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Abstract: Despite its limitation in exploring nonlinear structures, multiple linear re-

gression (MLR) still retains its popularity among the practitioners. This is mainly

because of the several seemingly irreplaceable features of MLR that users are ac-

customed to, including : (i) it is easy to implement; (ii) it has a solid theoretical

foundation; (iii) diagnostic tools are available for model checking; (iv) standard

errors are available for significance assessment; (v) output is easy to interpret.

Whether such advantages can be maintained or not is an important issue in

developing new nonlinear methods for high dimension regression. This issue is

studied for one of the recently proposed methods, sliced inverse regression (SIR).

We show how to enhance the SIR analysis so that these features can be maintained.

Key words and phrases: Dimension reduction, dynamic graphics, inverse regression,

projection pursuit, transformation.

1. Introduction

The area of high dimensional regression aims at the exploration of nonlin-
ear data structures that might not be adequately analyzed by standard multiple
linear regression. Much of the development in this area has been encouraged by
the advent of the modern computer. Methods such as projection pursuit regres-
sion (Friedman and Stuetzle (1981), Hall (1989), Chen (1991)), ACE (Breiman
and Friedman (1985)), CART (Breiman, Friedman, Olshen and Stone (1984)),
MARS (Friedman (1991)), SUPPORT (Chaudhuri, Huang, Loh and Yao (1994)),
etc., generally require an extensive search through several well-motivated classes
of functions. To reach a good approximation of a general nonlinear regression
surface, they often need to compute goodness-of-fit criteria such as R-squared
or residual sum of squares in conjunction with data-driven techniques such as
cross-validation, GCV, their equivalents or modifications for offsetting model
complexity and related problems. Such previously formidable tasks of functional
fitting can now be carried out under sophisticated planning.

Instead of massive computation, an alternative strategy is to take good ad-
vantage of the modern computer’s superior graphical facilities. Our visual talent
is exploited for gaining insight about the shape of the true response function
and other data structures. Such information can be used to suggest appropriate
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parametric models, low-dimensional smoothing techniques, or diagnostic tools for
more fruitful applications. But all graphs are merely two dimensional objects.
Even enhanced with rotation, coloring, and other animation techniques, visual-
ization can still be extremely hard as one goes beyond three or four dimensions.
To carry out the graphical analysis in real time, it is necessary to focus only on
a selective set of projection directions.

A statistical formulation for addressing this issue is given in Li (1991), using
the following dimension reduction model for regression:

Y = f(β′
1x, . . . , β′

kx, ε). (1.1)

The output variable Y is related to the p-dimensional regressor x only through the
reduced k dimensional variable (β′

1x, . . . , β′
kx)′. No assumption is made about

f and the distribution of the error ε. We are interested in finding the space
spanned by the k unknown β vectors, called the effective dimension reduction
(e.d.r.) space. Sliced inverse regression (SIR) and principal Hessian directions
(pHd) are developed under this dimension reduction framework (see Cook and
Weisberg (1991), Carroll and Li (1992), Duan and Li (1991), Hsing and Carroll
(1992), Li (1990, 1991, 1992a, 1992b), Zhu and Fang (1994), and Zhu and Ng
(1994)). For more discussion on e.d.r. space and related concepts on graphical
regression, see Cook (1994) and Cook and Wetzel (1994).

Both computer-intensive methods and graphics-guided methods have ex-
tended the scope of multiple linear regression (MLR). However, none of them
have yet evolved into a routine practice in regression analysis and MLR still
maintains its popularity. MLR has many features that users are accustomed to;
for example,

(F.1) The implementation is simple.
(F.2) The statistical theory is solid (given that the model is true).
(F.3) Supplementary graphical and diagnostic tools are available for enhanc-

ing the analysis.
(F.4) Standard deviations are available for the estimated parameters.
(F.5). The output is easy to interpret.

Can these features, which are largely pertinent to linear procedures, be in-
herited by tools for exploring nonlinearity? This worthy goal can be pursued for
SIR. In fact, SIR has retained the merits of (F.1) and (F.2). This is reviewed in
Section 2. The discussion there also leads to suggestions for (F.3).

The key to (F.4) and (F.5) stems from a natural connection between SIR
and MLR, to be established in Section 3. As it turns out, each SIR direction
is simply a slope vector of MLR applied to an optimally transformed Y . Each
eigenvalue can be interpreted as the R-squared value of the corresponding MLR.
The sense of optimality refers to the maximization of the R-squared value.
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Another advantage in bringing up the connection with MLR is to obtain
standard deviations for the SIR directions. This is derived in Section 4. The
formula turns out to be very simple, taking a form almost identical to the familiar
one in MLR except for a proportionality constant determined by the eigenvalue in
the SIR output. This clarifies the role of the covariance matrix of the regressors
in affecting the precision of the SIR estimates. As in MLR, the t-values can also
be formed for a quick significance assessment on each regressor variable.

Section 5 illustrates the enhanced SIR analysis. Three simulation examples
are studied in Section 5.1. The first model has a three dimensional structure, ex-
hibiting curves from one viewing angle and clustering from another. The second
model deals with heteroscedasticity. The third model discusses a nonlinear con-
founding phenomenon, showing a helix-like pattern in the data. We apply SIR to
the Boston housing data (Harrison and Rubinfeld (1978)) in Section 5.2. There
we demonstrate how SIR can help summarize the information for studying the
relationship between the median house value Y and thirteen regressor variables.
A confounding pattern like the third example in Section 5.1 is found from the
rotation plot for the house value (the Y variable) against two predictors found
by SIR : the number of rooms, and a weighted average of the crime rate and the
percentage of the poor. It looks like a helix or a slide. Harrison and Rubinfeld
(1978) suggested the logarithmic transformation on Y . But this is not needed in
carrying out the SIR analysis, because only the order of Y is needed in slicing.
As it turns out, the logarithmic transformation appears unnecessary in our final
analysis.

Our findings are summarized in Section 6. We conclude that the enhanced
SIR analysis shares the same nice features as MRL. It could take the same role as
MRL for routine use in data analysis. Technical details are given in the Appendix.

2. Features (F.1), (F.2) and (F.3)

Sliced inverse regression (SIR) reverses the roles of Y and x. The inverse
regression curve, η(y) = E(x|Y = y), and its covariance matrix, Ση = Cov η(Y ),
are considered. The population version of SIR amounts to the following eigen-
value decomposition:

Σηvi = λiΣxvi

λ1 ≥ λ2 ≥ · · · ≥ λp (2.1)

v′iΣxvi = 1,

where Σx denotes the covariance of x. The first few eigenvectors vi with nonzero
eigenvalues are used to project x for reducing the dimensionality. The linear
combinations v′ix formed from the SIR directions vi will be referred to as the SIR
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variates. How well does SIR keep features (F.1)-(F.3)? This is the focus of this
section.

