) follows from
(1.2); βT = Σ−1

X Cov (X,Y)PΣ1 , where PΣ1 is still the projection onto EΣ(B).
It now follows from Section 8.4 that

βT = Σ−1
X Cov (X,Y)PΣ1 = βTPΣ1 = Pχ(ΣX)β

TPΣ1 .

This may serve as a conceptual starting point for the development of methods
based on enveloping in both the predictor and response spaces.

8.6. Sufficient dimension reduction

There are various methods for reducing the dimension of a random predictor
X ∈ Rp in a regression with univariate response Y ∈ R1. Among them, sufficient
dimension reduction methods estimate the central subspace SY |X (Cook (1994,
1998)), defined as the intersection of all subspaces S with the property that
Y X|PSX. Since the conditional distributions of Y |X and Y |PSY |XX are
identical, we can substitute PSY |XX for X without loss of information on the
regression.

Cook (2007) proposed that estimation of SY |X be based on modeling the
conditional distribution of X|Y . Suppose that

X = µ + βfy + ε, (8.2)

where µ ∈ Rp, fy ∈ Rr is a known user-specified function of y, and ε is normally
distributed with mean 0 and covariance matrix ΣX|Y . This is a multivariate
linear model like (1.1), with the predictor vector X taking on the role of the
response, and fy taking the role of the predictor. However, in pursuing our suffi-
cient dimension reduction, we have no particular interest in the coefficient matrix
β ∈ Rp×r. Instead, interest lies in the central subspace SY |X = Σ−1

X|Y B (Cook
(2007)), where still B = span(β). We can now use EΣX|Y (B) to parameterize
(8.2), leading to an envelope model with the same form as (3.2), or perhaps a
reduced rank envelope model like (8.1). Because of the importance of SY |X, we
might instead consider parameterizing in terms of the ΣX|Y -envelope of SY |X,
EΣX|Y (SY |X). In view of Proposition 3.1, however, these and several other en-
velopes are equal and thus lead to the same parameterization.

These considerations allow us a better understanding of the PFC model
proposed by Cook (2007, eq. 13) without reference to envelopes:

X = µ + Γηfy + ε

ΣX|Y = ΓΩΓT + Γ0Ω0ΓT
0 .

If we take Γ to be a semi-orthogonal basis matrix for EΣX|Y (B), then this is
the envelope version of (8.2). Since SY |X ⊆ EΣX|Y (B), the model only allows
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estimation of an upper bound on SY |X. To estimate the central subspace itself it
is necessary to use a reduced rank envelope model, except in special cases where
SY |X = EΣX|Y (B).

8.7. Seeded reductions when n < p

In addition to the model-based approaches proposed by Cook (2007), there
are numerous moment-based methods for estimating the central subspace SY |X
without using models. Under various conditions, many of these approaches ex-
ploit population identities of the form S(ν) = ΣXSY |X, where ΣX = Var (X)
as defined previously, and ν is a method-specific seed matrix (Cook, Li and
Chiaromonte (2007)) that can be estimated from the sample moments of (Y,X)
without inverting the sample version of ΣX. For example, the least square
seed (which corresponds to the multivariate linear model; see Section 8.4) is
ν = Cov (X,Y), and the seed for sliced inverse regression (Li (1991)) is ν =
Var (E (X|Y)). Of course, when n is sufficiently large, SY |X can simply be esti-
mated from the spectral structure of the sample version of Σ−1

X ν.
By using the ΣX-envelope of SY |X, Cook, Li and Chiaromonte (2007) de-

veloped a method of estimating SY |X that does not require n > p. Their
method is based on estimating EΣX

(SY |X) as the span of the sample version
of Ru = (ν,ΣXν, . . . ,Σu−1

X ν), where u is also estimated. A basis for SY |X is
then estimated by projecting an estimate of ν onto the space spanned by the
estimate of Ru, using the sample version of ΣX to define the inner product.
The method is equivalent to partial least squares (Helland (1990)) for univariate
linear regression when the seed is ν = Cov (X, Y ) ∈ Rp.

We conjecture that envelopes can be used in a variety of settings to develop
estimation methods that allow p > n, and that generally have the potential
to yield substantial gains in efficiency relative to standard methods, even when
p ¿ n. The particular method proposed by Cook, Li and Chiaromonte (2007)
is a first step along these lines, but we expect that more efficient methods for
estimating EΣX

(SY |X) are possible.

8.8. Functional data analysis

Although the envelope models at the core of this article concern multivari-
ate linear regression in which Y, and possibly X, are finite-dimensional random
vectors, there is no fundamental difficulty in extending our approach to the case
where Y and X are random functions; with an appropriate generalization, the
ideas we presented are applicable to functional data analysis. The purpose of this
subsection is to demonstrate this possibility by sketching such a generalization
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under somewhat strong simplifying assumptions. A fuller and more careful gen-
eralization will be considered in a future study. This generalization is significant
because parsimony is even more important for functional data analysis.

Let (Ω,F , P ) be a probability space and ([0, 1],G, λ) the measure space,
where G is the class of Borel sets in [0, 1] and λ the Lebesgue measure. Next,
let L2(Ω, P ) be the class of all random variables on Ω that are square integrable
with respect to P , and L2([0, 1], λ) the class of functions defined on [0, 1] that
are square integrable with respect to λ. Suppose ε : Ω × [0, 1] → R and X :
Ω × [0, 1] → R are mappings such that, for each t ∈ [0, 1], ε(·, t) and X(·, t) are
members of L2(Ω, P ). Thus t 7→ ε(·, t) (or t 7→ X(·, t)) is a random function from
[0, 1] to L2(Ω, P ), instead of a random vector from {1, . . . , p} (or {1, . . . , r}) to
L2(Ω, P ), as in the multivariate regression model (1.1). For simplicity, we assume
both ε and X to be zero-mean functions; that is∫

Ω
ε(ω, t)P (dω) = 0,

∫
Ω

X(ω, t)P (dω) = 0

for each t ∈ [0, 1].
Let κ : [0, 1] × [0, 1] → R be a bivariate kernel function and define

U(ω, t) =
∫ 1

0
X(ω, s)κ(s, t)λ(ds).

Assume the kernel κ is such that, for each t ∈ [0, 1], U(·, t) belongs to L2(Ω, P ).
Define the functional linear regression model as Y = U + ε. This is a functional
version of (1.1), except for ignoring the intercept – which has no bearing on this
generalization.

Now, let Σ : [0, 1] × [0, 1] → R and Λ : [0, 1] × [0, 1] → R be the bivariate
functions

Σ(s, t) =
∫

Ω
ε(ω, s)ε(ω, t)P (dω), Λ(s, t) =

∫
Ω

U(ω, s)U(ω, t)P (dω).

For each f ∈ L2([0, 1], λ), let TΣ(f) and TΛ(f) be the functions

t 7→
∫ 1

0
f(s)Σ(s, t)λ(ds), t 7→

∫ 1

0
f(s)Λ(s, t)λ(ds).

Then, under mild conditions on Σ and Λ, TΣ and TΛ are bounded linear operators
from L2([0, 1], λ) to L2([0, 1], λ).

Indicating with B the closure of the linear subspace span{TΛ(f) : f ∈
L2([0, 1], λ)}, the random function U belongs to B P -almost surely. We can
then define the Σ-envelope of B, say EΣ(B), as the smallest reducing subspace of
the linear operator TΣ that contains the subspace S. Furthermore, if we assume
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Σ to be such that TΣ is a compact operator, then its spectral decomposition is
very similar to that of Σ in model (1.1), with the eigenvectors of Σ replaced
by the eigenfunctions of TΣ. Essentially all the results we developed for the
Σ-envelope in the previous sections can be extended to this functional linear
regression setting.

Restricting the size of the Σ-envelope is not only a means of parsimoniously
modeling the variance operator TΣ, but can also be used to constrain the mean
function U . For example, if we assume that the Σ-envelope is finite-dimensional,
then we have in effect constrained the mean to be a linear combination of a finite
number of functions in L2([0, 1], λ). Such a constraint can be useful when the
sample size n is relatively small compared to the number of observations on each
subject.

9. Conclusions

Our results reveal a crucial property of the classical multivariate linear re-
gression model (1.1), namely, that if the column space of the regression parameter
β lies within a reducing subspace of the error covariance matrix Σ, then far fewer
parameters are needed to specify the likelihood. To express this parsimonious
parameterization, we introduced the Σ-envelope of β, defined as the smallest
reducing subspace of Σ that contains span(β). The reparameterized likelihood
can be maximized explicitly with the Σ-envelope fixed, and maximization with
respect to the latter can be performed numerically using Grassmann-manifold
optimization. As we demonstrated analytically and on real and simulated data
examples, this approach can bring dramatic improvements in accuracy relative
to the traditional multivariate linear regression estimator.

We also argued that the notion of enveloping extends well beyond the parsi-
monious parameterization of the classical multivariate linear model. Obviously,
any multivariate model that can be posed as a special case of (1.1) (e.g., a
MANOVA model; Johnson and Wichern (2007, Chap. 6)) can be modified through
a Σ-envelope parameterization. Moreover, parameterizations based on error co-
variance envelopes could be devised for models that stem from generalizations
of (1.1) – e.g., multivariate generalized linear models with non-Gaussian re-
sponses depending on the predictor through a multivariate non-linear link func-
tion (Fahrmeir and Tutz (1994)), or the functional linear models discussed in
Section 8.8. Finally, reaching past linear models, we showed (Section 8) that
enveloping can serve as a means to reinterpret, connect, and improve efficiency
for a broad range of multivariate statistical techniques.
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COMMENT

Jinzhu Jia, Yuval Benjamini, Chinghway Lim, Garvesh Raskutti and Bin Yu

UC Berkeley

We thank the authors for a very interesting paper and the editors for inviting
us to discuss it. Cook, Li and Chiaromonte (2010) develop the envelope model
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that imposes relationships between the mean parameter matrix β and covariance
matrix Σ of the error vector in a linear multi-response regression model. They use
the maximum likelihood estimator (MLE) under the envelope model to estimate
the mean parameters. As expected, this MLE is asymptotically less variable than
the usual OLS if the envelope model holds and the dimension p of the predictor
is fixed while sample size n goes to infinity. The question is to what extent this
superiority of envelope-MLE remains when the envelope model might not hold,
which is typically the case with data.

Reducing the variability of estimates of β is critical in many modern regres-
sion settings, even more so when both the dimension p of predictors and number
r of responses are large compared to sample size n (Greenland (2000)). To deal
with this problem, a common strategy is to use regularization. Regularization
for multi-response linear models can be achieved by constraining the parameters
of the model or by pooling information from different responses to produce bet-
ter estimates. Both of these aspects of regularization are found in the envelope
model.

The envelope model links the linear space spanned by the parameter vectors
in individual models, β ∈ Rp×r, to the covariance matrix of responses errors
(Σ ∈ Rr×r), where p is the dimension of the predictor and r is the number of
responses for each sample. To be precise, the envelope model assumes that the
space spanned by β lies in the linear space spanned by some u eigen vectors of Σ.
This link is non-trivial, and the resulting model could be computationally hard to
estimate. In this discussion, we call the estimate of β under the envelope model
the envelope-MLE. Although the authors compare their method to OLS in Cook,
Li and Chiaromonte (2010), they do not compare it to standard methods used
to reduce variability in estimation. One such method is ridge regression (RR)
- a regularization method that uses an `2 penalty on the estimated β. Another
method, Curds and Whey (CW) introduced by Breiman and Friedman (1997),
exploits the multiple responses (and β structure) to improve the estimation. That
is, find B ∈ Rr×r, such that

Bi,: = arg min
b

E‖Yi − bT Ŷols‖2
2, i = 1, . . . , r, (1)

where Ŷols is the fitted OLS responses for a given observation with predictors
X ∈ Rp, and Bi,: is the ith row of matrix B.

Because it is not usually known with data whether such a link between β

and Σ exists, it is crucial to evaluate the performance of different methods in
cases where the link does not necessarily hold or the sample size is not large even
when the link holds. We compare the performance of envelope-MLE with the
algorithms Ridge and CW, both for simulated data and real data. Our experience
(admittedly limited) with the envelope model suggests that
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(1) the envelope model is best suited to the regime u < p < r < n;

(2) the envelope-MLE, as currently implemented, is computationally more inten-
sive than Ridge and CW.

1. Experiments

1.1. Simulated data

Two simulation scenarios are used. The first is based on the envelope model

Y = ΓηX + ε,
(1.1)

Σ = ΓΩΓT + Γ0Ω0ΓT
0 ,

where Y ∈ Rr, (Γ,Γ0) are the eigenvectors of Σ := Cov (ε), Ω = ΓT ΣΓ ∈
Ru×u, and Ω0 = ΓT

0 ΣΓ0 ∈ R(r−u)×(r−u). We take Σ = ΓT DrΓ, where Γ are
the eigenvectors of a random matrix (elements in N(0, 1)), and Dr is a diagonal
matrix with the elements 1, . . . , r. We simulated η ∈ Ru×p from ηij ∼ N(0, 1)
and generated β = Γη accordingly.

