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This is a supplement to the paper Jullum and Hjort (2016). Section S1 provides proofs of the stand-alone
results provided in the main paper. Section S2 describes some simulation studies investigating the performance
of the FIC and AFIC schemes developed in the main paper. Section S3 gives some details on their application
to categorical data, and Section S4 presents an illustration of the developed FIC scheme applied to sequential
c.d.f. estimation of Pennsylvanian SAT scores. Finally, Section S5 studies the developed FIC strategy under
the local misspecification framework of the original FIC (Claeskens and Hjort (2003)).

S1. Proofs of main paper results
Below we provide proofs of all stand-alone results given in the main paper. All equation

numbers and other numbering refer to those in the main paper.

Proof of Proposition 2
The combined assumptions for each of the two functionals T and S and their influ-

ence functions, imply the analogues conditions for the two-dimensional functional (T, S)
and its two-dimensional influence function. This is precisely the condition required by Shao
(2003, Theorem 5.15) to establish consistency for the covariance matrix of (T (Ĝn), S(Ĝn)) =
(µ̂np, µ̂pm). Hence, the individual variance and covariance estimators v̂np, v̂pm, κ̂ and v̂c are all
consistent. When also the conclusion of Proposition 1 holds,

√
n(µ̂np− µ) and

√
n(µ̂pm− µ0)

are bounded in probability. This implies consistency of µ̂np and µ̂pm for respectively µ and
µ0, and consequently also for b̂ and b̂2 (by the continuous mapping theorem).

Proof of Proposition 3
Let us first show that (C1) holds, i.e. that T is Hadamard differentiable at G w.r.t. the

uniform norm (hereafter referred to as just Hadamard). The mean functional T1(G) = ξ =∫
h(y) dG(y) is linear in G and hence obviously Hadamard (for any proper norm). By van der

Vaart (2000, Lemma 21.3), the quantile functional T2(G) = G−1(p) is also Hadamard when
g is positive and continuous in G−1(p). The chain rule for Hadamard differentiability (van
der Vaart (2000, Theorem 20.9)) ensures that smooth (continuously differentiable) functions
of finitely many functionals on the form of T1 and T2 also are Hadamard. The functional T
is thus Hadamard since A is smooth with finite partial derivatives.

Since EG{hj(y)} = ξj and EG(1{y≤G−1(pl)}) = pl for all j, l, it is easy to see that
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EG{IF(Yi;G)} = 0 in (3.2) whenever all partial derivatives of A are finite and all g(G−1(pl))
are positive – hence (C3) holds. For (C4) to hold it suffices to show that all the individual
influence functions have finite variance. Since the partial derivatives are finite, this reduces
to the means of hj(y)2 and 12

{y≤G−1(pl)} = 1{y≤G−1(pl)} needing to be finite – but the former
here is assumed to be finite and the latter equals pl ∈ [0, 1]. Finally (C2) holds since

∂s(θ0)/∂θ = [{∂A(ξ, ζ)/ξ}{∂ξ(θ)/∂θ}, {∂A(ξ, ζ)/ζ}{∂ζ(θ)/∂θ}]t ,

which by assumption has all elements finite.

Proof of Lemma 1
Let Zn,j denote the Zn corresponding to the j-th parametric model. When bj 6= 0 it

follows from the consistency of b̂j that Zn,j tends to infinity in probability, while 2η̂j →pr 2ηj .
Hence, αn(G, j) = Pr (Zn,j ≤ 2η̂j) → 0 for both the truncated and untruncated version of
the FIC, proving the first claim. If for some j, bj = 0 and bl 6= 0 for l 6= j, then we have
by (2.6) (which follows from the conclusion of Proposition 1) that

√
nb̂j →d N(0, κj). Hence

Zn,j = nb̂2j →d κjχ
2
1. The second result then follows by consistency of η̂j .

Proof of Corollary 1
We give this proof for continuous g. The proof is analogous for discrete g or combinations

of the two by replacing the appropriate integrals by sums. As we shall deal with the correct
j-th model exclusively, we omit the sub- and superscript j to simplify the notation. We shall
need interchangeability of integration w.r.t. y and differentiation w.r.t. θ at θ0 a few times
below; this will be justified at the end of the proof. Let us denote by ḟ and f̈ , respectively,
the first and second derivative of f w.r.t. θ.

That the two matrices J and K of (2.1) are equal under model conditions is simply the
well-known Bartlett identity (requiring

∫
f̈(y; θ0) dy = 0). We shall now show that c = d

when G = Fθ0 . Let us for notational convenience write Ht = (Fθ0+t − Fθ0)/t with Fθ =
F (· ; θ). The sequence of equalities below, leading to c = d, is based on the definition of
Hadamard differentiability and its linearity, in addition to the representation of Ht as the
integral

∫
(1− δx(y)) dHt(y) =

∫
δy(x) dHt(y), with δy(x) = 1{x≥y}. We have that

c = lim
t→0

T (Fθ0+t)− T (Fθ0)
t

= lim
t→0

T (Fθ0 + tHt)− T (Fθ0)
t

= lim
t→0

ṪG(Ht)

= lim
t→0

ṪG(
∫
δy(·) dHt(y)) = lim

t→0

∫
ṪG(δy) dHt(y) = lim

t→0

∫
IF(y;G) dHt(y)

= lim
t→0

1
t

{∫
IF(y;G) dFθ0+t(y)−

∫
IF(y;G) dFθ0(y)

}
=
∫

IF(y;G) ∂
∂t
f(y; θ0 + t)

∣∣∣∣
t=0

dy =
∫

IF(y;G)u(y; θ0)f(y; θ0) dy = d,
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where we have interchanged differentiation and integration (twice) in the second to last equal-
ity. The conclusion then follows since c = d implies vpm = vc, which again implies κ = η.