First, regarding the implementation, we may estimate Ση by slicing. We
divide the range of Y into H slices and compute the mean of x in each slice,
x̄h, h = 1, . . . ,H. Then we form the weighted covariance matrix of these slice
mean vectors,

Σ̂η =
H∑

h=1

p̂h(x̄h − x̄)(x̄h − x̄)′, (2.2)

where p̂h is the proportion of cases falling into slice h and x̄ is the sample mean
of x. Finally, we simply replace Σx by the sample version Σ̂x = n−1 ∑n

i=1(xi −
x̄)(xi − x̄)′ and proceed with the eigenvalue decomposition :

Σ̂ηv̂i = λ̂iΣ̂xv̂i λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. (2.3)

Clearly, the computation of SIR is quite simple and feature (F.1) is retained.
Next, regarding the statistical theory of SIR, Theorem 3.1 in Li (1991) shows

that SIR directions fall into the e.d.r. space under the following linearity assump-
tion on the distribution of x:

Linear Design Condition. For any b in Rp, the conditional expectation
E(b′x|β′

1x, . . . , β′
kx) is linear in β′

1x, . . . , β′
kx; that is, for some constants co, c1, . . .,

ck, E(b′x|β′
1x, . . . , β′

kx) = co + c1β
′
1x + · · · + ckβ

′
kx.

Based on this, SIR estimates are shown to be root-n consistent. They are
not sensitive to the number of slices used. Significance tests are also available
for determining the dimensionality. Further discussion can be found in Cook and
Weisberg (1991), Duan and Li (1991), Hsing and Carroll (1992), Li (1991), Li
(1992a), Schott (1994), Zhu and Ng (1995), and Zhu and Fang (1996).

The requirement of the linearity condition on x appears to be a limitation of
SIR. How restrictive is this condition? It depends on our attitude towards data
analysis. At first glance, it appears that elliptically contoured distributions are
the only ones that may satisfy this condition (see Cook and Weisberg (1991)).
But the fact is that this condition is imposed only on the true e.d.r. directions,
and it need not hold for other non-e.d.r. directions. From a conservative point
of view, this fact does not help much because the e.d.r. directions are unknown
and the safe way is to make sure that the condition is satisfied for any directions,
even if they may not be in the e.d.r. space.

However, a less conservative point of view can be explored if we are willing
to tolerate small bias due to some possible mild violation of the linear design
condition. We can assess the size of the set of the β directions for which our
linearity condition approximately holds. As proved in Hall and Li (1993), this
set typically covers almost all directions in Rp when the dimension of x gets
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large. Thus if we adopt a Bayesian argument and consider a flat prior distribu-
tion on the unknown β’s for example, with a very high probability we may find
that the linearity condition is adequate. A simulation study confirming this fact
was reported in the Rejoinder in Li (1991), where a non elliptically-contoured
distribution, the uniform distribution on [0, 1]10 for x, was considered. Cook and
Weisberg (1991) also reported that SIR is often not overly sensitive to the linear
design condition.

It certainly is desirable to avoid the limitation due to the linear design con-
dition entirely. In principle, this can be done in several ways. For example, by
density estimation and reweighting, we can force x to follow elliptical symmetry,
an idea similar to importance sampling in the Bayesian computation literature.
More resampling/reweighting methods can be found in Brillinger (1991), Li and
Duan (1989), and more recently, Cook and Nachtsheim (1994).

Feature (F.3) can be pursued after obtaining the SIR directions. We can
plot b′x against the SIR variates as a diagnostic checking for the linear design
condition. A question arises regarding in which direction b is most likely to
reveal nonlinearity. This is solved by the helical confounding theory developed in
Li (1997). The most nonlinear direction b can be found by applying an eigenvalue
decomposition similar to SIR. Instead of Y , we slice on the SIR-variates to obtain
Cov (E(x|β′

1x, . . . , β′
kx)) and use this matrix to replace Ση in (2.1). The (k+1)th

eigenvector turns out to be the most nonlinear direction b and the corresponding
eigenvalue indicates how serious the nonlinearity is.

3. Transformation, MLR, and SIR

Transformation is a commonly used technique in regression analysis. This
can be done either informally by examining plots of residuals for example, or
formally by using the power transformation family as suggested in Box and Cox
(1964). Difficulties arise in applying these methods to high dimensional data
where there are many scatterplots to inspect. Some of them may suggest rather
different transformation functions. When this happens, the Box-Cox model is
then questionable because the model only allows for one transformation on Y .
Monotonicity of the power function family is another constraint in some appli-
cations.

The new aspect considered here combines merits from variable transforma-
tion and projection pursuit (Huber (1985), Diaconis and Freedman (1984)). For
a direction b in Rp, consider the scatterplot of Y against b′x and allow any (pos-
sibly non-monotone) transformation on Y for increasing the linear fit. Define
R2(b) to be the largest R-squared value among all transformations:

R2(b) = max ρ2(T (Y ), b′x), (3.1)
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where ρ(·, ·) denotes the correlation coefficient and the maximum is taken over
any transformation T (·). A variety of interesting features in the scatterplot,
including blurring curves, heteroscedasticity, and clusters may lead to a large
value of R2(b) (see examples in section 5.1 for illustration).

Using R2(b) as the projection index, we may look for a direction b1 that
maximizes R2(b). After finding b1, we then turn to those directions uncorrelated
to b1 for the second best direction b2. This process can be continued in a similar
fashion till we find a set of basis vectors, b1, . . . , bp, satisfying the conditions

Cov (b′ix, b′jx) = 0, for i �= j

R2(bi) = max
b

R2(b), (3.2)

where the maximum in (3.2) is taken over all vectors b satisfying Cov (b′x, b′jx) =
0, for j = 1, . . . , i − 1.

Unlike other projection pursuit procedures which need extensive searching,
we do have a closed form solution for bi’s. In fact, they are just the directions of
SIR.

Theorem 3.1. The SIR direction vi as defined in (2.1) solves the maximiza-
tion problem (3.2) and the maximum values are equal to the eigenvalues of SIR,
R2(bi) = λi, for i = 1, . . . , p.

The proof of this Theorem is given in the Appendix A.

We can describe this transformation-based projection pursuit in a conjugate
manner which begins with transformations of Y . Consider MLR on the trans-
formed variable T (Y ):

min
a∈R,b∈Rp

E(T (Y ) − a − b′x)2.

Denote the least squares solution by a(T ), b(T ). Recall the R-squared value, the
proportion of variation in Y explained by the least squares fit:

R2(T ) =
Var (a(T ) + b(T )′x)

Var T (Y )
= ρ2(T (Y ), b(T )′x).

The first optimal transformation T1 is defined to be the one that maximizes the
R-squared value: T1 solves

max
T

R2(T ), (3.3)

where the maximum is taken over all transformations. To find other optimal
transformations, an orthogonality constraint will be imposed. The ith optimal
transformation Ti(Y ) is one that solves (3.3) with the maximum taken over all
T (Y ) satisfying the condition that Cov (T (y), Tj(Y )) = 0, for j = 1, . . . , i − 1.
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Closed form solutions are again available. In fact, the following theorem shows
that these optimal transformations can be found from the scatterplots of Y and
the SIR directions.

