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OPTIMAL DESIGNS FOR BINARY RESPONSE

EXPERIMENTS WITH TWO DESIGN VARIABLES

Randy R. Sitter and Ben Torsney

Carleton University and University of Glasgow

Abstract: D-optimal and c-optimal designs for binary response experiments with two

design variables are considered. It is shown that with two design variables and a

bounded design space, there exists a D-optimal design which has at most four or six

symmetrically arranged support points, from which further reduction in the number

of support points may sometimes be accomplished by using an asymmetric weighting.

For c-optimality we identify when the support consists of 1, 2 or 3 points. The amount

of numerical work required does not di�er from the one design variable case.
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1. Introduction

Optimal design for linear models has been extensively studied and is fairly

simple since the information matrix is independent of the unknown regression

parameters. In the case of generalized linear models (McCullagh and Nelder

(1989)) less is known. Wu (1988) and Ford, Torsney and Wu (1992) (FTW) con-

sider c-optimal and D-optimal designs for generalized linear models with simple

linear e�ect and one design variable and discuss the interest in such optimal de-

signs. In the case of the D criterion and binomial variation, they found that the

equivalence theory of Kiefer and Wolfowitz (Fedorov (1972), Silvey (1980)) may

not lead to a nice characterisation of optimal designs. By numerical investigation

they found the D-optimal designs have three (instead of two) support points for

some link functions. Torsney and Musrati (1993) continued this work. It is well

established that if a D-optimal design has exactly k support points, where k

is the number of parameters, then the optimal design weights are 1/k. Other-

wise numerical techniques are usually needed (Torsney and Alahmadi (1992) and

Torsney (1983, 1988)). FTW also consider c-optimal designs in the same setting.

Sitter and Wu (1993) use a di�erent approach to obtain nice characterisations of

D-, A- and F -optimal designs for binary response experiments with one design

variable and explain some of the numerical results in FTW. Note that F -optimal

designs minimise the length of a Fieller interval.

In this paper we study the more di�cult situation of two design variables.
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Though this has important applications in many areas, it has become a par-

ticularly important problem in the health protection areas. Humans are often

exposed to more than one potentially hazardous substance simultaneously. For a

recent overview see Krewski and Thomas (1992). In the context of linear models,

the addition of more design variables does not signi�cantly change the complex-

ity of the problem or the nature of its solution, however in the context of binary

response experiments this is not so. To see this, note that for typical binary

response models, in the case of a single design variable there exists a unique

D-optimal design for an unbounded design space. As we show in x3, in the case

of two design variables the optimality criterion can be made arbitrarily large by

choice of design. Thus the design problem is fundamentally di�erent. A similar

situation arises in linear models even for one design variable. Typically one con-

siders a bounded design space, and chooses the optimal design within this space.

Thus we consider some useful bounded design spaces for two design variables and

obtain D- and c-optimal designs for some common dose-response models.

2. Formulation of Binary Response Design Problems

2.1. Binary response models

In a binary response experiment ni subjects are administered two agents at

dose levels xi = (x1i; x2i)
T , i = 1; : : : ; q, where xi represents a vector of two design

variables selected from a design space X � R
2, which, as will be discussed later,

must be bounded in some way. The outcome is binary, i.e., response or non-

response, with probabilities p(x) = F(x; �) and 1 � p(x), respectively. Suppose

the number of responses at dose level xi is ri, and r1; : : : ; rq are independent

binomial random variables, ri � Bin(ni; p(xi)). Then the log-likelihood is

L(�) =

qX
i=1

[ri log F(xi; �) + (ni � ri) logf1� F(xi; �)g] + C; (2:1)

where C is independent of �. Throughout this article we will restrict attention

to

F(x; �) = 	f�T (x� �1)g; (2:2)

where 	 is a known monotone function with limt!�1	(t) = 0, limt!1	(t) = 1,

with � 2 R, 1 = (1; 1)T 2 R
2 and � 2 R

2. This would be termed a simple

additive risk model in the toxicology literature (Krewski, Colin and Dewanji

(1990)). Krewski and Thomas (1992, p: 105) state, \[a]t lower doses, theoretical

arguments suggest that risks may be near additive. Thus, additivity at low doses

has been invoked as a working hypothesis by regulatory authorities in the absence

of evidence to the contrary."
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Let � = (�; �1; �2)
T . The Fisher information matrix under the model implied

by (2.1) and (2.2), is

I(�) = n

2
64
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where S00 =
P
�i (zi), S0j =

