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AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION
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Abstract: In the problem of selecting a linear model to approximate the true un-
known regression model, some necessary and/or sufficient conditions are estab-
lished for the asymptotic validity of various model selection procedures such as
Akaike’s AIC, Mallows’ Cp, Shibata’s FPEλ, Schwarz’ BIC, generalized AIC, cross-
validation, and generalized cross-validation. It is found that these selection proce-
dures can be classified into three classes according to their asymptotic behavior.
Under some fairly weak conditions, the selection procedures in one class are asymp-
totically valid if there exist fixed-dimension correct models; the selection procedures
in another class are asymptotically valid if no fixed-dimension correct model exists.
The procedures in the third class are compromises of the procedures in the first
two classes. Some empirical results are also presented.

Key words and phrases: AIC, asymptotic loss efficiency, BIC, consistency, Cp, cross-
validation, GIC, squared error loss.

1. Introduction

Let yn = (y1, . . . , yn)′ be a vector of n independent responses and Xn =
(x′

1, . . . , x
′
n)′ be an n × pn matrix whose ith row xi is the value of a pn-vector

of explanatory variables associated with yi. For inference purposes, a class of
models, indexed by α ∈ An, is to characterize the relation between the mean
response µn = E(yn|Xn) and the explanatory variables. If An contains more
than one model, then we need to select a model from An using the given Xn and
the data vector yn. The following are some typical examples.

Example 1. Linear regression. Suppose that pn = p for all n and µn = Xnβ

with an unknown p-vector β. Write β = (β′
1, β

′
2)

′ and Xn = (Xn1, Xn2). It is
suspected that the sub-vector β2 = 0, i.e., Xn2 is actually not related to µn.
Then we may propose the following two models:

Model 1: µn =Xn1β1

Model 2: µn =Xnβ
.

In this case, An = {1, 2}. It is well known that the least squares fitting under
model 1 is more efficient than that under model 2 if β2 = 0. More generally, we
can consider models

µn = Xn(α)β(α), (1.1)
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where α is a subset of {1, . . . , p} and β(α) (or Xn(α)) contains the components
of β (or columns of Xn) that are indexed by the integers in α. In this case
An consists of some distinct subsets of {1, . . . , p}. If An contains all nonempty
subsets of {1, . . . , p}, then the number of models in An is 2p − 1.

Example 2. One-mean versus k-mean. Suppose that n observations are from
k groups. Each group has r observations that are identically distributed. Thus,
n = kr, where k = kn and r = rn are integers. Here we need to select one model
from the following two models: (1) the one-mean model, i.e., the k groups have
a common mean; (2) the k-mean model, i.e., the k groups have different means.
To use the same formula as that in (1.1), we define pn = k,

Xn =




1r 0 0 · · · 0
1r 1r 0 · · · 0
1r 0 1r · · · 0
· · · · · · · · · · · · · · ·
1r 0 0 · · · 1r




and β = (µ1, µ2 −µ1, . . . , µk −µ1)′, where 1r denotes the r-vector of ones. Then
An = {α1, αk}, where α1 = {1} and αk = {1, . . . , k}.
Example 3. Linear approximations to a response surface. Suppose that we wish
to select the best approximation to the true mean response surface from a class of
linear models. Note that the approximation is exact if the response surface is ac-
tually linear and is in An. The proposed models are µn = Xn(α)βn(α), α ∈ An,

where Xn(α) is a sub-matrix of Xn and βn(α) is a sub-vector of a pn-vector βn

whose components have to be estimated. As a more specific example, we consider
the situation where we try to approximate a one-dimensional curve by a polyno-
mial, i.e., µn = Xn(α)βn(α) with the ith row of Xn(α) being (1, ti, t2i , . . . , t

h−1
i )′,

i = 1, . . . , n. In this case An = {αh, h = 1, . . . , pn} and αh = {1, . . . , h} cor-
responds to a polynomial of order h used to approximate the true model. The
largest possible order of the polynomial may increase as n increases, since the
more data we have, the more terms we can afford to use in the polynomial ap-
proximation.

We assume in this paper that the models in An are linear models and the
least squares fitting is used under each proposed model. Each model in An is
denoted by α, a subset of {1, . . . , pn}. After observing the vector yn, our concern
is to select a model α from An so that the squared error loss

Ln(α) =
‖µn − µ̂n(α)‖2

n
(1.2)
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be as small as possible, where ‖ ‖ is the Euclidean norm and µ̂n(α) is the least
squares estimator (LSE) of µn under model α. Note that minimizing Ln(α) is
equivalent to minimizing the average prediction error E[n−1‖zn − µ̂n(α)‖2|yn],
where zn = (z1, . . . , zn)′ and zi is a future observation associated with xi and is
independent of yi.

A considerable number of selection procedures were proposed in the litera-
ture, e.g., the AIC method (Akaike (1970)); the Cp method (Mallows (1973));
the BIC method (Schwarz (1978); Hannan and Quinn (1979)); the FPEλ method
(Shibata (1984)); the generalized AIC such as the GIC method (Nishii (1984),
Rao and Wu (1989)) and its analogues (Pötscher (1989)); the delete-1 cross-
validation (CV) method (Allen (1974), Stone (1974)); the generalized CV (GCV)
method (Craven and Wahba (1979)); the delete-d CV method (Geisser (1975),
Burman (1989), Shao (1993), Zhang (1993)); and the PMDL and PLS methods
(Rissanen (1986), Wei (1992)). Some asymptotic results in assessing these se-
lection procedures have been established in some particular situations. Nishii
(1984) and Rao and Wu (1989) showed that in Example 1, the BIC and GIC
are consistent (definitions of consistency will be given in Section 2), whereas the
AIC and Cp are inconsistent. On the other hand, Stone (1979) showed that in
some situations (Example 2), the BIC is inconsistent but the AIC and Cp are
consistent. In Example 3, Shibata (1981) and Li (1987) showed that the AIC,
the Cp, and the delete-1 CV are asymptotically correct in some sense. However,
Shao (1993) showed that in Example 1, the delete-1 CV is inconsistent and the
delete-d CV is consistent, provided that d/n → 1. These results do not provide
a clear picture of the performance of the various selection procedures. Some of
these conclusions are obviously contrary to each other. But this is because these
results are obtained in quite different circumstances. A crucial factor that almost
determines the asymptotic performances of various model selection procedures
is whether or not An contains some correct models in which the dimensions of
regression parameter vectors do not increase with n. This will be explored in
detail in the current paper.

The purpose of this paper is to provide an asymptotic theory which shows
when the various selection procedures are asymptotically correct (or incorrect)
under an asymptotic framework covering all situations described in Examples
1-3. After introducing some notations and definitions in Section 2, we study
the asymptotic behavior of the GIC method in Section 3 and other selection
procedures cited above in Section 4. Some numerical examples are given in
Section 5. Section 6 contains some technical details.
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2. Notation and Definitions

Throughout the paper we assume that (X′
nXn)−1 exists and that the min-

imum and maximum eigenvalues of X′
nXn are of order n. The matrices Xn,

n = 1, 2, . . . , are considered to be non-random. The results in this paper are
also valid in the almost sure sense when the Xn are random, provided that the
required conditions involving Xn hold for almost all sequences Xn, n = 1, 2, . . .

Let An be a class of proposed models (subsets of {1, . . . , pn}) for selection.
The number of models in An is finite, but may depend on n. For α ∈ An,
the proposed model is µn = Xn(α)βn(α), where Xn(α) is an n × pn(α) sub-
matrix of the n × pn matrix Xn and βn(α) is a pn(α) × 1 sub-vector of an
unknown pn×1 vector βn. Without loss of generality, we assume that the largest
model ᾱn = {1, . . . , pn} is always in An. The dimension of βn(α), pn(α), will
be called the dimension of the model α. Under model α, the LSE of µn is
µ̂n(α) = Hn(α)yn, where Hn(α) = Xn(α)[Xn(α)′Xn(α)]−1Xn(α)′.

A proposed model α ∈ An is said to be correct if µn = Xn(α)βn(α) is
actually true. Note that An may not contain a correct model (Example 3); a
correct model is not necessarily the best model, since there may be several correct
models in An (Examples 1 and 2) and there may be an incorrect model having
a smaller loss than the best correct model (Example 2). Let

Ac
n = {α ∈ An : µn = Xn(α)βn(α)}

denote all the proposed models that are actually correct models. It is possible
that Ac

n is empty or Ac
n = An.

Let en = yn − µn. It is assumed that the components of en are independent
and identically distributed with V (en|Xn) = σ2In, where In is the identity matrix
of order n. The loss defined in (1.2) is equal to Ln(α) = ∆n(α)+(e′nHn(α)en)/n,
where ∆n(α) = (‖µn−Hn(α)µn‖2)/n . Note that ∆n(α) = 0 when α ∈ Ac

n. The
risk (the expected average squared error) is

Rn(α) = E[Ln(α)] = ∆n(α) +
σ2pn(α)

n
.

Let α̂n denote the model selected using a given selection procedure and let
αL

n be a model minimizing Ln(α) over α ∈ An. The selection procedure is said
to be consistent if

P
{
α̂n = αL

n

}
→ 1 (2.1)

(all limiting processes are understood to be as n → ∞). Note that (2.1) implies

P
{
Ln(α̂n) = Ln(αL

n)
}
→ 1. (2.2)
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Thus, µ̂n(α̂n) is in this sense asymptotically as efficient as the best estimator
among µ̂n(α), α ∈ An. (2.1) and (2.2) are equivalent if Ln(α) has a unique
minimum for all large n.

The consistency defined in (2.1) is in terms of model selection, i.e., we treat
α̂n as an “estimator” of αL

n (it is a well defined estimator if αL
n is non-random, e.g.,

in Example 1). This consistency is not related to the consistency of µ̂n(α̂n) as an
estimator of µn, i.e., Ln(α̂n) →p 0. In fact, it may not be worthwhile to discuss
the consistency of µ̂n(α̂n), since sometimes there is no consistent estimator of
µn (e.g., minα∈An Ln(α) �→p 0) and sometimes there are too many consistent
estimators of µn (e.g., maxα∈An Ln(α) →p 0, in which case µ̂n(α) is consistent
for any α).

In some cases a selection procedure does not have property (2.1), but α̂n is
still “close” to αL

n in the following sense that is weaker than (2.1):

Ln(α̂n)/Ln(αL
n) →p 1, (2.3)

where →p denotes convergence in probability. A selection procedure satisfying
(2.3) is said to be asymptotically loss efficient, i.e., α̂n is asymptotically as ef-
ficient as αL

n in terms of the loss Ln(α). Since the purpose of model selection
is to minimize the loss Ln(α), (2.3) is an essential asymptotic requirement for a
selection procedure.

Clearly, consistency in the sense of (2.1) implies asymptotic loss efficiency
in the sense of (2.3). In some cases (e.g., Examples 1 and 2), consistency is the
same as asymptotic loss efficiency. The proof of the following result is given in
Section 6.

Proposition 1. Suppose that
pn/n → 0, (2.4)

lim inf
n→∞ min

α∈An−Ac
n

∆n(α) > 0 (2.5)

and Ac
n is nonempty for sufficiently large n. Then (2.1) is equivalent to (2.3) if

either pn(αL
n) �→p ∞ or Ac

n contains exactly one model for sufficiently large n.

The following regularity condition will often be used in establishing asymp-
totic results: ∑

α∈An−Ac
n

1
[nRn(α)]l

→ 0, (2.6)

where l is some fixed positive integer such that E(y1 − µ1)4l < ∞. Note that
condition (2.6) is exactly the same as condition (A.3) in Li (1987) when Ac

n is
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empty; but Li’s condition (A.3) may not hold when Ac
n is not empty. If the

number of models in An is bounded (Examples 1 and 2), then (2.6) with l = 1 is
the same as

min
α∈An−Ac

n

nRn(α) → ∞, (2.7)

the condition (A.3′) in Li (1987). When An = {αh, h = 1, . . . , pn} with αh =
{1, . . . , h} (e.g., polynomial approximation in Example 3), Li (1987) showed that
condition (2.6) with l = 2 is the same as (2.7). Under an additional assumption
that en is normal, we may replace (2.6) by

∑
α∈An−Ac

n
δnRn(α) → 0 for any

0 < δ < 1, which is Assumption 2 in Shibata (1981).

