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Abstract: A major complication in the analysis of recurrent event data from med-
ical studies is the presence of death. We consider the marginal mean function for

the cumulative number of recurrent events over time, acknowledging the fact that
death precludes further recurrences. We specify that covariates have multiplicative

effects on an arbitrary baseline mean function while leaving the stochastic structure

of the recurrent event process completely unspecified. We then propose estimators
for the regression parameters and the baseline mean function under this semipara-

metric model. The asymptotic properties of these estimators are established. Joint

inferences about recurrent events and death are also discussed. The finite-sample
behavior of the proposed inference procedures is assessed through simulation stud-

ies. An application to a well-known bladder tumor study is provided.
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1. Introduction

In many longitudinal studies, the event of interest may recur on the same
subject. Medical examples of recurrent events include repeated opportunistic
infections in HIV-infected subjects (Li and Lagakos (1997)), recurrent seizures in
epileptic patients (Albert (1991)) and tumor recurrences in cancer patients (Byar
(1980)). The recurrence of serious events often elevates the risk of death so that
the subject may experience death, which precludes further recurrent events.

The data on recurrent events provide richer information about disease pro-
gression than those of a single event. Statistical analysis of recurrent event data
has received tremendous attention. There exist regression methods for study-
ing the gap times between events (Prentice, Williams and Peterson (1981)), the
marginal hazards for individual recurrences (Wei, Lin and Weissfeld (1989)) and
the intensity/rate functions of the recurrent event process (Andersen and Gill
(1982), Pepe and Cai (1993), Lawless, Nadeau and Cook (1997), Lin, Wei, Yang
and Ying (2000)). All these methods, however, deal primarily with recurrent
events that are not terminated by death.

Some efforts have been put forth recently on the regression analysis of re-
current events in the presence of death. Li and Lagakos (1997) adapted the
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method of Wei et al. (1989) by treating death as a censoring variable for recur-
rent events, or by defining the failure time for each recurrence as the minimum
of the recurrent event time and survival time. Cook and Lawless (1997) stud-
ied the mean and rate functions of recurrent events among survivors at certain
time points. Neither of these two approaches yields results that pertain to the
subject’s ultimate recurrence experience.

In this article, we focus on the marginal mean of the cumulative number of
recurrent events over time. This mean function incorporates the fact that a sub-
ject who dies cannot experience further recurrent events and thus characterizes
the subject’s ultimate recurrence experience in the presence of death. Nonpara-
metric inferences for this mean function in the one- and two-sample settings
have recently been studied by Cook and Lawless (1997), Ghosh and Lin (2000)
and Strawderman (2000). In this article, we propose semiparametric regression
models which specify multiplicative covariate effects on the marginal mean func-
tion. We develop two procedures for estimating the regression parameters and
the mean function: one is based on the familiar inverse probability of censoring
weighting, and one is a novel approach based on modelling survival time. The
asymptotic and finite-sample properties of the resultant estimators are studied.
We also provide model checking techniques as well as methods for joint inferences
on the covariate effects for recurrent events and death.

In the next section, we present the semiparametric regression models for the
mean function along with the corresponding inference procedures. We report in
Section 3 on the results of some simulation studies. In Section 4, we apply the
proposed methods to data from a cancer clinical trial. Some concluding remarks
are made in Section 5.

2. Regression Methods

2.1. Data structures and regression models

Let N∗(t) be the number of recurrent events over the time interval [0, t], let D

be the survival time, and let Z be a p×1 vector of covariates. Naturally, a subject
who dies cannot experience further recurrent events so that N∗(t) does not jump
after D. We wish to formulate the effects of Z on the marginal distribution of
N∗(·) without specifying the nature of dependence among recurrent events, or
that between recurrent events and death. Define µZ(t) = E{N∗(t)|Z}, which is
the marginal expected number of recurrent events up to t associated with Z, and
which acknowledges the fact that there is no further recurrence after death. We
formulate µZ(t) through the semiparametric model

µZ(t) = eβ
T
0 Zµ0(t), (1)
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where µ0(·) is an unspecified continuous function, and β0 is a p × 1 vector of
unknown regression parameters.

It is implicitly assumed in the above description that covariates are time-
invariant. To accommodate time-varying covariates, we consider the rate func-
tion dµZ(t) ≡ E{dN∗(t)|Z(s) : s ≥ 0}, where Z(·) is a p-dimensional external
covariate process (Kalbfleisch and Prentice (1980, Section 5.2.1)). We then gen-
eralize (1) as follows

dµZ(t) = eβ
T
0 Z(t)dµ0(t). (2)

Under (2), µZ(t) =
∫ t

0
eβ

T
0 Z(s)dµ0(s), which reduces to (1) if covariates are all

time-invariant.
Models (1) and (2) specify that covariates have multiplicative effects on the

mean and rate functions of recurrent events, respectively, and are thus referred
to as the proportional means and rates models. In the absence of death, these
models have been studied by Pepe and Cai (1993), Lawless, Nadean and Cook
(1997) and Lin et al. (2000). The presence of death poses serious new challenges.

In most applications, the follow-up is limited so that N∗(·) may be censored.
In fact, it is the combination of censoring and death that creates the biggest
challenge in the estimation of models (1) and (2). Let C denote the follow-up
or censoring time. It is assumed that N∗(·) is independent of C conditional
on Z(·). Note that N∗(·) can only be observed up to C and that in general
only the minimum of D and C is known. Write X = D ∧ C, δ = I(D ≤ C) and
N(t) = N∗(t∧C), where a∧b = min(a, b) and I(·) is the indicator function. For a
random sample of n subjects, the data consist of {Ni(·),Xi, δi,Zi(·)}, i = 1, . . . , n.
Our task is to derive estimation procedures for β0 and µ0(·) of models (1) and
(2) based on {Ni(·),Xi, δi,Zi(·)}, i = 1, . . . , n.

2.2. Estimation method when censoring times are known

We first consider the simplified setting in which censoring times are known
for all subjects, including those who die during the study. This will be the case
if, for instance, censoring is caused solely by the termination of the study so
that Ci is the difference between the date of study termination and that of study
entry for the ith subject. One can then use the following estimating function to
estimate β0:

U(β) =
n∑

i=1

∫ τ∗

0

Zi(t) −
∑n

j=1 I(Cj ≥ t)Zj(t)eβ
T
Zj(t)∑n

j=1 I(Cj ≥ t)eβ
T
Zj(t)

 I(Ci ≥ t)dNi(t), (3)
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where τ∗ is a constant such that Pr(Ci ≥ τ∗) > 0, i = 1, . . . , n. Simple algebraic
manipulation yields

U(β0)=
n∑

i=1

∫ τ∗

0

Zi(t)−
∑n

j=1I(Cj≥ t)Zj(t)eβ
T
0Zj(t)∑n

j=1 I(Cj ≥ t)eβ
T
0 Zj(t)

I(Ci≥ t){dN∗
i (t)− eβ

T
0Zi(t)dµ0(t)},

which is a sum of integrals with respect to zero-mean processes. Using empirical-
process arguments such as those of Lin et al. (2000), one can show that n−1/2

U(β0) is asymptotically zero-mean normal, so that the solution to U(β0) = 0 is
consistent and asymptotically normal. In fact, the asymptotic results described
by Pepe and Cai (1993), Lawless et al. (1997) and Lin et al. (2000) are applicable
here because those results require only that the censoring times be known and
allow N∗(·) to be an arbitrary process satisfying model (2). Furthermore, the
Breslow-type estimator, as given in (2.3) of Lin et al. (2000), continues to be
consistent and asymptotically Gaussian.

In virtually all practical situations, there is potential loss to follow-up. Thus
in general, Ci is unknown if the ith subject dies before he/she is censored, and
(3) cannot be evaluated. We consider two modifications of (3) which replace
I(Ci ≥ t), i = 1, . . . , n, by observable quantities with the same expectations:
the first modification is related to the familiar inverse probability of censoring
weighting (IPCW) technique (Robins and Rotnitzky (1992)), and the second
involves modeling the survival distribution and is referred to as inverse probability
of survival weighting (IPSW).