P
�izji (zi), Sjj0 =

P
�izjizj0i (zi), zji = �j(xji�

�), zi = z1i + z2i, �i = ni=n, n =
P
ni, and  (t) = [	0(t)]2=f	(t)[1 �	(t)]g for

j; j
0 = 1; 2, and the summations are from 1 to q.

2.2. Design criteria

A good design will make I(�) `large' or I�1(�) `small'. Two standard criteria

are D-optimality and c-optimality. A c-optimal design minimises, for a given

vector c, the approximate variance of cT �̂, where �̂ is the maximum likelihood

estimator of �, namely cT I�1(�)c. A D-optimal design maximizes det(I(�)). This

is attractive because under suitable assumptions det(I�1=2(�)) is proportional to

the volume of the asymptotic con�dence region for �. Since these criteria depend

on the unknown �, we must assume that, for the purposes of design, a good

initial estimate of � is available. Robustness of optimal designs to a poor initial

estimate of � is often of practical concern. So a compromise design which has

more dose levels but is near optimal, when benchmarked against the optimal

design, is often used in practice.

We note that

det(I(�)) =
n
2 (�1 + �2)

2

�21�
2
2

det(M);

where M is the matrix of fSijg for i; j = 0; 1; 2 and can be written M =P
i �isis

T
i  (1

T zi); with sTi = (1; zTi ). Also cT I�1(�)c = cT�M
�1c�, where c� = �c,

with � = diagf(�1+�2)
�1
;��1;��2g. Thus a D-optimal design should maximise

det(M) while a c-optimal design should minimise cT�M
�1c�.

It is appropriate at this point to discuss the design space X � R
2. For a

typical binary response model in the case of a single design variable, i.e. z =

�(x��) with x 2 X � R, there exist D- and c-optimal designs for an unbounded

design space. Usually, however, a bounded design space is of particular interest

for various practical reasons. For example: (1) the experimenter would usually

like all the dose levels in the design to have a moderate response probability so

as to avoid the problem of no responses or complete response at a particular

dose level, since this yields no point estimate at that dose and contributes little

information about the shape of the curve; (2) the experimenter may not wish to

use too high a dose due to possible toxic side-e�ects of a drug; and (3) it may not



408 RANDY R. SITTER AND BEN TORSNEY

be feasible or even possible to accurately produce low dose levels of a particular

agent. In the one design variable case, consideration of these and perhaps other

constraints would usually imply a bounded interval design space X = [xmin; xmax].

This is due to the fact that the probability of response is monotonic in x for the

most common models, so that an interval on x translates into an interval in the

response probabilities. Of (1){(3) above, (1) is almost always a consideration,

however, in many cases the optimal design over the unbounded design space will

satisfy (1), and thus may be of interest.

Interestingly, in the case of two design variables, if the design space is un-

bounded, the optimality criterion can be made arbitrarily large by choice of

design. A similar situation arises in linear models even for one design variable.

Thus, in the case of two design variables it is both desirable, for practical rea-

sons, and necessary, for theoretical reasons, to consider a design space which is

bounded in some way. Practical considerations such as (1){(3) will guide the ex-

perimenter in the choice of bounded X . Viewing (2.2), we see that (1) translates

naturally into bounding b1 � z1 + z2 � b2, where zj = �j(xj � �) and b1 and b2
are experimenter chosen constants, since any dose combinations (x1; x2) which

satisfy z1 + z2 = constant have the same response probability. Consideration

of (2) and (3) leads naturally to bounds like b1 � z1 + z2 � b2 or perhaps like

b1 � z1 � b2 and b3 � z2 � b4, where the bj are experimenter chosen constants.