3. The GICλn Method

Many model selection procedures are identical or equivalent to the procedure
which minimizes

Γn,λn(α) =
Sn(α)

n
+

λnσ̂2
npn(α)
n

(3.1)

over α ∈ An, where Sn(α) = ‖yn − µ̂n(α)‖2, σ̂2
n is an estimator of σ2, and {λn}

is a sequence of non-random numbers ≥ 2 and λn/n → 0. This procedure will be
called the GICλn method. If σ̂2

n = Sn(ᾱn)/(n − pn), ᾱn = {1, . . . , pn}, then the
GICλn with λn → ∞ is the GIC method in Rao and Wu (1989); the GICλn with
λn ≡ 2 is the Cp method in Mallows (1973); and the GICλn with λn ≡ λ > 2 is
the FPEλ method in Shibata (1984).

Since the GICλn is a good representative of the model selection procedures
cited in Section 1, we first study its asymptotic behavior. Let the model selected
by minimizing Γn,λn(α) be α̂n,λn

.
Consider first the case of λn ≡ 2. Assume that σ̂2

n is a consistent estimator
of σ2. It is shown in Section 6 that

Γn,2(α) =




‖en‖2

n + 2σ̂2
npn(α)

n − e′
nHn(α)en

n α ∈ Ac
n

‖en‖2

n + Ln(α) + op (Ln(α)) α ∈ An −Ac
n,

(3.2)

where the equality for the case of α ∈ An −Ac
n holds under condition (2.6) and

the op is uniformly in α ∈ An − Ac
n. It follows directly from (3.2) that α̂n,2 is

asymptotically loss efficient in the sense of (2.3) if there is no correct model in
An, i.e., Ac

n is empty. If Ac
n is not empty but contains exactly one model for

each n, say Ac
n = {αc

n}, then α̂n,2 is also asymptotically loss efficient. This can
be shown by using (3.2) as follows. If pn(αc

n) → ∞, then

2σ̂2
npn(αc

n)
n

− e′nHn(αc
n)en

n
=

σ̂2
npn(αc

n)
n

+ op

(
σ̂2

npn(αc
n)

n

)
= Ln(αc

n) + op(αc
n),



ASYMPTOTICS FOR LINEAR MODEL SELECTION 227

which, together with (3.2), implies that

Γn,2(α) =
‖en‖2

n
+ Ln(α) + op (Ln(α))

uniformly in α ∈ An and, therefore, α̂n,2 is asymptotically loss efficient. If
pn(αc

n) is fixed, then (2.5) holds (Nishii (1984)), which implies that αL
n = αc

n

and minα∈An−Ac
n

Γn,2(α) �→p 0 and, therefore, P{α̂n,2 = αL
n} → 1, i.e., α̂n,2 is

consistent in the sense of (2.1).
As the following example indicates, however, α̂n,2 may not be an asymptot-

ically loss efficient procedure when Ac
n contains more than one model.

Example 4. Suppose that An = Ac
n = {αn1, αn2}, i.e., An contains two models

and both models are correct. Assume that αn1 ⊂ αn2. Let pn1 and pn2 be
the dimensions of the models αn1 and αn2, respectively. Then pn1 < pn2 and
Qn = Hn(αn2)−Hn(αn1) is a projection matrix of rank pn2−pn1. Since Sn(αni) =
e′nen − e′nHn(αni)en, α̂n,2 = αn1 if and only if 2σ̂2

n( pn2 − pn1) > e′nQnen.

Case 1. pn1 → ∞. If pn2 − pn1 → ∞, then e′nQnen/( pn2 − pn1) →p σ2 and
P{α̂n,2 = αn1} → 1, i.e., the α̂n,2 is consistent. If pn2 − pn1 ≤ q for a fixed
positive integer q, then pn2/pn1 → 1, in which case Ln(αn2)/Ln(αn1) →p 1, i.e.,
any selection procedure is asymptotically loss efficient.

Case 2. pn1 �→ ∞. If pn2 − pn1 → ∞, then we still have e′nQnen/( pn2 − pn1) →p

σ2, which implies that α̂n,2 is consistent. Assume that pn2 − pn1 �→ ∞ and that
for any fixed integer q and constant c > 2,

lim inf
n→∞ inf

Qn∈Qn,q

P
(
e′nQnen > cσ2q

)
> 0, (3.3)

where Qn,q = {all n × n projection matrices of rank q}. Note that condition
(3.3) holds if en ∼ N(0, σ2In). From (3.3) and the fact that pn1 �→ ∞ and
pn2 − pn1 �→ ∞, the ratio

Ln(α̂n,2)
Ln(αn1)

= I(α̂n,2 = αn1) +
Ln(αn2)
Ln(αn1)

I(α̂n,2 = αn2) = 1 + WnI(α̂n,2 = αn2)

does not tend to 1, where Wn = e′nQnen/e′nHn(αn1)en and I(C) is the indicator
function of the set C. For example, when en ∼ N(0, σ2In), then pn1Wn/( pn2 −
pn1) is an F-random variable with degrees of freedom pn2 − pn1 and pn1. Hence
α̂n,2 is not asymptotically loss efficient.

In Example 4, α̂n,2 is asymptotically loss efficient if and only if Ac
n does not

contain two models with fixed dimensions. This is actually true in general. Let
αc

n be the model in Ac
n with the smallest dimension.
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Theorem 1. Suppose that (2.6) holds and that σ̂2
n is consistent for σ2.

(i) If Ac
n contains at most one model for all n, then α̂n,2 is asymptotically loss

efficient in the sense of (2.3). Furthermore, if Ac
n contains a unique model with

fixed dimension for all n, then α̂n,2 is consistent in the sense of (2.1).
(ii) Assume that Ac

n contains more than one models for sufficiently large n. If

∑
α∈Ac

n

1
[ pn(α)]m

→ 0 (3.4)

for some positive integer m such that E(y1 − µ1)4m < ∞, then α̂n,2 is asymptot-
ically loss efficient. If (3.4) does not hold but

∑
α∈Ac

n,α�=αc
n

1
[ pn(α) − pn(αc

n)]m
→ 0 (3.5)

for some positive integer m such that E(y1 − µ1)4m < ∞, then α̂n,2 is asymptot-
ically loss efficient.
(iii) Assume that Ac

n contains more than one models for sufficiently large n and
that (3.3) holds. Then a necessary condition for α̂n,2 being asymptotically loss
efficient is that

pn(αc
n) → ∞ or min

α∈Ac
n,α�=αc

n

pn(α) − pn(αc
n) → ∞. (3.6)

(iv) If the number of models in Ac
n is bounded, or if m = 2 and An = {αi, i =

1, . . . , pn} with αi = {1, . . . , i}, then condition (3.6) is also sufficient for the
asymptotic loss efficiency of α̂n,2.

Remark 1. Condition (3.6) means that An does not contain two correct models
with fixed dimensions.

Remark 2. In Theorem 1, the estimator σ̂2
n is required to be consistent for σ2.

A popular choice of σ̂2
n is S(ᾱn)/(n−pn), the sum of squared residuals (under the

largest model in An) over its degree of freedom. This estimator is consistent if
Ac

n is not empty, but is not necessarily consistent when Ac
n is empty, i.e., there is

no correct model in An. We shall further discuss this issue in Section 4. If there
are a few replicates at each xi, then we can compute the within-group sample
variance for each i and the average of the within-group sample variances is always
a consistent estimator of σ2.

Theorem 1 indicates that asymptotically, the GICλn method with λn ≡ 2
can be used to find (1) the best model among incorrect models; (2) the better
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model between a correct model and an incorrect model; but it is too crude to
be useful in distinguishing correct models with fixed dimensions, i.e., it tends to
overfit (select a correct model with an unnecessarily large dimension).

From (3.1), Γn,λn(α) is a sum of two components: Sn(α)/n, which measures
the goodness of fit of model α, and λnσ̂2

npn(α)/n, which is a penalty on the use
of models with large dimensions. In view of the fact that the use of λn ≡ 2 tends
to overfit, it is natural to consider a large λn in (3.1), i.e., to put a heavy penalty
on the use of models with large dimensions.

The reason why α̂n,2 may not be asymptotically loss efficient is that the
minimizer of

Γn,2(α) − ‖en‖2

n
=

2σ̂2
npn(α)
n

− e′nHn(α)en

n
,

which is considered as a function of α ∈ Ac
n, may not be the same as the minimizer

of Ln(α) = σ2pn(α)/n. What will occur if we use a λn that → ∞? Similar to
the expansion (3.2), we have

Γn,λn(α)=




‖en‖2

n + λnσ̂2
npn(α)
n − e′

nHn(α)en

n α∈Ac
n

‖en‖2

n +Ln(α)+ (λnσ̂2
n−2σ2)pn(α)

n +op (Ln(α)) α∈An−Ac
n,

(3.7)

where the equality for the case of α ∈ An −Ac
n holds under condition (2.6). If

max
α∈Ac

n

e′nHn(α)en

λnσ̂2
npn(α)

→p 0, (3.8)

then, for α ∈ Ac
n, Γn,λn(α) − ‖en‖2/n is dominated by the term λnσ̂2

npn(α)/n
which has the same minimizer as Ln(α) = e′nHn(α)en/n. Hence,

P{α̂n,λn
∈ Ac

n but α̂n,λn
�= αc

n} → 0, (3.9)

where α̂n,λn
is the model selected using the GICλn and αc

n is the model in Ac
n

with the smallest dimension. This means that the GICλn method picks the best
model in Ac

n as long as (3.8) holds, which is implied by a weak condition

lim sup
n→∞

∑
α∈Ac

n

1
[ pn(α)]m

< ∞ (3.10)

for some positive integer m such that E(y1 − µ1)4m < ∞. Note that (3.10)
holds if the number of models in An is bounded (Examples 1 and 2) or if m = 2
and An = {αi, i = 1, . . . , pn} with αi = {1, . . . , i} (polynomial approximation in
Example 3).
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For the asymptotic correctness of the GICλn method, the remaining question
is whether it can assess the models in An − Ac

n. Unfortunately, the GICλn

tends to select a model with a small dimension and, therefore, may fail to be
asymptotically loss efficient if models with small dimensions have large values of
Ln(α). More precisely, if there are αn1 and αn2 in An −Ac

n such that

lim
n→∞

Ln(αn1)
Ln(αn2)

> 1 but lim
n→∞

Ln(αn1) + (λnσ̂2
n − 2σ2)pn(αn1)/n

Ln(αn2) + (λnσ̂2
n − 2σ2)pn(αn2)/n

< 1 (3.11)

(which implies limn→∞ pn(αn1)/pn(αn2) < 1), then the GICλn is not asymptoti-
cally loss efficient.

A necessary condition for α̂n,λn
to be asymptotically loss efficient is that

(3.11) does not hold for any αn1 and αn2. Of course, (3.11) is almost impossible
to check. In the following theorem we provide some sufficient conditions for the
asymptotic loss efficiency of the GICλn .

Theorem 2. Suppose that (2.6) and (3.10) hold and that σ̂2
n �→p 0 and σ̂2

n �→p ∞.
(i) A sufficient condition for the asymptotic loss efficiency of α̂n,λn

is that (2.5)
holds and λn is chosen to satisfy

λn → ∞ and
λnpn

n
→ 0. (3.12)

(ii) If An contains at least one correct model with fixed dimension for sufficiently
large n, λn → ∞ and λn/n → 0, then α̂n,λn

is consistent.

Remark 3. Unlike the case of λn ≡ 2, it is not required in Theorem 2 that σ̂2
n

be a consistent estimator of σ2.

We now apply Theorems 1 and 2 to Examples 1-3.

Example 1. (continued) We use the notation given by (1.1). In this example
(2.4), (2.5), (2.6) and (3.10) hold. Note that Ac

n is not empty and consistency in
the sense of (2.1) is the same as asymptotic loss efficiency in the sense of (2.3)
(Proposition 1). By Theorem 1, α̂n,2 is consistent if and only if ᾱ = {1, . . . , p} is
the only correct model. By Theorem 2(ii), α̂n,λn

is always consistent if λn → ∞
and λn/n → 0.