In the second simulation scenario, no structural link between β and Σ is
assumed. We generated Σ similar as before, and β was a random matrix, β = Gη,

where the elements of G ∈ Rr×u were N(0, 1). Note that u in this “random
model” is the rank of β, but it is not related to the structure of Σ. For both
models, X was generated from N (0, V ), where Vij = 0.5|i−j|, i, j = 1, 2, . . . , p.

The measure used here for comparison is the overall average mean-squared
prediction error. Following Breiman and Friedman (1997), the mean-squared
prediction error of response i, for a particular method m, is

e2
i (m) = EX

(
βi,:X − β̂(m)i,:X

)2
= (βi,: − β̂i,:(m))V (βi,: − β̂i,:(m))T ,

where V is the covariance matrix of X. We compare the average prediction error
of each method normalized by the OLS average prediction error.

We considered the following four set-ups: p > r or p < r, u = min(p, r) or
u < min(p, r). When p > r, p = 50, r = 10; when p < r, p = 10, r = 50;
when u < min(p, r), u = 3. For each of the four set-ups, we did 50 repetitions
to evaluate each estimation method, and for each repetition we took sample size
n = 500.

1.2. Data

The data is taken from Kay et al. (2008), and consists of a training set
of n = 1, 750 samples and a validation set of n = 120 samples. Each sample
consists of p = 64 predictor variables and r = 143 responses. The data is from
an experiment measuring hemodynamic response to natural image stimuli in the
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visual cortex of the brain using functional Magnetic Resonance Imaging (fMRI).
The predictor variables measure magnitude of a spatial grating (Gabor filter) at
different positions in the image (an 8 by 8 grid). The responses are measures
of the fMRI response at different locations in the visual cortex. The task is to
predict the fMRI responses in these locations to a new natural image stimuli –
or the encoding problem in computational neuroscience.

The training set was split into an estimation set n = 1, 500, and a set for
model selection and regularization parameter optimization (n = 250). The best
models based on the model selection set were compared on a third validation set
(n = 120) with a better signal-to-noise ratio. Prediction accuracy was estimated
using mean-square-error of the prediction to the measured responses on the val-
idation set. These results were then normalized by the OLS mean square error
for the corresponding response.

2. Results

Our results show that in most scenarios the competing methods achieved
predictions as good as the envelope-MLE, and were much faster.

2.1. Prediction performance comparison

When the envelope model held, envelope-MLE was the most successful method
when u < p < r (right hand corner of (a) in Figure 2.1): it achieved lower predic-
tion errors compared to the other methods, although it had a larger variability.
In other cases, Ridge and/or CW achieved comparable results as envelope-MLE:
CW when u < r < p, Ridge when u = p < r, or both when u = r < p.

However, this was not the case when data was not generated from an en-
velope model. While the envelope-MLE procedure performed better than unre-
stricted OLS, CW outperformed envelope-MLE (Figure 2.1 (b)), and Ridge was
comparable to envelope-MLE in two cases and worse in the other two.

In the data example (Figure 2.2), all three methods gave comparable per-
formance: the error of envelope-MLE was slightly worse than Ridge and slightly
better than CW, even though envelope-MLE seems to have the largest variability.
All methods performed better than OLS, (SE ≈ 0.003, differences were signif-
icant; the results are lower than those reported in Kay et al. (2008) because of
the restriction to 64 predictors).

As our results show (Figure 2.1), the envelope model is best suited to a
classical regime where u < p < r ¿ n. If n < p or n < r, either Σ or β would be
under-complete and would not be identifiable under the constraints of the model.
We need r > u for the regularization to be effective (otherwise the dimension of
the envelope is already r and we get the OLS results).
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(a) Envelope Models (b) Random Models

Figure 2.1. The average (over responses) prediction error of each method
normalized by OLS average prediction error. The distribution in each box-
plot corresponds to 50 repetitions of the simulation. Left panel (a): Envelope
Models. Right panel (b): Random Models. Note that u in “Random Mod-
els” (b) is not the dimension of the envelope. CW denotes the Curds and
Whey, Env the Envelope model, and RR the Ridge regression with tuning
parameter tuned by 5-fold cross validation. The dashed line denotes the
benchmark that one method performs the same as OLS (and thus the ratio
is 1).

Figure 2.2. Prediction error for individual responses (normalized by OLS er-
ror) for image-fMRI data. Boxplots show distribution of r = 143 responses.
All methods are better than OLS (Median of error ratios < 1). Ridge per-
forms best, followed by envelope-MLE. Each boxplot corresponds to a single
point in the simulations of Figure 2.1.
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Figure 2.3. Run Time (in Seconds) for each iteration. The times are shown
in log scale. CW denotes the Curds and Whey, Env the Envelope model, RR
the Ridge regression with tuning parameter tuned by 5-fold cross validation,
OLS the ordinary least square method.

2.2. Runtime comparison

The envelope-MLE method was always more computationally intensive than
all other methods used in the regime p < r < n (see Figure 2.3). Since this is the
regime where the envelope model is most useful, the result highlights the need to
improve efficiency of the algorithm. In fact, for the fMRI data, using the original
implementation of envelope-MLE, the algorithm could not run in reasonable time.
Instead we used a parameter tuning set to tune u (the dimension of EΣ(B)) to
improve computation speed. It took the Envelope model estimation more than
300 seconds to run in the optimal setting u = 20, and up to 2,500 seconds for an
envelope dimension of u = 100, while the other methods are very efficient (less
than 0.1 seconds for each).

The model selection procedure for the envelope model was fairly stable. The
error in the training set reduces as u increases (when u = 143 the model is
equivalent to OLS which minimizes the training set error). However, in both the
parameter tuning set and validation set the prediction errors were minimized by
the same value, u = 20 (see Figure 2.5).

3. Conclusion
To summarize, the envelope model provides a novel way of regularization

for multi-response linear regression problems. Our simulation and data results
suggest that the envelope model works best in the classical domain when u <

p < r < n and the envelope model holds. More experience is needed for us to
better understand the envelope model relative to other regularization methods
such as Ridge regression and CW, especially when min(r, p) À n. This is feasible
only when faster codes become available for fitting the envelope model.
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Figure 2.4. Run time for different u on the fMRI data. The time required
for the envelope-MLE estimation (300-2,400 seconds) restricted testing larger
parameter and responses sets.
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Figure 2.5. Prediction errors of envelope-MLE (normalized by OLS errors)
on fMRI data for training, parameter selection, and validation sets when
u varies. For u = r the envelope errors are similar to OLS errors. Both
parameter tuning set and validation set prediction errors were minimized at
u = 20.
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COMMENT

Liqiang Ni

University of Central Florida

I congratulate the authors for their innovative approach to multivariate linear
regression. Like the authors, I was puzzled that, with or without known Σ, the
MLE of β stayed the same. Should not the knowledge of Σ help the estimation of
the mean function? The proposed envelope models provide an answer. I believe
this simple but powerful idea will have a deep impact on a variety of topics where
establishing connections between seemingly unrelated parts of the enquiry can
be beneficial.

My comments focus on the minimization of (4.9) and the comparison be-
tween its estimator and an alternative. First let me introduce a lemma and a
proposition, which facilitate the discussion.

Lemma 1. Suppose that A and B are positive definite matrices in Rp×p. Let X ∈
Rp×d, rank(X) = d. If X minimizes det(XT AX)/det(XT BX), then span(X) =
span(U), where U is the d leading eigenvector of A−1B.

Proof. Suppose A1/2X has a QR decomposition V W , where V ∈ Rp×d and
V T V = Id.

det(XT AX)
det(XT BX)

=
det(W T W )

det(W T V T A−1/2BA−1/2V W )
=

1
det(V T A−1/2BA−1/2V )

,

which reaches the minimum when V consists of the d leading eigenvectors of
A−1/2BA−1/2 or, equivalently, span(X) = span(A−1/2V ) is spanned by the d
leading eigenvectors of A−1B.

Proposition 1. Suppose that A and B are positive definite matrices in Rp×p.
Suppose that A has the spectral decomposition A = UΛUT , where U = (U1, U2),
the diagonal matrix Λ = diag(Λ1, Λ2), U1 ∈ Rp×d, Λ1 ∈ Rd×d. Meanwhile B =
UΦUT , where the block diagonal matrix Φ = diag(Φ1, Φ2), where Φ−1/2

1 Λ1Φ
−1/2
1 <

Φ−1/2
2 Λ2Φ

−1/2
2 . Let P ⊂ Rd be any projection with dim(P ) = d < p, and let Q be

its complement. Then P = PU1 minimizes det(PAP + QBQ).

Proof. Suppose there is a projection P1 = PUΓ1 , where Γ1 ∈ Rp×d is a semi-
orthonormal matrix. Let Γ2 ∈ Rp×(p−d) be the orthogonal complement of Γ1. It
is easy to see that

det(Φ) = det[(Γ2, Γ1)T Φ(Γ2, Γ1)]
= det(ΓT

2 ΦΓ2) det[ΓT
1 ΦΓ1 − ΓT

1 ΦΓ2(ΓT
2 ΦΓ2)−1ΓT

2 ΦΓ1]
≤ det(ΓT

2 ΦΓ2) det(ΓT
1 ΦΓ1),
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where the equality holds if and only if ΓT
1 ΦΓ2 = 0. Therefore,

det(P1AP1 + Q1BQ1) = det(ΓT
1 ΛΓ1) ∗ det(ΓT

2 ΦΓ2)

≥ det(Φ) det(ΓT
1 ΛΓ1) det(ΓT

1 ΦΓ1)−1. (1)

Based on Lemma 1, the RHS of (1) reaches its minimum by letting Γ1 = (Id, 0),
the d leading eigenvectors of Λ−1Φ. It is easy to verify that ΓT

1 ΦΓ2 = 0, hence
the conclusion.

We have Σ̂res → Σ and Σ̂Y → ΣY = Σ+βΣXβT as n → ∞. Therefore, (4.9)
converges to

det(PΣ1ΣPΣ1 + QΣ1ΣY QΣ1). (2)

If we assume the envelope structure with β = Γη, we have Σ = PΓΣPΓ +QΓΣQΓ

and ΣY = PΓΣY PΓ + QΓΣQΓ. In other words, there are two blocks of spectra
where ΣY is the same as Σ in one block, and is larger than Σ in the other
in which they do not have to share the same eigenvectors. This is a special
case of Proposition 1 with Λ1 < Φ1 and Λ2 = Φ2. The subspace PΣ1 = PΓ

minimizes (2), which is spanned by the leading eigenvector of Σ−1ΣY . This
leads to a Henderson’s method-3-type estimator (Henderson (1953)) based on
Σ̂−1

resΣ̂Y , denoted as Γ̂H3. This argument can be considered as an extension
of Proposition 5 in Cook (2007). On reading this paper, I was fascinated by
Christensen’s comments (Christensen (2007)) which adeptly connected Cook’s
main theme with multivariate linear regression. I also agree with Christensen
that the MLE is probably sharper than Γ̂H3.

If we do not assume the block structure above, we face the task of minimizing
det(PAP+QBQ) as in (4.9). While special algorithms on manifolds are available,
here I propose a relatively simple iterative scheme. Let U1 ∈ Rp×d and U2 ∈
Rp×(p−d) be orthonormal complements. It is easy to see that

det(B) = det(UT
2 BU2) det(UT

1 BUT
1 − UT

1 BU2(UT
2 BU2)−1UT

2 BU1)

= det(UT
2 BU2) det(UT

1 B1/2QB1/2U2
B1/2U1)

= det(UT
2 BU2) det(UT

1 B1/2PB−1/2U1
B1/2U1)

= det(UT
2 BU2) det(UT

1 B−1U1).

Therefore, we only need to minimize det(UT
1 AU1) det(UT

1 B−1U1). If d = 1, this
minimization can be easily handled by build-in functions in statistical softwares
such as nlm in R. For d > 1, we may minimize the function with respect to one
target column with the remaining d−1 columns fixed. Then, we rotate columns.
This always converges since the minimum values are monotonically decreasing.
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(a) (b)

Figure 1.

To avoid traps in local minima, we can start with multiple randomly generated
initial values.

I ran a simulation using the two normal means setting in Section 7.1. Con-
sider

Y = α + ΓX + σΓε + σ0Γ0ε0,

where Y ∈ R10, α = 0, Γ = (1/
√

10, ..., 1/
√

10), X ∈ R equals either 0 or 1 with
equal proportions, Γ0 is the orthonormal complement, ε and ε0 are independent
N(0, I10) variates. To evaluate the performance of Γ̂ols, Γ̂h3, and Γ̂mle, we use
the criterion f(v) = |vT Γ|/(‖v‖‖Γ‖). We also define g(v) = det(PvΣ̂resPv +
QvΣ̂Y Qv), where both matrices have been re-scaled for numerical stability such
that the fifth eigenvalue of Σ̂res is 1.