It is clear, of course, that the experimenter's constraints can lead to a va-

riety of shapes of bounded regions in R2. Though the principles for obtaining

optimal designs remain the same for any of these, some will be easier to handle

theoretically than others. We will restrict consideration in this paper to a class of

regions which will be able to handle many practical situations and yet for which

optimal designs are quite easy to obtain. They consist of regions which bound

z1 + z2 and exactly one other linear combination of z1 and z2; that is they will

be of the form b1 � z1+ z2 � b2 and b3 � a1z1+ a2z2 � b4 for some experimenter

chosen constants a1, a2, and bj ; j = 1; : : : ; 4.

To obtain \exact" D-optimal or c-optimal designs we need to optimise our

criteria over choices of q, of fxig and of fnig. Since the fnig must be integers this

is a di�cult and often intractable problem. We instead consider the \continuous"

setting in which ni=n, and n =
P
ni, are replaced by a real �i with 0 < �i < 1

and
P
�i = 1.

2.3. A canonical problem

FTW propose a useful canonical form for the general k parameter situation,

though they only use it for the two-parameter case. Their proposal involves a

parameter dependent linear transformation of the design variables x. We have
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already resorted to such a transformation in the mapping from xji to zji but this

was for notational convenience and does not precisely suit our present purposes.

In e�ect we want to further transform the zji.

To derive this canonical form in the present context and establish notation,

suppose that Z � R
2 is the image of X under the transformation x! z and let z

be a typical element of Z, and as before sT = (1; zT ). Consider the transformation

s ! t = Bs where B is a nonsingular 3 � 3 matrix which does not depend on

the design variables and with its �rst and second rows, respectively, (1; 0; 0) and

(0; 1; 1). Then tT = (t1; t2; t3)
T = (1;uT ), where u = (u1; u2)

T 2 U � R
2 with

u1 = t2 = 1T z, and U is the image of Z under this mapping. Further, since

s = B
�1t, we have M = (B�1)TMuB

�1,

det(M) = det(Mu)/ [det(B)]
2

and cT�M
1c� = cT�B

T
M

�1
u Bc� = cTuM

�1
u cu;

(2:4)

where cu = Bc� andMu =
P

i �itit
T
i  (u1i) is the design matrix under a weighted

linear model with weight function f (u1)g
�1=2 and design vector u 2 U .

Thus a D-optimal design should maximise det(Mu) and a c-optimal design

should minimise cTuM
�1
u cu. These are respectively the D-optimal and c-optimal

design problems for the above weighted linear model. It is these linear design

problems which we classify as canonical design problems. They can be solved

with optimal linear design problem tools.

Of course the transformations x ! z ! u depend on the parameter � =

(�; �1; �2)
T . However, the dependence of optimal designs on the true value �

for given design space X is replaced in the transformed design problems by a

design space U which varies with �. Hence if we can solve the transformed design

problem for arbitrary U we have implicitly solved the original design problems for

arbitrary X and �. What of the matrix B? Its partial de�nition only stipulates

u1, namely u1 = �
T (x� �1). What should u2 be?

If X is a bounded space then the choice does not matter and could be gov-

erned by aiming for simplicity of U , or constraints which are natural to the

application as discussed in the previous section. As we noted there, this paper

will primarily consider constraints which bound u1 = z1+z2 and u2 = a1z1+a2z2
for some experimenter chosen constants a1 and a2, though many of the results

will be useful more generally.