Example 2. (continued) Note that n = kr → ∞ means that either k → ∞ or
r → ∞. Using Theorems 1 and 2, we now show that α̂n,2 is better when k → ∞,
whereas α̂n,λn

with λn satisfying (3.12) is better when r → ∞.
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It is easy to see that (2.6) and (3.10) hold. Condition (2.5) holds if k is fixed.
If k → ∞, then (2.5) is the same as

lim inf
k

1
k

k∑
j=1

(µj − 1
k

k∑
i=1

µi)2 > 0,

which is a reasonable condition.
Consider first the case where k → ∞ and r is fixed. Since the difference

in dimensions of the two models in An is k − 1, an application of Theorem
1(i)&(iv) shows that α̂n,2 is always asymptotically loss efficient. On the other
hand, it can be shown that if λn → ∞, then P{α̂n,λn

= α1} → 1. Hence α̂n,λn
is

asymptotically loss efficient if and only if the one-mean model is correct.
Next, consider the case where r → ∞ and k is fixed. In this case the

dimensions of both models are fixed. By Proposition 1, consistency is the same
as asymptotic loss efficiency. By Theorem 2, α̂n,λn

with λn → ∞ and λn/n → 0
is consistent. By Theorem 1, α̂n,2 is consistent if and only if the one-mean model
is incorrect.

Finally, consider the case where k → ∞ and r → ∞. Since pn/n = r−1 →
0, consistency is the same as asymptotic loss efficiency (Proposition 1). By
Theorems 1 and 2, both α̂n,2 and α̂n,λn

are consistent, but λn has to be chosen
so that (3.12) holds, i.e., λn/r → 0. For example, if we choose λn = log n (GICλn

is then equivalent to the BIC in Schwarz (1978)), then α̂n,λn
is inconsistent if

log n/r �→ 0. This is exactly what was described in Section 3 of Stone (1979).

Example 3. (continued) In this case pn → ∞ as n → ∞. Conditions (2.6) and
(3.10) are usually satisfied with m = 2. If there exists a correct model in An

for some n, then there are many correct models in An and by Theorems 1 and
2, α̂n,λn

is consistent but α̂n,2 is not. On the other hand, if there is no correct
model in An for all n, then α̂n,2 is asymptotically loss efficient but α̂n,λn

may
not, since condition (2.5) may not hold.

In conclusion, the GICλn method with λn ≡ 2 is more useful in the case
where there is no fixed-dimension correct model, whereas the GICλn method
with λn → ∞ is more useful in the case where there exist fixed-dimension correct
models.

To end this section, we discuss briefly the GICλn with λn ≡ λ, a constant
larger than 2. It is apparent that the GICλ with a fixed λ > 2 is a compromise
between the GIC2 and the GICλn with λn → ∞. The asymptotic behavior
of the GICλ, however, is not as good as the GIC2 in the case where no fixed-
dimension correct model exists, and not as good as the GICλn when there are
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fixed-dimension correct models. This can be seen from the proofs of Theorems 1
and 2 in Section 6.

4. Other Selection Methods

In this section we show that some selection methods cited in Section 1 have
the same asymptotic behavior (in terms of consistency and asymptotic loss effi-
ciency) as the GICλn under certain conditions.

First, consider the GICλn with the following particular choice of σ̂2
n:

σ̂2
n =

Sn(ᾱn)
n − pn

, (4.1)

where ᾱn = {1, . . . , pn}. If (4.1) is used, then the GIC2 is the Cp method (Mallows
(1973)) and the GICλn is the GIC in Rao and Wu (1989). The estimator in
(4.1), however, is not necessarily consistent for σ2 if ᾱn is an incorrect model.
Asymptotic behavior of the Cp (λn ≡ 2) is given in the following result.

Theorem 1A. (i) If ∆n(ᾱn) → 0 and pn/n �→ 1, then σ̂2
n in (4.1) is consistent

for σ2 and, therefore, the assertions (i)-(iv) in Theorem 1 are valid for the Cp.
(ii) If (2.4) holds, then the assertions (i)-(iv) in Theorem 1 are valid for the Cp.

Note that in Theorem 2, we do not need σ̂2
n to be consistent. Hence we have

the following result for the case where λn → ∞.

Theorem 2A. Assume that (2.6) and (3.10) hold. Then the assertions (i)-(ii)
in Theorem 2 are valid for the GICλn with σ̂2

n given by (4.1) and λn → ∞.

If we use

σ̂2
n = σ̂2

n(α) =
Sn(α)

n − pn(α)

(an estimate of σ2 depends on the model α) in (3.1), then we select a model by
minimizing

Γ̃n,λn(α) =
Sn(α)

n

[
1 +

λnpn(α)
n − pn(α)

]
.

If λnpn/n → 0, this method has the same asymptotic behavior as the method
minimizing

log
Sn(α)

n
+

λnpn(α)
n − pn(α)

,

since log(1 + x) ≈ x as x → 0. Minimizing Γ̃n,λn(α) is known as the AIC if
λn ≡ 2 and the BIC if λn = log n.

Let α̃n,λn be the model selected by minimizing Γ̃n,λn(α) over α ∈ An. We
have the following result similar to Theorems 1 and 2.
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Theorem 3. Suppose that (2.6) holds.
(i) The assertions (i)-(iv) in Theorem 1 are valid for α̃n,2 (the AIC ) if either
(2.4) holds or

max
α∈An

∆n(α) → 0 and
pn

n
�→ 1. (4.2)

(ii) Assume that (3.10) holds. Then the assertions (i)-(ii) in Theorem 2 are valid
for α̃n,λn with λn → ∞.

The delete-1 CV method selects a model by minimizing

CVn,1(α) =
‖[In − H̃n(α)]−1[yn − µ̂n(α)]‖2

n

over α ∈ An, where H̃n(α) is a diagonal matrix whose ith diagonal element
is the ith diagonal element of Hn(α). The GCV method replaces H̃n(α) by
[n−1trH̃(α)]In = [n−1pn(α)]In, where trA is the trace of the matrix A, and
hence it selects a model by minimizing

GCVn(α) =
Sn(α)

n[1 − n−1pn(α)]2
.

From the identity

1
[1 − n−1pn(α)]2

= 1 +
2pn(α)

n − pn(α)
+
[

pn(α)
n − pn(α)

]2
,

we know that the GCV and the AIC have the same asymptotic behavior if

max
α∈An

[
pn(α)

n − pn(α)

]2/[
1 +

2pn(α)
n − pn(α)

]
→ 0, (4.3)

which holds if and only if (2.4) holds.

Theorem 4. Suppose that (2.6) holds.
(i) The assertions (i)-(iv) in Theorem 1 are valid for the GCV if either (2.4) or
(4.2) holds.
(ii) Assume that

hn = max
i≤n

x′
i(X

′
nXn)−1xi → 0. (4.4)

Then the assertions (i)-(iv) in Theorem 1 are valid for the delete-1 CV.

Condition (4.4) is stronger than condition (2.4). When neither (2.4) nor (4.2)
holds, the GCV and the delete-1 CV may not be asymptotically loss efficient.

Example 2. (continued) We consider Example 2 in the situation where k is large
but r, the number of replication, is fixed. Since pn/n = r−1, (2.4) does not hold.
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Assume that limn→∞ ∆n(α1) = ∆ > 0, i.e., (4.2) does not hold. Let yij be the jth
observation in the ith group, j = 1, . . . , r, i = 1, . . . , k, ȳi be the ith group mean, ȳ

be the overall mean, SS1 =
∑k

i=1

∑r
j=1(yij−ȳ)2 and SSk =

∑k
i=1

∑r
j=1(yij−ȳi)2.

The delete-1 CV and the GCV are identical in this case and select the one-mean
model if and only if SS1/(1 − n−1)2 < SSk/(1 − r−1)2. From

Ln(α1)
Ln(αk)

→p
r∆
σ2

,
SS1

n
→p σ2 + ∆ and

SSk

n
→p

(r − 1)σ2

r
,

the delete-1 CV (or the GCV) is not asymptotically loss efficient if σ2/r < ∆ ≤
σ2/(r − 1).

The delete-d CV is an extension of the delete-1 CV. Suppose that we split the
n× (1+pn) matrix (yn, Xn) into two distinct sub-matrices: a d× (1+pn) matrix
(yn,s, Xn,s) containing the rows of (yn, Xn) indexed by the integers in s, a subset
of {1, . . . , n} of size d, and an (n− d) × (1 + pn) matrix (yn,sc, Xn,sc) containing
the rows of (yn, Xn) indexed by the integers in sc, the complement of s. For any
α ∈ An, we estimate βn(α) by β̂n,sc(α), the LSE based on (yn,sc , Xn,sc) under
model α. The model is then assessed by ‖yn,s − µ̂n,s(α)‖2, where µ̂n,s(α) =
Xn,s(α)β̂n,sc(α) and Xn,s(α) is a d × pn(α) matrix containing the columns of
Xn,s indexed by the integers in α. Let S be a class of N subsets s. The delete-d
CV method selects a model by minimizing

CVn,d(α) =
1

dN

∑
s∈S

‖yn,s − µ̂n,s(α)‖2

over α ∈ An. The set S can be obtained by using a balanced incomplete block
design (Shao (1993)) or by taking a simple random sample from the collection of
all possible subsets of {1, . . . , n} of size d (Burman (1989), Shao (1993)).

While the delete-1 CV has the same asymptotic behavior as the Cp (Theorem
4), the delete-d CV has the same asymptotic behavior as the GICλn with

λn =
n

n − d
+ 1. (4.5)

If d/n → 0, then λn → 2; if d/n → τ ∈ (0, 1), then λn → 1
1−τ +1, a fixed constant

larger than 2; if d/n → 1, then λn → ∞.
In view of the discussion (in the end of Section 3) for the GICλ with a fixed

λ > 2, we consider only the case where d is chosen so that d/n → 1 (λn → ∞).

Theorem 5. Suppose that (2.5), (2.6) and (3.10) hold and that

max
s∈S

sup
‖c‖=1

∣∣∣∣‖Xn,sc‖2

d
− ‖Xn,scc‖2

n − d

∣∣∣∣→ 0.
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Then the delete-d CV is asymptotically loss efficient if d is chosen so that

d

n
→ 1 and

pn

n − d
→ 0. (4.6)

If, in addition, An contains at least one correct model with fixed dimension, then
the delete-d CV is consistent.

Remark 4. Condition (4.6) implies condition (2.4) and is similar to condition
(3.12) in Theorem 2. In fact, pn/(n − d) → 0 is a very natural requirement for
using the delete-d CV, since n − d is the number of observations used to fit an
initial model with as many as pn parameters.

The PMDL and PLS methods (Rissanen (1986), Wei (1992)) are shown to
have the same asymptotic behavior as the BIC method (which is a special case
of the GIC) under some situations (Wei (1992)). However, these two methods
are intended for the case where en is a time series so that the observations have
a natural order. Hence, we do not discuss these methods here.

In conclusion, the methods discussed so far can be classified into the following
three classes according to their asymptotic behaviors:

Class 1. The GIC2, the Cp, the AIC, the delete-1 CV, and the GCV.
Class 2. The GICλn with λn → ∞ and the delete-d CV with d/n → 1.
Class 3. The GICλ with a fixed λ > 2 and the delete-d CV with d/n → τ ∈

(0, 1).

The methods in class 1 are useful in the case where there is no fixed-dimension
correct model. With a suitable choice of λn or d, the methods in class 2 are useful
in the case where there exist fixed-dimension correct models. The methods in
class 3 are compromises of the methods in class 1 and the methods in class 2; but
their asymptotic performances are not as good as those of the methods in class
1 in the case where no fixed-dimension correct model exists, and not as good as
those of the methods in class 2 when there are fixed-dimension correct models.

5. Empirical Results

We study the magnitude of P{α̂n = αL
n} with a fixed n by simulation in

two examples. Although some selection methods are shown to have the same
asymptotic behavior, their fixed sample performances (in terms of P{α̂n = αL

n})
may be different.

The first example is the linear regression (Example 1) with p = 5; that is,

yi = β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + ei, i = 1, . . . , 40,

where ei are independent and identically distributed as N(0, 1), xij is the ith value
of the jth explanatory variable xj, xi1 ≡ 1, and the values of xij , j = 2, 3, 4, 5,
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are taken from an example in Gunst and Mason (1980) (also, see Table 1 in Shao
(1993)). This study is an extension of that in Shao (1993) which studies the
cross-validation methods only.