Theorem 3.2. The ith optimal transformation can be written as

Ti(Y ) = E(v′ix|Y = y), (3.4)

where vi is the ith SIR direction as defined in (2.1). The associated R-squared
values are equal to the eigenvalues of SIR:

R2(Ti) = λi, for i = 1, . . . , p, (3.5)

and the slope vectors from MLR applied to the optimal transformations are pro-
portional to the SIR directions:

b(Ti) = λivi. (3.6)

The key to the proof of this theorem is the observation that (3.2) and (3.3)
are two versions of a common double maximization problem :

max
b,T

Corr(T (Y ), b′x).

(3.2) is obtained by maximizing over T first and then over b, while reversing this
order gives (3.3). The rest of the proof follows immediately from Theorem 3.1.

These two theorems depict well the behavior of SIR. It looks for the direc-
tions where the regression can be as linear as possible after transforming Y . An
eigenvector of SIR corresponds to the regression slope vector in the MLR applied
to an optimally transformed Y variable. Eigenvalues of SIR can be interpreted
as the associated R-squared values in MLR.

As mentioned earlier, the search of an “optimal” transformation is not re-
stricted to the monotone family. Indeed, no two Ti’s can be simultaneously
strictly monotone because of the orthogonality condition imposed in solving (3.3).

No single index can reflect all interesting aspects in a scatterdiagram; other-
wise we may need only the index, not graphics. Our transformation-based index
R2(b) is no exception. It performs poorly when the scatterdiagram of Y against
b′x contains a pattern of symmetry about some vertical line. The correlation
coefficient is zero and we cannot increase it by transforming Y . Thus R2(b) is
always zero no matter how interesting the pattern of symmetry is. This offers an
explanation for why SIR cannot recover the e.d.r. direction in a simple quadratic
function Y = (β′x)2 (see Cook and Weisberg (1991) and the Rejoinder in Li
(1991) for related discussion). One remedy is to consider double transforma-
tions (Carroll and Ruppert (1988)); namely to allow the transformation on b′x
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as well. We may use the maximum correlation between y and b′x to quantify
interestingness in the scatterplot :

max
T,g

ρ(T (y), g(b′x)),

where T, g are any squared integrable functions. How to maximize this index
over all possible directions efficiently has not yet been explored.

Nonlinear multivariate analysis techniques (c.f. Gifi (1990)) such as corre-
spondence analysis, optimal scaling, and ACE (Breiman and Friedman (1985),
Koyak (1987)) use maximum correlation in statistics in a rather different manner.
For example, ACE proposes the model

T (Y ) =
p∑

i=1

gi(xi) + ε.

Only one transformation on Y is allowed. But each regressor is allowed to make
transformation, a feature that SIR does not have.

Remark 3.1. The duality relationship displayed in Theorem 3.2 can be put
into a more general context in terms of Hilbert spaces. To simplify the notation,
assume that Ex = 0, EY = 0. Consider an infinite dimensional Hilbert space,
H1, consisting of all squared integrable transformed random variables T (Y ) with
mean zero. Let H2 be the p−dimensional Hilbert space of {b′x : b ∈ Rp}. These
two Hilbert spaces generate a larger Hilbert space, denoted by H. Measure
the distance between two elements, w1, w2, in H, by the standard deviation of
w1 − w2. For any T (Y ) in H1 the closest element in H2 is b(T )′x. For any b′x
in H2, the closest element in H1 is E(b′x|Y ). Denote H3 = {E(b′x|Y ) : b ∈ Rp}.
The duality relationship in Theorem 3.2 shows the existence of orthogonal basis
vectors, ei and e∗i , i = 1, . . . , p, for H2 and H3 respectively, with the following
property:

The element in H1 closest to ei is a multiple of e∗i , and conversely the element
in H2 closest to e∗i is a multiple of ei.

This is a special form of the singular value decomposition problem prevalent
in the context of correspondence analysis and the related subjects. Using the
terminology in multivariate analysis, SIR can indeed be viewed as the canonical
analysis between H1 and H2. As a generalization, it is possible to enlarge H2 by
including a few second order terms (or B-spline terms ) of x.

4. Simple Estimates for the Standard Deviations of the SIR Directions

Outputs from MLR software often attach an estimated standard deviation
(i.e. standard error) to each regression coefficient. With that, users can easily
form the t-ratio (= the ratio of the coefficient estimate to the standard error)
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for a quick assessment on the (statistical) significance of each regressor variable.
It would be desirable if SIR outputs can provide similar information. But the
asymptotics for SIR is more difficult than MLR. The formulae for the covariance
matrix of each eigenvector v̂i can be derived by combining some perturbation
results for eigenvalue decomposition with large sample probabilistic arguments.
For general cases, they appear complex and hard to interpret. However, the
transformation theory in Section 3 offers a clue for simplification in practical
use.

As it turns out, our formula is similar to the familiar one in MLR. For the
ith SIR direction v̂i, we may associate it with the vector of the square root of
the diagonal elements from the matrix

(1 − λ̂i)
λ̂i

· n−1Σ−1
x

as the estimated standard deviations. This formula brings out three messages
useful to bear in mind:

(m.1) The standard errors of a SIR direction are proportional to those for
the standard MLR of Y on x.

(m.2) The inaccuracy of a SIR direction gets greater when the corresponding
eigenvalue gets smaller.

(m.3) The ratio (1−λ̂i)

λ̂i
plays the role of the average of squared residuals in

MLR.
To see how transformation theory is used for suggesting our formula, first

recall from familiar least squares theory:

Cov (β̂ls) = σ2 · n−1Σ−1
x . (4.1)

This formula remains popular for practical use even if MLR is conducted after
a transformation of Y , albeit the controversy regarding whether the effect of
transformation can be ignored or not (Bickel and Doksum (1981), Box and Cox
(1964), Hinkley and Runger (1984)). Since we can interpret the SIR directions
as being proportional to the MLR slope estimate after optimal transformation
(Theorem 3.2), (m.1) is well-anticipated. It remains to explain (m.3). Suppose
the optimal transformation Ti(Y ) were given and we conduct the standard MLR
for the transformed Y values. Let b̃(Ti) be the estimate of the slope vector b(Ti).
Recall (3.6) : SIR eigenvector vi can be obtained from b(Ti) after dividing by
the constant λi. This suggests that the covariance matrix of the SIR estimate
v̂i should be equal to the covariance matrix of b̃(Ti) divided by λ2

i . Now apply
(4.1) to find out Cov (b̃(Ti)). Since the R-squared value of the regression is λi

as stated in Theorem 3.2, the residual variance σ2 in (4.1) must be equal to
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(1−λi)Var (Ti(y)) = (1−λi)λi. Finally dividing σ2 by λ2
i , we are led to the ratio

(1−λ̂i)

λ̂i
given in (m.3).