What remains is to justify the interchange of differentiation and integration in
∫
f̈(y; θ0) dy

and
∫

IF(y;G)ḟ(y; θ0) dy, where the former requires that this may be done in
∫
ḟ(y; θ0) dy

as well. From the initial regularity assumptions we have that f(y; θ0) is integrable and
that ḟ(y; θ0) is finite and continuous in θ0. Observe further that

∫
supθ∈Θ(j) ‖ḟ(y; θ)‖ dy =

EG
(
supθ∈Θ(j) ‖u(Yi; θ)‖

)
which by assumption is finite. Thus, Durrett (2010, Theorem A.5.2)

ensures that ḟ(y; θ) is integrable with
∫
ḟ(y; θ0) dy = (∂/∂θ)

∫
f(y; θ0) dy (which is zero).

These arguments may be repeated for Iḟ and f̈ with proper replacements of the supremum
quantities (and noting that f̈/f = I+uut for the latter) to show that the interchange is valid
also for those quantities. The proof is hence complete.

Proof of Lemma 2
Note first that EG(supθ∈Θ∗ ‖u(Yi; θ)‖) being finite ensures that J = K by arguments in

the proof of Corollary 1. Condition (C0) (which in particular implies (2.5)) and the explicitly
assumed conditions then match those of Durbin (1973, Theorem 2). That theorem establishes
process convergence for B0

n(r) =
√
n{Ĝn(F−1(r; θ̂))− F−1(r; θ̂)} for r ∈ [0, 1] towards B0(r),

a zero-mean Gaussian process with covariance function

Cov{B0(r1), B0(r2)} = min(r1, r2)− r1r2 − c(F−1(r1; θ0); θ0)tJ−1c(F−1(r2; θ0); θ0).

Since the F (· ; θ̂) process converges to F (· ; θ0) jointly with B0
n(r), Billingsley (1999, Lemma

p. 151) applied to B0
n(F (y; θ̂)) gives Bn

d→ B as stated in the lemma. The same argument,
in addition to the continuity of the integral of a square function, shows that C1,n

d→ C1, and
when

∫
G(y){1−G(y)} dy is finite also C2,n

d→ C2.

S2. Illustration: Running through the c.d.f. of Pennsylvanian SAT scores
Consider a sample of n = 100 school averaged grades from the ‘writing’ series of the SAT

standardized test in Pennsylvania schools in 2009. For learning and illustrational purposes
we will here sequentially consider the focus parameters µ(y) = G(y) for different y-values.
As competing models we put up the nonparametric, the Gaussian and the skewed Gaussian
model, where the skewed Gaussian model has cumulative distribution function Φ((y−ξ)/σ)λ,
with Φ(·) the cumulative distribution of the standard normal distribution. In particular,
λ̂ = 0.290 for these data, reflecting a small skewness to the right compared to the Gaussian
model. Summary plots are provided in Figure S1. As the figure shows, the parametric
distributions are deemed better than the nonparametric alternative mainly close to the tails
of the distribution and some intervals on each side of the median. Also, the skewed Gaussian
distribution is mostly better than the regular Gaussian one, except in the longest tails where
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Figure S1: Summary plots for the FIC applied to data on writing skills in college for different y-
values of the focus parameter µ(y) = G(y). For the three candidate models the upper plot shows the
estimated c.d.f’s per model, while the lower plot shows the root of the FIC score. The greyscale bar
in the bottom indicates which model is deemed the best for each value of y.
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the estimates are essentially identical and the Gaussian model is slightly better due to lower
variance. The rooted FIC score for the parametric distributions are rather noisy. This is
caused by the nature of the parametric FIC formula shifting in the jumps of µ̂np(y), i.e. at
the data points.

Instead of focusing on G(y) for one y at a time, one could of course use the AFIC of
Section 4 in the main paper to find the overall best model for say some interval of y values.
Let us take the neutral position here and provide equal weight 1 to all positions on the positive
half line. The AFIC then decides that the nonparametric model is the relatively clear winner
with a rooted AFIC score of 0.495. The skewed Gaussian model and usual Gaussian model are
respectively the runner-up and losing models in terms of overall performance, having rooted
AFIC scores of 0.648 and 0.712. This result is not surprising considering the smaller rooted
FIC scores of the nonparametric model shown in the lower plot of Figure S1.