Table 1. Selection probabilities in regression problem based on 1000 simula-
tions.

True β′ Model AIC Cp GIC CV1 GCV CVd

(2, 0, 0, 4, 0) 1,4** .567 .594 .804 .484 .587 .934
1,2,4* .114 .110 .049 .133 .112 .025
1,3,4* .126 .113 .065 .127 .117 .026
1,4,5* .101 .095 .057 .138 .097 .012
1,2,3,4* .030 .028 .009 .049 .026 .000
1,2,4,5* .030 .027 .007 .029 .028 .001
1,3,4,5* .022 .026 .008 .030 .026 .002
1,2,3,4,5* .010 .007 .001 .009 .007 .000

(2, 0, 0, 4, 8) 1,4,5** .683 .690 .881 .641 .691 .947
1,2,4,5* .143 .129 .045 .158 .130 .032
1,3,4,5* .116 .142 .067 .138 .143 .020
1,2,3,4,5* .058 .039 .007 .063 .036 .001

(2, 9, 0, 4, 8) 1,4,5 .000 .000 .000 .005 .000 .016
1,2,4,5** .794 .817 .939 .801 .824 .965
1,3,4,5* .000 .000 .000 .005 .000 .002
1,2,3,4,5* .206 .183 .061 .189 .176 .017

(2, 9, 6, 4, 8) 1,2,3,5 .000 .000 .000 .000 .000 .002
1,2,4,5 .000 .000 .000 .000 .000 .005
1,3,4,5 .000 .000 .000 .015 .000 .045
1,2,3,4,5** 1.00 1.00 1.00 .985 1.00 .948

* A correct model
** The optimal correct model

Six selection procedures, the AIC, the Cp, the GICλn with σ̂2
n given by (4.1),

the delete-1 CV (denoted by CV1), the GCV, and the delete-d CV (denoted by
CVd), are applied to select a model from 2p − 1 = 31 models. The λn in the GIC
is chosen to be log n = log 40 ≈ 3.8 so that this GIC is almost the same as the
BIC. The d in the delete-d CV is chosen to be 25 so that (4.5) approximately
holds and the delete-d CV is comparable with the GIC. The S in the delete-d
CV is obtained by taking a random sample of size 2n = 80 from all possible
subsets of {1, . . . , 40} of size 25. For these six selection procedures, the empirical
probabilities (based on 1,000 simulations) of selecting each model are reported
in Table 1, where each model is denoted by a subset of {1, . . . , 5} that contains
the indices of the explanatory variables xj in the model. Models corresponding
to zero empirical probabilities for all the methods in the simulation are omitted.
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The second example considered is the polynomial approximation to a possi-
bly nonlinear curve (Example 3); that is, we select a model from the following
class of models:

yi = β0 + β1xi + · · · + βh−1x
h−1
i + ei, h = 1, . . . , pn. (5.1)

In the simulation, n = 40 and pn = 5. Other settings and the selection procedures
considered are the same as those in the first example. The values of xi are taken
to be the same as xi2 in the first example. We consider situations where one of
the models in (5.1) is correct, as well as the case where the true model is

yi = exp (2xi) + ei

so that none of the models in (5.1) is correct. The results are reported in Table
2.

Table 2. Selection probabilities in polynomial approximation problem based
on 1000 simulations.

True E(yi) Model AIC Cp GIC CV1 GCV CVd

1 h = 1** .718 .728 .910 .699 .731 .969
h = 2* .124 .124 .066 .014 .155 .031
h = 3* .063 .060 .014 .102 .061 .000
h = 4* .040 .036 .007 .024 .033 .000
h = 5* .055 .052 .003 .020 .046 .000

1 + 2xi h = 2** .725 .758 .916 .738 .762 1.00
h = 3* .124 .117 .060 .170 .118 .000
h = 4* .084 .070 .015 .065 .069 .000
h = 5* .067 .055 .009 .027 .051 .000

1 + 2xi + 2x2
i h = 3** .742 .758 .917 .763 .760 1.00

h = 4* .156 .149 .063 .189 .150 .000
h = 5* .102 .093 .020 .048 .090 .000

1 + 2xi + 2x2
i h = 3 .000 .000 .000 .000 .000 .006

+3x3
i /2 h = 4** .821 .835 .935 .834 .839 .994

h = 5* .179 .165 .065 .166 .161 .000
1 + 2xi + 2x2

i h = 4 .000 .000 .000 .000 .000 .093
+3x3

i /2 + 2x4
i /3 h = 5** 1.00 1.00 1.00 1.00 1.00 .907

exp (2xi) h = 5 1.00 1.00 1.00 1.00 1.00 1.00

* A correct model
** The optimal correct model

The following is a summary of the results in Tables 1 and 2.
(1) The procedures in class 2 (the GIC and the CVd) have much better empirical
performances than the procedures in class 1 (the AIC, the Cp, the CV1, and
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the GCV) when there are at least two fixed-dimension correct models. The
probability P{α̂n = αL

n} may be very low for the methods in class 1 when the
dimension of the optimal model is not close to pn. This confirms the asymptotic
results established in Sections 3 and 4.
(2) The performances of two methods in class 2 may be substantially different.
For example, the probability of the GIC selecting the optimal model can be as
low as 0.804 in the first example, whereas the CVd selects the optimal model with
probability higher than 0.90 in all cases. On the other hand, the CVd selects an
incorrect model sometimes with a small chance.

6. Proofs

Proof of Proposition 1. We only need to show that (2.3) does not hold,
assuming that (2.1) does not hold. If Ac

n contains exactly one model, then by
(2.4), Ln(αL

n) →p 0; but by (2.5), Ln(α̂n) �→p 0. Hence (2.3) does not hold.
Next, assume that Ac

n contains more than one models but pn(αL
n) �→p ∞. Since

P{α̂n �= αL
n} �→ 0, there exists αn1 ∈ Ac

n such that αn1 �= αL
n and P{α̂n =

αn1} �→ 0. Then

Ln(α̂n)
Ln(αL

n)
− 1 ≥

[
Ln(αn1)
Ln(αL

n)
− 1

]
I(α̂n =αn1)=

[
e′nHn(αn1)en

e′nHn(αL
n)en

−1
]
I(α̂n =αn1) �→p 0.

Proof of (3.2). Note that

Γn,2(α) =
‖en‖2

n
+ Ln(α) +

2(σ̂2
n − σ2)pn(α)

n

+
2[σ2pn(α) − e′nHn(α)en]

n
+

2e′n[In − Hn(α)]µn

n
.

Hence (3.2) follows from

max
α∈An−Ac

n

|σ̂2
n − σ2|pn(α)

nLn(α)
→p 0, (6.1)

max
α∈An−Ac

n

|σ2pn(α) − e′nHn(α)en|
nLn(α)

→p 0, (6.2)

and

max
α∈An−Ac

n

|e′n[In − Hn(α)]µn|
nLn(α)

→p 0. (6.3)

Result (6.1) follows from (6.2), e′nHn(α)en ≤ nLn(α), and the fact that σ̂2
n −

σ2 →p 0. Results (6.2) and (6.3) can be shown using the same argument in Li
(1987), p.970 under condition (2.6).
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Proof of Theorem 1. The first statement in (i) is proved in Section 3. The
second statement in (i) is a consequence of the first statement and Proposition
1.

For (ii), it suffices to show that

Γn,2(α) =
‖en‖2

n
+ Ln(α) + op(Ln(α))

uniformly in α ∈ Ac
n, which follows from either

max
α∈Ac

n

∣∣∣∣e′nHn(α)en

pn(α)
− σ2

∣∣∣∣→p 0 (6.4)

or

max
α∈Ac

n,α�=αc
n

∣∣∣∣e′n[Hn(α) − Hn(αc
n)]en

pn(α) − pn(αc
n)

− σ2

∣∣∣∣→p 0. (6.5)

From Theorem 2 of Whittle (1960),

E

∣∣∣∣e′nHn(α)en

pn(α)
− σ2

∣∣∣∣2m

≤ c

[ pn(α)]m
, (6.6)

where c is a positive constant. Then for any ε > 0,

P

{
max
α∈Ac

n

∣∣∣∣e′nHn(α)en

pn(α)
− σ2

∣∣∣∣ > ε

}
≤ cε−2m

∑
α∈Ac

n

1
[ pn(α)]m

.

Hence (6.4) is implied by condition (3.4). A similar argument shows that (6.5)
is implied by condition (3.5).

The result in (iii) can be proved using the same argument in Example 4. For
(iv), it suffices to show that pn(αc

n) → ∞ is the same as (3.4) and minα∈Ac
n,α�=αc

n

pn(α) − pn(αc
n) → ∞ is the same as (3.5), which is apparent if the number of

models in Ac
n is bounded. The proof for the case where m = 2 and An = {αi, i =

1, . . . , pn} with αi = {1, . . . , i} is the same as that in Li (1987), p.963.

Proof of Theorem 2. From (6.6) and condition (3.10),

e′nHn(α)en

λnpn(α)
= Op(λ−1

n )

uniformly in α ∈ Ac
n. Hence (3.9) holds. Since Ln(α) > ∆n(α), (3.7) and

conditions (2.5) and (3.12) imply that Γn,λn(α) = ‖en‖2

n + Ln(α) + op(Ln(α))
uniformly in α ∈ An − Ac

n, and if Ac
n is not empty, Γn,λn(αc

n) = op(Ln(α))
uniformly in α ∈ An −Ac

n. The result in (i) is established.
If An contains at least one correct model with fixed dimension, then (2.5)

holds and P{α̂n,λn
= αc

n} → 1. The consistency of α̂n,λn
follows from the fact

that αL
n = αc

n.
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Proofs of Theorems 1A, 2A, and 3. First, consider Theorem 1A. Note that

Sn(ᾱn)
n − pn

=
e′n[In − Hn(ᾱn)]en

n − pn

+
n

n − pn

∆n(ᾱn) +
2e′n[In − Hn(ᾱn)]µn

n − pn

. (6.7)

If ∆n(ᾱn) → 0 and pn/n �→ 1, then Sn(ᾱn)/(n − pn) is consistent and the result
in (i) follows.

Suppose now that (2.4) holds. For the result in (ii), it suffices to show
that (6.1) still holds for σ̂2

n = Sn(ᾱn)/(n − pn). From (6.7), Sn(ᾱn)/(n − pn) =
σ2 + op(1) + Op(∆n(ᾱn)). Hence (6.1) follows from the fact that

max
α∈An

∆n(ᾱn)pn(α)
nLn(α)

≤ pn

n
.

The proofs for Theorem 2A and Theorem 3 are similar.

Proof of Theorem 4. (i) If (2.4) holds, then (4.3) holds and the result follows
from Theorem 3(i). Now, assume that (4.2) holds. Then pn(αL

n)/n →p 0 and
pn(α̂n)/n →p 0, where α̂n is the model selected by the GCV. If Ac

n is empty for
all n, then

GCVn(α̂n) =
‖en‖2

n
+ Ln(α̂n) + op(Ln(α̂n)),

GCVn(αL
n) =

‖en‖2

n
+ Ln(αL

n) + op(Ln(αL
n)),

and

0 ≤ GCVn(α̂n) − GCVn(αL
n)

Ln(α̂n)
=

Ln(α̂n) − Ln(αL
n)

Ln(α̂n)
+ op(1) ≤ op(1).

This proves that (2.3) holds. The proof for the case where Ac
n is nonempty is

similar to the proof of Theorem 1.
(ii) Define

Tn(α) = [yn − µ̂n(α)]′H̃n(α)[yn − µ̂n(α)].

Then

CVn,1(α) =
Sn(α)

n
+

2Tn(α)
n

+ Op

(
hnTn(α)

n

)
.

The result follows if

Tn(α) − σ2pn(α)
nLn(α)

= op(1) uniformly in α ∈ An −Ac
n, (6.8)

E

∣∣∣∣Tn(α)
pn(α)

− σ2

∣∣∣∣2m

≤ c

[ pn(α)]m
α ∈ Ac

n (6.9)
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and

E

∣∣∣∣Tn(α) − Tn(αc
n)

pn(α) − pn(αc
n)

− σ2

∣∣∣∣2m

≤ c

[ pn(α) − pn(αc
n)]m

α ∈ Ac
n (6.10)

for some c > 0 and positive integer m such that E(y1 − µ1)4m < ∞. Let

Wn(α) = [In − Hn(α)]H̃n(α)[In − Hn(α)].