First fix σ = 1 and vary σ0. Figure 1(a) shows the average of f of 200
replications with sample size n = 160. No surprise that the OLS estimator
degenerates with an increasing level of the noise since it does not incorporate
any structural information. There is an interesting comparison between Γ̂H3 and
Γ̂mle. The performance of Γ̂H3 deteriorates with increasing σ0. At σ0 = 1, its
performance is similar to those of Γols and Γlme as expected. In contrast, Γlme

seems to have a dip at σ0 = 1, and is uniformly superior to the other two.
Next fix n = 160, σ0 = 1 and vary σ. Figure 1(b) presents the results. With a

dilution of the proportion of the signal (in the block of Γ) which can contribute to
X, ΓH3 degenerates monotonically as expected, since Σ−1

resΣY ≈ (σ2
x/σ2)ΓΓT +

I10. It seems interesting that the Γmle improves initially beyond σ = 1 then
follows the same pattern as ΓH3. This saddle pattern in the neighborhood of
σ = 1 resembles the one near σ0 = 1 in Figure 1(a), and it even becomes more
conspicuous with increasing sample sizes where the right peak shifts further right
(not shown here).
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(a) (b)
Figure 2.

There is also a huge difference between these two methods even when both
are lackluster. For a given large σ, all the ΓH3 estimates are closely clustered,
the Γmle estimates go to extremes with either f ≈ 1 or f ≈ 0. For example, let
n = 160 and σ = 2, Figure 2(a) shows the 200 pairs of (f(Γ̂H3), f(Γ̂mle)). One
might wonder if the Γmle’s were trapped in local minima. Figure 2(b) shows the
200 pairs of (g(Γ), g(Γ̂mle)), which dispels this doubt. If we fix σ but increase
n, the proportion of Γmle with f ≈ 1 increases. This exploratory simulation
reassures one about the superiority of the MLE.
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COMMENT

Xuming He and Jianhui Zhou

University of Illinois at Urbana-Champaign and University of Virginia

The paper by Professors Cook, Li, and Chiaromente is stimulating, pioneer-
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ing what they call envelope models to achieve dimension reduction by taking ad-
vantage of a possible parametric link between the regression coefficients and the
conditional covariance matrix of the response vector. They develop a sophisti-
cated computational algorithm for data-adaptive pursuits of the envelope models,
and demonstrate visible efficiency gains through their efforts. In this discussion,
we present some of our own perspectives and explorations that aim to take us
back to some more transparent methods of building parsimonious models.

1. A Model of Idealism ?

Parsimonious modeling is at the core of statistical analysis. The pursuit
of parsimonious models through dimension reduction has become more impor-
tant as we are increasingly challenged by the need to analyze high dimensional
data. Cook, Li, and Chiaromente are to be congratulated for their skillful use of
envelope models for parsimonious and efficient multivariate regression analysis.
They aim to capture a parametric link between the regression coefficient and
the (conditional) covariance matrix of the response vector, and apply the maxi-
mum likelihood estimator to a problem of reduced (and hopefully much reduced)
dimension for higher efficiency.

The theoretical foundation for the envelope models for multivariate regres-
sion is very appealing. When a small number of the eigenvectors of Σ, the
conditional covariance matrix of the response vector y ∈ Rr, span a linear space
that contains the space spanned by β, the unknown regression coefficient matrix,
we should perform MLE on the reduced model by removing the uninformative
sub-space of y. The envelope is the reduced model with the smallest possible
dimension, denoted by u. The smaller u is relative to r, the more efficiency gain
one can expect from their proposed estimator.

Their theory comes with some strings attached. Because β and Σ are un-
known in practice, finding the envelope with u < r has to be partly faith and
partly luck. If we are presented problems of multivariate linear regression with
fixed β, but Σ is drawn randomly from a reasonable class of distributions, find-
ing such an envelope would fail almost surely. Just take the simple case of
dim(X) = 1 with β ∈ Rr; to find an envelope with u = 1, β has to be an
eigenvector of Σ, a “probability zero” event.

Suppose that we are lucky to be in a scenario where β is an eigenvector of
Σ, and

Σ = σ2ΓΓ′ + σ2
0Γ0Γ′

0,

where Γ = β/||β||, and Γ0Γ′
0 = I − ΓΓ′ in the notation of the discussed paper.

If the first component of y is scaled up by a factor of 2, the response vector
satisfies a similar multivariate response with β∗ = Aβ and Σ∗ = AΣA, with
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A = diag(2, 1, . . . , 1). Except for some lucky choices of β and Σ, this new β∗ is
no longer an eigenvector of Σ∗, indicating that the envelope model with u = 1
can no longer be found.

The dependence of the envelope model on specific choices of scale for the com-
ponents of y could be taken as evidence that the exact mathematical framework
for the envelope model does not capture the essence of the underlying regression
model. We naturally ask why the concept and the methodology are still useful.

2. A Form of Shrinkage?

Like any other parsimonious models, the envelope model does not have to
be exactly correct for it to do its job, and it is often worth reducing variability
of the estimator by tolerating some bias in the model. We emphasize this point,
because Section 7 of the discussed paper could be misleading when it states that
one need only compare variability with no appreciable bias detected. However,
in realistic problems, we do not expect the envelope model to hold exactly, and
bias should be part of the performance metric. When r is large, β is likely to lie
in a small neighbored of u eigenvectors of Σ, which often makes bias a worthy
sacrifice.

We bring up the bias-variance trade-off to lead us to the concept of shrinkage
(James and Stein (1961)). More efficient estimation is often achieved without
reliance on any formal dimension reduction model. To see how shrinkage works
in the simulation setting of Section 7.1 of the discussed paper, we conducted a
simulation study using the penalized likelihood on the full model

− log(likelihood) + λ||β − β̄||1,

where λ is a tuning parameter, and β̄ is the average of all components of β. The
penalty used here provides shrinkage of the regression parameters to a common
value.

Using the model in Section 7.1 of Cook, Li, and Chiaromente with β =
(
√

10,
√

10, . . . ,
√

10) ∈ R10, Σ = ββ′/||β||2 + σ2
0Γ0Γ′

0, and Γ0Γ′
0 = I − ββ′/||β||2,

we obtained the ratio of the mean squared error of the MLE under the full
model versus the shrinkage estimator, under several values of σ2

0. Figure 2.1 (a)
plots these ratios for λ = 1. Together with Figure 7.1 of the discussed paper, it
indicates that the shrinkage estimator improves on the efficiency of not only the
MLE under the full model, but also the proposed estimate based on the envelope
model of u = 1.

It is probably not surprising that shrinking toward a common value would do
well when all the components of β are indeed equal. The dramatic improvement
in the efficiency for the cases with large values of σ2

0 is due to the nature of Σ
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(a) (b)

Figure 2.1. Ratio of MSE (MLE under the full model versus the shrink-
age estimates with λ = 1.0). Panel (a) corresponds to the model with
β = (

√
10,

√
10, . . . ,

√
10). Panel (b) corresponds to the model with β =

(2
√

10,
√

10, . . . ,
√

10).

in this particular model. When σ2
0 = 8, for example, the errors are negatively

correlated with one another and Σ is nearly singular, so that the average over
the ten components of y has a very small variance.

If we consider a less favorable setting with β = (2
√

10,
√

10, . . . ,
√

10) and no
other changes in the model, then the results of the shrinkage estimate are shown
in Figure 2.1 (b).

Like the estimator of Cook, Li and Chiaromente, the simple shrinkage esti-
mator achieves greater efficiency gains for smaller n and for higher values of σ0.
The issue of λ selection certainly needs to be discussed if the shrinkage method
is to be used in more general problems, but the connection, and the differences,
between shrinkage and envelope models is worth exploring.

3. The Road Not Taken?

In the spirit of dimension reduction, we explored our favorite method of
canonical correlation (CANCOR) as in Zhou and He (2008). In this case, we
can simply find the significant canonical variates of Y . If r > p, we use u ≤ p

significant canonical variates in lieu of Y itself.



ENVELOPE MODELS 975

Suppose that R is an r × r rotation matrix, and

Y ∗
i = RT Yi = (y∗i,1, y

∗
i,2, . . . , y

∗
i,r)

T ,

where the first u components of Y ∗ are the significant canonical variates. let
β∗ = RT β.

We consider a reduced model

Y ∗
iu =

 y∗i,1
...

y∗i,u

 = β∗
uXi + ε∗iu, (3.1)

where ε∗iu is the first uth component of ε∗i = RT εi. The covariance matrix of ε∗i
given Xi is RT ΣR. We obtain the least squares estimate β̂∗

u of β∗
u or, in general,

the MLE under the reduced model, and then use (β̂∗
u, 0) as the estimate of β∗,

that is, the last p − u rows of β∗ are set to zero. Finally, we obtain the estimate
of β based on β = Rβ∗.

This is a simple estimator from the computational viewpoint, because we
only need to use the standard software on least squares and canonical correlation.
The determination of u can also be done based on standard multivariate tests
on canonical correlations (e.g., Anderson (1984)). For convenience, we call this
the “C-estimator”. Does the C-estimator improve on the efficiency of the MLE
under the full model?

If u = p, the last r − p canonical variates of Y are uncorrelated with X, so
the C-estimator is equivalent to the Gaussian MLE under the full model. Gains
of efficiency are possible when u < p.

To see how much efficiency gain can be obtained with the C-estimator, we
conducted a simulation study with samples generated from

Yi = βXi + εi, (3.2)

where Yi ∈ R10, β = (β1, . . . , βp) in an 10 × p matrix, Xi ∈ Rp are generated
from the standard multivariate normal, and εi ∈ R10 is multivariate normal with
mean 0 and covariance matrix diag(σ2, . . . , σ2).

In Case I, we chose p = 2, β1 = (1, 1, . . . , 1) and β2 = (1.5, 1, . . . , 1). Figure
3.2 gives the MSE ratio between the C-estimator and the MLE under the full
model at various sample sizes and various values of σ2. The average value of the
estimated u in the simulation based on 500 Monte carlo samples was closer to 1
for smaller values of n and larger values of σ2; see Table 3.1.

In Case II, we chose p = 3, β1 = (1, 1, . . . , 1), β2 = (2, 2, 2, 2, 2, 1, 1, 1, 1, 1),
and β3 = β1 + β2. Figure 3.3 shows the ratios of MSE, where the efficiency gain
was less impressive than in Case I, but still non-negligible.
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(a) (b)

Figure 3.2. Ratio of MSE (MLE under the full model versus the C-
estimator). The model parameters are β1 = (1, 1, . . . , 1), β2 = (1.5, 1, . . . , 1).
Panel (a) corresponds to the ratio for β1 and Panel (b) corresponds to the
ratio for β2.

Table 3.1. Mean values of the estimated u by CANCOR in Case I and Case
II, at different values of n and σ2.

σ2 = 1 σ2 = 2 σ2 = 4 σ2 = 6 σ2 = 8 σ2 = 10
Case I

n = 20 1.12 1.09 1.07 1.07 1.07 1.06
n = 40 1.16 1.10 1.08 1.07 1.07 1.07
n = 80 1.42 1.21 1.14 1.11 1.09 1.08
n = 160 1.80 1.46 1.23 1.16 1.13 1.11

Case II
n = 20 1.35 1.23 1.15 1.13 1.11 1.11
n = 40 1.82 1.47 1.22 1.16 1.14 1.12
n = 80 2.05 1.94 1.57 1.41 1.31 1.26
n = 160 2.05 2.04 1.97 1.75 1.60 1.47

We do not have a systematic comparison between the C-estimator and the
estimator of Cook, Li and Chiaromente, but we note that the C-estimator does
not take advantage of the the relationship between β and Σ. Rather, it is based
on the marginal correlation matrices of X and Y . The general message we have
learned from the work of Cook, Li and Chiaromente is invariant of the road we
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(a) (b) (c)

Figure 3.3. Ratio of MSE (MLE under the full model versus the C-
estimator). The model parameters are β1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), β2 =
(2, 2, 2, 2, 2, 1, 1, 1, 1, 1), and β3 = β1+β3. Panels (a), (b), and (c) correspond
to β1, β2, and β3, respectively.

may take when faced with high dimensional data: statistical inference is often
better done with a reduced model. It is up to our imagination to choose a
reduced model, and we are glad to have had the opportunity to learn about a
rather sophisticated approach taken by Cook, Li and Chiaromente, and to explore
a few simpler alternatives.
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COMMENT

Inge S. Helland

University of Oslo

For decades the field of model reduction in regression and in related areas
has been dominated by ad hoc proposals and competing methodology. Now, with
the present paper and with the related ideas on sufficient model reduction put
forward in Cook (1994, 1998) and later papers, it seems that we are entering a
new era. We may be approaching a fundamental and general theory on how to
improve models in a unique and - perhaps in some sense - optimal way.

Most of the paper by Cook, Li and Chiaromonte is concerned with the mul-
tivariate linear regression model (1.1), but as indicated in the Sections 3.2 and 8,
this can be extended. The methods discussed are relevant for any model which
involves a covariance matrix Σ and regression space S. Many regression mod-
els may be seen in this way. One case which has not been explored much so
far is that of the Generalized Linear Models with many covariates, but even for
ordinary regression models there is much to learn.

In this discussion I concentrate on the population model of Partial Least
Squares Regression, which turns out to be closely connected to the envelope
model.