S3. Simulation experiments
Practical (finite-sample) performance analysis is somewhat more complicated with the

FIC and AFIC than with other model selection criteria, since one also needs to decide upon the
focus parameter. In addition, the inclusion of a nonparametric alternative makes it difficult
to compare our criteria with frequently used parametric model selection criteria like the AIC
and the BIC under fair and realistic comparison terms. Due to these circumstances, we will
consider two different scenarios for simulation based performance analysis; one focusing solely
on the performance of the best ranked parametric candidate models, and one allowing the
nonparametric candidate to be selected as well.

In these simulation studies we shall be working with one fixed true model. To mimic
a realistic situation this data-generating model will not be among the parametric candidate
models. Different scenarios are then simulated by varying the sample size and considering dif-
ferent focus parameters. We shall consider three different parametric models: the exponential,
the gamma, and the Weibull, and take the true data-generating distribution to be a mixture
of the gamma and the Weibull, having density g(y) = 1

2fgam(y; 1.5, 1) + 1
2fwei(y; 1.5, 1.6),

where fgam(y;α, β) = {βα/Γ(α)}yα−1 exp(−βy) and fwei(y;α, β) = αβ(yβ)α−1 exp{−(βy)α}.
The density g and cumulative distribution G is plotted in Figure S2 along with least false
versions of the parametric candidate models. The minimum Kullback–Leibler divergence from
the true distribution to the exponential, gamma and Weibull distribution classes are, respec-
tively, 0.045, 0.017 and 0.025. This reflects that in terms of the Kullback–Leibler divergence,
the gamma distribution is closest to the true distribution, while the exponential distribution
is the most distant. None of the parametric models are however very far from the truth, at
least for most of the sample space. This is indeed intended, as parametric models far from
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Figure S2: The density and cumulative distribution for the true data generating distribution used in
the simulation experiment, are plotted along with the least false versions of the parametric candidate
models.

the truth are not of much interest from a practical point of view, and would anyhow seldom
be selected.

S3.1. Parametric selection performance
Let us first compare the performance of the estimators based on the FIC and AFIC

rankings to those selected by the AIC and the BIC. To make this comparison completely fair,
we shall, as mentioned, exclude the nonparametric candidate model from the final ranking of
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the FIC and AFIC. This causes all criteria to have the same set of candidate models to choose
from. To span a broad range of scenarios, we study performance when the focus parameter is
µ(y) = G(y) for y-values ranging from 0 to 6. For completeness we include both the truncated
version of the FIC scheme (cf. (2.8) in the main paper) and the untruncated analogue FIC∗.
We also include two different weight functions W in the comparison. AFIC no. 1 puts equal
weight on y from 0 to 6 (i.e. W is the Lebesgue measure on that interval), and AFIC no. 2
uses W (y) = G(y), which is estimated via Ĝn(y) for each simulated data set. Figure S3 shows
the performance of the different criteria in terms of the empirical root mean squared error of
the focus parameters for two different sample sizes, n = 75 and n = 250. As seen from the
plots, the truncated and untruncated versions of the FIC perform similarly. They both clearly
outperform the AIC and the BIC for µ between 0.40 and 0.75 for both sample sizes. AIC
performs somewhat better for some smaller values of µ. BIC, however, is significantly better
only in a tiny interval around 0.35 for n = 250. Overall, the performance of both versions of
the FIC are better than the BIC, and comparable or perhaps slightly better than the AIC.
As expected, the two fairly unfocused AFIC versions varies more in terms of performance.
Their overall performance is not as good as the FIC, but comparable with the AIC and BIC.

S3.2. Full performance comparison
Even though our criteria may very well be used solely to choose the best parametric

model and estimator, we would in practice typically trust the nonparametric candidate if
it actually has lower estimated risk. We shall now compare the performance of estimators
based on the full version of the FIC with those based on other model selection criteria. We
compare the FIC with the AIC and BIC (which only select among the parametric models),
in addition to a heuristically defined Kolmogorov–Smirnov (KS) criterion, and the model-
selection-ignorant estimator always trusting µ̂np. The KS criterion is included to have the
FIC compared with ‘some’ other criterion selecting among parametrics and nonparametrics.
It chooses the parametric model with smallest KS statistic ∆(F ) = supy |Ĝn(y) − F (y; θ̂)| if
it is smaller than a specified threshold value. To follow tradition we set this threshold value
to 1.3581/

√
n – corresponding to an asymptotic significance level of 0.05 in a Kolmogorov–

Smirnov test of one parametric model with fixed parameters. Figure S4 shows empirical
root mean squared error comparisons for four different focus parameters: the median, the
0.95-quantile, the standard deviation and the skewness.