When α ∈ An −Ac
n,

Tn(α) = e′nWn(α)en + 2e′nWn(α)µn + µ′
nWn(α)µn. (6.11)

From Theorem 2 of Whittle (1960),

E

∣∣∣∣e′nWn(α)en − E[e′nWn(α)en]
∣∣∣∣2l

≤ c[trW2
n(α)]l ≤ chl

n[trWn(α)]l. (6.12)

Note that

trWn(α) = trH̃n(α)[In − Hn(α)] = pn(α) − trH̃2
n(α) ≤ pn(α). (6.13)

By (2.6), (6.12) and (6.13),

P

{
max

α∈An−Ac
n

∣∣∣∣e′nWn(α)en − E[e′nWn(α)en]
nRn(α)

∣∣∣∣ > ε

}
≤cε−2l

∑
α∈An−Ac

n

1
[nRn(α)]l

→0.

Then (6.8) follows from (6.11), µ′
nWn(α)µn ≤ hn∆n(α) ≤ hnRn(α) and the fact

that (2.6) implies

max
α∈An−Ac

n

∣∣∣∣Ln(α)
Rn(α)

− 1
∣∣∣∣→p 0.

Results (6.9) and (6.10) follow from Theorem 2 of Whittle (1960), the identity
(6.13), and the fact that

trH̃2
n(α) ≤ hnpn(α) and tr[H̃2

n(α) − H̃
2
n(αc

n)] ≤ 2hn[ pn(α) − pn(αc
n)]

when α ∈ Ac
n.

Proof of Theorem 5. It follows from the proof in Shao (1993), Appendix that
under the given conditions,

CVn,d(α) =
Sn(α)

n
+

λnTn(α)
n

+ op

(
λnTn(α)

n

)

uniformly in α ∈ An, where λn is given by (4.5) and Tn(α) is given by (6.11).
Then the result follows from the given conditions and result (6.9).
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COMMENT

Rudolf Beran

University of California, Berkeley

Professor Shao’s welcome asymptotic analysis of standard model selection
procedures divides these into three categories: those that perform better when
one or more correct models have fixed dimension under the asymptotics; those
that do better when no correct model has fixed dimension; and intermediate
methods. Adopting the premise that model selection is intended to reduce es-
timation risk under quadratic loss, my discussion will draw attention to two
points:
• GICλn selection estimators with limn→∞ λn = ∞ can have arbitrarily high

asymptotic risk when the signal-to-noise ratio is large enough.
• GICλn selection estimators with either λn = 2 or limn→∞ λn = ∞ are not

asymptotically minimax unless the signal to noise ratio converges to zero.
They are dominated, in maximum risk, by a variety of procedures that taper
the components of the least squares fit toward zero.
I will develop both points in a signal recovery setting that is formally a special

case of Shao’s problem. Suppose that Xn = {Xn,t : t ∈ Tn} is an observation
on a discrete signal ξn = {ξn,t : t ∈ Tn} that is measured with error at the time
points Tn = {1, . . . , n}. The measurement errors are independent and are such
that the distribution of each component Xn,t is N(ξn,t, σ

2).
For any real-valued function f defined on Tn, let ave(f) = n−1∑

t∈Tn
f(t).

The time-averaged quadratic loss of any estimator ξ̂n is then

Ln(ξ̂n, ξn) = ave[(ξ̂n − ξn)2]

and the corresponding risk is

Rn(ξ̂n, ξn, σ2) = ELn(ξ̂n, ξn).

Model selection and related estimators typically have smaller risk when all
but a few components of ξn are small. With enough prior information, this fa-
vorable situation may be approximated by suitable orthogonal transformation of
Xn before estimation. This transformation leaves the Gaussian error distribu-
tion unchanged. A model selection or other estimator constructed in the new
coordinate system may be transformed back to the original coordinate system
without changing its quadratic loss. Thus, in signal recovery problems, the {Xn,t}
might be Fourier, or wavelet, or analysis of variance, or orthogonal polynomial
coefficients of the observed signal.
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Let u ∈ [0, 1]. We consider nested model selection, in which the candidate
estimators have the form ξ̂n(u) = {ξ̂n,t(u) : t ∈ Tn}, with ξ̂n,t(u) = Xn,t whenever
t/(n+1) ≤ u and ξ̂n,t = 0 otherwise. The value of u will be chosen by the GICλn

method in Shao’s Section 3. Let σ̂2
n be a consistent estimator of σ2 that satisfies

lim
n→∞ sup

ave(ξ2
n)/σ2≤r

E|σ̂2
n − σ2| = 0 (1)

for every r ∈ [0,∞). Such variance estimators may constructed externally using
replication or internally by methods such as those described in Rice (1984). The
GICλn selection criterion is

Γ̂n(u, λn) = γ̂n(u) + λnσ̂2
nn−1[(n + 1)u]I ,

where γ̂n(u) = n−1∑
t/(n+1)>u X2

n,t and [·]I is the integer part function. Let ûn

be the smallest value of u ∈ [0, 1] that minimizes Γ̂n(u, λn). Existence of ûn is
assured because the criterion function assumes only a finite number of values.
The model selection estimator ξ̂n(ûn) will be denoted by ξ̂n,λn .

Proposition 1. In the signal-plus-noise model, with σ̂2
n satisfying (1), the fol-

lowing bounds hold for every r ∈ [0,∞):

lim
n→∞ sup

ave(ξ2
n)/σ2≤r

Rn(ξ̂n,2, ξn, σ2) = σ2 min(r, 1). (2)

If limn→∞ λn = ∞, then

lim
n→∞ sup

ave(ξ2
n)/σ2≤r

Rn(ξ̂n,λn , ξn, σ2) = σ2r. (3)

The least squares estimator Xn satisfies

lim
n→∞ sup

ave(ξ2
n)/σ2≤r

Rn(Xn, ξn, σ2) = σ2. (4)

This proposition will be proved at the end of the discussion. Let us consider
some implications:

(a) If ξn is a voltage signal, then ave(ξ2
n) is the time-averaged power dissipated

by this signal in passing through a unit resistance. Consequently, ave(ξ2
n)/σ2

is the time-averaged signal-to-noise ratio in our signal recovery problem. The
maximum risks in Proposition 1 are computed over subsets of ξn values that are
generated by bounding the signal-to-noise ratio from above.

(b) For r = 0, the limiting maximum risks in Proposition 1 do not distinguish
between the performance of ξ̂n,2 and ξ̂n,λn with limn→∞ λn = ∞. Theorems 1
and 2 in Shao’s paper indicate that the latter estimators may perform better
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in some (but not all) circumstances where the signal-to-noise ratio converges to
zero.

(c) As long as the signal-to-noise ratio does not exceed 1, both ξ̂n,2 and ξ̂n,λn

with limn→∞ λn = ∞ have the same asymptotic maximum risk. Once the signal
to noise ratio exceeds 1, then ξ̂n,λn has greater asymptotic maximum risk than
ξ̂n,2 or even the least squares estimator Xn.

(d) For all values of r, the asymptotic maximum risk of ξ̂n,λn with limn→∞ λn

= ∞ coincides with that of the trivial estimator ξ̂n = 0. This does not mean
that ξ̂n,λn is trivial.

(e) For all values of r, the asymptotic maximum risk of ξ̂n,2 equals the smaller
of the asymptotic maximum risks of Xn and ξ̂n,λn with limn→∞ λn = ∞. This
argument strongly promotes the use of ξ̂n,2 over these two competitors unless one
is confident that the special circumstances of remark b hold.

How well do model selection estimators perform within the class of all esti-
mators of ξn? An answer that complements Proposition 1 is

Proposition 2. In the signal-plus-noise model, with σ̂2
n satisfying (1), the fol-

lowing equality holds for every r ∈ [0,∞):

lim
n→∞ inf

ξ̂n

sup
ave(ξ2

n)/σ2≤r
Rn(ξ̂n, ξn, σ2) = σ2r/(r + 1). (5)

This result follows from Pinsker’s (1980) general lower bound on risk in signal
recovery from Gaussian noise. It may also be derived from ideas in Stein (1956)
by considering best orthogonally equivariant estimators in the submodel where
ave(ξ2

n)/σ2 = r. To be asymptotically minimax, an estimator ξ̂n must satisfy

lim
n→∞ sup

ave(ξ2
n)/σ2≤r

Rn(ξ̂n, ξn, σ2) = σ2r/(r + 1).

Simplest among asymptotically minimax estimators is the James-Stein (1961)
estimator

ξ̂n,S = [1 − σ̂2
n/ave(X2

n)]+Xn,

where [·]+ denotes the positive part function and σ̂2
n is an estimator of σ2 that

satisfies (1). For every positive, finite r and σ2, σ2r/(r+1) < σ2 min(r, 1). Hence,
for large n, the James-Stein estimator dominates, in maximum risk, any of the
three estimators discussed in Proposition 1. Figure 1 reveals the extent of this
domination.
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Figure 1. The asymptotic maximum risks of nested model selection estima-
tors generated by the GIC2 criterion (solid lines) and by the GICλn criterion
when limn→∞ λn = ∞ (broken line). The asymptotic minimax risk, attained
by good tapered estimators, is the dashed curve below.

The story only begins here. We can construct asymptotically minimax es-
timators that dominate the James-Stein estimator over submodels. Let Gn be a
given closed convex subset of [0, 1]Tn that contains all constants in [0, 1]. Each
function g ∈ Gn defines a candidate modulation estimator gXn = {g(t)Xn,t : t ∈
Tn} for ξn. The risk of this candidate estimator under quadratic loss is

Rn(gXn, ξn, σ2) = ave[σ2g2 + ξ2
n(1 − g)2].

Here squaring is done componentwise. An estimator of this risk, suggested by
Stein’s unbiased estimator for risk or by the Cp idea, is

R̂n(g) = ave[g2σ̂2
n + (1 − g)2(X2

n − σ̂2
n)].

The proposal is to use the modulation estimator ĝnXn, where ĝn minimizes R̂n(g)
over all g ∈ G. When Gn consists of all constant functions in [0, 1]Tn , the modu-
lation estimator ĝnXn is just the James-Stein estimator described above.

To improve on James-Stein, let Gn,mon be the set of all nonincreasing func-
tions in [0, 1]Tn . The class of candidate estimators {gXn : g ∈ Gn,mon} now
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contains the nested model selection estimators discussed earlier. It contains as
well candidate estimators that selectively taper the coordinates of Xn towards
zero. Choosing ĝn,mon to minimize R̂n(g) over g ∈ Gn,mon generalizes precisely
choosing ûn to minimize Γ̂n(u, 2) over u ∈ [0, 1]. Because the class of candidate
modulators Gn,mon contains all constant functions on [0, 1]Tn , it turns out that
ĝn,monXn is asymptotically minimax, unlike ξ̂n,2:

lim
n→∞ sup

ave(ξ2
n)/σ2≤r

Rn(ĝn,monXn, ξn, σ2) = σ2r/(r + 1).

Thus, on the one hand, ĝn,monXn dominates, for every r > 0, the nested
model selection estimators treated in Proposition 1. On the other hand, because
Gn,mon is richer than the class of all constants in [0, 1]Tn , the maximum risk of the
estimator ĝn,monXn asymptotically dominates that of the James-Stein estimator
over large classes of submodels within ave(ξ2

n)/σ2 ≤ r. For further details on
these points, on other interesting choices of Gn, and on algorithms for computing
ĝn, see Beran and Dümbgen (1996).

In short, when quadratic risk is the criterion and the signal-to-noise ratio is
not asymptotically zero, data-driven tapering of Xn is superior to model selection
for estimating ξn. This finding is not entirely surprising, since the components of
Xn could be Fourier or wavelet coefficients computed from the original data; and
tapering is known to reduce the Gibbs phenomenon that is created by truncating
a Fourier series.