2.3. IPCW method

Suppose that Ci, i = 1, . . . , n, have a common distribution with survival
function G(t) ≡ Pr(C ≥ t), and that C and D are independent. Consider the
quantity wi(t) = I(Ci ≥ Di ∧ t)G(t)/G(Xi ∧ t), which reduces to I(Ci ≥ t)
in the absence of death, i.e., Di = ∞. By the law of conditional expectations,
E {wi(t)} = E[E {I(Ci ≥ Di ∧ t)G(t)/G(Di ∧ t)|Di}] = G(t)E{G(Di∧t)/G(Di∧
t)} = G(t), which is the expectation of I(Ci ≥ t). Since G is unknown, but can
be estimated by the Kaplan-Meier estimator Ĝ say, we approximate wi(t) by
ŵi(t) ≡ I(Ci ≥ Di ∧ t)Ĝ(t)/Ĝ(Xi ∧ t).

It is possible to allow C to depend on Z(·) but require that C and D be con-
ditionally independent given Z(·). Define wC

i (t) = I(Ci ≥ Di ∧ t)G(t|Zi)/G(Xi ∧
t|Zi), where G(t|Z) is the survival function of C conditional on Z(·). Again, by
the law of conditional expectations, E{wC

i (t)|Zi} = G(t|Zi). It is convenient to
formulate G(t|Z) through the proportional hazards model (Cox (1972)):

λC(t|Z) = λC
0 (t)eγ

T
CZ(t), (4)
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where λC(t|Z) is the hazard function corresponding to G(t|Z), λC
0 (·) is an un-

specified baseline hazard function, and γC is a p × 1 vector of unknown re-

gression parameters. Let Ĝ(t|Z) = exp{− ∫ t
0 eγ̂

T
CZ(u)dΛ̂C

0 (u)}, where γ̂C and
Λ̂C

0 (·) are the maximum partial likelihood (Cox (1975)) and Breslow (1974)
estimators of γC and ΛC

0 (t) ≡ ∫ t
0 λC

0 (u)du. We then approximate wC
i (t) by

ŵC
i (t) ≡ I(Ci ≥ Di ∧ t)Ĝ(t|Zi)/Ĝ(Xi ∧ t|Zi), i = 1, . . . , n.

By replacing I(Ci ≥ t) in (3) with ŵC
i (t), i = 1, . . . , n, we obtain the following

estimating function for β0:

UC(β) =
n∑

i=1

∫ τ

0
{Zi(t) − ZC(β, t)}ŵC

i (t)dNi(t), (5)

where ZC(β, t)= S̃(1)(β, t)/S̃(0)(β, t), and S̃(k)(β, t)=n−1∑n
j=1ŵ

C
j (t)Zj(t)⊗keβ

T
Zj(t),

k = 0, 1, 2, with a⊗0 = 1, a⊗1 = a and a⊗2 = aaT . For technical reasons, the
constant τ > 0 is chosen such that Pr(Xi ≥ τ |Zi) > 0, i = 1, . . . , n. Let β̂C be
the solution to UC(β) = 0. The corresponding estimator of the baseline mean
function µ0(·) is given by the Breslow-type estimator

µ̂C
0 (t) ≡

n∑
i=1

∫ t

0

ŵC
i (u)dNi(u)

nS̃(0)(β̂C , u)
, 0 ≤ t ≤ τ, (6)

which, in the absence of death, reduces to (2.3) of Lin et al. (2000).

Remark 1. The replacement of I(Ci ≥ t) with ŵC
i (t) is reminiscent of the

inverse probability of censoring weighting (IPCW) technique (Robins and Rot-
nitzky (1992)), which has been used by various authors (e.g., Lin and Ying (1993),
Cheng, Wei and Ying (1995), Fine and Gray (1999)) in different contexts.

2.4. IPSW method

The IPCW method requires modeling the censoring distribution, which is a
nuisance. In this section we develop an alternative method that involves modeling
the survival distribution, which, unlike censoring, is of clinical interest. This
method also lends itself to the joint inferences of recurrent events and death to
be discussed in Section 2.8.

As in the previous section, we would like to replace I(Ci ≥ t) by an observable
quantity with the same expectation. Since Xi is always observed, we substitute
I(Xi ≥ t) for I(Ci ≥ t) in (3), and divide it by S(t|Zi) ≡ Pr(Di ≥ t|Zi).
Write wD

i (t) = I(Xi ≥ t)/S(t|Zi). Assume that D and C are independent
conditional on Z(·). It then follows that E{wD

i (t)|Zi} = E{I(Xi ≥ t)|Zi}/S(t|Zi)
= S(t|Zi)G(t|Zi)/S(t|Zi) = G(t|Zi).
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Remark 2. While it may be reasonable to assume that censoring is independent
of covariates, the same cannot be said of survival. Thus, we do not consider the
case in which survival does not depend on covariates.

We specify the proportional hazards model for the survival distribution:

λD(t|Z) = λD
0 (t)eγ

T
DZ(t), (7)

where λD(t|Z) is the hazard function corresponding to S(t|Z), λD
0 (t) is an unspec-

ified baseline hazard function, and γD is a p× 1 vector of regression coefficients.

Let Ŝ(t|Z) = exp{− ∫ t
0 eγ̂

T
DZ(u)dΛ̂D

0 (u)}, where γ̂D and Λ̂D
0 (t) are the maximum

partial likelihood and Breslow estimators of γD and ΛD
0 (t) ≡ ∫ t

0 λD
0 (u)du. We

then approximate wD
i (t) by ŵD

i (t) ≡ I(Xi ≥ t)/Ŝ(t|Zi) and modify (3) as

UD(β) =
n∑

i=1

∫ τ

0
{Zi(t) − ZD(β, t)}ŵD

i (t)dNi(t), (8)

where ZD(β, t)=Ŝ(1)(β, t)/Ŝ(0)(β, t), and Ŝ(k)(β, t)=n−1∑n
j=1ŵ

D
j (t)Zj(t)⊗keβ

T
Zj(t),

k = 0, 1, 2. Let β̂D be the solution to UD(β) = 0. The corresponding estimator
of µ0(·) is given by

µ̂D
0 (t) ≡

n∑
i=1

∫ t

0

ŵD
i (u)dNi(u)

nŜ(0)(β̂D, u)
, 0 ≤ t ≤ τ. (9)

Remark 3. We refer to the technique used in (8) and (9) as the inverse probabil-
ity of survival weighting (IPSW), which shares the spirit of the IPCW technique.

2.5. Asymptotic results for the IPCW method

We impose regularity conditions, similar to those of Andersen and Gill (1982,
Thm 4.1).
A. {Ni(·),Xi, δi,Zi(·)} (i=1,. . ., n) are independent and identically distributed

(i.i.d.).
B. There exists a τ > 0 such that P (Xi ≥ τ |Zi) > 0 (i = 1, . . . , n).
C. Ni(τ), i = 1, . . . , n, are bounded.
D. Zi(·), i = 1, . . . , n, have bounded total variations, i.e., |Zji(0)|+

∫ τ
0 |dZji(t)|≤

K for all j = 1, . . . , p and i = 1, . . . , n, where Zji is the jth component of Zi

and 0 < K < ∞.
E. A ≡ E[

∫ τ
0 {Z(t) − z(β0, t)}⊗2G(t|Z)eβ

T
0 Z(t)dµ0(t)] is positive definite, where

z(β, t) is the limit of ZC(β, t).
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It is useful to introduce notation: for i = 1, . . . , n, let

Mi(t) =
∫ t

0
wC

i (u){dNi(u) − eβ
T
0 Zi(u)dµ0(u)}, (10)

NC
i (t) = I(Xi ≤ t, δi = 0), and MC

i (t) = NC
i (t) − ∫ t

0 Yi(u)eγ
T
CZi(u)λC

0 (u)du,

where Yi(t) = I(Xi ≥ t). Also, let M̂i(t) =
∫ t
0 ŵC

i (u){dNi(u) − eβ̂
T
CZi(u)dµ̂C

0 (u)},
and M̂C

i (t) = NC
i (t) − ∫ t

0 Yi(u)eγ̂
T
CZi(u)dΛ̂C

0 (u). We first state the asymptotic
properties of β̂C .