Proposition 2.2 in the paper states that the subspace spanned by any set of
eigenvectors of M = Σ is a reducing subspace of M . In fact, there is an if and
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only if here. From Proposition 2.2 (1 & 2) it follows that if R reduces M , then
R is spanned by egenvectors of M . The question is which eigenvectors span the
minimal reduced space EM (S). The simple answer is given by Proposition 2.3;
EM (S) = ⊕q

i=1PiS, with projections onto eigenspaces.
The fact that span(β) = S ⊆ EM (S) does not indicate that the envelope

model is a wider model than the original regression model. It only implies that the
new regression vector is of the form Rη for some η, where R is a matrix spanning
EM (S), which in the nontrivial case implies a model reduction. In addition,
the formula of Proposition 2.3 implies an orthogonality property of the envelope
model, so there are arguments indicating improved prediction properties.

Consider now the random x regression model with centered variables

y = βT x + e,

where y is a scalar and x is a p-vector. Let M = Σxx, and note that σ = σxy is
one-dimensional.

For this model the population version of the chemometricians’ Partial Least
Squares Regression (PLS) was discussed in Helland (1990), and several charac-
teristica of the regression vector were considered. One has the formula

βm,PLS =
m∑

k=1

(νk)−1ηkη
T
k σ,

where νk is the eigenvalue corresponding to the M -eigenvector ηk, and where m is
the unique number of terms in the population PLS-algorithm where the algorithm
stops in a natural way. The number of terms in this formula is minimal in the
following sense: for single eigenvalues we only require ηT

k σ 6= 0. For multiple
eigenvalues we rotate so that a unique ηk has a non-zero component along σ, this
is always possible, and this solution is found automatically by the population
PLS-algorithm. Note that βm,PLS , in a very precise sense, lies in a minimal
space spanned by eigenvectors of M .

In Helland and Cook (2010) it is proved first that if the Σxx-envelope has
dimension m, then this space is spanned by the m eigenvectors of a population
PLS model. Next, the two models give the same predictions. Thus for one-
dimensional random x regression, envelope models and population PLS models
are identical.

It is useful to recall the general results on the same regression model of Næs
and Helland (1993), defining two concepts of relevance in a regression model.
First, z = RT x is called weakly relevant for predicting y if the best linear pre-
dictor based on z is the best linear predictor based on x. This turns out to be
equivalent to span(β) ⊆ span(R). Next, z is called strongly relevant for predict-
ing y if in addition we can write x = Rz + Uv, with RT U = 0 in such a way that



980 R. DENNIS COOK, BING LI AND FRANCESCA CHIAROMONTE

v is uncorrelated with both z and y. This turns out to be equivalent to weak
relevance together with the property that span(R) is spanned by eigenvectors of
M . The link to span(R) reducing M is obvious.

There is also a link to PLS (Næs and Helland (1993); Helland and Cook
(2010)): assume that z = RT x, with R having r columns, is strongly relevant for
predicting y. Then there is a m ≤ r such that the PLS model of dimension m
holds. The dimension is m if and only if there is a minimal set of eigenvectors
with non-zero intersection with σ. Let R1 be the matrix of these eigenvectors.
Then span(R1) ⊆ span(R). On the other hand, consider a PLS model with
m components. Let R1 be the matrix composed of the m components. Then
z = RT

1 x is strongly relevant for predicting y.
From the formula above for βm,PLS , it is clear that this last R1 is minimal.

Thus R = span(R1) is equal to EM (S) with S = span(R). In conclusion: taking
the random regression model as a point of departure, the the population PLS
model is identical to an envelope model, being a minimal reduction of any model
constructed according to the strong relevance concept, and to any model being
reduced by the span(R) of a strongly relevant model.

Much of the discussion above can be generalized to the multivariate random
regression model y = BT x + e, where y and e are vectors, and where chemome-
tricians have proposed non-equivalent sample PLS algorithms. In this case the
M = Σxx-envelope model is of course unique. The relation to PLS is discussed
in Helland and Cook (2010), but may require further investigations. For this
model we also have an Σyy-envelope model. The question is when it is appro-
priate to do both reductions. This can be done in a meaningful way by first
projecting out immaterial dimensions in y to give a new dependent variable Py,
and then projecting out immaterial dimension in x for the regression of Py upon
x. It is conjecture that estimation from this procedure will beat the multivariate
PLS-algorithm with respect to prediction properties.

Many other properties of the PLS-model are formulated in the literature.
It is a hope that these can also be used to increase our understanding of the
envelope model.

It is known that sample PLS cannot be optimal for prediction in any way
(Helland (2001)). A question that has been open until now has been to find
some criterion under which population PLS is an optimal model for prediction
purposes. Any result in this direction which can be found for the envelope model
will automatically also be valid for population PLS.

One very important aspect of Cook, Li and Chiaromonte’s paper is that they
have developed a feasible maximum likelihood procedure for the envelope model.
This is likely to give better regression predictors than any sample estimates pro-
posed for equivalent models, and it makes the idea of an envelope model a very
practical notion.
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COMMENT

Hung Hung and Su-Yun Huang

National Taiwan University and Academia Sinica

Abstract: Cook, Li and Chiaromonte have introduced the interesting notion of an

envelope model, which provides an efficient approach for high-dimensional data

analysis. The envelope model looks for the “minimal sufficient response” for the

regression of Y on X . Our discussion focuses mainly on a two-staged estimation

approach, PLS-MLE, which is workable for n ¿ r + p. The partial-least-squares

approach is used to extract an intermediate response subspace. This subspace is

assumed to be big enough to contain the envelope subspace, but also small enough

to accommodate a stable MLE.

1. A Two-Staged Alternative Approach for Estimation

1.1. Two-staged MLE

The authors’ MLE relies on minimizing the objective function D = det(H)
over span(Γ), where H = H(Γ) = ΓΓT Σ̂resΓΓT + (I − ΓΓT )Σ̂Y (I − ΓΓT ).
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This minimization problem, using Grassmannian optimization, involves the first
and second derivatives of D with respect to the envelope parameter Γ. The first
derivative is

∂D

∂Γ
= 2D ΓT

(
MH−1 + H−1MT − H−1Σ̂Y − Σ̂Y H−1

)
, (1.1)

where M = (Σ̂res + Σ̂Y )ΓΓT . At each iterative update, (1.1) involves inverting
the matrix H at its current envelope parameter value. It then requires n À
r + p, otherwise inverting H can be numerically unstable. Also notice that the
computational complexity of inverting an r × r matrix is O(r3), which can be
time consuming if r is large. We provide a two-staged estimation method, that
not only stabilizes but speeds up the numerical computation for large r. Assume
there is a known matrix Rr×q (its selection will be discussed later) such that
span(Γ) ⊆ span(R) and u ≤ q ¿ n. That is, Γ = Rξ for some matrix ξq×u.
Without loss of generality, we assume RT R = Iq, which implies ξT ξ = Iu.
Consider the R-induced model

RT Y = RT α + β∗X + ε∗, where β∗ = RT β = ξη and ε∗∼Nq(0, RTΣR).
(1.2)

We could adopt the authors’ MLE to estimate β∗. The validity of this approach
relies on the envelope model structure of model (1.2), which is stated in the
following proposition.

Proposition 1. The subspace span(ξ) is the RTΣR-envelope of span(β∗).

Proof. Since β∗ = ξη, it is obvious that β∗ ∈ span(ξ). Observe that (RTΣR)ξ
= RTΣΓ = ξΩ ∈ span(ξ). Together with the symmetry of RTΣR, we have
that span(ξ) is a reducing subspace of RTΣR. The desired property can be
established by showing the minimality of span(ξ) among all RTΣR-reducing
subspaces that contain β∗. If span(ξ) is not minimal, there must exist a ξ∗ such
that (a) span(β∗) ⊆ span(ξ∗) ( span(ξ), and (b) span(ξ∗) reduces RTΣR. From
(a), we have β∗ = ξ∗η∗ and ξ∗ = ξc for some η∗ and c and rank(c) < u, since
span(ξ∗) is a proper subset of span(ξ). From (b), we have RTΣR = ξ∗Aξ∗T +
ξ∗0A0ξ

∗T
0 for some A and A0, where ξ∗0 is the orthogonal complement of ξ∗. Take

Γ∗ =Rξ∗. It is easy to see that span(Γ∗) ( span(Γ) since span(ξ∗) is a proper
subset of span(ξ). Also, β = Γη=Rβ∗=Γ∗η∗∈span(Γ∗). Finally we show that
Γ∗ reduces Σ. Let R0 be the orthogonal complement of R. Observe that

ΣΓ∗ = (RRT + R0R
T
0 )ΣRξ∗

= R(ξ∗Aξ∗T + ξ∗0A0ξ
∗T
0 )ξ∗ + R0R

T
0 (ΓΩΓT + Γ0Ω0ΓT

0 )Γc

= Rξ∗A + R0R
T
0 (Rξ)Ωc = Γ∗A ∈ span(Γ∗).
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By the symmetry of Σ, Γ∗ reduces Σ. Then, span(Γ∗) is the Σ-envelope for
B, which contradicts the assumption that span(Γ) is the Σ-envelope. Therefore,
span(ξ) must be the minimal reducing subspace that contains β∗.

The estimate of β can be easily recovered from Rβ̂∗
em through the fact that

β = Rβ∗. Alternatively, since Γ = Rξ, Γ can be estimated by Rξ̂ with ξ̂ being
the MLE of ξ under model (1.2). Paralleling the authors’ (4.6), β can also be
estimated by PRξ̂β̂fm. It is easy to show that these two perspectives provide the

same estimate, i.e., Rβ̂∗
em = PRξ̂β̂fm, which further justifies the use of an R-

induced model, assuming that we have the knowledge of an R to encapsulate Γ.
Notice that R is not necessarily a reducing subspace of Σ. One only requires the
column span of R to be large enough to contain the envelope subspace span(Γ),
but small enough so that q + p ¿ n, to accommodate a stable MLE.

1.2. PLS-aided selection of R and q

Suppose q is fixed. We choose R by applying the PLS approach. PLS seeks
a lower dimensional transformation of Y (denoted by W T

q Y in the following
algorithm) that contains most of the association information between Y and
X. This motivates us to choose R = Wq, or R = Wq(W T

q Wq)−1/2, if Wq is
not already orthonormal. There are many PLS algorithms, we used SIMPLS
algorithm (de Jong (1993)), which is briefly summarized below. Let S0 = UT F ,
with U and F being the centered data matrices of Y and X, respectively. At
the ith update, i = 1, · · · , q,

- wi is taken to be the left singular vector of Si−1 with the largest singular
value, denoted by λi. Let ti = Uwi and pi = UT ti/(tTi ti).

- Wi = [w1, · · · , wi], Pi = [p1, · · · , pi], and Si =
(
I − Pi(P T

i Pi)−1P T
i

)
Si−1.

We denote the two-staged MLE using PLS to select R as PLS-MLE. As to the
selection of q, we use a simple criterion. Observe that in the ith iteration, the
left singular vector of Si−1 with the largest singular value is included in Wi. We
expect the singular value λi+1 in next iteration to be relatively small if most of
the association information between Y and X is already explained by W T

i Y .
We thus proceed with the algorithm until dq+1 , λq+1/

∑q+1
i=1 λi is smaller than

a pre-specified threshold value δ.

Example 1. (Comparing two normal means) We take the same simulation set-
ting as in the authors’ Figure 1a (with the modification β = 1.4736

√
2 ln r 1r) for

n = 40, 80, and r = 10, 80. When r = 80, MLE is infeasible and only PLS-MLE
is reported. The threshold value is set to δ = 0.008 for data-driven q selection.
The results depicted in Figure 1 are based on 200 replicate runs. It is found
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Figure 1. Relative efficiency at different values σ0.

that PLS-MLE and MLE have indistinguishable behavior at r = 10 for all cases.
When r = 80, PLS-MLE can still gain efficiency for σ0 ≥ 2, even if the gain is
not as great as for the case r = 10.

2. An Application to Linear SVMs

Assume the envelope model in the authors’ (3.2) with the explanatory vari-
able vector X ∈ Rk, where X is an indicator coding for class labels. To indicate
the cth class, X is set to (0, . . . , 1, 0, . . . )T with one in the cth place and zeros
elsewhere. The PLS-MLE approach is used to estimate Γ by Rξ̂, as described
at the end of Section 1.1. By plugging in its estimate, Γ is regarded as known in
the following discussion for simplicity, but do keep in mind that Γ is estimated
by the PLS-MLE. The SVM classification is then trained in the envelope sub-
space spanned by Γ. A new test instance can be first projected to the envelope
subspace span(Γ), and then classified according to the trained SVM model in the
envelope subspace.

Example 2. [Medline data] The Medline data set is a document-term matrix.
Each row, which represents a document, consists of term frequencies for 22,095
distinct terms. This data set has 2,500 documents uniformly over 5 classes, and
each document belongs to one class. The set was equally divided into 1,250
training documents and 1,250 test documents. The document-term data set is
sparse and has many zero term frequencies. We remove those columns with zero
variance in the training set and this results in 15,109 terms. We then adopt the
envelope model at authors’ (3.2) with r = 15, 109 and p = 5. Three different
SVM variants were considered:

• Standard SVM, i.e., without enveloping;
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Figure 2. The value of dq for Medline data.