2.4. Geometrical characterizations of optimal supports

There are useful geometrical characterisations of D-optimal and c-optimal

designs relative to an induced design space

G = fg 2 R3 : g = f (u1)g
1=2(1; u1; u2)

T
; (u1; u2)

T 2 Ug:
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D-optimal designs have as support points the points of contact between G and

the smallest ellipsoid centered on the origin containing G (Silvey (1980, p: 41)).

For c-optimal designs, letting �G be the re
ection of G about the origin, we

must determine the convex hull of fGg [ f�Gg. The point where the vector c,

extended if necessary, pierces this convex hull is a convex combination of some

of the extreme points. These are the support points (see Elfving (1952), also

Cherno� (1979)). Thus the design problem can be reduced to seeking a design

on U , and hence on G. For simplicity of notation, we will denote a design

� = f(�i;ui); i = 1; : : : ; qg if the design assigns weight �i to ui for i = 1; : : : ; q.

At this point we need to be clear about the geometry of G. We suppose that

g1, and g2 label axes in the horizontal plane and that g3 labels the vertical axis.

Consider the case u2 = 0. This de�nes a horizontal cross-section of G which is

identical to the corresponding induced design space for one explanatory variable.

Let G0 denote the corresponding slice of G, i.e.

G0 = fg 2 R3 : g = f (u1)g
1=2(1; u1; 0)

T
; u1 2 Rg:

For the choices of 	(�) considered by FTW, by Sitter and Wu (1993) and by

Torsney and Musrati (1993) this is a closed bounded trajectory anchored at the

origin with u1 potentially free to run from �1 to 1: Five of these are given in

Table 1, and Figure 1 gives G0 and �G0 with the convex hull also depicted for

each of them.

  

  

 

(1) (2)

(3) (4)

(5)

Figure 1. fG0g[f�G0g for the �ve 	(�)'s of Table 1. (1) Logit; (2) Probit;

(3) Double exponential; (4) Double reciprocal; (5) Complementary log-log.

The dotted lines complete the convex hull.



OPTIMAL DESIGNS FOR BINARY RESPONSE EXPERIMENTS 411

Table 1. u and u values for c-optimality and D-optimal designs for various 	(�)

Case Name 	(u) c-optimality D-optimal design

u u

1 Logit f1 + exp(�u)g�1 -2.4 2.4 f(:25;�1:22;�1)g

2 Probit �(u) -1.58 1.58 f(:25;�:937;�1)g

3 Double
exponential

(1+s)

2
� s

2
exp(�juj) -1.84 1.84 f(:094;�1:59;�1); (:312; 0;�1)g

4 Double
reciprocal

(1+s)

2
� s

2
(1 + juj)�1 -1.62 1.62 f(:087;�21=2;�1); (:326; 0;�1)g

5 Complementary
log-log 1� exp(� expu) -2.07 1.27 f(:211;�1:08;�1); (:289; :854;�1)g

�

s = sign(u).

g3

g2

g1

Figure 2. The induced design space, Gw; for two design variables and the

logit of Table 1.

Now consider u1 = v0, a constant, so that g = f (v0)g
1=2(1; v0; u2)

T de�nes a

vertical line which will be unbound if u2 is unbounded. Since G must be bounded,

so must u2. Without loss of generality, we assume that �1 � u2 � 1. Hence for

the widest possible range of u1-values, the set G becomes

Gw =
n
g 2 R3 : g = f (u1)g

1=2 (1; u1; u2)
T
; u1 2 R;�1 � u2 � 1

o
:

This set resembles a, possibly asymmetric, vertically oriented signet ring

beginning as a point at the origin (u1 = �1) and linearly expanding as u1 varies

to a maximum length at the value of u1 which maximizes  (u1). Figure 2 gives a
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three dimensional graphic of Gw for the logit of Table 1. A key feature of Gw is

that it consists of a vertical surface bounded by ridges corresponding to u2 = �1.

Each vertical line on the surface corresponds to a unique value of u1.