Theorem 1. The estimator β̂C is strongly consistent, i.e., β̂C →a.s. β0. Fur-
thermore, n1/2(β̂C−β0) converges in distribution to a zero-mean normal random
vector with a covariance matrix that can be consistently estimated by Â−1

C Σ̂CÂ−1
C ,

where ÂC = −n−1∂UC(β̂C)/∂β, Σ̂C = n−1 ∑n
i=1(η̂

C
i +ψ̂C

i )⊗2, η̂C
i =

∫ τ
0 {Zi(t)−

ZC(β̂C , t)}dM̂i(t),

ψ̂C
i =

∫ τ

0
B̂C

{
Zi(t) − R̂(1)(γ̂C , t)

R̂(0)(γ̂C , t)

}
dM̂C

i (t) +
∫ τ

0

q̂C(t)
R̂(0)(γ̂C , t)

dM̂C
i (t),

B̂C = −n−1
n∑

i=1

∫ τ

0
{Zi(t) − ZC(β̂C , t)}ĝC(Xi, t;Zi)T Ω̂−1

C I(t > Xi)dM̂i(t),

ĝC(Xi, t;Zi) =
∫ t

Xi

eγ̂
T
CZi(u)

{
Zi(u) − R̂(1)(γ̂C , u)

R̂(0)(γ̂C , u)

}
dΛ̂C

0 (u),

q̂C(t) = −n−1
n∑

i=1

∫ τ

0
{Zi(u) − ZC(β̂C , u)}eγ̂T

CZi(t)I(u ≥ t > Xi)dM̂i(u),

Ω̂C = n−1
n∑

i=1

∫ τ

0

R(2)(γ̂C , t)
R(0)(γ̂C , t)

−
{

R(1)(γ̂C , t)
R(0)(γ̂C , t)

}⊗2
 dNC

i (t),

and R̂(k)(γ, t) = n−1 ∑n
j=1 Yj(t)Zj(t)⊗keγ

T Zj(t), k = 0, 1, 2.

The proofs of theorems are relegated to the Appendix.

Remark 4. If ŵC
i (t), i = 1, . . . , n, in (5) are replaced by ŵi(t), then the conclu-

sion of Theorem 1 continues to hold, but with

η̂C
i =

∫ τ

0

Zi(t)−
∑n

j=1ŵj(t)Zj(t)eβ̂
T
CZj(t)∑n

j=1 ŵj(t)eβ̂
T
CZj(t)

dM̃i(t), ψ̂C
i =

∫ τ

0

q̂(t)∑n
j=1Yj(t)

dM̃C
i (t),

where

q̂(t) = −n−1
n∑

i=1

∫ τ

0

Zi(u)−
∑n

j=1ŵj(u)Zj(u)eβ̂
T
CZj(u)∑n

j=1 ŵj(u)eβ̂
T
CZj(u)

 I(u≥ t>Xi)dM̃i(u),
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M̃i(t) =
∫ t

0
ŵi(u){dNi(u)−eβ̂

T
CZi(u)dµ̃C

0 (u)}, M̃C
i (t)=NC

i (t)−
∫ t

0
Yi(u)dΛ̃C

0 (u),

µ̃C
0 (t) =

n∑
i=1

∫ t

0

ŵi(u)dNi(u)∑n
j=1 ŵj(u)eβ̂

T
CZj(u)

, Λ̃C
0 (t) =

n∑
i=1

∫ t

0

dNC
i (u)∑n

j=1 Yj(u)
.

The proof for this result is similar to, but simpler than, the proof of Theorem 1.

We describe below the asymptotic properties of µ̂C
0 (t).

Theorem 2. The process n1/2{µ̂C
0 (t) − µ0(t)}, 0 ≤ t ≤ τ , converges weakly to

a mean-zero Gaussian process whose covariance function at (s, t) can be consis-
tently estimated by ξ̂C(s, t) ≡ n−1 ∑n

i=1 φ̂C
i (s)φ̂C

i (t), where

φ̂C
i (t)=

∫ t

0

dM̂i(u)
S̃(0)(β̂C , u)

+
∫ τ

0

p̂C
1 (u, t)

R̂(0)(γ̂C , u)
dM̂C

i (u)

+
∫ τ

0
p̂C

2(t)T
{
Zi(u)−R̂(1)(γ̂C , u)

R̂(0)(γ̂C , u)

}
dM̂C

i (u)+HT
C(β̂C , t)Â−1

C n−1/2
n∑

j=1

(η̂C
j +ψ̂C

j ),

HC(β, t) = − ∫ t
0 ZC(β, u)dµ̂C

0 (u),

p̂C
1 (u, t) = −n−1

n∑
i=1

∫ t

0

I(s ≥ u > Xi)eγ̂
T
CZi(u)

S̃(0)(β̂C , s)
dM̂i(s),

p̂C
2 (t) = −n−1

n∑
i=1

∫ t

0

I(u > Xi)ĝC(Xi, u;Zi)T Ω̂−1
C

S̃(0)(β̂C , u)
dM̂i(u).

The asymptotic normality of µ̂C
0 (t), together with the consistent variance

estimator ξ̂C(t, t), allows one to construct confidence intervals for µ0(t). Since
µ0(t) is nonnegative, we consider the transformed variable n1/2[log {µ̂C

0 (t)} −
log{µ0(t)}], which has a distribution asymptotically equivalent to n1/2{µ̂C

0 (t) −
µ0(t)}/µ0(t) provided µ0(t) > 0. With the log-transformation, an approximate

(1−α) confidence interval for µ0(t) is given by µ̂C
0 (t)e±n−1/2zα/2ξ̂

1/2
C (t,t)/µ̂C

0 (t), where
zα/2 denotes the 100(1 − α/2) percentile of the standard normal distribution.

2.6. Asymptotic results for the IPSW method

We again impose regularity conditions A–E given in Section 2.5. Since wC
i (t)

and wD
i (t) have the same expectation, z(β, t) is also the limit of ZD(β, t). For i =

1, . . . , n, let ND
i (t) = I(Xi≤ t, δi = 1), MD

i (t) = ND
i (t)−∫ t

0 Yi(u)eγ
T
DZi(u)dΛD

0 (u)

and M †
i (t)=

∫ t
0wD

i (u){dNi(u)−eβ
T
0Zi(u)dµ0(u)}. Also, let M̂ †

i (t)=
∫ t
0 ŵD

i (u){dNi(u)

−eβ̂
T
DZi(u)dµ̂D

0 (u)}, and M̂D
i (t)=ND

i (t)−∫ t
0 Yi(u)eγ̂

T
DZi(u)dΛ̂D

0 (u). The asymp-
totic properties for β̂D and µ̂D

0 (·) are stated in the following theorems.
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Theorem 3. The estimator β̂D is strongly consistent. The random vector
n1/2(β̂D − β0) converges in distribution to a zero-mean normal random vec-
tor with a covariance matrix that can be consistently estimated by Â−1

D Σ̂DÂ−1
D ,

where ÂD =−n−1∂UD(β̂D)/∂β, Σ̂D = n−1 ∑n
i=1(η̂

D
i +ψ̂D

i )⊗2, η̂D
i =

∫ τ
0 {Zi(t)−

ZD(β̂D, t)}dM̂ †
i (t),

ψ̂D
i =

∫ τ

0
B̂D

{
Zi(t) − R̂(1)(γ̂D, t)

R̂(0)(γ̂D, t)

}
dM̂D

i (t) +
∫ τ

0

q̂D(t)
R̂(0)(γ̂D, t)

dM̂D
i (t),

B̂D = n−1
n∑

i=1

∫ τ

0
{Zi(t) − ZD(β̂D, t)}ĝD(t;Zi)T Ω̂−1

D dM̂ †
i (t),

ĝD(t;Zi) =
∫ t

0
eγ̂

T
DZi(u)

{
Zi(u) − R̂(1)(γ̂D, u)

R̂(0)(γ̂D, u)

}
dΛ̂D

0 (u),

q̂D(t) = n−1
n∑

i=1

∫ τ

0
{Zi(u) − ZD(β̂D, u)}eγ̂T

DZi(t)I(u ≥ t)dM̂ †
i (u),

Ω̂D = n−1
n∑

i=1

∫ τ

0

R(2)(γ̂D, t)
R(0)(γ̂D, t)

−
{

R(1)(γ̂D, t)
R(0)(γ̂D, t)

}⊗2
 dND

i (t).