Although not illustrated here, the untruncated FIC∗ performs comparably with the FIC
for all these cases. As seen from the plots, the FIC performs well compared to the other
criteria. For small sample sizes, other criteria perform somewhat better for two of the focus
parameters. The FIC generally performs better than using the nonparametric estimator
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Figure S3: Empirical root mean squared errors for µ̂ chosen by the FIC, FIC∗, AFIC 1, AFIC 2,
AIC and BIC when µ(y) = G(y). The empirical root mean squared errors are smoothed with spline
functions and plotted as functions of actual values of µ(y) = G(y), rather than y directly, in order to
show the differences more clearly. For both n = 75 and n = 250, 103 samples are used to compute the
empirical error on a grid from y = 0.01 to y = 6 with 200 equally spaced points.

directly, except when a large sample is used to estimate the skewness. Note also that since
none of these models have zero bias, Lemma 1 in the main paper ensures that increasing the
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Figure S4: Empirical root mean squared errors for µ̂ are shown for estimators chosen by the FIC,
the KS criterion, AIC, BIC and using µ̂np directly, for four different focus parameters. For n = 25, a
total of 2× 104 simulations are used. As n increases, the empirical mean squared error becomes more
stable and the number of simulations are reduced (as the computational cost increases), reaching 103

simulations for n = 800.
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sample size further would make the FIC-based estimator and the nonparametric estimator
coincide as the best estimator. The KS-based estimator also has this property.

S4. Details on FIC and AFIC for categorical data
Models for categorical data abound in statistical literature, both regarding probability

distributions on integers, for cross-tables of various orders, and more general multinomial
setups; see e.g. Agresti (2002) and various review articles mentioned in that book. We shall
now see how the FIC and especially a certain version of the AFIC scheme work out for this
framework.

Consider counts N = (N1, . . . , Nk) from a multinomial model with probability vector
(p1, . . . , pk), with

∑k
j=1 pj = 1 and

∑k
j=1Nj = n. Since N is a sum of i.i.d. variables, this

situation may be handled by the FIC scheme developed in Section 2 of the main paper. Focus
parameters for this model take the form µ = A(p1, . . . , pk) for suitable smooth functions A.
These are functions of means and therefore fit our scheme (cf. Proposition 3 in the main paper)
with nonparametric and parametric plug-in estimators of the pj . The natural nonparametric
estimator of pj is p̄j = Nj/n. The parametric alternatives are of the form p̂j = fj(θ̂), for
some postulated fj(θ) with θ of dimension say q ≤ k−2, where

∑k
j=1 fj(θ) = 1. In particular,

the FIC method may be used to check if a parametric model leads to a better estimate of pj
itself than the direct p̄j . Writing ψj(θ) = ∂ log fj(θ)/∂θ, we have

msenp = pj(1− pj)/n and msepm = b2j + vpm,j/n,

with bj = fj(θ0) − pj and vpm,j = fj(θ0)2ψj(θ0)tJ−1KJ−1ψj(θ0), in terms of the least false
parameter associated with the model, characterised by

∑k
j=1 pjψj(θ0) = 0. Following the

recipe of Section 2 of the main paper for these multinomial models (see (2.1) there) one also
finds

J = −
k∑
j=1

pj
∂2 log fj(θ0)

∂θ∂θt and K =
k∑
j=1

pjψj(θ0)ψj(θ0)t.

The methods of Section 2 then yield FIC scores, i.e. estimates of the mse, for deciding which
model is best for estimating any given pj .

Let us next turn to the AFIC, with focus on the full probability vector (p1, . . . , pk) and
with weights equal to their inverses. This specific setting turns out to be closely connected to
the classical Pearson chi-squared tests, as indicated in the main paper’s Remark 2. Per the
AFIC strategy, the aim is to compare models by assessing their associated risk functions

risk = risk(p1, . . . , pk) = EG
{ k∑
j=1

(p̂j − pj)2/pj

}
.

Note that since EG{(p̄j − pj)2} = pj(1 − pj)/n, the nonparametric risk is exactly (k − 1)/n
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(with no further need for risk estimation). A parametric model needs to have estimated
risk below this threshold in order to be judged better than the default nonparametric one.
Applying the standard AFIC strategy of Section 4 in the main paper leads to

AFICpm = max

0,
k∑
j=1

1
p̄j

(
b̂2j −

v̂np,j + v̂pm,j − 2v̂c,j
n

)+
k∑
j=1

v̂pm,j
np̄j

,

where once again subscript j indicates affiliation with pj . Here vc,j = fj(θ0)pjψj(θ0)tJ−1ψj(θ0).
Introducing the new quantity K∗ =

∑k
j=1 fj(θ0)ψj(θ0)ψj(θ0)t, some re-arranging shows that∑k

j=1 v̂c,j/p̄j = Tr(Ĵ−1K̂∗)/n. Here Ĵ is the usual plug-in version of J , and K̂∗ likewise the
empirical analogue of K∗ where θ̂ is plugged in for θ0. Note next that the classical Pearson
chi-squared type statistics traditionally come in two forms, namely

k∑
j=1

{Nj − nfj(θ̂)}2

nfj(θ̂)
= n

k∑
j=1

b̂2j

fj(θ̂)
and

k∑
j=1

{Nj − nfj(θ̂)}2

Nj
= n

k∑
j=1

b̂2j
p̄j
.

These are large-sample equivalent under model conditions, then both tending to χ2
df with

df = k−1−q, but have different distributions outside the model. Our AFIC approach, aiming
at consistent risk estimation to determine whether a parametric model is good enough, is seen
to be closely related to the second of these two, say Xn.