We note that if the design space X is de�ned by additional constraints on

x1 and x2, the corresponding induced design space G will be a subset of Gw. In

particular, bounds on u1 will correspond to the contiguous vertical section of Gw

remaining after vertical cuts to G at the positions corresponding to these bounds.

In the sequel, we discuss D- and c-optimal designs for only such constraints.

However, once the above geometry is understood, obtaining optimal designs for

more complicated bounds and constraints becomes much simpler.

3. D-Optimal Design

3.1. The case of G = Gw

We consider �rst the case G = Gw. It is immediately clear that any ellipsoid

centered on the origin containing G can only touch G on the upper and lower

ridges. Since the support points of the D-optimal design are the points of contact

between G and the smallest such ellipsoid we conclude that D-optimal support

points lie on these ridges and hence have u2 = �1. It is well established that,

if there are k parameters, there exists a D-optimal design which has at least k

and at most k(k + 1)/2 support points. Since there are k = 3 parameters, there

are at least 3 and at most 6 of them. Unfortunately, this would involve a high

dimensional maximization over six possible u1 values with their corresponding

weights, as well as the various combinations of u2 = �1. However, the space Gw is

symmetric in the vertical direction. This leads to the conjecture that D-optimal

supports are such that if observations are taken at a particular value of u1, then

these are split equally between u2 = �1. This can be con�rmed algebraically.

That is, suppose that �(1) = f(�i;ui); i = 1; : : : ; qg = f(�i; u1i; u2i); i = 1; : : : ; qg

is any candidate design, i.e. u2i = �1, and let �(2) = f(�i; u1i;�u2i); i =

1; : : : ; qg, i.e. its re
ection across u2 = 0. If we let � = (�(1)+ �(2))/2, then the 02

and 12 components ofMu(��) are 0, while the remaining components are the same

as those of Mu(�
(1)) (in obvious notation similar to (2.3)). From this it is easy to

show that detfMu(�)g � detfMu(�
(1))g, with strict inequality if the 02 and/or

12 components of Mu are not zero. This implies that for any such design there

exists a symmetric design, with possibly more support points, which is better.

So, in order to �nd a D-optimal design, we need only consider designs of the

form

� = f(�i=2; u1i; 1); (�i=2; u1i;�1); i = 1; : : : ; q�g : (3:1)

This design may however not be unique and may not have minimum support

among all designs which attain the maximum value of the determinant.
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This essentially reduces the complexity of the problem to that of the one

design variable situation. We must choose q�, u1i, and �
�

i for i = 1; : : : ; q�, withP
�
�

i = 1 and ��i > 0, to maximise D = Su00(Su00Su11�S
2
u01); where Suij denotes

the ijth component ofMu. As a direct result of Caratheodory's Theorem (Silvey

(1980, p: 72)), it follows that q� = 2 or 3. Since each u1i implies 2 support

points, this implies a total support of 4 or 6 points. Furthermore, this reduces

the numerical maximization to at most 5 variables; at most q� = 3 u1i values

plus their corresponding ��i weights, noting that ��3 = 1� �
�

1 � �
�

2.

It was shown in Sitter and Wu (1993) that, in the two parameter case, there

may exist more than one design with di�ering sets of support points which attain

the maximum determinant value. A similar property can exist in our case. For

example, it may be that there exists an asymmetric design with positive weights

on only a subset of the support points of the obtained symmetric design that has

the same determinant value and smaller support.

If  (�) is symmetric about zero, then there exists a design which is symmetric

about zero in u1 in terms of support points and weights which is D-optimal,

though the resulting design may not have minimum support. We can obtain it

using methods similar to those of Sitter and Wu (1993), where they consider

various conditions on  (�). In what they term cases (i) and (ii) (p: 332) we can

�nd this design by considering only designs of the form

� =

��
�

4
;�u1; 1

�
;

�
�

4
;�u1;�1

�
;

�
1� �

2
; 0; 1

�
;