Theorem 4. The process n1/2{µ̂D
0 (t) − µ0(t)}, 0 ≤ t ≤ τ , converges weakly to

a mean-zero Gaussian process whose covariance function at (s, t) can be consis-
tently estimated by ξ̂D(s, t) ≡ n−1 ∑n

i=1 φ̂D
i (s)φ̂D

i (t), where

φ̂D
i (t)=

∫ t

0

dM̂ †
i (u)

Ŝ(0)(β̂D, u)
+

∫ τ

0

p̂D
1 (u, t)

R̂(0)(γ̂D, u)
dM̂D

i (u)

+
∫ τ

0
p̂D

2 (t)T
{
Zi(u)−R̂(1)(γ̂D, u)

R̂(0)(γ̂D, u)

}
dM̂D

i (u)+HT
D(β̂D, t)Â−1

D n−1/2
n∑

j=1

(η̂D
j +ψ̂D

j ),

HD(β, t) = − ∫ t
0 ZD(β, u)dµ̂D

0 (u),

p̂D
1 (u, t)=n−1

n∑
i=1

∫ t

0

eγ̂
T
DZi(u)

Ŝ(0)(β̂D, s)
I(s≥u)dM̂ †

i(s), p̂D
2 (t)=n−1

n∑
i=1

∫ t

0

ĝD(u;Zi)T Ω̂−1
D

Ŝ(0)(β̂D, u)
dM̂ †

i(u).

Confidence intervals for µ0(t) based on µ̂D
0 (t) and ξ̂

1/2
D (t, t) can be constructed

in a manner similar to that described in Section 2.5. In many applications, it is
desirable to estimate the mean function µz(t) for subjects with specific covariate
values z. If all the covariates are centered at z, then µ0(t) corresponds to µz(t).
Thus, one can obtain point and interval estimates for µz(t) by using the formulae
for µ̂C

0 (t) or µ̂D
0 (t), upon replacing (Z1, . . . ,Zn) with (Z1 − z, . . . ,Zn − z) in the

dataset.
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2.7. Model checking techniques

The IPCW and IPSW methods involve fitting models (4) and (7) for the
censoring and survival distributions, respectively. Existing goodness-of-fit meth-
ods for the proportional hazards model with univariate right-censored data (e.g.,
Schoenfeld (1982); Therneau, Grambsch and Fleming (1990); Lin, Wei and Ying
(1993)) can be used to check the adequacy of these models.

Here we develop goodness-of-fit techniques for models (1) and (2). For sim-
plicity of description, we assume that the IPCW method is used, although the
techniques apply to the IPSW method as well. Because Mi(t), i = 1, . . . , n; 0 ≤
t ≤ τ , are zero-mean processes representing the differences between the observed
and expected values of N∗

i (t), it is natural to use M̂i(t)’s as the goodness-of-fit
measures. Let M̂i ≡ M̂i(τ), i = 1, . . . , n, and assume that covariates are all
time-invariant. To check the functional form of the jth component of Z, we plot
M̂i versus Zji, and compute a smoothed estimate, say using locally weighted
least squares (Cleveland (1979)). If the functional form is appropriate, then the
smoothed line should be close to zero for all values of Zji; otherwise, one would
expect a systematic trend. Likewise, to check the exponential link function, we
plot M̂i versus β̂T

CZi.
To check the proportional rates/means assumption with respect to the jth

component of Z, we plot ∆UC
j (β̂C , t) versus t, where ∆UC

j (β, t) is the increment
in UC

j (β, t), the jth component of

UC(β, t) ≡
n∑

i=1

∫ t

0
{Zi(u) − ZC(β, u)}ŵC

i (u)dNi(u).

A lowess smooth based on the scatter plot is computed. If the estimated smooth
is centered around zero for all t, then the assumption of proportionality is deemed
reasonable. This procedure is similar in spirit to that of Schoenfeld (1982) for
checking the proportional hazards assumption.

2.8. Joint inferences on covariate effects for recurrent events and death

There are two major reasons for simultaneously assessing the effects of co-
variates on recurrent events and death. First, survival time is of key interest
in medical studies. Second, the marginal mean function of recurrent events is
affected by the survival distribution. The survival distribution and the marginal
mean function of recurrent events jointly characterize the subject’s clinical expe-
rience.

In this section, we offer two strategies for performing joint inferences under
models (2) and (7). We assume that the IPSW method is used for model (2),
although the ideas presented here also apply to the IPCW method. To simplify
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our presentation, we assume that Z consists of a single covariate. Let θ =
(β0, γD)T and θ̂ = (β̂D, γ̂D)T .

For our first strategy we assume, for simplicity, that β0 ≤ 0 and γD ≤
0. Define the hypotheses H10 : β0 = 0 and H20 : γD = 0. We can test the
hypotheses sequentially against one-sided alternatives along the lines of Wei, Lin
and Weissfeld (1989). Let β̃D and γ̃D denote the standardized values of β̂D and
γ̂D. We suppose without loss of generality that β̃D < γ̃D. Let (V1, V2) be a
bivariate zero-mean normal vector with unit variances and with a correlation
equal to the estimated covariance between β̃D and γ̃D. Then we reject H10 if
Pr{min(V1, V2) ≤ β̃D} ≤ α; if H10 is rejected, we reject H20 if Pr(V2 ≤ γ̃D) ≤ α.
It can be shown that the overall type I error for this multiple testing procedure
is α. A similar procedure can be developed for two-sided alternatives.

For the second inference strategy, suppose that β0 = γD = η. Then it is nat-
ural to estimate η by a linear combination of β̂D and γ̂D, i.e., η̂ = c1β̂D + c2γ̂D,
where c1 + c2 = 1. Let V̂ denote the estimated covariance matrix between
β̂D and γ̂D, and e = (1, 1)T . It can be shown that the choice of (c1, c2)T ≡
(eT V̂−1e)−1V̂−1e yields an estimator of η that has the smallest asymptotic vari-
ance among all linear combinations of β̂D and γ̂D (Wei and Johnson (1985)).
Although it might be unrealistic to expect β0 = γD exactly, the Wald statistic
based on η̂ is always valid and potentially more powerful than separate tests in
testing the null hypothesis of β0 = γD = 0.

While we consider joint estimation procedures here, the interpretations of
covariate effects on recurrences and death are based on the marginal models we
are fitting. For example, if β0 < 0 and γD < 0, then treatment decreases the
mean number of recurrences and increases survival.