Arguments similar to those used to derive the limit behaviour in Section 5 in the main
paper show that (both versions of) the AFIC prefer the parametric model over the nonpara-
metric whenever Xn ≤ 2{(k− 1)−Tr(Ĵ−1K̂∗)}. When the parametric model is fully correct,
both K̂∗ and Ĵ tend to J = K in probability, such that Tr(Ĵ−1K̂∗) →pr q = dim(θ). This
implies that when a certain parametric model is true, the AFIC criterion selects this paramet-
ric model over the nonparametric with a probability tending to Pr(χ2

df ≤ 2 df). Hence, this
version of the AFIC sheds new light on the classical Pearson chi-squared test, as discussed in
Remark 2 of the main paper.

A particularly enlightening special case is that of assessing independence in an r × s

table, i.e. the hypothesis that the cell probabilities pi,j can be expressed as αiβj for all
(i, j). Some of the matrix calculations above simplify for this case. In particular, both the
J and the K∗ matrix are found to be equal to diag(A,B), say, with blocks A and B of sizes
(r−1)×(r−1) and (s−1)×(s−1) respectively, and with elements ai,j = α−1

i 1{i=j}+α−1
r and

bi,j = β−1
i 1{i=j} + β−1

s . In particular, the trace of J−1K∗ is r + s− 2, regardless of whether
the independence model is correct or not. This leads to the following AFIC recipe: Accept
independence precisely when Xn ≤ 2(r − 1)(s − 1), where Xn =

∑
i,j(Ni,j − nα̂iβ̂j)2/Ni,j is

the classical chi-squared test for independence, with α̂i = Ni,·/n and β̂j = N·,j/n. Again, this
criterion has been established via risk assessments only, and the usual goodness-of-fit thinking
involving the null distribution of Xn etc. do not enter the argument.
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S5. FIC in a local asymptotics framework
Although we left the local misspecification framework for deriving the FIC in the main

paper, such a framework may be useful for studying limiting properties and especially for
comparing the new version of the FIC with the original FIC of Claeskens and Hjort (2003).
To ease representation for readers familiar with the original FIC, and also since we shall re-use
results and theory from its development, we will to a large extent adopt the notation used in
Claeskens and Hjort (2008).

S5.1. Limiting distributions for the original and new FIC
Consider the local misspecification framework of Claeskens and Hjort (2003); Hjort and

Claeskens (2003) where the true distribution G = Gn has density or probability mass function

gn(y) = f(y; θ0, γ0 + δ/
√
n), (S5.1)

where the θ and γ parameters are of dimension p and q respectively. The γ0 here is the
‘null value’ of γ for which f(y; θ, γ0) = f(y; θ), i.e. where the model reduces to the simplest
‘narrow’ model with p parameters described by θ. The δ parameter denotes the O(1/

√
n)

distance from the truth to the narrow model in the direction of the γ-parameter. Assume
that all parametric candidate models under consideration belong to this class. Thus, the
biggest (wide) model uses all the p + q parameters, the narrow model uses only the p first
parameters, while there are possibly 2q−2 other candidate (sub)models in between these. As
all parametric models are nested we denote the different parametric submodels by subscript
S (rather than the more generic ‘pm’ notation used elsewhere) to emphasise the nesting.
We shall also on occasion use ‘narr’ and ‘wide’ for the smallest and biggest model. Before
continuing, note that when δ is zero (in all q dimensions), the framework is no longer locally
misspecified, but yielding the important special case where the narrow model is correct for
all n. The results derived below will hold also for this special case.

The motivation for working with the local misspecification framework when deriving the
original FIC stems from the fact that, in some sense, the limit of nmse(µ̂S) stabilises within
this framework. This is naturally also the case for reasonable estimators of this quantity. It is
therefore most convenient to scale the FIC formulae developed in the main paper by a factor
n when studying their limit properties.

Before presenting the FIC formulae for the two variants, let us introduce some notation.
Let Ik denote the k-dimensional identity matrix. Let then πS be the appropriate |S| × q

dimensional matrices of zeros and ones extracting the subvectors (and submatrices) corre-
sponding to submodel S by multiplying the full q dimensional vectors (and q× q dimensional
matrices) by πS from the left (and πt

S from the right). Let us also write c0 = ∂µ(Fθ,γ)/∂θ
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and c1 = ∂µ(Fθ,γ)/∂γ for the partial derivatives of µ taken at (θ0, γ0). Next,

J =

J00 J01

J10 J11

 and J−1 =

J00 J01

J10 J11


is respectively the Fisher information matrix of the wide model evaluated at the narrow
model, and its inverse. It will also turn out convenient to define Q = J11, ω = J10J

−1
00 c0 − c1

and GS = πt
S(πt

SQ
−1πS)−1πSQ

−1. Let finally (U(y)t, V (y)tπt
S)t denote the score function of

model S evaluated at the narrow model. All these quantities also have empirical analogues
based on inserting wide model estimates θ̂ and γ̂ for θ0 and γ0.