Like the t-ratios in MLR, the ratios of the SIR estimates over the respective
standard errors provide a convenient way to tell if the corresponding coefficients
are statistically significant or not. In Appendix B, rigorous asymptotics will be
developed for justifying such applications. More specifically, for the lth regressor
variable, we may test the null hypothesis Ho :

Ho : e′lβi = 0, i = 1, . . . , k, (4.2)

where el = (0, . . . , 0, 1, . . . , 0)′ denotes the lth basis vector. The standard error
we obtained is asymptotically valid under the null hypothesis (4.2).

As a cautionary note, our formulae are not valid for constructing confidence
intervals. In general, the standard deviations of SIR estimates depend on the
true parameters in a rather complex manner. This complexity is largely due to
the additional uncertainty caused by approximating the vi with v̂i in estimating
the transformation Ti(Y ) (a phenomenon similar to the problem of Bickel and
Doksum (1981)). Thus, it remains unclear how close to the correct ones our
simplified standard deviations are.

In deriving the asymptotic distribution, we have also asssumed that the
number of slices used in constructing SIR estimate is fixed. Although in theory
we can use as many as H = n/2 slices (Hsing and Carroll (1992)), practically we
find no obvious advantage in using large H.

5. Examples

Three simulations are reported for illustrating the enhanced SIR analysis in
Section 5.1. Then we apply it to analyze the Boston housing data.

5.1. Simulations

Example 1. Curves and clusters
Consider the model

Y = sign(β′
1x + σ1ε1) log(|β′

2x + α + σ2ε2|), (5.1)

where the function sign(·) takes value 1 or -1 depending on the sign of the argu-
ment. All coordinates of x and ε1, ε2 are independent standard normal random
variables. For a clear illustration, we first study the noise-free case, σ1 = σ2 =
0. Take the dimension of x to be p = 15 and generate n = 300 cases with
β′

1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0), β′
2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),

α = 5. We run SIR with the number of slices equal to 20. Other numbers, 10
and 30, also show similar results. A rotation plot for Y against the first two pro-
jections is shown in Figures 5.1(a)-(d). The first eigenvector (Figure 5.1(a)) finds
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two curves spreading out symmetrically about the horizontal axis and the second
one (Figure 5.1(c)) shows a pattern of two clusters. Table 5.1 gives the first two
output eigenvectors along with estimated standard deviations and eigenvalues.
They are approximately proportional to β2 and β1 as desired. From the t-ratios,
we see that significant variables are correctly detected.

Table 5.1. The first two eigenvectors (with standard deviations and ratios)
and eigenvalues of SIR for (5.1) without error terms.

first vector (−.05,−.03,−.01,−.03,−.01,−.03, .01,−.03,−.01, .39, .41, .44, .45, .42, .43)

S.D. (.02, .02, .02, .02, .02, .02, .02, .03, .02, .02, .02, .02, .03, .02, .02)

ratio (−2.1,−1.5,−0.5,−1.4,−0.3,−1.6, 0.3,−1.4,−0.3, 18, 18, 19, 18, 20, 18)

second vector (.35, .39, .35, .24, .28, .30, .32, .27, .33,−.00,−.01, .03,−.02, .04, .11)

S.D. (.05, .05, .04, .05, .05, .05, .05, .05, .05, .05, .04, .05, .05, .05, .05)

ratio (7.2, 7.7, 8.0, 4.8, 5.7, 6.5, 6.7, 5.1, 6.6,−0.0,−0.3, 0.6,−0.3, 0.8, 2.2)

eigenvalues (0.88, .61, .16, .13, .12, .08, .07, .05, .04, .02, .02, .01, .01, .00, .00)

Figure 5.1. SIR’s view of data generated from (5.1).

Figure 5.1(a) shows approximately the scatterplot of Y against β′
2x. The

symmetry about the horizontal axis is due to the sign function which acts on β′
1x

behind the screen. This symmetry yields a zero correlation coefficient between
Y and β′

2x. But it can be increased greatly by folding the picture over along the
x−axis, which amounts to taking the absolute value transformation |Y |. This
explains why SIR is capable of finding this direction. According to Theorem
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3.2, the optimal transformation is T1(Y ) = E(β′
2x|Y ), which should give an even

higher correlation coefficient, about
√

.88 ≈ .94 as estimated by the square root
of the first eigenvalue of SIR, than the absolute value transformation.

Figure 5.1(c) shows approximately the scatterplot of Y against β′
1x. This is

the direction to be found by a linear least squares of Y against x, because Y is
uncorrelated with any directions orthogonal to β′

1x.
Figures 5.1(b) and 5.1(d) show two additional views of the rotation plot found

by SIR. These static views themselves do not offer much additional information;
but when we rotate the plot around the vertical axis, the two curves in 5.1(a)
are then turned into two thin plates, floating in and out of view.

We also repeat the simulation with the noise level set at σ1 = σ2 = 1. The
output of SIR is also quite close to the directions of β2, β1; see Table 5.2 and
Figures 5.2(a)-(b). The curves are now blurred.

Table 5.2. The first two eigenvectors (with standard deviations and ratios)
and eigenvalues of SIR for (5.1) with error terms.

first vector (−.01, .06, .01,−.01, .02, .01,−.01,−.05,−.01,−.46,−.46,−.44,−.43,−.39,−.38)

S.D. (.03, .03, .03, .03, .03, .03, .03, .04, .03, .03, .03, .03, .04, .03, .03)

ratio (−0.4, 1.9, 0.4,−0.4, 0.5, 0.4,−0.4,−1.5,−0.3,−14,−14,−13,−12,−13,−11)

second vector (.33, .31, .34, .27, .33, .32, .39, .22, .34,−.02,−.17, .09, .06,−.05, .14)

S.D. (.05, .06, .05, .06, .05, .05, .05, .06, .06, .05, .05, .06, .06, .05, .06)

ratio (6.1, 5.5, 7.0, 4.7, 6.0, 6.1, 7.2, 3.7, 6.1 − 0.3,−3.1, 1.5, 1.0,−0.9, 2.5)

eigenvalues (.78, .55, .17, .12, .11, .10, .07, .05, .04, .03, .02, .01, .01, .01, .00)

Figure 5.2. SIR’s view of data generated from (5.1) with σ1 = σ2 = 1, p = 15.

Remark 5.1. We also simulated the case with α = 0. SIR fails in this case
because of the symmetry on the β2 direction. Second-moment based methods
(Cook and Weisberg (1991), the Rejoinder in Li (1991)) and variants of principal
Hessian direction (Li (1992b)) are capable of finding the β2 direction.

Remark 5.2. It is relatively easy to find the transformation functions once the
SIR directions are obtained. For example, T1(Y ) can be found by first rotating
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the scatterplot (a) in Figure 5.1 by 90o so that the Y becomes the horizontal
axis and SIR1 becomes the vertical axis. After that, simply smooth the data by
applying any nonparametric curve fitting techniques. But we do not need these
transformations for further analysis. In this example, it is better to fit a two
dimensional regression surface, Y on the first two SIR variates. We could easily
reach more than 95% of the R-squared value of the fit, as compared with about
60% if MLR is applied to the same data. In fact, as suggested from the rotation
plot, we can further partition the data into two regions along the second SIR
variate, according to v̂′2x > 0 or not, so that after partition in each region we
only need one-dimensional smoothing of Y on v̂′1x.