3. Simulation Studies

Extensive simulation studies were performed to assess the finite-sample be-
havior of the proposed inference procedures. In the ones reported here, Z is a
0/1 treatment indicator. Note that

µZ(t) =
∫ t

0
S(u|Z)dR(u|Z), (11)

where S(t|Z) = Pr(D ≥ t|Z) and dR(t|Z) = E{dN∗(t)|D ≥ t, Z}. The specifica-
tion of S(t|Z) and dR(t|Z) induces a regression model for µZ(t). We considered
the following models:

λD(t|Z, v ) = veγDZλD
0 (t) (12)

dR(t|Z, v) = veβRZdR0(t), (13)

where γD and βR are regression parameters, and v is a frailty term that in-
duces dependence among recurrences and death. For the cases considered in this
section, γD in (12) will have the same meaning as it does in (7).
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If γD = 0 in (12), then the induced model for µZ(t) is given by

µZ(t) = eβ0Zµ0(t), (14)

where β0 = βR and µ0(t) is a function of λD
0 (t), dR0(t) and the density of v.

Clearly, (14) is a special case of (1).
In our first set of simulation studies, we generated data from (12) and (13)

with γD = 0, λD
0 (t) = 0.25, R0(t) = t, βR = 0.5, and v a gamma variable

with mean 1 and variance σ2. The parameter σ2 controls the correlation among
recurrences and death, the correlation being 0 under σ2 = 0. We considered
σ2 = 0, 0.25, 0.50, 1.0. Censoring was generated from (4) with λC

0 (t) = 0.25 and
γC = 0 or 0.2, yielding approximately two observed recurrences per subject.
We considered sample sizes n = 50, 100, 200. For each setting, 1000 simulation
samples were generated. The results are presented in Table 1.

Table 1. Simulation results for the IPCW method.
Based on ŵi(t) (i = 1, . . . , n) Based on ŵC

i (t) (i = 1, . . . , n)

γC = 0 γC = 0 γC = 0.2

n σ2 Bias SE SEE CP Bias SE SEE CP Bias SE SEE CP

50 0 0.00 0.230 0.217 0.938 -0.02 0.214 0.201 0.940 -0.01 0.364 0.344 0.930

50 0.25 -0.01 0.281 0.267 0.937 -0.01 0.245 0.232 0.939 -0.03 0.597 0.561 0.930

50 0.5 0.02 0.307 0.311 0.940 0.01 0.260 0.245 0.938 0.01 0.577 0.541 0.929

50 1 -0.01 0.398 0.374 0.934 0.00 0.315 0.297 0.939 0.00 0.397 0.385 0.931

100 0 0.00 0.157 0.154 0.945 0.01 0.150 0.147 0.941 -0.01 0.254 0.240 0.942

100 0.25 0.00 0.192 0.191 0.943 0.00 0.165 0.159 0.943 0.01 0.419 0.401 0.941

100 0.5 0.00 0.222 0.220 0.942 0.01 0.183 0.178 0.945 -0.01 0.388 0.362 0.940

100 1 0.01 0.273 0.269 0.940 -0.01 0.222 0.215 0.944 -0.02 0.330 0.320 0.939

200 0 0.00 0.105 0.104 0.947 0.00 0.105 0.104 0.948 0.00 0.182 0.177 0.944

200 0.25 0.00 0.138 0.137 0.949 0.01 0.122 0.119 0.947 0.00 0.290 0.284 0.945

200 0.5 0.00 0.163 0.161 0.948 0.00 0.131 0.130 0.949 -0.02 0.284 0.281 0.946

200 1 0.01 0.194 0.195 0.950 0.00 0.158 0.155 0.948 0.00 0.196 0.190 0.944

Note: Bias is the mean of the estimator of β0 minus β0; SE is the standard error

of the estimator of β0; SEE is the mean of the standard error estimator; CP is the

coverage probability of the 95% Wald confidence interval.

The results indicate that the IPCW estimators are virtually unbiased. The
standard error estimators reflect well the true variabilities of the parameter es-
timators, and corresponding confidence intervals have reasonable coverage prob-
abilities, at least for n ≥ 100. The accuracy of the asymptotic approximation
does not appear to depend appreciably on the amount of correlation between the
terminal and recurrent event processes. When γC = 0, it is valid to use (5) with
either ŵi(t) or ŵC

i (t), i = 1, . . . , n. The results of Table 1 show that the use of
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ŵC
i (t), i = 1, . . . , n, in this situation leads to greater efficiency relative to the use

of ŵi(t), i = 1, . . . , n.
We also evaluated the IPSW method in our simulation studies. The im-

plementation of this method requires that both (7) and (12) hold. This can
be achieved by generating v from the positive stable distribution with Laplace
transform exp(−vρ), ρ ∈ (0, 1]. The gap time between any two successive events
and the survival time have a Kendall’s tau correlation of 1 − ρ.

Model (12) implies that S1(t|v) = S0(t|v)exp(γD), where Sk(t|v)=exp{−∫ t
0λD

(u|v, Z = k)du}, k = 0, 1. If

dR(t|v, Z = 1) = vS0(t|v)1−exp(γD)eβ0dR0(t), (15)

then the induced model for µZ is again in the form of (14).
In this set of simulation studies, we generated survival times from (12) with

γD = 0.2 and λD
0 (t) = 0.25, and conditional recurrence rate from (15) with

R0(t) = t and β0 = 0.5 or 0.2. We considered sample sizes n = 50, 100, 200 and
correlations, in terms of Kendall’s tau, of 0, 0.15, 0.30 and 0.5. The censoring
times were generated from an independent uniform (0,5) variable, resulting in
about two observed recurrences per subject. For each simulation setting, 1000
samples were obtained. The results are shown in Table 2.

Table 2. Simulation results for the IPSW method.

γD = 0.2, β0 = 0.5 γD = β0 = 0.2
n KT Bias SE SEE CP Bias SE SEE CP

50 0 0.03 0.247 0.231 0.928 0.01 0.191 0.180 0.937
50 0.15 0.00 0.244 0.239 0.937 0.01 0.188 0.178 0.935
50 0.30 -0.01 0.249 0.242 0.929 0.01 0.193 0.184 0.933
50 0.5 0.00 0.353 0.339 0.933 -0.02 0.220 0.206 0.937

100 0 0.03 0.194 0.184 0.939 0.00 0.139 0.136 0.940
100 0.15 0.01 0.186 0.180 0.940 0.02 0.155 0.149 0.941
100 0.30 -0.01 0.194 0.188 0.940 0.01 0.163 0.159 0.942
100 0.5 0.01 0.255 0.245 0.940 -0.01 0.182 0.177 0.942

200 0 0.01 0.120 0.118 0.947 0.00 0.096 0.095 0.947
200 0.15 0.00 0.119 0.114 0.944 0.00 0.098 0.094 0.946
200 0.30 0.00 0.124 0.122 0.946 0.01 0.101 0.098 0.946
200 0.5 0.00 0.175 0.171 0.946 0.00 0.120 0.119 0.947
Note: KT represents Kendall’s tau. Under γD = 0.2 and β0 = 0.5, the
method of §2.6 is used; under γD = β0 = 0.2, the method of §2.8 is used.
Bias is the mean of the estimator of β0 minus β0; SE is the standard error
of the estimator of β0; SEE is the mean of the standard error estimator; CP
is the coverage probability of the Wald 95% confidence interval.
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Based on these results, the IPSW method appears to perform similarly to
the IPCW method with ŵC

i (t), i = 1, . . . , n. There is a substantial decrease in
the standard error if information on recurrences and deaths can be pooled.

Upon a referee’s suggestion, we compared the methods proposed here with
the two-sample procedures of Ghosh and Lin (2000). Specifically, we considered
the Wald and score statistics from the IPCW procedure with ŵi(t), i = 1, . . . , n,
and the test statistic QLR from Ghosh and Lin (2000). Data were generated
using γD = 0 and λD

0 (t) = 0.25 in (12), and R0(t) = t in (13). We considered
β0 = 0 and 0.7. Censoring was generated using an independent uniform (0,5)
random variable. This led to approximately 2.1 and 1.9 observed recurrences
per subject under the two scenarios. We again took v to be a gamma variable
with mean 1 and variance σ2; we considered σ2 = 0 and σ2 = 1. Sample sizes
n = 50 and n = 100 were examined. For each simulation setting, 1000 samples
were obtained. The power results are given in Table 3. There appears to be good
correspondence between the performance of the three statistics. In all settings
examined, the concordance between the three statistics was greater than 95%.