• SVM on the PLS-extracted subspace;

• SVM on the PLS-MLE envelope subspace with u = 4 (the number of classes
minus one).

There are many SVM algorithms, we used the smooth SVM of Lee and Man-
gasarian (2001). As this is a multi-class problem, a series of small binary SVM
classifiers was trained (known as one-against-one) and a test instance was classi-
fied by combining these binary SVMs by majority vote (see Schölkopf and Smola
(2002)). Figure 2 plots the value of dq versus q that can guide us in selecting q.
The dq value descends quickly and stays below 0.01 for q > 15. An empirical value
δ = 0.01 then suggests a q around 15. The analysis results for 6 ≤ q ≤ 20 are
provided in Figures 3−4. Notice that, for q ≤ 15, the SVM in the PLS subspace
has a bit higher accuracy than the standard SVM, and a further reduction by
MLE leads to a further small accuracy gain (it attains the maximum value 0.9024
at q = 7). However, when the PLS-size gets larger than or equal to 16, the MLE
starts to behave unstably, and the quality depends on the random initial. This
reveals the usefulness of a PLS-aided MLE with a moderate q. We also found
that the classification accuracies for the SVM based merely on PLS were roughly
the same for all q. Without further enveloping by MLE, however, we need more
PLS components (q = 13) to achieve accuracy 0.9024. The accuracy gain of the
reduced model (by PLS or by PLS-MLE) over the full model was about 1%-1.4%,
which is probably not much (see Figure 3). However, the reduced model has a
lot of reduction in memory space and computing time complexity (see Figure 4).

3. Concluding Remarks

Enveloping is a general idea of parsimonious modeling for efficiency gain. The
Σ-envelope for multivariate linear models relies on the notion of Σ-invariance,
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Figure 3. Accuracy comparison for Medline data, results of 2 replicate runs.

Figure 4. CPU time comparison for Medline data, results of 2 replicate runs.

defined by ΣS ⊆ S for symmetric Σ acting on a subspace S. Different learn-
ing tasks and learning algorithms may have their own route to make inference.
Therefore, we may consider different notions of invariance natural to specific
learning methods/algorithms in future study, as well as the efficiency gain in
memory space and computing time complexity, seen in the Medline example,
rather than accuracy improvement.
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COMMENT

Xuerong Meggie Wen

Missouri University of Science and Technology

In the context of the classical multivariate linear regression model, Cook,
Li and Chiaromonte proposed a parsimonious parameterization using the novel
concept of an “envelope”, which yields an asymptotically less variable MLE com-
paring to the traditional multivariate linear regression estimator. One question
that arises naturally is how this method can be generalized to deal with nonlinear
or (and) nonnormal multivariate regression models. In this discussion, we explore
the applicability of the envelope method when the mean function is nonlinear.
Specifically, we assume the multivariate nonlinear regression model

Y j = fj(αj + βjX) + εj , (1)

where Y = (Y 1, . . . , Y r) is the random response vector, X is a p-dimensional ran-
dom vector of predictors, ε = (ε1, . . . , εr) is independent with X and is normally
distributed with mean 0 and unknown covariance matrix Σ, fj(.), j = 1, . . . , r,
are arbitrary unknown link functions. Both α = (α1, . . . , αr) and β ∈ Rr×p are
unknown, while βj , j = 1, . . . , r, is the jth row of β. This is the same model
that Cook and Setodji (2003) considered in the context of sufficient dimension
reduction. Our goal is to estimate span(β), referred to as the multivariate cen-
tral mean subspace in sufficient dimension reduction literature (Cook and Setodji
2003).

Assuming that X satisfies the so-called linearity condition (Li and Duan
1989), E(X|βX) is a linear function of βX, commonly used in sufficient dimen-
sion reduction methods and one which holds for elliptically contoured predictors
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(Eaton (1986)), hence holds when X is multivariate normal, the following Lemma
suggests that the envelope method that Cook et. al. proposed still holds under
link violation. The justification of our Lemma is similar to that of Proposition
8.1 of Cook (1998) which stems from Theorem 2.1 of Li and Duan (1989).

Lemma 1. If (1) holds and E(X|βX) is a linear function of βX, then β̂, the
maximum likelihood estimator obtained via envelope method under the misspeci-
fied linear link function, is a Fisher consistent estimator of β up to a multiplica-
tive scalar.

We may also compare the envelope estimator with those obtained via suffi-
cient dimension reduction methods assuming (1). We conjecture that it would
perform better than those sufficient dimension reduction methods which are cur-
rently available for multivariate responses due to the property of MLE. As to the
restriction of the Gaussian distribution for the multivariate linear model consid-
ered in Cook et al., we may be able to extend the envelope method to the natural
exponential family. Further research along this line is underway.
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COMMENT

Zhou Yu and Lixing Zhu

East China Normal University and Hong Kong Baptist University

We congratulate the authors for their path breaking work that provides us
new insight into multivariate linear regression. By introducing the envelope mod-
els, the authors open up an avenue toward efficient redundancy reduction. Our
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discussion here will focus on three issues: (1) intuition of efficiency gain; (2)
second order bias; (3) the envelope model with sparse structure.

1. Intuition of Efficiency Gain

The authors provide impressively strong supporting asymptotics that evi-
dences the significant benefits of the MLE from the envelope models. When Σ1

is assumed to be given, we can understand the theoretical conclusion in a more di-
rect and simple way. With Σ1, β̂em = PΣ1β̂fm leads to var[

√
nvec(β̂em)] = Σ−1

X ⊗
(PΣ1ΣPΣ1). Noting that PΣ1 = Σ†

1Σ1 = ΓΩ1/2(Ω1/2ΓTΓΩ1/2)−1Ω1/2ΓT =
ΓΓT = PΓ, and hence PΣ1ΣPΣ1 = PΓΣPΓ = Σ − QΓΣQΓ, it is then obvious
that var[

√
nvec(β̂em)] ≤ Σ−1

X ⊗ Σ = var[
√

nvec(β̂fm)]. When Σ1 needs to be es-
timated, it is not straightforward to arrive at the conclusion var[

√
nvec(β̂em)] ≤

var[
√

nvec(β̂fm)] because the estimator P̂Σ1 for PΣ1 plugged in β̂em would con-
tribute to the asymptotic variance of β̂em. However, with theoretical support as
in Theorem 5.1, the effect of variance inflation brought by P̂Σ1should be no
more than the oracle efficiency gain Σ−1

X ⊗ (QΓΣQΓ).

2. Second Order Bias

Although β̂em is attractive with smaller variance asymptotically than β̂fm,
β̂em is not an unbiased estimator as β̂fm is when the predictors vector X is
non-random. β̂em and P̂Σ1 should admit the following asymptotic expansions
respectively: β̂fm = β + β∗

fm and P̂Σ1 = +P∗
Σ1

+ P∗∗
Σ1

+ Op(n−3/2), where β∗
fm =

Op(n−1/2), P∗
Σ1

= Op(n−1/2), and P∗∗
Σ1

= Op(n−1/2). Moreover, E(β∗
fm) = 0 and

E(P∗
Σ1

) = 0. Then E(β̂em) = E(P̂Σ1β̂fm) = PΣ1β + [E(P∗∗
Σ1

β) + E(P∗
Σ1

β∗
fm)] +

O(n−3/2). The O(n−1) bias δ = E(P∗∗
Σ1

β) + E(P∗
Σ1

β∗
fm) may be non-negligible.

We conducted a small simulation with the same set-up as in Section 7.1 to com-
pare the biases of β̂fm and β̂em. Let β̂i

em’s be the sample estimators obtained
based on 200 replications, i = 1, · · · , 200. Then one can estimate the square bias
of β̂em simply as BIAS2(β̂em) = ‖(1/200)

∑200
i=1 β̂i

em − β‖2, where ‖.‖ is the Eu-
clidean matrix norm, see Li, Zha and Chiaromonte (2005). From the simulation
results reported in Table 1, it is clear that β̂fm is less biased than β̂em. In general,
the difference between the biases of β̂fm and β̂em gets smaller as the sample size
n increases, which justifies the large sample property.

Two standard approaches are proven to be successful in removing the lead-
ing bias. Let δ̂ be a consistent sample estimator of δ. A straightforward bias
corrected estimator for the envelope model is given by β̂BC-em = β̂em − δ̂, which
is unbiased to order O(n−1). Moreover, the mean squared error of β̂BC-em is
equal to that of β̂em to order O(n−2). Another way to remove the leading bias
term from β̂em is through a suitable modification of the score equation, see Firth
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Table 1. Comparison of biases (×10−3). Ω0 = σ2
0I9 and σ = 1.

n = 20 n = 30 n = 50 n = 100

σ0 = 0.5 BIAS2(β̂em) 1.6002 0.9890 0.4866 0.2106
BIAS2(β̂fm) 1.5562 0.9140 0.4739 0.1986

σ0 = 1 BIAS2(β̂em) 4.6689 3.7902 0.9210 0.8217
BIAS2(β̂fm) 4.4905 3.3266 0.8920 0.8055

σ0 = 2 BIAS2(β̂em) 10.661 7.0053 3.1738 1.1381
BIAS2(β̂fm) 8.0645 6.8613 3.1003 1.0332

(1993). It is well known that the bias corrected MLE is second order efficient
with respect to mean squared error criterion, see Efron (1975).

3. Envelope Model with Sparse Structure

Sparse penalized approaches for variable selection have generated much in-
terest, including least absolute shrinkage and selection operator (LASSO; Tibshi-
rani (1996)), smoothing clipped absolute deviation (SCAD; Fan and Li (2001))
estimator, Dantzig selector (Candés and Tao (2007)). We believe that these
promising variable selection methods can be applied to the envelope model, par-
ticularly when β is sparse in the sense that many of its elements are zero. We take
the Dantzig selector as an example to illustrate how its idea can be transplanted
into sparse envelope model. The Dantzig selector is designed to strike a balance
between nearly solving the score function of full linear model and minimizing the
`1 norm of regression coefficients. Let Ui and βT

i be the i-th column of U and
βT , respectively, for i = 1, · · · , r. The Dantzig selector solves βT

i by

min ‖βT
i ‖`1 , subject to‖FTFβT

i − FTUi‖`∞ ≤ λfm
i , i = 1, · · · , r,

where λfm
i is a tuning parameter that gives certain relaxation of the score equa-

tion. Note that when Σ1 is known, the score equation to solve βem is FTFβT
i −

FTUiPΣ1 = 0. Incorporating the Dantzig selector, the algorithm for estimating
parameters in sparse envelope models is modified a little as follows.

• A. Estimate β by the Dantzig selector β̂DS
fm . Obtain the residual covariance

matrix as Σres = n−1
∑n

i=1(Yi − β̂DS
fm Xi)(Yi − β̂DS

fm Xi)T .

• B. Do the same Step b of the original algorithm described in 4.3.

• C. Estimate β by the Dantzig selector with X as the predictor and P̂Σ1Y
as the predictor :

min ‖βT
i ‖`1 , subject to‖FTFβT

i − FTUiP̂Σ1‖`∞ ≤ λem
i , i = 1, · · · , r.

The solution for i-th direction is denoted by (β̂DS
em)T

i .
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Table 2. Simulation comparisons of β̂DS
em and β̂DS

fm .

Model i = 1 i = 2 i = 3 i = 4

MSE (β̂DS
em)T

i 0.4749 0.4545 0.4510 0.4611
(β̂DS

fm )T
i 0.8868 0.8473 0.8722 0.8666

TPR (β̂DS
em)T

i 1.0000 1.0000 1.0000 1.0000
(β̂DS

fm )T
i 1.0000 1.0000 1.0000 1.0000

FPR (β̂DS
em)T

i 0.0732 0.0747 0.0732 0.0724
(β̂DS

fm )T
i 0.0812 0.0815 0.0808 0.0827

• D. Do the same as Step d of the original algorithm described in 4.3.

The tuning parameters λfm
i and λem

i can be selected by minimizing the BIC crite-
rion proposed in Dicker and Lin (2009). Under the assumptions of the envelope
model, we believe that β̂DS

em is more efficient than β̂DS
fm . A simulation study is

presented to verify our conjecture. The results reported here were based on 200
replications from simulation models with n = 100, p = 110, r = 4, and u = 2.
The first ten elements of βT

1 were 1, and of βT
2 , −1. The eleventh to twentieth

elements of βT
3 were −1, and of βT

4 , 1. All the other elements of β were 0. We
took

ΓT =

(
1√
2

− 1√
2

0 0
0 0 − 1√

2
1√
2

)
.