Proof of Proposition 1. Fix r and suppose throughout that ave(ξ2
n)/σ2 ≤ r

for every n. Result (4) is obvious. Let

Vn,1(u) = n−1/2
∑

t/(n+1)>u

[(Xn,t − ξn,t)2 − σ2]

Vn,2(u) = n−1/2
∑

t/(n+1)>u

ξn,t(Xn,t − ξn,t)

for every 0 ≤ u ≤ 1. Let ‖ · ‖ denote the supremum norm on [0, 1]. By
Kolmogorov’s inequality, there exist finite constants C1 and C2 such that
supave(ξ2

n)/σ2≤r E‖Vn,i‖ ≤ Ci for i = 1, 2 and every n ≥ 1.

First step. Recall the definition of γ̂n(u) and let νn(u) = n−1∑
t/(n+1)>u ξ2

n,t.
Then

γ̂n(u) = νn(u) + σ2(1 − n−1[(n + 1)u]I) + n−1/2Vn,1(u) + 2n−1/2Vn,2(u). (6)

Consequently,
‖Γ̂n(·, 2) − νn(·) − σ2(1 + ·)‖ = oE(1). (7)
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The notation oE(1) represents a term rn for which limn→∞ supave(ξ2
n)/σ2≤r E|rn| =

0. Moreover, since

Ln(ξ̂n(u), ξn) = νn(u) + σ2n−1[(n + 1)u]I + n−1/2Vn,1(0) − n−1/2Vn,1(u), (8)

it follows that
‖Ln(ξ̂n(·), ξn) + σ2 − Γ̂n(·, 2)‖ = oE(1). (9)

On the one hand, from the definition of ξ̂n,2, (9), and (7),

Ln(ξ̂n,2, ξn) = min
0≤u≤1

[νn(u) + σ2u + σ2] − σ2 + oE(1)

≤ min(νn(0) + σ2, 2σ2) − σ2 + oE(1)

≤ σ2 min(r, 1) + oE(1).

Hence,
lim sup

n→∞
sup

ave(ξ2
n)/σ2≤r

Rn(ξ̂n,2, ξn, σ2) ≤ σ2 min(r, 1). (10)

On the other hand, if ξ2
n,t = rσ2 for every t ∈ Tn, then, starting as in the

preceding paragraph,

Ln(ξ̂n,2, ξn) = min
0≤u≤1

[νn(u) + σ2u + σ2] − σ2 + oE(1)

= σ2 min
0≤u≤1

(r + (1 − r)u) + oE(1)

= σ2 min(r, 1) + oE(1).

Hence,
lim sup

n→∞
sup

ave(ξ2
n)/σ2≤r

Rn(ξ̂n,2, ξn, σ2) ≥ σ2 min(r, 1). (11)

Result (2) follows from (10) and (11).
Second step. From (6) and the definition Γ̂n(u, λn),

‖Γ̂n(·, λn) − νn(·) − σ2(1 − ·) − λnσ̂2
nn−1[(n + 1)·]I‖ = oE(1). (12)

This implies

min
0≤u≤1

Γ̂n(u, λn) − min
0≤u≤1

{νn(u) + σ2(1 − u) + λnσ̂2
nn−1[(n + 1)u]I} = oE(1),

and so
min

0≤u≤1
Γ̂n(u, λn) ≤ σ2(r + 1) + oE(1).

Since λn → ∞, an argument by contradiction using this bound, (1), and (12)
establishes ûn = oE(1). Then, from (8),

Ln(ξ̂n,λn , ξn) = νn(ûn) + oE(1). (13)
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Consequently,
lim sup

n→∞
sup

ave(ξ2
n)/σ2≤r

Rn(ξ̂n,λn , ξn, σ2) ≤ σ2r.

On the other hand, setting ξ2
n,n = nrσ2 and ξ2

n,t = 0 otherwise in (13) yields

lim inf
n→∞ sup

ave(ξ2
n)/σ2≤r

Rn(ξ̂n,λn , ξn, σ2) ≥ σ2r.

Result (3) now follows.
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COMMENT

J. Sunil Rao and Robert Tibshirani

Cleveland Clinic Foundation and University of Toronto

In an impressive series of papers over the last few years, Jun Shao has shed
new light on the behaviour of linear model selection procedures from an asymp-
totic point of view. This new paper ties together much of this work and in
one broad sweep, he develops a framework for comparing the majority of model
selection procedures in current use. He is to be congratulated.

Shao’s framework is the following. In a linear model setting with parameter
vector β, he lets α index possible subsets of β, denoted by β(α). He defines a
true model αL

n to be the submodel minimizing the averaged squared prediction
error. Then for any model selection procedure producing an estimated subset
α̂n, he asks whether the procedure is consistent, that is whether

P{α̂n = αL
n} → 1. (1)

We wonder whether he is asking the right question. Our concern is twofold.
First, while consistency seems a reasonable objective we often want our procedure
to produce accurate estimates in terms of mean squared (or prediction) error.
The two objectives are not equivalent, as overfitting or underfitting can have
very different effects on prediction accuracy.
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Secondly, rather than focus on a fixed subset, it seems more natural to focus
the selection procedure on a complexity parameter. In particular, we construct
the cost-complexity criterion

Cλ(β) = RSS(β) + λk, (2)

where RSS(β) is the residual sum of squares for some model β (more precisely
for some β(α) but notationally supressed for clarity) and k is the number of non-
zero elements in β. For a fixed λ > 0 we can find the parameter β minimizing
Cλ(β). In practice, we use a procedure like cross-validation to find the value of λ̂

producing the smallest estimated prediction error, and then for our final model
we choose the β minimizing Cλ̂(β).

The parameter λ roughly indexes model size. Hence in the above procedure
cross-validation is examining the performance of a given model size, as opposed to
a given model. Model size is likely to be a more “portable” quantity than a fixed
model, in going between training and validation samples. This cost-complexity
approach is the basis of the pruning procedure in the CART work (Breiman et
al. (1984)), and was studied in the linear model setting by Rao (1994).

To examine these issues, we reran 100 realizations of the simulation study of
Shao’s Table 1, producing our own Table 1. We have included in our table the
number of underfit and overfit models and the model error ME = (µ−µ̂n)′(µ−µ̂n)
where µ = Xβ and µ̂n = X(α̂n)β̂(α̂n). This model error associated with each
selection procedure is averaged over the 100 realizations. Along with some of the
selection procedures studied by Shao, we have included the full least squares fit,
leave-d out cross-validation for a number of different values d, and the adaptive
cost complexity parameter (CCP) approach, using leave-out 25 cross-validation
to choose λ in the range [log n, n/ log n]. This range is chosen to guarantee
consistency of the procedure. The estimators were applied to the four scenarios
given by Shao, and a fifth one at the bottom of the table. The results show:

1. Methods with high correct selection probabilities do not always give accurate
predictions. In particular, CVd with large d (25 or 30) sometimes underfits
badly, resulting in high model error. The value 25 (chosen by Shao) seems
unusually large to us when the sample size is 40: we wonder what Shao’s
recommendation is for the practitioner?

2. In the last case the full model beats all model selectors. We feel that the full
model should be included in any comparison of such procedures.

3. The adaptive CCP method looks to be the overall winner, performing well in
terms of both correct model selection and model error.
The area of model selection is very complex, with many aspects not yet (in

our view) well understood. Our discussion was meant to raise more questions, in
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Table 1. Shao’s Example 1 indicating overfitting, underfitting counts, num-
ber of times true model selected, and ME for the selection procedure (100
realizations of the simulation).

True Model Procedure number number number ME

overfit underfit correct

β = (2, 0, 0, 4, 0)′ full model 100 0 0 5.231

Cp 41 0 59 3.943

BIC(λ = log n) 17 0 83 3.031

GIC(λ = n/ log n) 1 0 99 2.174

CVd(d = 1) 78 0 22 4.026

CVd(d = 20) 30 0 70 3.113

CVd(d = 25) 22 0 78 2.809

CVd(d = 30) 18 0 82 2.276

Adaptive CCP 4 0 96 2.386

β = (2, 0, 0, 4, 8)′ full model 100 0 0 5.231

Cp 28 0 72 4.373

BIC(λ = log n) 10 0 90 3.792

GIC(λ = n/ log n) 0 0 100 3.309

CVd(d = 1) 73 0 27 4.427

CVd(d = 20) 23 0 77 3.573

CVd(d = 25) 24 0 76 3.784

CVd(d = 30) 15 1 84 4.002

Adaptive CCP 4 0 96 3.563

β = (2, 9, 0, 4, 8)′ full model 100 0 0 5.231

Cp 18 0 82 4.734

BIC(λ = log n) 5 0 95 4.389

GIC(λ = n/ log n) 0 1 99 4.412

CVd(d = 1) 39 3 58 5.560

CVd(d = 20) 14 1 85 4.682

CVd(d = 25) 12 0 88 4.380

CVd(d = 30) 8 7 85 7.083

Adaptive CCP 5 0 95 4.389

β = (2, 9, 6, 4, 8)′ full model 0 0 100 5.231

Cp 0 0 100 5.231

BIC(λ = log n) 0 0 100 5.231

GIC(λ = n/ log n) 0 6 94 6.608

CVd(d = 1) 0 8 92 7.849

CVd(d = 20) 0 1 99 5.441

CVd(d = 25) 0 6 94 6.843

CVd(d = 30) 0 40 60 18.627

Adaptive CCP 0 0 100 5.231

β = (1, 2, 3, 2, 3)′ full model 0 0 100 5.169

Cp 0 68 32 5.717

BIC(λ = log n) 0 85 15 6.238

GIC(λ = n/ log n) 0 100 0 13.689

CVd(d = 1) 0 63 37 8.728

CVd(d = 20) 0 84 16 8.616

CVd(d = 25) 0 93 7 12.114

CVd(d = 30) 0 100 0 20.488

Adaptive CCP 0 85 15 6.748
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the hopes that researchers like Jun Shao will continue to apply their considerable
talents to shed light on this important area.

Department of Biostatistics, Cleveland Clinic Foundation.

Department of Preventive Medicine and Biostatistics, University of Toronto, Toronto, Ontario

M5S 1A8, Canada.

COMMENT

Mervyn Stone

University College London

This paper skilfully clarifies a number of important questions concerning
model selection for least-squares prediction with squared error loss. It also sug-
gests some problems that have not yet been decently formulated.

Professor Shao has responsibly concentrated on sorting out the logic and
technical kernel of some necessary mathematics. I will exercise discussant’s li-
cense to range irresponsibly over the wider framework where intuition and con-
jecture can be countenanced.

(1). The paper focuses on selection within a given set of linear models: it
does not consider the question of choice in the ‘given’— a possibility that must
be sensitive to scientific context. In my 1974 paper, I considered cross-validatory
choice of a linear model for the rotation-averaged shape of the Earth, for which
there can be no scientific limit to pn— the number of Legendre polynomials in
what must regarded as a “soft science” approximation to the true shape. But
in another example of earthy statistics—geodetic survey—the appropriate linear
model is unambiguously ‘given’ by the topology of the triangulation points (with,
incidentally, no room for further selection within the model). I think the first case
— of potentially unlimited pn—is more representative of statistical practice with
linear models than is the case where pn is ‘given’. All of which raises the following
lurking questions when we do fix pn: Could the least-squares measure Ln(αL

n)
(whose value is crucial in the paper’s consideration of asymptotic validity) be
appreciably reduced by enlarging the model? — and, even if it were not, should
we not admit such extension by considering other predictors that avoid the least-
squares pitfall of over-parametrization. Of course, the asymptotics may then
prove unmanageable!

(2). Selection for prediction is not as censorious, about not picking the min-
imal correct model, as any method that wants to pin down the truth in some



ASYMPTOTICS FOR LINEAR MODEL SELECTION 253

“hard science”. Shao’s use of the loss ratio (2.3), as in Li (1987), sets the math-
ematics in the permissive direction (whereas his tables of selection probabilities
seem tangential to the main message of the paper). But it is not clear, from
the theorems proved, whether this is a “distinction without a difference” i.e.
whether, in those cases where a method has asymptotic validity (in the sense of
(2.3)), it does this only by asymptotically selecting the minimal correct model
(if there is one)—ruling out any trade-off between ‘bias’ (in ∆n) and ‘variance’
represented by the second term in Ln.