As was mentioned in Section 2, the IPCW and IPSW methods of estimation
require use of a truncation time τ . In the simulations, we set τ to be the last
observed event time.

Table 3. Empirical powers of IPCW and QLR.

IPCW
β0 n σ2 Wald Score QLR

0 50 0 0.054 0.053 0.055
1 0.051 0.056 0.055

100 0 0.051 0.047 0.049
1 0.050 0.050 0.048

0.7 50 0 0.721 0.701 0.732
1 0.786 0.752 0.796

100 0 0.956 0.942 0.951
1 0.990 0.983 0.985

Note: Wald is the Wald statistic corresponding to the IPCW estimation
method, while Score is the associated score test. QLR is the two-sample
log-rank statistic from Ghosh and Lin (2000) with the usual log-rank weight
function.

4. A Real Example

We now apply the methods developed in Section 2 to data from a cancer
clinical trial conducted by the Veterans Administration Cooperative Urological
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Research Group (Byar (1980)). These data have been analyzed extensively in
the statistical literature. In this trial, 117 patients with stage I bladder cancer
were randomized to placebo, pyridoxine or intravesical thiotepa and followed for
recurrences of superficial bladder tumors. Following previous authors, we focus
our attention on the comparison between thiotepa and placebo. In addition to the
treatment assignment, two other covariates at baseline were measured: number of
tumors and size of the largest tumor. Since all the covariates are time-invariant,
models (1) and (2) are identical. Summary statistics for the two treatment arms
of interest are given in Table 4.

Table 4. Recurrent and survival experiences for placebo and thiotepa groups
in Stage I bladder cancer clinical trial.

Recurrences
Treatment 0 1 2 3 4 5 > 5 Deaths

Placebo 19 10 4 6 2 4 3 11
Thiotepa 20 8 3 2 2 2 1 12

As shown in this table, 23 of the 86 patients (26.7%) died during the study.
In the analyses conducted by previous authors, death was treated as a censor-
ing variable for cancer recurrences. Under the proportional rates model, this
approach pertains to the cause-specific rate function, which is analogous to the
cause-specific hazard function (Kalbfleisch and Prentice (1980, p.167)). If sur-
vival is independent of the recurrent events process, then the cause-specific rate
function is the same as the marginal rate function for the recurrences. The results
for this approach are provided in Table 5.

Table 5. Regression analysis for tumor recurrences.

Mean function

Cause-specific rate IPCW method IPSW method

Variable Estimate SE P -value Estimate SE P -value Estimate SE P -value

Treatment -0.540 0.270 0.046 -0.560 0.267 0.036 -0.556 0.288 0.053

Number -0.199 0.043 0.002 -0.170 0.060 0.004 -0.266 0.070 <0.001

Size 0.041 0.065 0.600 0.003 0.044 0.969 0.071 0.090 0.432

Note: Treatment is coded as 1 (thiotepa) vs. 0 (placebo); Estimate denotes es-

timated regression parameter; SE represents estimated standard error; P -value

represents the two-sided p-value for testing no covariate effect.

Table 5 also displays the results of the IPCW and IPSW methods under
model (1). The three methods yield similar conclusions. As shown by Ghosh
and Lin (2000), however, the use of the cause-specific rate method would yield
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overestimation of the marginal mean function. Based on the proposed methods,
thiotepa reduces the mean frequency of tumor recurrences by approximately 40%
(after adjusting for number of tumors and size of the largest tumor), and this
reduction is statistically significant at the 0.05 level (at least marginally).

As mentioned in Section 2, the IPCW and IPSW methods involve modeling
the censoring and survival times with models (4) and (7), respectively. The
results from fitting these two models are given in Table 6. None of the baseline
covariates turn out to be significant predictors of survival or censoring, although
there is slight evidence that number of tumors and size of the largest tumor might
be predictive of survival. While thiotepa was seen to reduce tumor recurrences, it
appears to be associated with increased mortality; however, the latter association
is not significant.

Table 6. Proportional hazards regression for survival and censoring distributions.

Survival distribution Censoring distribution
Variable Estimate SE P -value Estimate SE P -value
Treatment 0.290 0.425 0.495 0.002 0.264 0.994
Number -0.149 0.107 0.165 0.077 0.099 0.437
Size 0.327 0.212 0.122 0.039 0.089 0.661

Note: See Note to Table 5.

To assess jointly the effects of treatment on recurrences and death, we employ
the sequential test described in Section 2.8 with the IPSW method. Based on
the results in Tables 4 and 5, the standardized estimates of treatment effects on
recurrences and death are -1.93 and 0.68, respectively. The estimated correlation
between the two estimators is -0.038. By numerical integration, Pr(min(V1, V2) ≤
−1.93) = 0.053, and Pr(V2 ≤ 0.68) = 0.75. Thus, there is evidence to suggest
that thiotepa is effective in reducing recurrences but not in reducing mortality.

The application of the standard goodness-of-fit methods (e.g., Therneau,
Grambsch and Fleming (1990)) did not reveal violation of the proportional haz-
ards model for the survival or censoring distribution. Figure 1 displays the resid-
ual plots for checking the functional forms for number of tumors and size of
largest tumor for model (1). The plots under both the IPCW and IPSW proce-
dures are given. There is no clear systematic trend in any of the plots so that no
transformations are needed. The plots of the Schoenfeld-type residuals based on
the IPCW method are given in Figure 2; the plots based on the IPSW method
are similar. These plots do not reveal systematic deviations, suggesting that the
proportional means assumption is appropriate.
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Figure 1. Plots of M̂i’s for assessing the functional forms for number of
tumors and size of largest tumor: figures (a) and (b) are based on IPCW
method; (c) and (d) are based on the IPSW method; the solid line represents
a locally weighted regression smooth with span of 0.5.

Figure 2. Plots of residuals ∆UC
j (β̂C , ·) for assessing the proportional means

assumption: the solid line represents a locally weighted regression smooth
with span of 0.5; (a), (b) and (c) pertain to treatment, number of tumors
and size of largest tumor, respectively.
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The estimated regression model enables one to estimate/predict the cancer
recurrences for subjects with certain covariate values. For example, Figure 3
displays the estimated mean function, along with the 95% confidence intervals,
for thiotepa patients who have two tumors at baseline and whose largest tumors
are 2 centimeters in diameter.

Figure 3. Estimated mean number of recurrences (solid line) and associated
95% confidence limits (dashed lines) for patients on thiotepa who have two
tumors at baseline and whose largest tumors are 2 centimeters in diame-
ter. The IPCW method is used. The figure was constructed in the manner
described at the end of Section 2.6 using z = (1, 2, 2).

5. Discussion

The marginal mean function of recurrent events studied in this paper is
analogous to the cumulative incidence function (Kalbfleisch and Prentice (1980,
p.169); Pepe and Mori (1993); Fine and Gray (1999)) in the competing risks
literature. This quantity is of clinical interest because it pertains to the frequency
of recurrent events the subject actually experiences in the presence of death. As
mentioned in Section 2.8, this quantity is affected by the survival distribution:
the number of recurrences tends to be higher if the subject lives longer. Thus,
the effects of covariates on death and disease recurrences should be examined
simultaneously. If a new treatment reduces both disease recurrences and death or,
as in the bladder tumor study, reduces disease recurrences but has no appreciable
impact on survival, then the treatment is clearly preferred. If the treatment
reduces disease recurrences but increases mortality, then it is more delicate to
make a judgment on the treatment.
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Two estimation procedures, IPSW and IPCW, have been proposed in the
paper. The former seems more natural than the latter when survival is also of in-
terest. However, if the marginal mean function of recurrent events is the primary
interest and censoring is independent of covariates, then it is more attractive
to use the IPCW procedure with a nonparametric estimator of the censoring
distribution.