Let σ2 = 1 and σ2
0 = 0.5. The variance of the error term was constructed as

Σ = σ2ΓΓT + σ2
0Γ0ΓT

0 . We employed mean squared error, the true positive
rate (TPR), and the false positive rate (FPR) as the performance measures to
compare β̂DS

em and β̂DS
fm for four directions. From Table 2, we can see that the

MSE of β̂DS
em was much less than that of β̂DS

fm . Moreover, while achieving the
same efficiency in selecting active predictors as β̂DS

fm , β̂DS
em was more efficient in

screening out inactive predictors.
The aforementioned approach to incorporate the Dantzig selector is useful

when β is sparse. For the envelope model, it would be more meaningful to
consider the case when Γ is sparse or, more precisely, when PΣ1 is sparse. In the
previous simulation study,

PΣ1 =


0.5 −0.5 0 0

−0.5 0.5 0 0
0 0 0.5 −0.5
0 0 −0.5 0.5

 .



992 R. DENNIS COOK, BING LI AND FRANCESCA CHIAROMONTE

However, a typical sample estimator for PΣ1 was:

P̂Σ1 =


0.4603 −0.4982 0.0142 −0.0032

−0.4982 0.5399 0.0023 −0.0139
0.0142 0.0023 0.5049 −0.4998

−0.0032 −0.0139 −0.4998 0.4949

 .

If the small coefficients, such as 0.0142 and −0.0032, can be shrunk to zero,
we believe the efficiency of MLE from the envelope model can be improved.
A possible LASSO type approach to obtain a regularized version of PΣ1 is by
minimizing the following objective function over the Grassmann manifold Gr×u:

log det(ΓT Σ̂resΓ) + log det(Γ0Σ̂YΓT
0 ) + λ

r∑
i=1

r∑
j=1

|(ΓΓT )ij |,

where λ is a tuning parameter. However, it is challenging to combine avail-
able algorithms for LASSO and the Stiefel Grassmann optimization algorithm to
solve such a problem. How to develop a feasible method both theoretically and
practically to regularize PΣ1 deserves further study. In general sparse cases, an
interesting extension is simultaneous regularization of β̂ and P̂Σ1 .

Lastly, we thank the authors again for their clear and imaginative work that
will stimulate plenty of future research, such as in quasi-likelihood and sufficient
dimension reduction, especially with multivariate responses.

Acknowledgement

The research was supported by a RGC grant from the Research Grants Coun-
cil of Hong Kong, Hong Kong, China, and a NSF grant from National Natural
Science Foundation of China (No. 10701035).

References

Candés, E. J. and Tao, T. (2007). The Dantzig selector: statistical estimation when p is much

larger than n (with discussion). Ann. Statist. 35, 2313-2351.

Dicker, L. and Lin, X. (2009). A large sample analysis of the Dantzig selector and extensions.

Unpublished manuscript.

Efron, B. (1975). Defining the curvature of a statistical problem (with application second-order

efficiency) (with discussion). Ann. Statist. 3, 1189-1242.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. J. Amer. Statist. Assoc. 96, 1348-1360.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80, 27-38.

Li, B., Zha, H. and Chiaromonte, C. (2005). Contour regression: a general approach to dimen-

sion reduction. Ann. Statist. 33, 1580-1616.



ENVELOPE MODELS 993

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser.

B 58, 267-288.

School of Finance and Statistics, East China Normal University, Shanghai 200062, China.

E-mail: yz19830224@gmail.com

Department of Mathematics, The Hong Kong Baptist University, Kowloon Tong, Hong Kong.

E-mail: lzhu@hkbu.edu.hk

(Received January 2010; accepted February 2010)

COMMENT

Yuexiao Dong and Li-Ping Zhu

Temple University and East China Normal University

The authors are to be congratulated on this groundbreaking work. Envelope
models are introduced to control over-parameterization in the classical multivari-
ate normal linear model. Substantial improvement by envelope models is shown
in terms of estimating efficiency over a wide range of applications. It is hard to
overstate the importance of multivariate linear regression as the cornerstone of
the multivariate analysis, and we have no doubt about the significant impact this
paper will have.

To get some insights into envelope models, we assume that X ∈ R1, Y ∈ Rr,
and ε ∈ Rr is normally distributed with mean 0 and unknown covariance Σ ≥ 0.
The asymptotic variance of the usual maximum likelihood estimate of β in the
multivariate normal linear model

Y = α + βX + ε (1)

is n−1 diag(Σ)/Var (X) for a sample of size n. However, this paper demonstrates
a surprising result that the estimation accuracy of β can be further improved if
we replace the original response Y by a proper combination Γ>Y. The key is to
find an orthogonal matrix (Γ,Γ0) ∈ Rr×r such that (i) span(β) ⊆ span(Γ), and
(ii) Γ>Y⊥⊥Γ>

0 Y|X, where the notation “⊥⊥” denotes independence. Model (1)
can now be recast as

PΓY = PΓα + βX + PΓε, and PΓ0Y = PΓα + PΓ0ε. (2)
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The joint likelihood function of (Γ,Γ0)>Y|X is the product of the likelihood func-
tion of Γ>Y|X and that of Γ>

0 Y|X, but only Γ>Y|X helps infer about β. With
a fixed Γ, the asymptotic variance of the maximum likelihood estimate of β based
on (2) becomes n−1 diag(PΓΣPΓ)/Var (X). Since Σ = PΓΣPΓ+PΓ0ΣPΓ0 , the
estimation accuracy of β is consequently improved by the transformed model.
The link between β and Σ is the envelope EΣ(β), or the intersection of all Γ’s
that satisfies (i) and (ii) simultaneously.

In particular, if X is categorical with two levels, the envelope models can be
used for classification. Specifically, we let µ0≡E(Y|X =0) and µ1≡E(Y|X =1),
which relates to model (1) by setting α = µ0 and β = µ1 − µ0. The classical
linear discriminant analysis classifies y to the reference population {X = 0} if

(µ0 − µ1)>Σ−1y >
1
2
(µ0 − µ1)>Σ−1(µ0 + µ1). (3)

Let Γ ∈ Rr×u, u ≤ r, denote a semi-orthogonal basis matrix for EΣ(β). Plug
Σ−1 = ΓΩ−1Γ> + Γ0Ω−1

0 Γ>
0 into (3), where Ω = Γ>ΣΓ and Ω0 = Γ>

0 ΣΓ0. We
have a new classification rule based on the envelope model

(µ0 − µ1)>ΓΩ−1Γ>y >
1
2
(µ0 − µ1)>ΓΩ−1Γ>(µ0 + µ1). (4)

The authors conjectured that classification based on (4) is more accurate than
that based on (3), especially when u ¿ r or the eigenvalues of Ω are substantially
larger than those of Ω0. In the sequel we examine this issue through synthetic
examples.

We generated X from a series of Bernoulli trials with probability of success
0.5. Set r = 10, α = µ0, and β = µ1 − µ0, where µ0 = (0, . . . , 0)>, µ1 =
(5, . . . , 5)> in model (1). The error ε was generated as normal with mean zero
and covariance matrix Σ = σ2ΓΓ> + σ2

0Γ0Ω−1
0 Γ>

0 , where σ2 = 52 and Γ =
(1, . . . , 1)/

√
10. We chose σ2

0 = 12, 52, and 92 to examine the effect of different
noise levels. We considered three scenarios for Ω0 = (ω0,ij)9×9: (i) ω0,ij takes 1 if
i = j and 0 otherwise; (ii) ω0,ij = 1/9

∑9
k=1 ZkiZkj where Zki’s are i.i.d standard

normal; and (iii) ω0,ij = 0.9|i−j|. To compare the classification rules (3) and (4),
we calculated the misclassification rates by using test data of size 100. The mean
misclassification rates are reported in Table 1. The standard deviations of the
mean rates were all within 0.005 and are omitted here.

We can see that part of the authors’ conjecture was confirmed: classification
based on the envelope model was better than the full model when the eigenvalues
of Ω were substantially larger than those of Ω0. This improvement was significant
when the sample size was small, and became less obvious as the sample size
increased. Note that the magnitude of the eigenvalues of Ω0 was compounded
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Table 1. Comparison of misclassification rates for the full model rule (3) and
envelope model rule (4) based on 500 repetitions. All numbers are reported
in %.

Ω0 Scenario (i) Scenario (ii) Scenario (iii)
Model Full Envelope Full Envelope Full Envelope

σ0 = 1
n = 50 8.758 5.884 8.582 5.842 8.610 5.878
n = 100 7.244 5.914 6.896 5.630 7.256 5.996
n = 500 5.914 5.594 5.700 5.580 5.952 5.712

σ0 = 5
n = 50 8.652 6.466 8.588 7.282 8.678 8.834
n = 100 7.192 6.816 7.058 6.578 6.966 7.256
n = 500 6.056 5.830 5.896 5.822 5.866 5.970

σ0 = 9
n = 50 8.670 12.272 8.676 15.236 8.692 19.638
n = 100 7.134 9.224 7.190 11.742 7.000 14.432
n = 500 5.854 6.378 6.054 7.108 6.066 8.968

by two factors: the noise level σ0 and the correlation structure in Ω0. The
eigenvalues of Ω0 tended to increase if either factor grew. We make the following
observations from these two aspects.

• The noise level σ0 in Σ affected the envelope model much more than the full
model. As σ0 increased, the misclassification rates based on the full model
stayed the same while the performance of the envelope model deteriorated
significantly. When σ0 = 1 (which is small relative to σ = 5), the misclassifi-
cation rates based on the envelope model were uniformly smaller than those
based on the full model. When σ0 was moderate, both models performed com-
paratively. However, when σ0 increased to 9, the envelope model performed
much worse than the full model.

• The envelope model was slightly more sensitive to correlation structure of
Ω0 in Σ than the full model. In scenarios (i) and (ii), the envelope model
performed better if σ0 was small or moderate. However, in the extreme sce-
nario (iii), where high correlation was present, the full model outperformed
the envelope model even with moderate noise level σ0 = 5. This indicates
that the envelope model possibly breaks down in terms of misclassification
rate due to strong correlation of ε. The authors have shown that stronger
correlation in ε makes the superiority of the envelope model more significant
in terms of estimation efficiency in the parameter estimating setting, while we
see the contrary was true in terms of misclassification rate in the discriminant
analysis setting when σ0 = 9.

The envelope model was better than the full model in terms of asymptotic
variance of the estimate of β in model (1). However, our observations indicate
that the superior performance of the envelope model for parameter estimation
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may not necessarily lead to better performance in the classification setting in
terms of misclassification rate. Some data driven methods, such as generalized
cross validation, might be used determine the better classification rule for any
particular problem.
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COMMENT

Heng-Hui Lue

Tunghai University

It is our great pleasure to congratulate the authors for making impressive
contributions to multivariate response regression problems. Over the past few
years, there has been a considerable amount of work in the dimension reduction
area (see Li, et al. (2003); Setodji and Cook (2004); Yoo and Cook (2007); Li,
Wen, and Zhu (2008) and references therein). The authors bring up a delicate
but potentially powerful idea: developing a parsimonious approach to maximally
reducing the number of parameters based on the minimal reducing subspace. The
authors also derive the asymptotic results that offer the possibility of properly
conducting statistical inferences on testing hypotheses in multivariate response
regressions. The simultaneous estimation of both the parameters and directional
components of the model leads to some significant benefits.

We have two comments on this work. The first concerns moderate violations
of the multivariate linear regression assumptions, e.g. heterogeneity and mono-
tonic nonlinearity. To evaluate the performance of estimation, we generate an
i.i.d. example from the heterogeneity model

Y1 = x1 + x2 + c ε1 exp{2(1 − x3)},
(1)

Y2 = x1 + x2 − c ε2 exp{2x3},

file:ydong@temple.edu
file:lpzhu@stat.ecnu.edu.cn


ENVELOPE MODELS 997

Table 1. Means and standard deviations of R2(b̂1) and R2(b̂2) for model (1)
by (a) mrSIR; (b) EM in 1,000 replications.