In the literature, Box and Cox (1964) claimed that their power transforma-
tion theory intends to accomplish : (1) linearizing the regression, (2) stabilizing
the variance, (3) achieving normality. Whether such goals can be met or not
depends very much on the data themselves. This raises an important issue : how
does one know such a transformation does not exist? An answer to this question
could save us a lot of time by avoiding fruitless attempts with various transfor-
mation functions. Thus if two or more significant SIR directions are found, it is
a good indication that Box and Cox’s goals might not be met.

In general, the transformation theory of SIR leads to the conclusion that
transformation on Y may be recommended only when the data show one signifi-
cant SIR direction. In the Rejoinder of Li (1991), such an example, the worsted
yarn data from Box and Cox (1964), is mentioned , where a logarithmic trans-
formation curve is visible from the SIR plot.

Example 2. Heteroscedasticity

A popular model for studying heteroscedasticity is

y = β′
1x + εg(α + β′

2x), (5.2)

where g is often conveniently taken to be a power transformation function (see,
e.g., Carroll, Wu, and Ruppert (1988)).

To see how SIR helps the residual analysis, we take g(x) = .2x and generate
100 cases for p = 6 with β′

1 = (1, 1, 1, 1, 0, 0), β′
2 = (0, 0, 0, 0, 1, 1), α = 3, ε ∼

N(0, 1). Fit the data by the usual linear least squares and find the residual r.
Since β′

1x is uncorrelated with β′
2x, the heteroscedasticity occurs along a direction

orthogonal to the direction of the best linear fit. Thus we do not anticipate to find
any pattern by examining the usual residual plot, the plot of r against predicted
values (see Figure 5.3(a)).
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Table 5.3. The first eigenvector (with standard deviations and ratios) and
eigenvalues of SIR for residuals of (5.2).

first eigenvector (−.05,−.04, .18, .06,−.71,−.79)
S.D. (.13, .17, .13, .14, .13, .14)
ratio (−0.4,−0.2, 1.4, 0.5,−5.4,−5.5)
eigenvalues (.37, .23, .13, .07, .03, .01)

r r

Figure 5.3. Residuals against linear squares fit(a) and SIR1 direction(b) of model (5.2).

Now we run SIR on r. Figure 5.3(b) gives the plot of r against the first
direction found by SIR. It does reveal the heteroscedasticity pattern well.

The reason why SIR can help in residual analysis is easy to understand.
Although r is, by definition, uncorrelated with x, we can apply a transformation
on r to increase the correlation and SIR does that in an “optimal” way. There is
no need to take the absolute value transformation on r before applying SIR. The
flexibility in allowing for non-monotone transformation is the key to the success.

Example 3. Horseshoe and helix

A five-dimensional input variable x = (x1, . . . , x5)′ is obtained by first gener-
ating 1000 cases for x from the standard normal distribution and then retaining
only those cases that satisfy the constraint:

x2
1 − 0.5 < x2 < x2

1 + 0.5. (5.3)

This reduces the sample size to 288. Now a linear model is used to generate Y

Y = x1 + 0.5ε, ε ∼ N(0, 1). (5.4)

The output of SIR shows two large eigenvalues (see Table 5.4). Figures 5.4(a)-(d)
are some static pictures of the rotational plot found by SIR. By rotating the plot
about the vertical axis, we find data points spinning like a helix or a slide.
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Table 5.4. The first two eigenvectors (with standard deviations and ratios)
and eigenvalues of SIR for (5.3), (5.4).

first eigenvector (−1.64, .10, .02,−.03, .01)
S.D. (.07, .09, 0.04, 0.04, .04)
ratio (−23, 1.1, 0.5,−0.6, 0.3)
second eigenvector (.16, 2.1, .06,−.01,−.02)
S.D. (.15, .19, .09, 0.09, 0.09)
ratio (1.0110.6− 0.1 − 0.2)
eigenvalues (.66, .30, .056, .023, .01)

Figure 5.4. SIR’s view of data generated from (5.3)-(5.4).

The first direction shows a linear pattern (Figure 5.4(a)) and the second
direction finds a curve (Figure 5.4(c)). They correspond to x1 and x2 approxi-
mately. The scatterdiagram of these two SIR directions, Figure 5.4(d), shows a
horseshoe pattern, exhibiting the quadratic constraint (5.3).

In this example, x2 is nonlinearly correlated with x1, a situation where the
linear design condition is severely violated. SIR picks up this additional direction
because Y can be transformed to retain a significant correlation with x2.

A data set with a pattern like the one just observed here creates some dif-
ficulties in modeling which have not received proper attention in the literature.
First of all, we may not be able to tell if the number of the components is one
or two. For example, data generated by a two-components model of the form
Y = sign(x1)

√|x2| + .5ε presents little visual difference from the one we just
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found. In addition, even if a one-component model is assumed, we may not have
much information to estimate the correct direction well without knowing the
correct functional form.

Perhaps exhibiting this low dimensional nonlinear confounding patterns is
scientifically more important than attempting to resolving this issue statistically.
Graphics gives scientists something to focus on. It helps stimulate relevant knowl-
edge. Furthermore, such limitation due to confounding is shown to be pertinent
to every estimation procedure (see Li (1997)).

5.2. The Boston housing data cloud: a helix or slide

We now apply SIR to the Boston housing data (Harrison and Rubinfeld
(1978)). The dependent variable Y is taken to be the logarithm of a variable
of special interest, the median value of owner occupied homes in each of the
506 census tracts in Boston Standard Metropolitan Statistical Areas. There are
13 regressor variables (see Table 5.5). The sample size is n = 506, each case
representing a census tract.

Table 5.5. Variables in Boston housing data.

Y logarithm of the median value of owner-occupied home

x1 crime rate by town

x2 proportion of town’ residential land zoned for lots greater than 25,000 square feet

x3 proportion of nonretail business acres per town

x4 = 1 if tract bounds Charles River, =0 otherwise

x5 nitrogen oxide concentration in pphm

x6 average number of rooms in owner units

x7 proportion of owner units built prior to 1940

x8 weighted distances to five employment centers in the Boston region

x9 index of accessibility to radial highways

x10 full property tax rate

x11 pupil-teacher ratio by town school district

x12 black proportion of the population

x13 proportion of population that is in the lower status

Table 5.6. The first three eigenvectors (with standard deviations and ratios)
and eigenvalues of SIR for Boston housing data.

first vector (−.022, .002,−.001, .27,−27, 0.25,−.004,−.77, .28,−.001,−.10, 1.3,−7.6)

S.D. (.003, .001, .006, .087, .991, .042, .001, .089, .050, .0003, .013, .271, .512)

ratio (−6.8, 1.6,−0.2, 3.1,−6.7, 6.0,−2.7,−8.7, 5.5,−4.0,−7.7, 4.6,−15.0)

second vector (.05, .01,−.05, .07,−10.8, 1.04,−.007,−1.47, .05, .0003,−.05,−1.3, 5.9)