The estimation of models (1) and (2) requires modeling either the survival
or censoring distributions. This is not very appealing as such models may be
misspecified, but seems unavoidable. Models (1) and (2) may also be misspecified.
It would be worthwhile to investigate the potential bias due to misspecification
for each of these models.

The approach we have taken here is to formulate regression models in or-
der to provide direct summary measures for covariate effects. However, if we
were interested in prediction of the marginal mean function, then a more flexi-
ble approach would be to model S(t|Z) and R(t|Z) separately from (11) . Such
an approach was taken in the competing risks setting by Cheng, Fine and Wei
(1998).

The proposed estimators, although simple and intuitive, are not semipara-
metrically efficient. While it might be possible to develop an efficient estimation
method based on nonparametric maximum likelihood, such a procedure is likely
to be much more computationally intensive. An alternative approach is to apply
results from locally efficient estimation theory (van der Laan, Robins and Gill
(2000)). Further investigations are warranted.

Models (1) and (2) specify multiplicative covariate effects on the marginal
mean/rate function of recurrent events. Another approach is to specify multi-
plicative covariate effects on the recurrent event times, which correspond to the
accelerated time model: µZ(t) = µ0(eβ

T
0 Zt). Inference procedures for this model

can be developed by combining the ideas of this paper with those of Lin, Wei
and Ying (1998).
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Appendix: Proofs of Theorems

In this appendix, we outline the main steps in proving the theorems stated in
Section 2. The interested readers are referred to Ghosh (2000) for further detail.

Proof of Theorem 1. Consider

XC(β) = n−1
n∑

i=1

∫ τ

0

[
(β − β0)T Zi(t) − log

{
S̃(0)(β, t)
S̃(0)(β0, t)

}]
ŵC

i (t)dNi(t).
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The Strong Law of Large Numbers, together with the consistency of γ̂C and
Λ̂C

0 (·), implies that XC(β) converges almost surely to

E

[∫ τ

0
(β−β0)T Z(t)G(t|Z)dN∗(t) −

∫ τ

0
log{s(0)(β, t)/s(0)(β0, t)}G(t|Z)dN∗(t)

]

for every β, where s(k)(β, t)=E{G(t|Z)Z(t)⊗keβ
T
Z(t)}, k = 0, 1, 2. The consis-

tency of β̂C now follows from the arguments in Appendix A.1 of Lin et al. (2000).
The Taylor series expansion, together with the Law of Large Numbers and

the consistency of β̂C , yields

n1/2(β̂C − β0) = A−1n−1/2UC(β0) + oP (1). (16)

It remains to determine the asymptotic distribution of n−1/2UC(β0). Clearly,

n−1/2UC(β0) = n−1/2
n∑

i=1

∫ τ

0
{Zi(t) − ZC(β0, t)}dMi(t)

+n−1/2
n∑

i=1

∫ τ

0
{Zi(t)−ZC(β0, t)}

{
Ĝ(t|Zi)

Ĝ(Xi ∧ t|Zi)
− G(t|Zi)

G(Xi ∧ t|Zi)

}

×I(Ci ≥ Di ∧ t){dNi(t) − eβ
T
0 Zi(t)dµ0(t)}. (17)

It follows from the functional delta method (Andersen, Borgan, Gill and Keiding
(1993, p.111)), the n1/2-consistency of Ĝ, formula (2.1) of Lin et al. (1994) and
the Martingale Central Limit Theorem (Fleming and Harrington (1991, p.227))
that

n1/2

{
Ĝ(t|Zi)

Ĝ(Xi ∧ t|Zi)
− G(t|Zi)

G(Xi ∧ t|Zi)

}

= −I(Xi < t)G(t|Zi)
G(Xi ∧ t|Zi)

n−1/2
n∑

j=1

∫ t

Xi

eγ
T
CZi(u)dMC

j (u)
r(0)(γC , u)

+ gC(Xi, t;Zi)T Ω−1
C n−1/2

n∑
j=1

∫ τ

0

{
Zj(u)− r(1)(γC , u)

r(0)(γC , u)

}
dMC

j (u)

+oP (1), (18)

where gC(Xi, t;Zi) =
∫ t
Xi

eγ
T
CZi(u) {Zi(u) − r(1)(γC , u) / r(0)(γC , u)} dΛC

0 (u),
r(k)(γC , t) is the limit of R̂(k)(γC , t), and ΩC the limit of Ω̂C . Plugging (18) into
(17) and interchanging integrals, we get

n−1/2UC(β0) = n−1/2
n∑

i=1

∫ τ

0
{Zi(t) − ZC(β0, t)}dMi(t)



RECURRENT AND TERMINAL EVENTS 683

+n−1/2
n∑

i=1

∫ τ

0
B̃C

{
Zi(t) − r(1)(γC , t)

r(0)(γC , t)

}
dMC

i (t)

+n−1/2
n∑

i=1

∫ τ

0

q̃C(t)
r(0)(γC , t)

dMC
i (t) + oP (1),

where B̃C = −n−1 ∑n
i=1

∫ τ
0 {Zi(t)−ZC(β0, t)}gC (Xi, t;Zi)TΩ−1

C I(t > Xi)dMi(t),

and q̃C(t) = −n−1 ∑n
i=1

∫ τ
0 {Zi(u)−ZC(β0, u)}eγT

CZi(t)I(u ≥ t > Xi)dMi(u). By
the Martingale Central Limit Theorem, B̃C and q̃C may be replaced by their
limits, BC and qC(t) say, without altering the asymptotic distributions of the
last two terms on the right-hand side of (19). In addition, using arguments from
empirical process theory as given in Appendix A.2 of Lin et al. (2000), we can
replace ZC(β0, t) ≡ S̃(1)(β0, t)/S̃(0)(β0, t) in the first integral of (19) with its
limit z(β0, t) ≡ s(1)(β0, t)/s(0)(β0, t). Thus, we have

n−1/2UC(β0) = n−1/2
n∑

i=1

(ηC
i +ψC

i ) + oP (1), (20)

where ηC
i =

∫ τ
0 {Zi(t) − z(β0, t)} dMi(t), and

ψC
i =

∫ τ

0
BC

{
Zi(t) − r(1)(γC , t)

r(0)(γC , t)

}
dMC

i (t) +
∫ τ

0

qC(t)
r(0)(γC , t)

dMC
i (t).

The right-hand side of (20) is a sum of n i.i.d. terms, so the Multivariate
Central Limit Theorem implies that n−1/2UC(β0) →d N(0,ΣC), where ΣC =
E{(ηC

1 + ψC
1 )⊗2}. Combing this result with (16), we have n1/2(β̂C − β0) →d

N(0,A−1ΣCA−1).
By replacing all the unknown quantities in A and ΣC with their empirical

counterparts, we obtain the covariance matrix estimator given in the statement
of Theorem 1. By extending the arguments in Appendix A.3 of Lin et al. (2000),
we can show that µ̂C

0 (t) is strongly consistent for µ0(t). The consistency of Σ̂C

for ΣC then follows from the strong consistency of β̂C , µ̂C
0 (t), γ̂C , Λ̂C

0 (t) and
repeated applications of the Uniform Strong Law of Large Numbers (Pollard
(1990, p.41)).