(a) (b)

n = 200 R2(b̂1) R2(b̂2) R2(b̂1) R2(b̂2)

c 0.10 0.05 0.025 0.10 0.05 0.025 0.10 0.05 0.025 0.10 0.05 0.025

mean 0.990 0.993 0.992 0.958 0.898 0.677 0.886 0.962 0.988 0.526 0.525 0.501

s.d. 0.007 0.006 0.054 0.033 0.105 0.261 0.168 0.079 0.037 0.283 0.285 0.298

n = 500 R2(b̂1) R2(b̂2) R2(b̂1) R2(b̂2)

c 0.10 0.05 0.025 0.10 0.05 0.025 0.10 0.05 0.025 0.10 0.05 0.025

mean 0.996 0.997 0.998 0.986 0.971 0.915 0.927 0.974 0.993 0.529 0.518 0.524

s.d. 0.003 0.002 0.002 0.010 0.021 0.078 0.125 0.056 0.016 0.292 0.304 0.307

where c is a tuning constant, and six coordinates of X, the rest of Yi’s, and εi’s
are independent standard normals. Set p = 6 and r = 5. Let β1 = (1, 1, 0, 0, 0, 0)′

and β2 = (0, 0, 1, 0, 0, 0)′ be the true directions. The data contain both linear
and exponential features. For simplicity, we abbreviate the envelope model as
EM and Lue’s as mrSIR (Lue (2009)). The performance is then compared with
mrSIR for illustration. We use an affine invariant criterion (Li (1991)), R2(b) =
maxβ∈B(b′β)2/(b′b · β′β), where B is the true dimension-reduction space, and we
emphasize the effectiveness of estimated sufficient dimension reduction directions.
The 1,000 datasets were then simulated from (1) with sample sizes n = 200 and
500. Table 1 summarizes the performance of the true direction estimation for
two methods. Lue’s estimates were close to the true directions except for the
case of n = 200 and c = 0.025, with means ranging from 0.898 to 0.998, whereas
the envelope model produced some bias in estimation. The best view for model
(1) with c = 0.05 in a single run is shown in Figure 1, which reveals a fan-shaped
pattern. The envelope model seems sensitive to the heteroscedasticity. Figure
2 shows the changes of means of R2(b̂j), for j = 1, 2, with n = 500, as p or r

increases. As expected, the trend was stable as r increased; however, it decreased
as p grew. Here we used the LDR-package for the envelope model (Cook, Forzani,
and Tomassi (2009)), which is available at http://sites.google.com/site/

lilianaforzani/ldr-package.
A second concern is with the asymptotic variance. We extend the asymptotic

variance for an estimated direction, obtained by Chen and Li (1998), from a
univariate response to multivariate responses. The result is described as follows.
Given the most predictable variates Y̌ = (Y̌1, · · · , Y̌L)′ and slices H = h1 × · · · ×
hL, for 1 ≤ L ≤ r, let δh(Y̌) = 1 if Y̌ falls into the hth slice, 1 ≤ h ≤ H,
and 0 otherwise. Let µh = E(X|δh(Y̌) = 1) and Ση =

∑H
h=1 ph(µh − EX)(µh −

http://sites.google.com/site/lilianaforzani/ldr-package
http://sites.google.com/site/lilianaforzani/ldr-package
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Figure 1. Best view for model 1 c = 0.05, r = 5, p = 6, and n = 500.

Figure 2. Means of R2. Left panel with p increasing; right panel with r increasing.

EX)′, where ph = Eδh(Y̌), and let ∆v = v̂i − vi and ṽi = Σ̂−1
X Σ̂ηvi, where

vi is the eigenvector for the eigenvalue decomposition Σηvi = λiΣXvi. If e is
any vector which is orthogonal to the effective dimension reduction space, then
we have e′∆v = λ−1

i e′ṽi + Op(n−1). To approximate the term e′ṽi, it can be
shown that e′ṽi = e′Σ̂−1

X n−1
∑n

j=1(Xj − X̄)Ti(Y̌j) + Op(n−1), where Ti(Y̌j) =
E(v′iX|Y̌j) = v′i

∑
h δh(Y̌j)µh is the transformation of Y̌j . For the residual ri =

Ti(Y̌)−ETi(Y̌)−b′i(X−EX), where bi is the slope of multiple linear regression for
Ti(Y̌), it is straightforward to obtain e′v̂i = λ−1

i n−1
∑n

j=1 rij e′Σ−1
X (Xj −EX) +

Op(n−1). When the error is homogeneous in the sense that cov(r2
i , [e

′Σ−1
X (X −

EX)]2) = 0, we have

var(e′v̂i) =
1 − λi

λi
n−1e′Σ−1

X e. (2)

Thus, we may use the diagonal elements of the covariance matrix in (2) as the
asymptotic variance of v̂i for inference.
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REJOINDER

R. Dennis Cook1, Bing Li2, Francesca Chiaromonte2 and Zhihua Su1

1University of Minnesota and 2Pennsylvania State University

We are grateful to the discussants for their encouraging reactions. We found
their comments to be stimulating, many pointing to fresh directions that suggest
envelopes may indeed have a place in the future of multivariate analysis. Since
it was not possible to respond usefully to all of the discussants’ comments, we
focused our reply on common themes.
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1. Advantages of Envelopes

We begin by considering circumstances under which envelopes might offer
an advantage over the standard likelihood analysis when model (3.2) holds. A
necessary condition to obtain an advantage is that u < min(r, p). When this
is the case envelopes perform asymptotically better than the standard analysis
simply because of parsimony; that is, because the envelope model comprises fewer
parameters. When β has full column rank, this necessary condition reduces to
u < p < r. Jia et al. reported simulation results for scenarios where u < p < r,
and where u < r < p and β has rank u.

However u < min(r, p), even when u ¿ min(r, p), in and of itself does not
guarantee substantial gains. Let ‖A‖ denote the spectral norm of the matrix A.
We have observed that the gains produced by envelopes are insubstantial when
‖Σ1‖ ≈ ‖Σ2‖, can be solid when ‖Σ1‖ À ‖Σ2‖, and are typically massive when
‖Σ1‖ ¿ ‖Σ2‖. The latter observation is supported by the relative efficiency
given in (6.6), and corroborated by both the simulations of Section 7.1 and the
analysis of the wheat protein data in Section 7.2. In the first simulation scenario
of Jia et al., neither ‖Σ1‖ nor ‖Σ2‖ dominate; consequently, we conjecture that
the results they report in Figure 2.1 are due primarily to parsimony. We were
encouraged by their simulation results overall, and anticipate that a stronger
relative performance for envelopes can be demonstrated when one matrix clearly
dominates, and in particular when ‖Σ1‖ ¿ ‖Σ2‖. In contrast, Ni controlled the
relative sizes of ‖Σ2‖ (his σ2

0) and ‖Σ1‖ (his σ2), and when σ0 À σ, observed
good relative performance for the envelope estimator in Figure 1(a). Indeed, the
peculiar dip in Figure 1(a) can be explained in light of our discussion around (6.6):
OLS and envelope estimators have equal asymptotic efficiency when σ0 = σ, but
otherwise the latter is characterized by smaller variation. Ni’s Figure 1(b) will
be discussed in Section 3.

During the past few months we have analyzed many data set from the lit-
erature, mostly with small to moderate values of r. In some cases envelopes
demonstrated no worthwhile gains over the standard analysis, in other cases
they provided modest but desirable gains, and in yet others they indeed pro-
vided massive gains. For example, we considered a small data set from Johnson
and Wichern (2008) comprising 42 air-pollution measurements recorded at noon
in Los Angeles on different days. We took wind speed and solar radiation as pre-
dictors (p = 2), and measurements for CO, NO, NO2, O3, and HC as responses
(r = 5). With u = 1, which is supported by the likelihood ratio test, the ratios
of the standard errors between the full model and the envelope model range from
1.80 to 176.98. In this example ‖Σ̂1‖ = 0.21 and ‖Σ̂2‖ = 31.06, again supporting
the notion that envelopes can give massive gains when ‖Σ1‖ ¿ ‖Σ2‖.
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Our experience in comparing envelopes with other methods through simula-
tions and data analysis led us to the empirical conclusion that, depending on u

and the relationship between Σ1 and Σ2, envelopes can perform about the same,
better, or much better than other methods in prediction and estimation. Indeed,
this conclusion seems to be supported by the simulation results reported by the
discussants.

Using an invariance argument, He and Zhou reasoned that the gains pro-
duced by envelopes arise from general benefits of shrinkage, rather than from
any intrinsic benefits of the envelope model per se. We agree that the notion
of shrinkage plays a role in enveloping, as does the related notion of data regu-
larization (see also discussion by Jia et al.). In fact, at the end of Section 1.1,
we explicitly discussed enveloping as means of regularization, which pursues a
measure of “eigen sparsity” through which the estimates are shrunk. In addition,
we find value in our original motivation (Section 1.1) for the envelope model as
a means of characterizing regressions in which the distribution of some linear
combinations ΓT

0 Y of the response does not change with the predictors. Shrink-
age and regularization can then be seen as ways to downweight or eliminate the
linear combinations that change relatively little.

We appreciate He and Zhou’s expression of Box’s memorable statement “All
models are wrong, but some are useful.” They rightly point out that if Σ is
chosen randomly from an absolutely continuous distribution, then β falling into
any lower-dimensional envelope is a zero-probability event. However, once more
echoing Box, one could go a step further and say that essentially all useful models
are zero-probability events. Take for example the sparse linear regression model
Y = βT X + ε where βj = 0 for a subset j ∈ J of the indexes {1, . . . , p}. Since
any proper subspace of Rp has Lebesgue measure 0, this model is also a zero-
probability event in terms of any probability distribution for β dominated by
this measure. Another example is the non-parametric variable selection model
Y X|Xj , j ∈ J , which again is a zero-probability event in the same sense and
for the same reason. Just which specific zero-probability event we should pay
attention to is a piece of transcendental intuition with which, we hope, nature
can strike a chord. We argue that assuming β to fall into a lower dimensional
envelope is at least as reasonable as assuming some components of β to be 0;
in fact, the latter is a special case of the former if the envelope is taken to be
the span of {ej : j ∈ J}, where ej indicates the vector whose jth component
is 1 and all other components are 0. In this sense, enveloping, shrinkage and
regularization are manifestations of the same basic philosophy.
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2. Partial Least Squares

In his discussion, Helland pointed out a very interesting and important con-
nection with Partial Least Squares (PLS). The model described by Helland is in
fact an envelope model, where the envelope is the one generated by the predictor
covariance matrix, ΣX = var(X). We discussed this model briefly in Section 8.4
and related it to our previous work in Cook, Li, and Chiaromonte (2007). How-
ever, the model at the core of our current article uses the envelope generated by
the error covariance matrix or, equivalently, by the conditional covariance matrix
of Y given X, Σ = ΣY|X = var(Y|X).

The connection between partial least squares and envelopes can be summed
up as follows. Let v1, . . . ,vr be the r eigenvectors of Σ = ΣY|X and let
w1, . . . ,wp be the p eigenvectors of ΣX . We are interested in the conditional
mean E(Y|X), which is a focal point of regression. Intuitively, not all of the
v’s or w’s are relevant to the regression. If all of the v’s, but only some of the
w’s, are relevant, then the model is related to partial least squares in the way
described by Helland. If all of the w’s, but only some of the v’s, are relevant,
then the model is the main envelope model described in our article, and it is not
directly related to partial least squares. As Helland pointed out, in the first case
there is an explicit solution that essentially coincides with the projection of the
least squares estimate onto the envelope. However, in the second case there is
no explicit solution, and numerical maximization over a Grassmann manifold, or
some other iterative algorithm, is necessary. Importantly, there is also a third
scenario: the one in which not all of the v’s and not all of the w’s are relevant to
the regression. This would induce further model reduction, and is a promising
field to explore – relatedly, we discussed the possibility of simultaneous envelopes
in Section 8.5.

Hung and Huang’s Proposition 1 is a nice addition to the tools for study-
ing envelopes. They used it as a foundation for combining PLS and envelopes
in a novel algorithm for prediction, as illustrated in their classification exam-
ple with the Support Vector Machine (SVM). The idea of applying PLS as an
initial reduction stage, followed by enveloping is indeed intriguing, particularly
for regressions where n ¿ p + r. Here we would like to make two points. First,
Chung and Keleş (2010) recently proved that the PLS estimator of the coefficient
vector in the univariate linear regression of Y ∈ R1 on X ∈ Rp is consistent when
p/n → 0, but inconsistent otherwise. As a consequence, we hesitate to use PLS
when n ¿ p + r, although this requires a more detailed study in view of the
results shown in Hung and Huang’s Figure 1(b).

Second, in our experience the relative performance of PLS and envelopes
again depends on the relationship between Σ1 and Σ2. To illustrate, we set
r = 1 and p = 7 and simulated (Y,X) as multivariate normal data, with the
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Figure 1. Simulation results for prediction error of envelope and PLS esti-
mators. The solid and dashed line represent prediction errors obtained with
enveloping and PLS, respectively.

ultimate goal of predicting the univariate response Y from u linear combinations
of the 7 predictors in X. We reduced the dimension of X by using an envelope for
the inverse regression of X on Y , essentially treating X as the response, and then
predicted using the linear regression of Y on Γ̂T X, the u linear combinations of
X arising from the estimated envelope. The performance of envelopes relative
to PLS in this setting is controlled by u and by the relationship between Σ1 and
Σ2, which now refer to the inverse regression of X on Y . In our simulations we
used n = 60, a true u = 2, and a Σ constructed to have eigenvalues about 0.05,
1.6, 3, 28, 80, 84 and 584. Results are shown in Figure 1, where the horizontal
axis is the dimension of the envelope employed on the data, as well as the number
of components used in PLS, and the vertical axis is the squared prediction error
determined by 5-fold cross validation. In the top panel of Figure 1, Σ1 captures
the eigenvalues 84 and 584, and enveloping does significantly better than PLS. In
the bottom panel, Σ1 captures the eigenvalues 80 and 84, and the performance
of the two approaches is essentially the same.

3. Computing

Many of the discussants raised the issue of computing, highlighting the fact
that Grassmann optimization can be quite slow when r is large. This arises in
part because the algebraic dimension of the Grassmann manifold is u(r − u);
if u = 50 and r = 100, our optimization is taking place essentially in R2500.
Our current code is useful for r up to 100 with modest values of u, but is still
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annoyingly slow in larger problems – although we are working on faster versions.
Local optima can also be an issue, mostly when the signal is weak.