S.D. (.007, .003, .014, .190, 8.70, .091, .003, .193, .110, .0007, .028, .592, 1.12)

ratio (6.6, 4.3,−3.8, 0.4,−1.2, 11,−2.3,−7.6, 0.5, 0.4,−1.9,−2.2, 5.3)

third vector (−.09, .01,−.009,−.12, 29.0.55, .03, .18,−.09, .0005, .08,−.36, 1.58)

S.D. (.013, .006, .026, .364, 16.7, .174, .006, .370, .211, .001, .054, 1.13, 2.14)

ratio (−6.8, 2.0,−0.4,−0.3, 1.7, 3.1, 5.3, 0.5,−0.5, 0.4, 1.5,−0.3, 0.8)

eigenvalues (.82, .48, .20, .08, .05, .04, .03, .02, .01, .00, .00, .00, .00)
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Figure 5.5. SIR’s view on Boston housing data. Y is the logrithm of the
median value of owner-occupied house.

We run SIR with H, the number of slices, ranging from 10 to 30. The results
are almost the same. The one for H = 15 is reported in Figures 5.5(a)-(d).
By rotating the plot, a helix or slide is found, resembling what we have seen in
Figures 5.4(a)-(d).

We would like to find a smaller number variables that contribute the most
to the variation of each projection. For simplicity, we use a forward stepwise
regression instead of all subset selections. For the first projection, the main
contributor is x13, proportion of poor, with x6, average number of rooms in
houses, as a close runner-up. The second projection is analyzed similarly but
during selection the significant variables identified in the first direction have to
be kept in the regression. As it turns out, the top candidate x1, crime rate, leads
seven other competing variables only marginally. We fail to find a small number
of regressors to approximate the second projection.

A closer look at the relationship of crime rate with other variables is taken by
inspecting scatterplots. A group of tracts with high crime rate is easily identified.
The values of the variables x2, x3, x9, x10, and x11 turn out to be the same for all
members in this group.

Excluding this high crime rate group, we run SIR on the remaining 374 cases.
The pictures are similar to but sharper than the ones obtained from the whole
sample. This time we succeed in reducing the number of variables contributing
to the first two projections to just three: x6, x1 and x13.
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We finally run SIR again, with x1, x6, x13 as the regressor variables (see Table
5.7). The first projection is x6. The second projection is tailored from a linear
combination of the crime rate and the proportion of poor, x1 + 30x13, (numbers
rounded), for maintaining orthogonality to x6.

Table 5.7. The first two eigenvectors (with standard deviations and ratios)
and eigenvalues of SIR for Y on x1, x6, x13.

first vector (.08, 1.30,−3.14)
S.D. (.045, .053, .633)
ratio (1.72, 24.6,−4.95)
second vector (.64, 1.38, 18.3)
S.D. (.111, .131, 1.57)
ratio (5.81, 10.6, 11.7)
eigenvalues (.80, .40, .03)

We again find the helix-type of data pattern. Figure 5.6(a) shows a linear
relationship between Y and x6. A different angle of the same rotation plot,
Figure 5.6(b), suggests a nonlinear association between Y and another variable,
x1 + 30x13. The data do not seem to contain enough information to tell which
factor is more important. Figure 5.7 reveals that these two factors are indeed
nonlinearly associated as well, reminiscent of the confounding issue discussed in
Example 3 of Section 5.1.

Figure 5.6. SIR’s view on the subsample that excludes a high crime rate
group with only x1, x6, x13 as the regressor variables. Y is the logrithm of
the median value of owner-occupied house.
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Figure 5.7. The scatterplot of the first two components in Figures 5.5 (a)-(d).

The logarithmic transformation used to obtain Y is borrowed from Harrison
and Rubinfeld (1978); but because SIR is invariant under the monotone trans-
formation of Y , SIR would still find the same projections if the original scale
were used. In Figures 5.8(a)-(b), the original scale of house price is plotted.
Compared with Figures 5.6(a)-(b), we don’t find it compelling to use a logarith-
mic transformation (a point also concluded in the ACE analysis of Breiman and
Friedman(1985)).

Figure 5.8. SIR’s view on the subsample that excludes a high crime rate
group with only x1, x6, x13 as the regressor variables. Y is the original scale,
median value of owner-occupied house.

Unlike other previous analyses focusing on prediction equations, SIR identi-
fies two key factors of different nature and provides a graphical summary. The
variable x6, average number of rooms, is a physical factor, which may reflect the
construction cost and the practical utility of a house to some degree. It affects
the structure value of a house. The other variable x1 + 30x13, the crime rate
and percentage of the poor, is a socio-economic factor. It reflects the desirability
of the house’s neighborhood which in turn affects the area’s land value. SIR
reveals the nonlinear association between these two factors. The importance of
the physical factor is also confirmed by other methods; for example, the straight-
forward linear regression, the more complicated model fitting of Harrison and
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Rubinfeld, and ACE of Breiman and Friedman. In fact, in each of these studies,
the physical variable is the leading factor which accounts for the highest per-
centage of variation in the prediction equation. One might then conclude that
this is the dominant factor. However, the helix type of nonlinear confounding
pattern exhibited by the three-dimensional SIR plot offers a challenge to such a
statement.

It is usually hard to draw any decisive conclusion from a single study. If
the same helix shape of distribution also exists in data from other cities, for
example, then the finding would be much more noteworthy. The graphics found
here, however, is not available from linear regression or other methods. The
exposure of the helix type data cloud offers a warning diagnosis for methods
based on approximating the regression surface, which are sensitive to nonlinear
confounding.

Remark 5.3. The logarithmic transformation is sometimes recommended to
help stabilize variances. This is a very subtle issue. Because we did not find
heterogeneous patterns like Example 2 in Section 4.2, our analysis suggests that
this is at most a secondary issue for this data.

6. Conclusion

Linear regression by ordinary least squares is often used in pratice. It has
nice statistical properties like unbiasedness and consistency if the linear model
is correct. It also has the remarkable, though less well-known, property that the
estimate is still consistent up to a proportional constant under (1.1) with k = 1
and the linear design Condition due to Brillinger (1977, 1983) (see also Cook,
Hawkins, and Weisberg (1992), Li and Duan (1989)).

But the popularity of linear least squares regression in exploratory data anal-
ysis is also due to its straightforward interpretation without model assumptions:
linear least squares regression offers a “best” llinear approximation of the regres-
sion surface; in different terms, it finds the linear combination of the independent
variables that maximizes the correlation with the dependent variable.

Likewise, for popularizing SIR, this paper offers a simple interpretation on
what it does without model assumptions: it is a transformation-based projection
pursuit; it finds linear combinations of independent variables that maximize the
correlation with the optimally transformed dependent variable. This finding
complements the dimension reduction theory of SIR given in Li (1991), based on
Model (1.1) and the linear design condition. It also leads to simple estimates for
the standard deviations of the SIR directions.