The truncated formulae for the original FIC’s estimator of nmse(µ̂S) may then be written
as

FICS,orig = max{0, (ω̂t(Iq − ĜS)Dn)2 − (v̂wide − v̂S)}+ v̂S ,

FICwide,orig = v̂S
(S5.2)

with Dn =
√
n(γ̂−γ0), and ω̂ and ĜS empirical analogues of ω and GS . Further, v̂S and v̂wide

are empirical analogues of respectively vS = τ2
0 + ωtGSQG

t
Sω and vwide = τ2

0 + ωtQω, where
τ2

0 = ct
0J
−1
00 c0 is the variance associated with the narrow model. The truncated formulae for

the new n-scaled FIC scores (estimating nmse(µ̂S)) are

FICS,new = max{0, (
√
nb̂S)2 − (v̂np + v̂S,new − 2v̂c,S)}+ v̂S,new,

FICnp,new = v̂np
(S5.3)

where v̂np is the estimated analogue of vnp, which under the limit of (S5.1) converges to
the expectation EFθ0

{IF(Yi;Fθ0)2}. Following the notation of this section, a subscript S is
appended to the parametric quantities. An additional subscript ‘new’ is also appended to the
variance for the parametric submodels here, to distinguish it clearly from the corresponding
quantity for the original FIC. Despite this slight change of notation, the estimators are exactly
as specified in the main paper.

To study and compare the limiting behaviour of these FIC scores under the framework
of (S5.1), we need to derive the joint limit of Λn,np =

√
n(µ̂np−µn) and Λn,S =

√
n(µ̂S−µn),

with µn = µ(Gn). To this end, let (C0∗–C4∗) denote the analogues of conditions (C0–C4)
from the main paper, with θ replaced by (θt, γt)t and G replaced by Fθ0 . Define in addition
the following new conditions:

(C5∗) The variables |Uj(Yi)2Vk(Yi)|, |Vj(Yi)2Vk(Yi)| and |IF(Yi;Fθ0)2Vk(Yi)| have finite means
under Fθ0 for each dimension j, k;

(C6∗) The conclusion of Proposition 2 in the main paper holds with G replaced by Fθ0 ,
i.e. v̂pm, v̂np, v̂c, v̂κ, b̂, and b̂2 are all consistent under Fθ0 .
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To state the joint limit of Λn,np and Λn,S , we shall need the following stochastically
independent variables: Λ0 ∼ N(0, τ2

0 ), D ∼ Nq(δ,Q) and X0 ∼ N(0, vnp − vwide). That
vnp ≥ vwide and indeed vnp ≥ vS for all S follow from details of the proof given below, as
in the remark following Proposition 1 in the main paper. The X0 is in fact the limiting
distribution of Xn,0 =

√
n(µ̂np − µ̂wide), as borne out from the proof.

Proposition S1. Assume that (C0∗–C5∗) hold. Under the framework of (S5.1), we have
that as n→∞

Λn,S
d→ ΛS = Λ0 + ωt(δ −GSD) ∼ N(ωt(Iq −GS)δ, vS),

Λn,np
d→ Λnp = Λwide +X0 = Λ0 + ωt(δ −D) +X0 ∼ N(0, vnp),

converging jointly and with limiting covariance Cov(ΛS ,Λnp) = vS.

Proof. Note first that the assumed conditions (C0∗–C2∗) and (C5∗) imply the conditions
specified in Hjort and Claeskens (2003, Section 11) being used to prove the lemmas there and
also the core results given in Claeskens and Hjort (2008, Chapters 6–7). Hence, Λn,S →d ΛS
with the proposed form follows by Hjort and Claeskens (2003, Lemma 3.3). We shall now
show that Λn,np →d Λnp, with Λnp on the given form. Observe that under the assumed
conditions, a Taylor expansion gives µn = µ0 + ct

1δ/
√
n + o(1/

√
n), where µ0 = µ(Fθ0,γ0).

Another Taylor argument allows us to write

Λn,np =
n∑
i=1

1√
n

IF(Yi;Fθ0)− ct
1δ + opr(1). (S5.4)

To arrive at the precise form of Λnp, we need to check the limiting behaviour of the sum∑n
i=1 n

−1/2IF(Yi;Fθ0) jointly with
∑n
i=1 n

−1/2{U(Yi)t, V (Yi)t}t. By the assumed conditions,
we may write gn(y) = f(y; θ0){1+V (y)δ/

√
n+R(y; δ/

√
n)} for some R with the property that

f(y; θ0)R(y; t) = o(‖t‖2) uniformly in y. Extending the arguments in Hjort and Claeskens
(2003, Section 11) yields

EGn{IF(Yi;Fθ0)} = ct
1δ/
√
n+ o(1/

√
n), EGn{U(Yi)} = J01δ/

√
n+ o(1/

√
n),

EGn{V (Yi)} = J11δ/
√
n+ o(1/

√
n), EGn{IF(Yi;Fθ0)2} = vnp + o(1),

EGn{IF(Yi;Fθ0)U(Yi)} = c0 + o(1), EGn{IF(Yi;Fθ0)V (Yi)} = c1 + o(1),

EGn{U(Yi)tU(Yi)} = J00 + o(1), EGn{U(Yi)tV (Yi)} = J01 + o(1),

EGn{V (Yi)tV (Yi)} = J11 + o(1).