Two packages, LDR and GrassmannOptim, are available for optimization
over Grassmann manifolds. LDR is written in Matlab and is available at

http://sites.google.com/sites/lilianaforzani/ldr-package.

This package implements many methods for sufficient dimension reduction, and
includes routines for envelope models which require analytic first derivatives and
use numerical second derivatives. As a consequence, starting at a root-n consis-
tent estimator results in a final estimator that is asymptotically equivalent to the
MLE, even if local optima are present (see, for example, Small, Wang, and Yang
(2000)). Nevertheless, like most programs for non-linear optimization, there is
no guarantee that it will always reach the global maximum. This might not be
worrisome in the analysis of a single data set where it is possible to study the
objective function. However, local optima can bias simulation results targeted
at the MLE and be quite annoying. GrassmannOptim is written in R and is
available at

http://CRAN.R-projects.org/package=GrassmannOptim.

While there are as yet no special routines for envelope models based on Grass-
mannOptim, one advantage of this package is that it contains an option for
simulated annealing that can avoid local optima at the expense of computing
time. Computing time can be quite substantial with both packages if r is large.

We were initially a bit perplexed by the results shown in Ni’s Figure 1(b).
His simulation model should satisfy the relative efficiency properties described in
(6.6), so enveloping should be asymptotically superior to ordinary least squares
(OLS) when σ0 6= σ1 – pointing to a disagreement between (6.6) and Ni’s Figure
1(b). To see if Ni’s routine might have gotten trapped in local optima, we reran
his simulation scenario with our code using the true Γ as the starting value. The
results, shown in Figure 2, agree qualitatively with the relative efficiency in (6.6).
It seems then that algorithms using random starting points might indeed be prone
to reaching local maxima. To investigate this further, we ran our code for Ni’s
simulation with σ = 3 and σ0 = 1, the right-most point in Ni’s Figure 1(b) –
results are shown in Figure 3. The means of Ni’s f(v), 0.996 for envelopes and
0.840 for OLS, correspond reasonably to those at the right-most point in Figure 2,
and the quality of the relative variations of the two estimators is predicted by
(6.6). We expect that our implementation of Grassmann optimization worked
well here because it includes an initial search over potential starting values for
Γ, including the eigenvectors of Σ̂Y. For instance, when σ = 3 and σ0 = 1 in

http://sites.google.com/sites/lilianaforzani/ldr-package.
http://CRAN.R-projects.org/package=GrassmannOptim.
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Figure 2. Rerun of Ni’s Figure 1(b) using Γ as the starting value. The
vertical axis is h(v) and the horizontal axis is σ. The solid and dashed line
correspond to enveloping and OLS, respectively.

(a) Envelopes (b) OLS

Figure 3. Histograms of f(v) from 100 runs with σ = 3 and σ0 = 1.

Ni’s simulation model, ΣY = 9.5ΓΓT + Γ0ΓT
0 , and the first eigenvector of Σ̂Y

provides a root-n consistent starting value.
Hung and Huang’s proposal of using PLS for preliminary reduction followed

by enveloping is appealing from a computational point of view. With this ap-
proach, they were able to analyze a classification problem with r = 15, 109, p = 5,
and u = 4, which we found to be impressive because it is not possible to handle
problems of this size with our current implementation of Grassmann optimiza-
tion. We expect that the numerical instability they noticed in their Figure 3 for
larger component numbers was caused by convergence to local optima, and does
not reflect an intrinsic property of envelopes. Issues related to local optima may
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also be the cause of the extra variation in envelope predictions observed by Jia
et al.

He and Zou’s use of canonical correlations for dimension reduction was mo-
tivated in part by computational simplicity and availability of standard software.
We would like to point out that indeed canonical correlations could be used for
preliminary reduction followed by enveloping, in much the same way that Hung
and Huang combined PLS and envelopes. Nevertheless, one possible criticism
of the C-estimator is that it fails to take into account the asymmetric nature of
regression; this is related to our rejoinder to Helland in Section 2. Since in regres-
sion we are often interested in estimating E(Y|X), dimension reduction for Y is
different in nature from dimension reduction for X. Using the cross-covariance
matrix of X and Y to generate the envelope upon which to project β treats X

and Y symmetrically. The C-estimator may be logically more appropriate in
contexts where X and Y do play symmetric roles.

Finally, Ni proposed an interesting algorithm based on one-at-a-time min-
imization over basis vectors. This algorithm also merits further study, but its
performance may depend heavily on having good starting values to avoid local
optima.

4. Extensions and Combinations

The discussants mentioned several thought-provoking ways in which envelop-
ing might be extended or combined with other methods. Wen’s result on Fisher
consistency of the envelope MLE under a misspecified link function is intriguing
because it suggests that there may well be a useful link-free version of envelop-
ing methodology. Along similar lines, Helland hinted that it may be possible to
adapt enveloping for application with generalized linear models.

He and Zhou expressed the view that “More efficient estimation is often
achieved without reliance on any formal dimension reduction method,” and went
on to illustrate their point by using a penalized full model log likelihood to
demonstrate that shrinkage can result in gains comparable to, or exceeding those
of enveloping. The differences between shrinkage and enveloping are certainly
worth exploring, but we emphasize that this is not an either-or situation; there
is nothing in principle that would prevent us from penalizing an envelope log
likelihood, thereby combining the benefits of both approaches.

Indeed, using a penalized envelope log likelihood is one of the proposals by
Yu and Zhu. We think that this is a promising direction to pursue. Consider, for
example, the penalty function ρ(Γ) = λ

∑r
i=1(ΓΓT )1/2

i,i , which is like the penalty
suggested by Yu and Zhu, except that only the diagonal terms are used. For
any orthogonal matrix O ∈ Ru×u, ρ(Γ) = ρ(ΓO), and consequently ρ depends
only on span(Γ). In effect, ρ penalizes the rows of Γ, and this is exactly what
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is needed to tell which responses are independent of changes in X. Chen, Zou,
and Cook (2010) used ρ in combination with standard methods like SIR and
SAVE to produce sparse estimates of the central subspace. They showed that
their penalized subspace estimator CISE possesses the oracle property, and that
it dominates various other methods, including methods that penalize individual
elements of Γ. This is a specific instance of the synergies that can be created be-
tween dimension reduction and penalization. X. Chen (personal communication)
has also conducted a small simulation study to explore the potential advantages
of using ρ in combination with enveloping based on minimizing

log det(ΓT Σ̂resΓ) + log det(ΓT
0 Σ̂YΓ0) + ρ(Γ)

over the Grassmann manifold Gr×u. Here too, the results support the notion of
a synergy between dimension reduction and penalization.

We framed our development in the context of the multivariate normal linear
model, but the underlying idea and formal definition of an envelope are based only
on moments and do not require normality. Consequently, we are free to pursue
envelope estimation in ways that rely less on an underlying distribution. Thinking
along these lines, we pose the following approach: For each fixed β ∈ Rr×p, let
v1(β), . . . ,vr(β) be the eigenvectors of

Σ̂(β) =
1
n

n∑
i=1

(Yi − βXi)(Yi − βXi)T .

We want β to be such that

1. (βX1, . . . , βXn) is as close to (Y1, . . . ,Yn) as possible, and

2. it is orthogonal to as many as eigenvectors v`(β) of Σ̂(β) as possible, so
that the remaining eigenvectors effectively form an envelope.

It therefore seems reasonable to minimize the objective function:
n∑

i=1

‖Yi − βXi‖2 +
r∑

`=1

λ`

√
vT

` (β)β(βT β)−1βv`(β).

Intuitively, minimizing this function would bring βX close to Y, and at the same
time force β to be orthogonal to a subset of the eigenvectors, depending on the
tuning parameters λ`.

One can also consider sparsity of X and eigen-sparsity of Y together – for
example by minimizing the function

n∑
i=1

‖Yi − βXi‖2 +
r∑

`=1

λ`

√
vT

` (β)β(βT β)−1βv`(β) +
r∑

k=1

p∑
`=1

τk`|βk`|.
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5. Discrimination

Hung and Huang and Dong and Zhu considered the value of enveloping in
the context of discrimination, although from different perspectives. Hung and
Huang demonstrated good performance of PLS and enveloping relative to SVM.

Dong and Zhu addressed directly a conjecture we made in Section 8.2;
namely, that when ‖Ω0‖ ¿ ‖Ω‖ (equivalently, ‖Σ2‖ ¿ ‖Σ1‖), misclassifica-
tion rates based on enveloping are substantially less than those based on Fisher’s
linear discriminant. The required relation here, ‖Σ2‖ ¿ ‖Σ1‖, is the reverse of
the most desirable relation ‖Σ1‖ ¿ ‖Σ2‖ considered in Section 1 of this rejoin-
der. Intuitively, the difference arises because, from a predictive point of view, the
roles of Y and X are reversed: In Section 1 we were concerned with predicting Y
from X, while discriminant analysis deals with predicting X from Y. We were
pleased to see that Dong and Zhu confirmed our conjecture with up to 30% gains
in prediction error for enveloping. However, similar to the circumstances sur-
rounding Ni’s Figure 1(b), we did not anticipate that enveloping would be inferior
to Fisher’s linear discriminant when ‖Σ1‖ ¿ ‖Σ2‖; that is, when σ0 À σ. Our
intuition suggests that the results shown in Dong and Zhu’s Table 1 for σ0 = 9
are again due to issues with starting values and local optima. To further explore
this, we reran two instances from their Table 1, both with n = 50 in scenario (i),
but using 2000 replications. In the first, we set σ0 = 1 and obtained misclassifi-
cation rates (Full, Envelope) = (8.707, 5.877), which agree well with their result
(Full, Envelope) = (8.758, 5.884). In the second instance, we set σ0 = 9 and ob-
tained (Full, Envelope) = (8.862, 9.089), which shows a much closer agreement
between the methods than does their result (Full, Envelope) = (8.670, 12.272).
We do not know why our results differ, but suspect the reason rests again oper-
ationally with starting values. In any case, we would like to emphasize that this,
too, is not an either-or situation. Fisher’s linear discriminant arises as a special
case of enveloping when u = r. Consequently, in practical problems we might
use cross-validation to choose u, perhaps arriving at Fisher’s discriminant when
‖Σ1‖ ¿ ‖Σ2‖, but typically using proper envelope classification (u < r) with
improved performance when ‖Σ2‖ ¿ ‖Σ1‖. Finally, revisiting a theme we intro-
duced in Section 4, penalization might be combined with envelope discrimination
to improve classification rates even further.

6. Other Issues

6.1. Second order bias

Yu and Zhu raised the possibility that there might be a worrisome second
order bias in the envelope estimator of β, and pointed to a couple of ways in
which this bias could be mitigated. However, judging form their numerical results
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in Table 1, the gain by bias correction seems to be modest in this instance.
The squared bias norms given in their Table 1 relate to β = (

√
10, . . . ,

√
10)T .

Assuming that each element of
∑200

i=1 βi
em − β has the same order of magnitude,

the element-wise bias they report in the worst case (σ0 = 2, n = 20) is only about
1% of the common element (

√
10) of β. A 1% bias will often be swamped by

variation, and may be unimportant for the scientific substance of a data analysis.
Nevertheless, we do not doubt that in general bias correction can be beneficial
for dimension reduction and for enveloping, particularly when the sample size is
small or moderate – as it is for classical inference.

6.2. Heterscedasticity

Lue and Su bring up the important issue of heteroscedasticity. Their simu-
lation results illuminate the following point. In any linear regression model, the
linear coefficient cannot fully recover a function of X in the variance of the error,
unless that function depends only on the effective predictor. More specifically,
consider the model

Y = βX + F(γT X)ε, (1)

where β ∈ Rr×p, γ ∈ Rp×s, ε ∼ N(0,Σ), F : Rs → Rr×r, and ε X. In this
model, unless span(γ) ⊆ span(βT ), no consistent estimator of β can fully recover
span(γ). Lue and Su’s model (1) is a special case of (1) with

β = (e1 + e2, e1 + e2,0,0,0)T , γ = e3.

Hence span(γ) ⊥ span(β), which falls in the described scenario. At the same
time, multivariate response SIR (mrSIR) is capable of recovering the directions
in the variance. We suspect that the same trend displayed in Table 1 of Lue
and Su’s comments would hold even if the true β were used in place of the MLE
under the envelope model. In this case, since span(γ) ⊥ span(β), information
about γ can only be found in the residuals.

Another interesting point related to Lue and Su’s discussion is how to con-
struct an envelope model when the conditional covariance matrix var(Y|X) de-
pends on X. In this case a reducing subspace S of var(Y|X) would also depend
on X. At present we do not yet have an answer to this question. The notion
underlying our envelope proposal is to link the regression mean structure with
the error covariance structure – positing that the former depends on X, while
the latter does not. This allows us to use Σ = var(Y|X) (constant with X) to
frame and focus inference on β, increasing efficiency under appropriate condi-
tions. Allowing Σ = var(Y|X) to vary with X would put us in a much more
general setting; intriguingly, this may both reduce and increase the gains accrued
by linking regression mean and error covariance. We consider this an open and
possibly promising avenue for further research.
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