The implementation of SIR is almost as simple as linear regression. Yet
it offers a much broader perspective, particularly in concert with the use of
interactive, multi-dimensional, dynamic graphing techniques. SIR can be used
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to take the same role as linear regression in model building, residual analysis,
regression diagnosis, etc.. It supplements and greatly enhances the power of
linear regression. A program in xlisp.stat (Tierney (1989)) for carrying out the
SIR analysis is available from either author.

The main limitation of SIR is in finding patterns symmetric about the vertical
axis. This leaves room for using other simple methods, for example, second-
moment based methods like SAVE (Cook and Weisberg (1991)), SIRII (Rejoinder
in Li (1991)), or pHd (Li (1992b)).

It is inappropriate to view SIR as a rival to other tools for analyzing high
dimensional data. ACE, CART, MARS, or PPR all aim at approximating the
regression function. They are computer-intensive and do not use graphical infor-
mation. SIR approaches data analysis via a different rationale. It is a graphics-
driven method and is simple to compute. It can be used whenever there is a
need for visualization, which in turn can help functional approximation. SIR can
be used together with other methods in many ways. It helps study the shape
of their residuals at least. One can also apply SIR to the rescaled x variables
found by ACE to check if the additivity assumption of ACE is violated or not.
Finally, the idea of SIR can be used or extended in other contexts. For error-
in-regressor problems, see Carroll and Li (1992), and Knickerbocker, Wang and
Carroll (1992).
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Appendices

A. Proof of Theorem 3.1.

First, it can be verified that for any direction b, the optimal transformation is
Tb(y) = E(b′x|Y = y) = b′η(y). Then a simple conditional expectation argument
leads to

Cov (Tb(Y ), b′x) = E[Tb(Y )(b′x)] − [ETb(Y )][Eb′x]

= E[Tb(Y )E(b′x|Y )] − [ETb(Y )E(E(b′x|Y ))]

= b′E(η(Y )η(Y )′)b − b′(Eη(Y ))(Eη(Y ))′b = b′Σηb

= Var (Tb(Y )).
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It follows that

R2(b) = Cov (Tb(Y ), b′x)/Var (b′x) =
b′Σηb

b′Σxb
.

Therefore the eigenvalue decomposition of Ση with respect to Σx solves the max-
imization problem (3.2), completing the proof.

B. Derivation for Standard Deviations of SIR Estimates

Let e be any vector in the orthogonal complement of the e.d.r. space; i.e.,

e′βi = 0, i = 1, . . . , k. (1)

We shall derive a formula for the asymptotic variance of e′v̂i.
We consider only the case that the number of slices H is fixed. One way

of slicing is to use pre-specified fixed intervals on Y . Let δh(Y ) be an indicator
function which takes value 1 ( if Y falls into the hth interval ) or 0 ( otherwise).
Define µh = E(x|δh(Y ) = 1), Σ∗

η =
∑H

h=1 ph(µh − Ex)(µh − Ex)′, where ph =
Eδh(Y ), and Y ∗ =

∑H
h=1 δh(Y )E(Y |δh(Y ) = 1). It is clear that Σ̂η, defined

by (2.2), converges to Σ∗
η, which can be viewed as a discretized version of Ση

when Y ∗ (instead of Y ) is available. It is easy to check that the statements of
Theorems 3.1 and 3.2 remain valid if Y is replaced by Y ∗ in (3.1), (3.4), and
the eigenvalues λi and eigenvectors vi are replaced by the λ∗

i and v∗i respectively
from the following discrete population version of SIR:

Σ∗
ηv

∗
i = λ∗

i Σxv∗i . (2)

The following is a mild assumption:

Assumption (B.1). Any nonzero eigenvalue λ∗
i in the above eigenvalue decompo-

sition, is simple (i.e, it is different from other eigenvalues).
In addition to (B.1), we shall need another assumption, which is similar to

the homogeneous assumption in MLR. Recall that the most general form of the
covariance matrix for the slope estimate β̂ls is more complicated than (4.1):

Cov (β̂ls) = n−1Σ−1
x E(ε2 · (x − Ex)(x − Ex)′)Σ−1

x ,

where the residual ε = Y −EY −b′ls(x−Ex). Thus Var (e′β̂ls) = n−1E(ε2(e′Σ−1
x (x

−Ex))2), which is reduced to the familar (and simpler) one inferred from (4.1),
n−1σ2e′Σ−1

x e, when errors are homogeneous so that

Cov (ε2, (e′Σ−1
x x)2) = 0. (3)

We note however that the common practice is to use (4.1) unless severe het-
roscedasticity is found.
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To introduce the homogeneity analogous to (3) in our case, let T ∗
i (Y ∗) =

E(v∗i
′x|Y ∗) = v∗i

′(
∑H

h=1 δh(Y )µh) be the ith optimal transformation suggested
by (3.4) of Theorem 3.2 (applied to Y ∗). Let b∗i be the slope of MLR for the
transformed variable T ∗

i (Y ∗). Thus

b∗i = Σ−1
x Cov (x, T ∗

i (Y ∗)) = λ∗
i v

∗
i . (4)

Define the residual

r∗ = T ∗
i (Y ∗) − E(T ∗

i (Y ∗)) − b∗i
′(x− Ex). (5)

Assumption (B.2). The residual of MLR after transformation is homogeneous in
the sense that Cov (r∗2, (e′Σ−1

x x)2) = 0.

Theorem B.1. Consider model (1.1) and assume the Linear Design condition
given in Section 2 together with assumption (B.1). The number of slices used in
SIR is assumed fixed. Then for any vector e which is orthogonal to the e.d.r.
space, we have

e′v̂i = λ∗
i n

−1Σn
j=1r

∗
j e

′Σ−1
x (xj − Ex) + Op(n−1). (6)

With the additional assumption (B.2), the asymptotic variance of e′v̂i is equal to

(1 − λ∗
i )

λ∗
i

· n−1e′Σ−1
x e. (7)

Proof. The orthogonality assumption (1) implies the following identities which
will be used later on:

e′Σ−1
x µh = 0, e′Σ−1

x Σ∗
η = 0, e′v∗i = 0. (8)

The first identity is due to the basic theorem of SIR (Li (1991), Theorem 3.1)
which implies that Σ−1

x µh falls into the e.d.r. space. The second identity follows
from the first one, which also implies the third one.

Now define ∆v = v̂i − v∗i and ṽi = Σ̂−1
x Σ̂ηv

∗
i . From (2.3), we can write

0 = (Σ̂−1
x Σ̂η − λ̂iI)v̂i

= ṽi − λ̂iv
∗
i + (Σ̂−1

x Σ̂η − λ̂iI)∆v

= ṽi − λ̂iv
∗
i + (Σ−1

x Σ∗
η − λ∗

i I)∆v + Op(n−1).