We have here in particular used that IF(Yi;Fθ0)U(Yi) and IF(Yi;Fθ0)V (Yi) have means c0

and c1, which follows by arguments similar to those used to prove c = d in the proof
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of Corollary 1 in the main paper. The triangular Lindeberg conditions are fulfilled for
n−1/2{IF(Yi;Fθ0), U(Yi)t, V (Yi)t}t (cf. Hjort and Claeskens (2003, Section 11)), which en-
sures that

n∑
i=1

1√
n


IF(Yi;Fθ0)
U(Yi)
V (Yi)

 d→


X ′

U ′

V ′

 ∼ N1+p+q



ct

1δ

J01δ

J11δ

 ,

vnp ct

0 ct
1

c0 J00 J10

c1 J01 J11


 . (S5.5)

The limit of the first element above inserted into (S5.4) gives Λn,np →d Λnp = X ′ − ct
1δ ∼

N(0, vnp) by Slutsky’s theorem. As in Claeskens and Hjort (2008, Chapter 6.3), let Λ0 =
ct

0J
−1
00 U

′ and D = δ +Q(V ′ − J10J
−1
00 U

′). By arguments used in Claeskens and Hjort (2008,
Chapter 6.3) and Hjort and Claeskens (2003, Section 11), these are independent and have the
correct limit. Define in addition

X0 = X ′ − ct
1δ − Λ0 − ωt(δ −D).

We need to check that this definition of X0 is stochastically independent of both Λ0 and D,
and have the variance claimed. The following two covariances will be helpful:

Cov(X ′,Λ0) = Cov(X ′, ct
0J
−1
00 U

′) = ct
0J
−1
00 Cov(X ′, U ′) = ct

0J
−1
00 c0 = τ2

0 ,

Cov(X ′, D) = Cov{X ′, Q(V ′ − J10J
−1
00 U

′)}

= [Q{Cov(X ′, V ′)− J10J
−1
00 Cov(X ′, U ′)}]t

= {Q(c1 − J10J
−1
00 c0)}t = −ωtQ.

Thus, we also get

Cov(X0,Λ0) = Cov{X ′ − ct
1δ − Λ0 − ωt(δ −D),Λ0}

= Cov(X ′,Λ0)− Cov(Λ0,Λ0) = τ2
0 − τ2

0 = 0

Cov(X0, D) = Cov{X ′ − ct
1δ − Λ0 − ωt(δ −D), D}

= Cov(X ′, D) + ωtCov(D,D) = −ωtQ+ ωtQ = 0,

proving stochastic independence between X ′ and both Λ0 and D. The variance of X0 is found
by

Var(X0) = Var{X ′ − ct
1δ − Λ0 − ωt(δ −D)}

= Var(X ′) + Var(Λ0) + ωtVar(D)ω − 2Cov(X ′,Λ0) + 2Cov(X ′, D)ω

= vnp + τ2
0 + ωtQω − 2τ2

0 − 2ωtQω = vnp − vwide.

We now have to check that Λnp is indeed equal to Λwide +X0 for Λwide = Λ0 +ωt(δ−D). This
follows by re-arranging terms: Λnp = X ′−ct

1δ = X0 +ct
1δ+Λ0 +ωt(δ−D)−ct

1δ = X0 +Λwide.
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The joint convergence follows since all quantities are functions of X ′, U ′ and V ′. Finally, the
covariance Cov(ΛS ,Λnp) is found by

Cov(ΛS ,Λnp) = Cov{Λ0 + ωt(δ −GSD),Λ0 + ωt(δ −D) +X0}

= Cov(Λ0,Λ0) + ωtGSCov(D,D)ω = τ2
0 + ωtGSQω = vS ,

and the proof is complete.

The following lemma presents the limiting behaviour of the FIC scores specified in (S5.2)
and (S5.3).

Lemma S1. Assume that (C0∗–C6∗) hold. Under the framework of (S5.1), we then have
that as n→∞

FICS,orig
d→ FIClim

S,orig = max{0, (ωt(Iq −GS)D)2 − (vwide − vS)}+ vS

FICwide,orig
d→ FIClim

wide,orig = vwide,

and

FICS,new
d→ FIClim

S,new = max{0, (ωt(Iq −GS)D −X0)2 − (vnp − vS)}+ vS

FICwide,new
d→ FIClim

wide,new = max{0, X2
0 − (vnp − vwide)}+ vwide,

FICnp,new
d→ FIClim

np,new = vnp,

(S5.6)

Proof. Let us first check the limiting behaviour of Dn and
√
nb̂S . The former here has by

Claeskens and Hjort (2008, Theorem 6.1) precisely the limit D. The limit of the latter may
be found by rewriting terms:

√
nb̂S =

√
n(µ̂S − µ̂np) = Λn,S − Λn,np

d→ ΛS − Λnp

= Λ0 + ωt(δ −GSD)− Λ0 − ωt(δ −D)−X0 = ωt(Iq −GS)D −X0.

By (C6∗) all variance and covariance estimators are consistent since consistency under Gn
is equivalent to consistency under the narrow model Fθ0 . Note in particular that since all
models are correct in the limit, we have vc,S = vS , such that all three estimators v̂S , v̂S,new

and v̂c,S are consistent for vS . Inserting the limit variables of the quantities in (S5.2) and
(S5.3), noting that Gwide = Iq, and gathering common factors, completes the proof through
Slutsky’s theorem.