(3). I would like to have a clearer intuition about the necessity status of
condition (2.6). Li referred to his stronger version of this condition as “reason-
able”. My rough verbalisation of (2.6) is: “For every incorrect model α, either
pn(α) → ∞ or, if

√
∆n(α) → 0, it does so slower than 1/

√
n—with a further com-

bined condition on the rates of these limits when the number of incorrect models
goes to infinity”. (The square roots keep things on the observation scale.) That
(with reference to Theorem 1(i)) things would get worse for α̂n,2 if we were to
make the incorrect models get nearer the truth faster then 1/

√
n offends my cur-

rent intuition. But I am open to persuasion. In his challenging 1988 paper—for
the case of pn fixed, more than one true model, and a criterion given by the prob-
ability of selection of the minimal correct model—Shao imposed the condition
that ∆n(α) be bounded away from zero for incorrect models, on the reasonable
grounds that this was an identifiability condition “very minimal for asymptotic
analysis”. Its present relaxation could, I think, have been taken further.

(4). The findings for delete-1 and delete-d crossvalidatory choice are most
interesting. In 1973, I conjectured that “delete-1” would be superior—on the
grounds that the n delete-1 predictors came closer to the whole-sample predic-
tor and that their assessment still used the whole sample. Shao’s (1988) paper
made the “shocking discovery” that, under the conditions he imposed, rectifica-
tion of the inconsistency of delete-1 crossvalidatory choice (with respect to the
probability of selection of the minimal correct model) required that d/n → 1!
This result has been picked up and risks becoming a stable myth of the form
“Delete-d (large) Good, Delete-1 Bad.”. For example, chemometrician Clementi
(1995) refers to Shao (1988) in this unconditional remark: “statisticians agree
that group formation [i.e. delete-d in some pattern] is better that LOO [leave one
out] one theoretical grounds”. I hope that both statisticians and practitioners
will read this new work of Shao’s which gives a well-balanced overview of the
present position about the asymptotics.

(5). As far as I can see, Shao’s work has revealed something of a cleavage
between what the asymptotics say about prediction and the idea that we should in
many problems be able to benefit from some trade-off between bias and variance.
Perhaps the clear-cut selection of a linear model (setting some parameters to
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zero that require only Tukey’s flattening or Stein’s shrinkage) goes too far for
the trade-off to show itself (except to a small extent with the designedly variance
sensitive CVd in Tables 1 and 2). Or is there a need for alternative asymptotics?

(6). I have already indicated why I think further work is required for the
soft science case where interest lies in predictive efficiency. The problem is that,
with models α indexed by three controlling parameters n, pn(α), ∆n(α), there
are many ways of going to infinity (even for the problem in probability of limit
laws for sums of i.i.d. random variables, there is a spectrum that extends from
central limit theorems to those for moderate and large deviations). The further
problem for the practitioner is to know which of these different routes to infinity
is the one that will offer guidance for the finite problem in hand.

25 Hawtrey Drive, Ruislip Middx, London HA4 8QW, UK.

COMMENT

Ping Zhang

University of Pennsylvania

1. Introduction

Model selection is a difficult problem for two reasons: First, related to the
problem are fundamental philosophical issues such as the existence of a true
model and the ultimate goal of statistical modeling. Second, the topic is so
broad that precise definition of the model selection problem seems both techni-
cally implausible and practically unnecessary. Ironically, applications of model
selection, especially linear model selection, are ubiquitous in many areas of empir-
ical research. To some extent, we could even argue that most statistical problems,
from hypothesis testing to nonparametric function estimation, are related to the
idea of model selection. The potential scope of a general model selection prob-
lem therefore goes far beyond variable selection in linear regression, which is the
subject treated in the paper under discussion. Despite the limitation in scope,
Professor Shao’s rigorous treatment of the subject has not only unified and im-
proved many existing results, but also clarified misconceptions and brought new
insights into the behavior of a large class of model section methods. The role
of model dimension, to my knowledge, is previously not well understood (c.f.,
Example 2). Professor Shao is to be commended for taking on such a difficult
subject. The work under discussion is a much needed service to the statistical
community. There is no doubt in this investigator’s mind that Professor Shao’s
work will soon become a standard reference in the model selection literature.
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2. AIC vs. BIC
As statisticians, we should always bear in mind that mathematical results

do not automatically render themselves statistical interpretations. The main
conclusion in Shao’s paper is that GICλn with λn = 2 and λn → ∞ (which I shall
refer to as AIC-like and BIC-like criteria respectively) represent two classes of
model selection criteria whose asymptotic behavior are fundamentally different.
The validity of each class is associated with the structures of the unknown true
model. An implicit assumption in this argument is therefore the existence of a
true model. According to Shao’s results, BIC-like criteria would perform better
if the true model has a simple structure (finite-dimension) and AIC-like criteria
would do better if the true model is a complex one (infinite-dimension). The
results are undisputable so far as the mathematics is concerned. In practice,
however, there is a flip side to this interpretation. An argument can be made in
favor of BIC-like criteria regardless of the true model. First of all, one should
realize that statistical models are mostly used in areas where the existence of a
true model is doubtful. Even if a true model does exist, there is still ample reason
to choose simplicity over correctness knowing perfectly well that the selected
model might be untrue. The practical advantage of a parsimonious model often
overshadows concerns over the correctness of the model. After all, the goal
of statistical analysis is to extract information rather than to identify the true
model. In other words, the parsimony principle should be applied not only to
candidate fit models, but the true model as well. Theoretically, this is in line
with the argument of Rissanen (1986b), where a BIC-like criterion is shown to
be optimal from an information theoretic point of view.

3. The Role of Loss Function
The point, of course, is that optimality (e.g., loss-efficiency) is a concept that

depends on the objective. Shao argues repeatedly that the GICλn criterion with
2 < λn < ∞ does not merit further attention because the asymptotic properties
of the corresponding GICλn criterion is dominated by either λn = 2 or λn → ∞.
This, however, is the result of using Ln(α) as an all purpose loss function. The
Γn,λn criterion can be viewed as a sample estimate of Ln(α) if and only if λn = 2.
Intuitively, it is unfair to measure the performance of other GICλn criteria using
a loss function that is derived mainly for the case of λn = 2. In fact, if one is
willing to modify the loss function, it is possible to show that any 2 < λn < ∞
is loss-efficient. To see this, let us define a new loss function

L̃n(α) =
1

dN

∑
s∈S

‖µn,s − µ̂n,s(α)‖2, (1)

where the notations are the same as in Section 4 of Shao’s paper. The loss
function in (1) is equivalent to the conditional prediction error of predicting d



256 JUN SHAO

future data points with n − d current data points. The delete-d CV criterion,
i.e., CVn,d(α) in Shao’s notation, is a sample estimate of L̃n(α). It is natural
to expect, and I would be surprised if it is not the case, that CVn,d(α) is loss-
efficient under the modified loss function L̃n(α). Suppose that this were true.
Then following Shao’s argument, the GICλn criterion with λn = n/(n − d) + 1
can be shown to be loss efficient if one uses L̃n(α) as the loss function. Notice
that 2 < λn < ∞ if d is chosen to be proportional to n.

Finally, if one uses the accumulated prediction error of Wei (1992) to replace
Ln(α), then, contrary to Shao’s conclusion, GICλn with λn = log(n) can be shown
to be loss-efficient. The moral here is that one should not take theory out of its
context. The choice of loss function has a tremendous bearing on the asymptotic
properties of the corresponding model selection criterion. Occasionally, casual
interpretation and generalization of theoretical results can be misleading to the
novice reader. I am basically in agreement with Shao regarding the distinction
between λn = 2 and λn → ∞, except for minor differences in the interpretation
of results. However, I disagree with Shao’s claim that the case 2 < λn < ∞ is
uninteresting (see Zhang (1992)). What we have demonstrated in the previous
paragraph is that every member of the GICλn class with 2 < λn < ∞ can be
asymptotically optimal, provided that we define optimality properly. Likewise,
we should be able to differentiate and to justify different GICλn criteria when
λn → ∞ at different rates. This latter problem, however, is rarely discussed in
the literature.

4. Extensions
The challenge of the model selection problem is that, without assuming the

existence of a true model, it is rather difficult to assess the merit of a proposed
method objectively. Each method has some merit in its own right. For example,
the Bayesian approach has the philosophical advantage that one is not forced to
choose a single model out of a set of possible models. The classical argument
of Akaike (1973) states that the best model should be the one that yields the
highest predictive power. Rissanen (1986c) asserts that the best model should
be the simplest one that is capable of fully describing the data. These different
approaches seem to have nothing in common. The general consensus is, however,
that most of the existing model selection criteria give rise to a quantification of
the parsimony principle. They differ in their capacity to balance goodness-of-fit
and model complexity.

In Shao’s work, the GICλn criterion is used as a prototype class of model
selection procedures that, when λn varies, represents different levels of trade-off
between goodness-of-fit and model complexity. A natural extension of GIC, in
Shao’s notation, is

GIC∗(α) = Sn(α) + λnσ̂2
na( pn(α)), (2)
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where a( p) is an arbitrary function of p. The GICλn criterion corresponds to
a( p) = p. George and Foster (1994) show that the GIC∗ criterion in (2) with
a( p) = log( p) has some minimax property under a newly defined loss function.
Hartigan (personal communication) finds that GIC∗ with a( p) = p2 has a similar
interpretation. Still more general extensions of GICλn can also be found in the
literature. For example, Wei (1992) proposes what he calls an FIC criterion

FIC(α) = σ̂2
n

{
n + log det(Xn(α)X′

n(α))
}

, (3)

where σ−2Xn(α)X′
n(α) is the Fisher information matrix under the model indexed

by α. Note that (3) cannot be written in the form of (2) since the penalty term in
(3) is not necessarily a function of model dimension pn(α). As a general theory,
it would be nice if the current results in Shao’s paper can be extended to criteria
such as (2) and (3).

5. Linear Models for Panel Data
Panel data, i.e., longitudinal records taken from a randomly selected group

of panelists, arise frequently in econometrics and other social sciences (Hsiao
(1986)). The general format of the observed data is (xi, zt, yit), i = 1, . . . , N ; t =
1, . . . , T , where xi is a vector of independent variables measuring the demographic
attributes of the ith panelist; zt is a vector of variables that measures changes
in the environment; and yit is a response variable observed at time t from the
ith panelist. What sets panel data apart from conventional data is that the
observations vary not only across individuals (as in cross-sectional survey data),
but also across time (as in aggregate time series records). Different types of
models are often needed to describe the two types of variation. Suppose that we
fit a linear model of the following form:

yit = µ + xiθ + ztβ + εit, (4)

where εit are i.i.d. (0, σ2) across both i and t. Apparently, variable selection
under model (4) can be accomplished by using any of the criteria established for
ordinary regression models. A closer look at the situation suggests, however, that
conventional model selection methods may not be appropriate for the purpose of
panel data analysis.

Take the predictive approach for example. For panel data, it is often more
relevant to predict aggregate statistics rather than individual values of future
observations. Let gt denote a summary statistics of yit, i = 1, . . . , N . Let ĝt be a
predictor of gt based on data up to time t−1. Define the accumulated prediction
error as

APE ≈
T∑

t=t0

‖ĝt − gt‖2.
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Under ordinary regression models (i.e., N = 1), it has been shown that APE with
least squares predictors is asymptotically equivalent to the BIC criterion (Wei
(1992)). Hence the results in Shao’s paper apply to APE as well. For panel data
(i.e., N > 1), depending on the target function gt, the asymptotic properties of
APE can be rather different.

For simplicity, suppose that the covariates xi and zt are iid random vectors
following the standard multivariate normal distribution. When gt is the cross-
sectional sample mean, i.e., gt = ȳt = N−1∑N

i=1 yit, Zhang (1996) shows that

APE ≈ N−1∆1(T ) + σ2 dim(β)N−1 log(T ), (5)

where ∆1(T ) is an approximate measure of goodness-of-fit. An interesting ob-
servation is that (5) does not penalize cross-sectional model complexity since
dim(θ) does not appear in the expression. More to the point, this case is likely
to be covered by Professor Shao’s theory because (5) is, qualitatively speaking,
a member of the GICλn class.