�
1� �

2
; 0;�1

��
;

choosing u1 2 R and � 2 (0; 1] to maximise D; a 2 variable maximization. Note

that � = 1 corresponds to a four point design. Note also that, if we let

h(z) =
d

dz
[z2 (z)]=

d

dz
 (z) = zf(z);

where f(z) = z + 2 (z)= 0(z), then h
0(z) > 0 for z > 0 implies case (i) and

h
00(z) > 0 for z > 0 implies case (i) or (ii). It is not di�cult to show that the

	(�) numbered 1 in Table 1 (logit) satis�es h0(z) > 0 for z > 0, while those

numbered 3 and 4 satisfy h00(z) > 0 for z > 0. We have no rigorous proof that

number 2 (probit) satis�es h0(z) > 0 for z > 0 though a plot of h(�) seems to

indicate that it is so.

Approximate D-optimal designs on the transformed design space U , obtained

by numerically solving the above maximization problem, for �ve choices of 	(�)

are listed in Table 1. We see that the logit and the probit, which have symmetric

 (�), yield four-point designs symmetric in u1, while the complementary log-log,

which has an asymmetric  (�), yields a four-point design which is asymmetric

in u1. This is similar to the two parameter case, where the logit and probit
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yield two-point designs symmetric in u1 and the complementary log-log yields

an asymmetric design. In all three cases the optimal values of u1 in the two-

and three-parameter cases di�er. We note this because the same is not true for

the double exponential and the double reciprocal. In these two cases we see that

the D-optimal designs have six points symmetric in u1. Sitter and Wu (1993)

show that in the two-parameter case these yield three-point designs symmetric

in u1 with exactly the same u1 values as here. In fact, one can show that if

 (�) falls into their case (ii) with a three point solution, which these two do, this

will always hold. Though the proof involves a very easy argument within the

geometrical framework of Sitter and Wu, we do not present it here to avoid a

lengthy introduction of their geometry.

3.2. The case of G � Gw

We consider the case u1 2 [a; b], where a < 0 and b > 0, so that

G =
n
g 2 R3 : g = f (u1)g

1=2(1; u1; u2)
T
; a � u1 � b;�1 � u2 � 1

o
:

Again we can argue that support points can only be on the ridges of G and we

can restrict attention to weights equally distributed between u2 = �1, and thus

to the simpli�ed designs considered for Gw with the proviso that the u1-values

must lie in [a; b].

Results parallel those, empirical and analytical, for the one explanatory vari-

able case. A major issue is the number of support points. Let a��, b�� denote

the support points (u1-values) of D-optimal designs on Gw. Using geometrical

arguments similar to Sitter and Wu (1993, p: 332-333) it is not di�cult to show

that for the logit and probit models of Table 1, a�� = �b��, only two support

points are needed, and

(a) If [a; b] 3 a��; b�� then G and Gw have the same D-optimal design.

(b) Suppose that a > a
��. Then the support points are a and minfb; u�1g, where

u
�

1 maximizes D assuming an optimally weighted design of the form (3.1) with

q
� = 2 and support points a and u�1.

(c) Suppose that b < b
��. Then the support points are b and maxfa; u�1g, where

u
�

1 maximizes D assuming an optimally weighted design of the form (3.1) with

q
� = 2 and support points u�1 and b.

(d) If [a; b] � [a��; b��] the support points are a and b.

For the double exponential and double reciprocal a solution will be more complex.

The number of support points can be 2 or 3, and in each case these can include

both or only one or neither of the two endpoints a and b. Torsney and Musrati

(1993) �nd results similar to the above for the one design variable case using

numerical investigations.
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To see how one can use these D-optimal designs on U for a particular ap-

plication, suppose that the experimenter has initial estimates of (�; �1; �2) of

(10; 1; 1) and believes that the logit will be an adequate model for the experi-

ment. Practical constraints are considered and it is felt that with the number of

subjects available, the design space should be constrained so that the probability

of response is between 0:1 and 0:9 so as to avoid the situation of no or complete

response at a particular dose. This implies the constraint �2:2 � z1 + z2 � 2:2.