Note that since δ = 0 is a valid special case of (S5.1), limit distribution results for the
case where the narrow model is indeed fully correct for all n, may be read off directly from
the above lemma. As noted before Proposition S1, we have vnp ≥ vwide. In cases where the
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largest parametric variance is indeed equal to vnp, it is seen that X0 becomes degenerate at
zero, and the original and new FIC scores for the parametric models coincide exactly in the
limit experiment. Hence, for vwide close to vnp one would expect the ranking of the parametric
models to be similar for the original and new FIC schemes. When the nonparametric variance
is much larger than that of the widest parametric model, there is typically no guarantee that
the rankings stemming from the two criteria are similar. In particular, the FIC score of the
wide model is constant in the limit for the original FIC scheme, while it is random for the
new FIC scheme.

Finally, recall that Corollary 1 in the main paper stated that when a parametric model
is indeed fully correct, the new FIC would prefer that model over the nonparametric with a
probability converging to Pr(χ2

1 ≤ 2) .= 0.843. This gave the FIC a new interpretation as an
implied focused test of a parametric model, having asymptotic significance level 0.157. These
results may be properly generalised under the local misspecification framework considered
here. In particular, if the true distribution corresponds to (S5.1), the limiting probability
that FIC would select a parametric model S over the nonparametric is

PrGn(FICS,new ≤ FICnp,new)→ Pr
(
χ2

1

(
{ωt(Iq −GS)δ}2

vnp − vS

)
≤ 2

)
,

where χ2
1(x) is a non-central chi-squared distributed variable with 1 degree of freedom and

non-centrality parameter x. Observe that if δ = 0, we are back at the 0.843 probability as
before, and when δ departs from zero in the right dimensions, the probability tends to 0.
Thus, by daring to trust such a local misspecification framework, one learns not only how the
FIC selects model when a parametric model is exactly correct or incorrect, but also how it
behaves in between these two ‘extremes’.

Remark 1. Limiting selection with several unbiased parametric models. Lemma 1 and
Corollary 1 of the main paper concern asymptotic selection probabilitites when a) none of
the parametric models are correct or at least asymptotically unbiased (b = 0), and b) exactly
one of them have this property. Although that cover most of the natural cases, it does
not yield asymptotic selection probabilities when there are several nested parametric models
with a simpler model being (asymptotically) correct. Lemma S1 provides also a framework
for studying that situation. The asymptotic selection probabilities for this case depend on
the focus, the nesting of the parametric models and whether the truncated or untruncated
version of the (new) FIC is used, and must therefore be derived on a case by case basis. For
a particular setting with a specified value of δ, the asymptotic selection probabilities may be
found by comparing simulated realisations of the FIClim

·,new on the right hand side of (S5.6).
Since δ = 0 corresponds to the narrow model being true, the procedure may be utilized also
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when the true model is fixed and equal to the narrow model for all n.

S5.2. Model averaging and post selection estimators
Finally, we shall use this local misspecification framework to derive the limiting distribu-

tion of model averaging estimators based on the new FIC as discussed in Section 6 of the main
paper. This is merely an extension of Hjort and Claeskens (2003, Theorem 4.1) which gave
the limiting distribution for model averaging estimators related to the original FIC, the AIC
and so on. As we shall see, the limit distributions for the new FIC will turn out differently
than for the original FIC.

Lemma S2. Let ΩM denote all candidate models and

µ̂final =
∑
j∈ΩM

aj(Dn, Xn,0)µ̂j ,

with
∑
j∈ΩM aj(d, x) = 1 for all (d, x). Assume that (C0∗–C6∗) hold, and that for all j ∈ ΩM ,

aj has at most a countable number of discontinuities and that it depends stochastically only
on Dn, Xn,0, and possibly terms converging to constants in distribution under (S5.1). Then

√
n(µ̂final − µn) d→

∑
j∈ΩM

aj(D,X0)Λj .

Proof. There is joint convergence for all Λn,j , j ∈ ΩM and stochastic weights aj(Dn, Xn,0).
This follows by (S5.5) and the arguments leading to the joint limit in Proposition S1. The
continuous mapping theorem then completes the proof.

Note in particular that any function (with at most a countable number of discontinuities)
of FICj,new, j ∈ ΩM may be applied. This follows since the only stochastic part here is

√
nb̂S

which may be re-written as
√
nb̂S =

√
n(µ̂S − µ̂np) =

√
n(µ̂S − µ̂wide)−

√
n(µ̂wide − µ̂np)

= ω̂t(Iq − ĜS)Dn + opr(1)−Xn,0.

Hence, the weight functions suggested in (6.2) in the main paper are treatable by the above
model averaging scheme. That is also the case for the post-FIC-selection estimator, putting
all weight on the estimator with the smallest (new) FIC score. We note that the limit
distributions above are nonlinear mixtures of normals and as such often highly non-normal,
sometimes exhibiting multiple modes, etc. For further consequences and generalisations, also
for bootstrapping and bagging, see Hjort (2014).
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