Next, suppose that we wish to predict the cross-sectional variance, i.e., gt =
N−1∑N

i=1(yit − ȳt)2. A result of Zhang (1996) implies that

APE ≈ N−1∆2(T ) + 4σ2(σ2 + ‖θ‖2)N−1 log(T ), (6)

where ∆2, as before, is a measure of goodness-of-fit. Contrary to the previous
case, we note that (6) does not penalize cross-time complexity. Furthermore, (6)
is not a member of the GICλn class and Shao’s results do not apply. The result
for general gt is more complicated (see Zhang (1996)).

In the past two sections, we have demonstrated that some important model
selection criteria do not fit into the framework of Shao’s paper. Our purpose is
not to show that there are pathological exceptions to an otherwise nice theory.
Instead, we believe that Professor Shao’s results can be extended to much broader
contexts. The key here, as we pointed out at the beginning, is to establish a
general definition of what a model selection problem is and what one means by
optimality.

Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA 19104-

6302, U.S.A.
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REJOINDER

Jun Shao

I would like to thank the Editor and an Associate Editor for organizing
this discussion. I am also grateful to discussants for providing very insightful
discussions, useful additional results, and directions for further research. As
the discussants pointed out, model selection is a very complicate and difficult
problem. I hope that more discussions of this kind will be seen in the future and
that the current paper will serve as a starter for theoretical research in assessing
various existing model selection procedures and in developing new methods. In
the following I focus on some major issues raised in the discussion, instead of
replying to each discussant separately. I shall adopt the same notation that I
used in the main paper.

1. Criteria of Assessing Model Selection Procedures

Any theoretical study in assessing some statistical procedures must be based
on one or several criteria. For example, the most commonly used criteria in an
estimation problem include the mean squared error (or, more generally, the risk),
consistency, asymptotic efficiency, admissibility, etc. Model selection is far more
complicated than an estimation problem and using a single criterion may not be
sufficient in many situations.

I stated in Section 1 that the goal of model selection is to minimize the
squared error loss Ln(α) = ‖µn − µ̂n(α)‖2/n over models α ∈ An. Ideally,
the loss function Ln should be used to assess model selection procedures. But
using Ln (or the mean squared error) to assess model selection procedures is
very difficult or impossible. Criterion (2.3) (called asymptotic loss efficiency)
guarantees that when the sample size n is large, Ln(α̂n) is close to minα Ln(α)
(unfortunately, we do not know how large is large, which is a limitation of all
asymptotic analysis). It is a good starting point for theoretical research in this
area, although many other issues need to be worried about. The scenario is very
similar to an estimation problem in which one is not able to assess the finite-
sample mean squared error but considers consistency and asymptotic efficiency
instead. Consistency is an asymptotic analog of admissibility in the sense that
we should not encourage the use of inconsistent (inadmissible) procedures unless
there are specific reasons, but usually there are many consistent (admissible)
procedures that have to be further assessed.

Rao-Tibshirani wondered why I also consider criterion (2.1), the consistency.
Criteria (2.1) and (2.3) are related and are equivalent in some cases (Proposition
1). Criterion (2.3) focuses on the loss Ln(α̂n), whereas criterion (2.1) emphasizes
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the frequency of α̂n = αL
n , where α̂n is the model selected using a model selection

procedure and αL
n is the optimal model that minimizes Ln(α). If αL

n is non-
random, then criterion (2.1) is the same as the consistency in an estimation
problem where α̂n is viewed as an estimator of αL

n . In some problems (e.g.,
Examples 1 and 2), the optimal model can be defined as the correct model with
the smallest dimension and, therefore, criterion (2.1) does not depend on any
loss function. On the other hand, criterion (2.3) is loss-dependent, which will
be further discussed later. For these reasons, it is of interest to study model
selection procedures under both criteria (2.1) and (2.3).

For a fixed sample size n, criteria (2.1) and (2.3) are different as pointed out
by Rao-Tibshirani, but I think that a model selection procedure having a high
frequency of choosing the optimal model should usually be fairly good in terms
of the loss Ln. I am very grateful to Rao-Tibshirani for their simulation results
that complements my simulation study. From their Table 1, one can find that
except for the case where the full model is the only correct model, the GIC with
λ = n/ log n and the delete-25 CV perform fairly well in terms of the average
loss Ln, although they may not be the best.

Theoretical research based on other criteria is called for. Beran adopted an
asymptotic minimax criterion. Perhaps we may consider the convergence rates
of consistent model selection procedures. For example, if we can show that

1 − minα Ln(α)
Ln(α̂A

n )
= Op(an) and 1 − minα Ln(α)

Ln(α̂B
n )

= Op(bn),

where α̂A
n and α̂B

n are models selected by model section procedures A and B,
respectively, and an and bn are two positive sequences of numbers satisfying
an/bn → 0, then procedure A is better than procedure B.

2. Loss Function

Criterion (2.3) depends on the loss function

Ln(α) = ∆n(α) +
e′

nHn(α)en

n
,

where ∆n(α) is a squared “bias” term and e′
nHn(α)en/n is a “variance” term

related to the complexity of model α. Zhang raises the question of using a loss
function that puts heavier penalty on the complexity of models. Indeed, we may
consider the following loss function

L̃n(α) = ∆n(α) +
(λn − 1)e′

nHn(α)en

n
,

which is equivalent to the loss function in Zhang with certain choice of λn. Note
that λn − 1 can be viewed as a penalty parameter on the complexity of a model
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and that Ln(α) is simply L̃n(α) with λn ≡ 2. The cost-complexity criterion in
Rao-Tibshirani with a fixed λ is also closely related to the loss function L̃n.

Theorem 6. Assume that (2.6) and (3.4) hold and that σ̂2
n is consistent for σ2.

(i) If λn → ∞, then the GICλn is asymptotically L̃n-loss efficient, i.e.,

L̃n(α̂n,λn)
minα L̃(α)

→p 1.

(ii) The same conclusion holds for λn ≡ λ (a fixed constant), provided that An

contains at most one correct model for all n.

The proof of this result is given in the end.
Theorem 6(ii) indicates that if we consider the loss function L̃n with λn ≡ λ,

then the GICλn with λn ≡ λ > 2, which is also known as the FPEλ method,
plays the same role as the Cp method in the case where Ln is used as the loss
function. But the FPEλ is still not asymptotically loss efficient if An contains
more than one correct models.

Theorem 6(i) indicates that the GICλn with λn → ∞ is asymptotically L̃n-
loss efficient, which is natural since the same λn is used in the loss function and
the GIC. But why is the GICλn with λn → ∞ also asymptotically loss efficient
when the squared error loss Ln is used (Theorem 2)? The following result answers
this question.

Theorem 7. (i) If there exists a fixed-dimension correct model (in An or not in
An) and λn/n → 0, then asymptotic Ln-loss efficiency is the same as asymptotic
L̃n-loss efficiency, i.e.,

P
{
αL

n = αL̃
n for sufficiently large n

}
= 1,

where αL
n and αL̃

n are the optimal models under the loss functions Ln and L̃n,
respectively.
(ii) If Ac

n is empty for all n and

(λnσ̂2
n − 2σ2)pn(αL

n)
nLn(αL

n)
→p 0,

then
Ln(αL

n)
Ln(αL̃

n)
→p 1 and

L̃n(αL
n)

L̃n(αL̃
n)

→p 1.

Thus, if there is a fixed-dimension correct model, asymptotic loss efficiency
with different loss functions L̃n are equivalent and the GICλn with λn → ∞ is
asymptotically loss efficient regardless of which loss function is used. To respond
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to Zhang’s comment on the FPEλ with 2 < λ < ∞, I find that my comment
(in the end of Section 3) on the relative performance between the FPEλ and the
GICλn is valid even if Ln is replaced by L̃n; however, my comment on the relative
performance between the FPEλ and the GIC2 applies only to the case where the
squared error loss is used.

3. Signal-to-Noise Ratio

Several discussants addressed the problem of signal-to-noise ratio. When n

is fixed and the ratio ‖β‖/σ → 0, all model selection procedures will fall apart,
since we cannot distinguish the zero components and the non-zero components
of β. The GICλn with a large λn is more sensitive to the signal-to-noise ratio
than the GICλn with a small λn, which is numerically illustrated by the last two
cases in Table 1 of Rao-Tibshirani. What can we do when ‖β‖/σ is very small?
Perhaps a different asymptotic framework should be adopted as Stone suggested.
We may consider different convergence or divergence rates of n, pn(α), and ∆n(α)
to provide an asymptotic analysis that can offer the best guidance for a given
practical situation.

4. GIC2 versus GICλn

Beran, Stone, and Zhang discussed the choice between the GIC2 (or the
Cp) and the GICλn (or the choice between the delete-1 CV and the delete-d
CV). Asymptotic minimaxity cannot distinguish these two methods when r = 0
(Beran). Under criteria (2.1), (2.3) and the asymptotic settings considered in the
current paper, the GICλn with a large λn is preferred, because the only situation
where the GIC2 is possibly better is when there is no fixed-dimension correct
model and the squared error loss Ln is used. As I discussed above, however, the
GIC2 is less sensitive to the small signal-to-noise ratio, although it also breaks
down as ‖β‖/σ → 0. We may need to consider other criteria in making a choice.

5. Choices of λn

Even when we decide to adopt the GICλn with λn → ∞, we still need to
choose a particular λn. This issue is not addressed in the current paper and
seems to be a difficult problem. A promising adaptive method is introduced by
Rao-Tibshirani. Their method amounts to finding a suitable λn by minimizing
an objective function via methods such as the cross-validation. We may even use
this method to assess the GIC2 and the GICλn . Properties of this method need
to be investigated.

6. Condition (2.6)

Stone questioned condition (2.6) in his comment (3). My first reaction is
that (2.6) is a weak condition if we focus on the case where n → ∞ and ‖β‖/σ
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is fixed. As I discussed in the end of Section 2, in several important cases (2.6)
is the same as (2.7): n∆n(α) + σ2pn(α) → ∞ for all α ∈ An − Ac

n. If pn(α) is
bounded, then very likely ∆n(α) is bounded away from 0. My second reaction
to Stone’s comment (3) is that if ∆n(α) tends to 0 faster than n−1, then it is
hard to distinguish models and all model selection procedures may break down
(it hurts the GICλn with a large λn more, I believe). This is very similar to the
situation where we fix n and let ‖β‖/σ tend to 0.

7. Other Research Problems

The discussants pointed out various other directions for research in this area.
For example, Zhang’s extended GIC; Rao-Tibshirani’s adaptive method of choos-
ing λ; Zhang’s extension of model selection to panel data; the use of different
asymptotic settings (Stone); the choice between the Cp and the GICλn (Beran,
Stone, and Zhang); the use of shrinkage estimators (Beran and Stone), etc. In
some of these problems we may need to start with empirical studies. I hope that
more researchers will work on these problems that are pertinent to applications
of model selection.

8. Proofs

Proof of Theorem 6. Using the conditions of the theorem we can establish

Γn,λn(α) =
‖en‖2

n
+ L̃n(α) + op

(
L̃n(α)

)
,

where the op is uniformly in α ∈ An−Ac
n and is uniformly in α ∈ An if λn → ∞.

Then the results in (i) and (ii) follow from

0 ≤ Γn,λn(αL̃
n) − Γn,λn(α̂n,λn

)

L̃n(α̂n,λn
)

=
L̃n(αL̃

n) − L̃n(α̂n,λn
)

L̃n(α̂n,λn
)

+ op(1) ≤ op(1),

where the inequalities follow from Γn,λn(αL̃
n) ≥ Γn,λn(α̂n,λn

) and L̃n(αL̃
n) ≤

L̃n(α̂n,λn
).

Proof of Theorem 7. If there is a fixed-dimension correct model, then lim infn
minα∈An−Ac

n
∆n(α) > 0 (see Nishii (1984)). Hence the result in (i) follows from

the fact that for sufficiently large n, both αL
n and αL̃

n are the same as the model
that minimizes ∆n(α), α ∈ An, and has the smallest dimension. Result (ii)
follows from

0 ≤ L̃n(αL
n) − L̃n(αL̃

n)
L̃n(αL

n)
≤ Ln(αL

n) − Ln(αL̃
n)

Ln(αL
n)

+
(λnσ̂2

n − 2σ2)[ pn(αL
n) − pn(αL̃

n)]
nLn(αL

n)

≤ (λnσ̂2
n − 2σ2)[ pn(αL

n) − pn(αL̃
n)]

nLn(αL
n)

= op(1).
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