It is also felt that the doses of the two agents should not be too di�erent. From

this it is decided to constrain �2 � z1 � z2 � 2. So let u1 = z1 + z2 and

u2 = (z1 � z2)=2, i.e. �1 � u2 � 1. We see from Table 1 that this situation is

that of (a) above, i.e. [a; b] 3 a��; b��, and thus the D-optimal design for Gw is op-

timal for this design space. The D-optimal design is the four points (:25; 1:22; 1),

(:25; 1:22;�1), (:25;�1:22; 1), (:25;�1:22;�1), which translates back into four

points in the original design space, (�; x1; x2), (:25; 11:61; 9:61), (:25; 9:61; 11:61),

(:25; 10:39; 8:39), (:25; 8:39; 10:39). Note that the response probabilities are 0.772,

0.772, 0.228 and 0.228.

4. c-Optimal Design

4.1. The case of G = Gw

We again consider the case G = Gw. As was mentioned in x2.4, the point

where the vector c, extended if necessary, intersects the convex hull of fGg[f�Gg

is a convex combination of extreme points and it is these extreme points which

form the support of the c-optimal design. In addition, Fellman (1974, Theorem

3.1.4) proves that this c-optimal design can have at most k linearly independent

points from G (recall k is the number of parameters). Once the support points,

g1; : : : ; gs are obtained, explicit c-optimal weights are available, namely �
�

j =

jaj j/
Ps

i=1 jaij, where a = (a1; : : : ; as)
T = (V T

V )�1V T c, and V = (g1; : : : ; gs)

(Pukelsheim and Torsney (1991) or Kitsos, Titterington and Torsney (1988)). It

is also the case that these weights are the convex weights of the above convex

combination of extreme points which is proportional to c. Thus, to completely

determine a c-optimal design we need only obtain these support points.

To do this, we need to identify the boundary of the convex hull of G[f�Gg.

It is helpful to consider �rst the case u2 = 0, which corresponds to the \single

explanatory variable" case. FTW describe the boundary of the convex hull of

G0[f�G0g given in Figure 1. It consists of the arc of G0 from A to B, its image

about the origin, and the parallel lines joining A to �B and B to �A, where: (i)

A = f (u)g1=2(1; u; 0)T , B = f (u)g1=2(1; u; 0)T , and u, u are the solutions to

r(u) = s(u; u) and r(u) = s(u; u) given u and u;
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and (ii) r(z) is the slope of the curve f (z)g1=2(1; z)T at z, namely

r(z) =
d

dz
fw(z)zg=

d

dz
fw(z)g = z + w(z)=w0(z);

where w(z) = f (z)g1=2, while s(z1; z2) = fw(z1)z1 + w(z2)z2g=fw(z1) + w(z2)g:

FTW determine u and u for nine choices of  (�) including the �ve considered in

Table 1. These same values will be the critical points in our context, and thus

we need do no extra numerical work.

Given this, construction of the boundary of the convex hull of G [ f�Gg

becomes clear. It is like a, possibly asymmetric, train carriage with: a curved

front and back, re
ections of each other; a curved roof and curved 
oor, again

re
ections of each other; and two parallel planar sides. Figure 1 would represent

top-views of this train carriage with the two parallel dotted lines being the sides.