Proof of Theorem 2. Algebraic manipulations yield

n1/2{µ̂C
0 (t)−µ0(t)}=n−1/2

n∑
i=1

∫ t

0

dMi(u)
S̃(0)(β0, u)

+n−1/2
n∑

i=1

∫ t

0

ŵC
i (u) − wC

i (u)
S̃(0)(β0, u)

{dNi(u) − eβ
T
0 Zi(u)dµ0(u)}

+n−1/2

{
n∑

i=1

∫ t

0

ŵC
i (u)dNi(u)
S̃(0)(β̂C , u)

−
n∑

i=1

∫ t

0

ŵC
i (u)dNi(u)
S̃(0)(β0, u)

}
. (21)
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By the Taylor series expansion, along with the Uniform Strong Law of Large
Numbers and the strong consistency of β̂C , µ̂C

0 (t), γ̂C and Λ̂C
0 (t), the third term

on the right-hand side of (21) is asymptotically equal to hT (β0, t)n1/2(β̂C −β0),
where h(β0, t) = − ∫ t

0 z(β0, u)dµ0(u). Thus,

n1/2{µ̂C
0 (t)−µ0(t)}=n−1/2

n∑
i=1

∫ t

0

dMi(u)
S̃(0)(β0, u)

+n−1/2
n∑

i=1

∫ t

0

I(Ci≥Di∧u)
S̃(0)(β0, u)

{
Ĝ(u|Zi)

Ĝ(Xi∧u|Zi)
− G(u|Zi)

G(Xi∧u|Zi)

}

×{dNi(u) − eβ
T
0 Zi(u)dµ0(u)}

+hT (β0, t)A−1n−1/2
n∑

j=1

(ηC
j +ψC

j ) + oP (1).

By manipulations similar to those in the proof of Theorem 1,

n1/2{µ̂C
0 (t) − µ0(t)} = n−1/2

n∑
i=1

[∫ t

0

dMi(u)
S̃(0)(β0, u)

+
∫ τ

0

p̃C
1 (u, t)

r(0)(γC , u)
dMC

i (u)

+
∫ τ

0
p̃C

2 (t)T
{
Zi(u) − r(1)(γC , u)

r(0)(γC , u)

}
dMC

i (u)

]

+hT (β0, t)A−1n−1/2
n∑

j=1

(ηC
j +ψC

j ) + oP (1), (22)

where

p̃C
1 (u, t) = −n−1

n∑
i=1

∫ t

0

I(s ≥ u > Xi)eγ
T
CZi(u)

S̃(0)(β0, s)
dMi(s),

p̃C
2 (t) = −n−1

n∑
i=1

∫ t

0

I(u > Xi)gC(Xi, u;Zi)T Ω−1
C

S̃(0)(β0, u)
dMi(u).

Using the fact that MC
i (t), i = 1, . . . , n, are martingales and the empirical process

arguments in Lin et al. (2000), we can replace p̃C
1 (u, t), p̃C

2 (t) and S̃(0)(β0, u) in
(22) by their limits. Hence, n1/2{µ̂C

0 (t) − µ0(t)} = n−1/2 ∑n
i=1 φC

i (t) + oP (1),
where

φC
i (t)=

∫ t

0

dMi(u)
s(0)(β0, u)

+
∫ τ

0

pC
1 (u, t)

r(0)(γC , u)
dMC

i (u)

+
∫ τ

0
pC

2(t)T
{
Zi(u)− r(1)(γC , u)

r(0)(γC , u)

}
dMC

i (u)+hT(β0, t)A−1n−1/2
n∑

j=1

(ηC
j +ψC

j ),
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and pC
1 (u, t) and pC

2 (t) are the limits of p̃C
1 (u, t) and p̃C

2 (t). By the Multivari-
ate Central Limit Theorem, the finite-dimensional distributions of n1/2{µ̂C

0 (t) −
µ0(t)} are asymptotically normal. Because φC

i (t) consists of monotone functions,
n−1/2 ∑n

i=1 φC
i (t) is tight (Van der Vaart and Wellner (1996), p.215). Thus, the

desired weak convergence is obtained. The consistency of the covariance function
estimator follows from the consistency of β̂C , µ̂C

0 (t), γ̂C and Λ̂C
0 (t), and repeated

applications of the Uniform Strong Law of Large Numbers.

Proof of Theorem 3. We derive the asymptotic distribution of n−1/2UD(β0);
the rest of the proof is similar to that of Theorem 1. Clearly,

n−1/2UD(β0) = n−1/2
n∑

i=1

∫ τ

0
{Zi(t) − ZD(β0, t)}dM †

i (t)

+n−1/2
n∑

i=1

∫ τ

0
{Zi(t) − ZD(β0, t)}

{
1

Ŝ(t|Zi)
− 1

S(t|Zi)

}

×I(Xi ≥ t){dNi(t) − eβ
T
0 Zi(t)dµ0(t)}. (23)

We can derive a representation for n1/2{Ŝ−1(t|Zi) − S−1(t|Zi)} similar to (18).
Plugging that representation into (23) and interchanging integrals, we obtain

n−1/2UD(β0) = n−1/2
n∑

i=1

∫ τ

0
{Zi(t) − ZD(β0, t)}dM †

i (t)

+n−1/2
n∑

i=1

∫ τ

0
B̃D

{
Zi(t) − r(1)(γD, t)

r(0)(γD, t)

}
dMD

i (t)

+n−1/2
n∑

i=1

∫ τ

0

q̃D(t)
R̂(0)(γD, t)

dMD
i (t) + oP (1),

where B̃D = n−1 ∑n
i=1

∫ τ
0 {Zi(t) − ZD(β0, t)}gD(t;Zi)TΩ−1

D dM †
i (t),

gD(t;Zi) =
∫ t

0
eγ

T
DZi(u)

{
Zi(u) − r(1)(γD, u)

r(0)(γD, u)

}
dΛD

0 (u),

q̃D(t) = n−1 ∑n
i=1

∫ τ
0 {Zi(u)−ZD(β0, u)}eγT

DZi(t)I(u ≥ t)dM †
i (u), and ΩD is the

limit of Ω̂D.
By the arguments leading to (20), we have n−1/2UD(β0) = n−1/2 ∑n

i=1(η
D
i +

ψD
i ) + oP (1), where ηD

i =
∫ τ
0 {Zi(t) − z(β0, t)} dM †

i (t),

ψD
i =

∫ τ

0

[
BD

{
Zi(t) − r(1)(γD, t)

r(0)(γD, t)

}
+

qD(t)
r(0)(γD, t)

]
dMD

i (t),
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qD(t) = limn→∞ q̃D(t) and BD = limn→∞ B̃D. It then follows from the Multi-
variate Central Limit Theorem that n−1/2UD(β0) →d N(0,ΣD), where ΣD =
E{(ηD

1 +ψD
1 )⊗2}.

Proof of Theorem 4. Using the ideas in the proofs of Theorems 2 and 3, we
can show that the process n1/2{µ̂D

0 (t)− µ0(t)}, 0 ≤ t ≤ τ , converges weakly to a
mean-zero Gaussian process with covariance function ξD(s, t) ≡ E{φD

1 (s)φD
1 (t)},

where

φD
i (t)=

∫ t

0

dM †
i (u)

s(0)(β0, u)
+

∫ τ

0

pD
1 (u, t)

r(0)(γD, u)
dMD

i (u)

+
∫ τ

0
pD

2 (t)T
{
Zi(u)− r(1)(γD, u)

r(0)(γD, u)

}
dMD

i (u)+hT(β0, t)A−1n−1/2
n∑

j=1

(ηD
j +ψD

j ),

pD
1 (u, t) = lim

n→∞n−1
n∑

i=1

∫ t

0

I(s ≥ u)eγ
T
DZi(u)

Ŝ(0)(β0, s)
dM †

i (s),

pD
2 (t) = lim

n→∞n−1
n∑

i=1

∫ t

0

gD(u;Zi)TΩ−1
D

Ŝ(0)(β0, u)
dM †

i (u).

The consistency of the covariance function estimator follows from the consistency
of β̂D, µ̂D

0 (t), γ̂D and Λ̂D
0 (t), along with repeated applications of the Uniform

Strong Law of Large Numbers.
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