Left-multiply the last expression by e′ and use (8) to obtain e′ṽi − λ∗
i e

′∆v =
Op(n−1). This gives

e′∆v = λ∗
i
−1e′ṽi + Op(n−1). (9)
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To approximate the term e′ṽi, we assume Ex = 0 without loss of generality.
Define Σ̃η =

∑
h p̂h(x̄h − x̄)µ′

h. Straightforwardly,

e′ṽi = e′Σ̂−1
x Σ̃ηv

∗
i + e′Σ̂−1

x (Σ̂η − Σ̃η)v∗i
= e′Σ̂−1

x Σ̃ηv
∗
i + e′Σ̂−1

x

∑
h

p̂h(x̄h − x̄)(x̄h − x̄− µh)′v∗i

= e′Σ̂−1
x Σ̃ηv

∗
i +

∑
h

p̂he′Σ−1
x µh(x̄h − µh)′v∗i + Op(n−1)

= e′Σ̂−1
x Σ̃ηv

∗
i + Op(n−1)

= e′Σ̂−1
x (n−1

n∑
j=1

(xj − x̄)T ∗
i (Y ∗

j )) + Op(n−1). (10)

Without the vector e, the leading term is just the slope estimate of MLR when
applied to the transformed data T ∗

i (Y ∗
j ) = v∗i

′(
∑H

h=1 δh(Yj)µh), j = 1, . . . , n. Its
asymptotic expansion is easy to obtain. Let r∗j , j = 1, . . . , n be the residuals,
defined according to (5), and recall (4). We have

Σ̂−1
x

(
n−1

n∑
j=1

(xj − x̄)T ∗
i (Y ∗

j )
)

= b∗i + Σ̂−1
x

(
n−1

n∑
j=1

(xj − x̄)r∗j
)

= λ∗
i v

∗
i + n−1

n∑
j=1

r∗j Σ
−1
x (xj − Ex) + Op(n−1). (11)

Putting (9), (10) and (11) together and applying (8) again, we obtain (6).
Assumption (B.2) implies that

E[r∗j
2(e′Σ−1

x (xj − Ex))2] = Er∗j
2 · E(e′Σ−1

x (xj − Ex))2 = Er∗j
2 · e′Σ−1

x e.

A direct calculation similar to Theorem 3.2 (with Ση replaced by Σ∗
η) shows that

Var (r∗j ) = (1 − λ∗
i )λ

∗
i . This shows that the asymptotic variance of e′v̂i is equal

to (7). The proof of Theorem B.1 is complete.

Instead of fixing intervals, another way of slicing is to use the order statis-
tics of Y , Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). The slice means are now defined by

x̄o
h =

∑[nph]
j=[nph−1]

x(j), where p1, . . . , pH are prespecified proportions and [nph]
is interpreted as the integer closest to nph. The superscript o is used hereafter
to denote quantities associated with slicing by order statistics; for example, Σ̂o

η

denotes the covariance matrix of slice means x̄o
h, and v̂o

i , λ̂o
i are respectively the

ith SIR estimate and eigenvalue.
This alternative way of slicing is related to the fixed-interval slicing with the

hth interval set as [F−1
Y (ph−1), F−1

Y (ph)], where FY (·) is the cumulative distribu-
tion function of Y . It is not hard to argue that the difference between x̄o

h and x̄h
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is of the order n− 1
2 . Resulting from this, the differences, λ̂o

i − λ̂i,and v̂o
i − v̂i, are

also found to be of the same order. However, with a more delicate elaboration,
we shall establish

e′v̂o
i = e′v̂i + Op(n− 3

4 ), (12)

where v̂i denotes the ith SIR estimate resulting from the fixed interval slicing.
Therefore the asymptotic variance for e′v̂o

i remains the same as (7).

Proof of (12). Without loss of generality, we assume Ex = 0. We begin with
an argument similar to the one leading to (9):

0 = (Σ̂−1
x Σ̂o

η − λ̂o
i I)v̂o

i

= (Σ̂−1
x Σ̂o

η − λ̂o
i I)(v̂o

i − v̂i) + Σ̂−1
x (Σ̂o

η − Σ̂η)v̂i − (λ̂o
i − λ̂i)v̂i

= (Σ−1
x Σ∗

η − λ∗
i I)(v̂o

i − v̂i) + Σ−1
x (Σ̂o

η − Σ̂η)v∗i − (λ̂o
i − λ̂i)v̂i + Op(n−1).

Left-multiplying by e′, we finally get

e′(v̂o
i − v̂i) = λ∗

i
−1e′Σ−1

x (Σ̂o
η − Σ̂η)v∗i + Op(n−1).

Thus to obtain (12), it suffices to show that for each h

e′Σ−1
x (x̄o

h − x̄h) = Op(n− 3
4 ). (13)

Let δo
h(Yj) be the hth indicator function associated with slicing by order statistics.

We can express x̄o
h as [nhp]−1 ∑n

j=1 δo
h(Yj)xj . Thus, the left side of (13) becomes

e′Σ−1
x (x̄o

h − x̄h) =e′Σ−1
x [nph]−1

n∑
j=1

(δo
h(Yj)−δh(Yj))xj +([nph]−1−(np̂h)−1)e′Σ1

xx̄h

= e′Σ−1
x [nph]−1

n∑
j=1

(δo
h(Yj) − δh(Yj))xj + 0p(n−1).

Define m(Yj) = E(xj |Yj) and uj = xj − m(Yj). Similar to the argument
leading to (8), we have e′Σ−1

x m(Yj) = 0. Thus conditional on Y1, . . . , Yn, we can
write the leading term in the last expression as

e′Σ−1
x [nph]−1

n∑
j=1

(δo
h(Yj)−δh(Yj))m(Yj)+e′Σ−1

x [nph]−1
n∑

j=1

(δo
h(Yj)−δh(Yj))uj

= [nph]−1
n∑

j=1

(δo
h(Yj) − δh(Yj))e′Σ−1

x uj .
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Due to the independence between uj ’s, the conditional variance of this term is
equal to [nph]−2 ∑n

j=1(δ
o
h(Yj)−δh(Yj))2Var (e′Σ−1

x uj|Yj), which is no greater than

[nph]−2
n∑

j=1

(δo
h(Yj) − δh(Yj))2Var (e′Σ−1

x xj)

= e′Σ−1
x e · [nph]−2

n∑
j=1

|δo
h(Yj) − δh(Yj)| = n−2Op(

√
n).

This establishes (13), completing the proof of (12).

Remark B.1. We can verify that if the conditional variance Var (e′Σ−1
x x|β′

1x,

. . . , β′
kx) does not depend on βx

1 , . . . , β′
kx, then Assumption (B.2) holds. This

is the case when x is normal. In general, as one often does in the standard
MLR application, a diagnostic check on (B.2) can be performed by plotting the
residuals of MLR (after transformation) against the variate e′Σ−1

x x. Note also
that even without assumption (B.2), we can still use (6) to see that the asymptotic
variance of e′v̂i is equal to n−1λ∗

i
2e′Σ−1

x E(r∗2(x− Ex)(x − Ex)′)Σ−1
x e.
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