The `front' consists of that section of G, see Figure 2, between u and u;

the same quantities as those given by FTW in their Table 4 are reproduced

for our �ve examples in Table 1. The `back' is the re
ection of this about the

origin. One planar side is a quadrilateral with vertices [f (u)g1=2(1; u;�1)T ;

�f (u)g1=2(1; u;�1)T ], with the other having vertices [�f (u)g1=2(1; u;�1)T ;

f (u)g1=2 (1; u;�1)T ]. The `roof' can be thought of as a contiguous sequence

of lines parallel to the side planes, namely the lines joining [f (u)g1=2(1; u; 1)T ]

and [�f (u)g1=2(1; u;�1)T ] for each u 2 [u; u]. Similarly the `
oor' comprises

the lines joining [f (u)g1=2(1; u;�1)T ] and [�f (u)g1=2(1; u; 1)T ]. A �nal point

of note is that the ridges of G between u and u and their re
ections about the

origin [�f (u)g1=2(1; u;�1)T ; u 2 [u; u]] , i.e. the four ridges where the `front'

and `back' meets the `roof' and `
oor', respectively, form the extreme points of

this boundary.

It is now easy to provide a descriptive solution to c-optimal designs. The

solution depends on where the vector cu, extended if necessary, pierces the bound-

ary of G [ f�Gg. Denote this point by cb = (c1b; c2b; c3b)
T , so that cu / cb. We

distinguish various cases. Support points are extreme points of the boundary of

the convex hull of G [ f�Gg.

(i) cb lies on one of the above four ridges, i.e. cb = �f (~u)g1=2(1; ~u;�1)T for

some ~u 2 [u; u]. Then the c-optimal design is the one-point design with all the

weight at ~u.

(ii) cb lies on the `front' or `back' surfaces, i.e. cb = �f (~u)g1=2(1; ~u; u2)
T , ~u 2

[u; u], �1 < u2 < 1. Then cb is a convex combination of [f (~u)g1=2(1; ~u;�1)T ]

or of [�f (~u)g1=2(1; ~u;�1)T ] and the c-optimal design has two support points,

namely (~u;�1) and (~u; 1).

(iii) cb lies on the `roof' or `
oor'. Then for some ~u 2 [u; u], cb lies on the

line joining [f (~u)g1=2(1; ~u; 1)T ] to [�f (~u)g1=2(1; ~u;�1)T ] (`roof') or on the line
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joining [f (~u)g1=2(1; ~u;�1)T ] to [�f (~u)g1=2(1; ~u; 1)T g (`
oor'). The c-optimal

design has two support points, namely (~u;�1).

(iv) cb lies on either of the two side planes (quadrilaterals). In this case cb is

typically equal to several convex combinations of the four vertices of the quadri-

lateral. In particular, it should be a convex combination of at least one set of

three vertices. It may be a convex combination of only two of them if it lies

on a diagonal and of course cb may actually coincide with one of the vertices.

The implication is that for a given c there are various possible c-optimal designs

whose supports are subsets of the four points (u;�1), (u;�1). At least one of

these designs has at most three points.

This completes the descriptive solution. Of course it would be possible to

translate it into algebraic rules but we do not feel this would give further insight.

Note that it will always be undesirable to use a 1- or 2- point design even

though it is c-optimal since it will not even allow estimation of all the parameters

in the model. However, these designs may be useful as a benchmark or when

applied sequentially. See Wu (1988), FTW, and Sitter and Wu (1993) for further

related discussion.

4.2. The case of G � Gw

We now consider the case u1 2 [a; b] so that

G = fg 2 R3 : g = f (u1)g
1=2(1; u1; u2)

T
; a � u1 � b; �1 � u2 � 1g

and make the same assumptions about G0 as in x3.2. The boundary of the convex

hull of G [ f�Gg then has an identical `train carriage' form to that of G = Gw,

but with potentially di�erent u and u. Their values are the same as for the

one explanatory variable case of FTW. There are four cases to be distinguished

depending on the relationship of a and b to the values of u and u for Gw. Denote

these u and u values for Gw as a�� and b��.

(a) b � b
�� and a � a

��; then u = a
�� and u = b

��.

(b) b � b
�� and a � a

��; then u = a and u = b.

(c) b < b
�� and a � a

��; then u = b and u = maxfa; ubg, where ub solves

r(u) = s(b; u).

(d) b � b
�� and a > a

��; then u = a and u = minfb; uag, where ua solves

r(u) = s(a; u).

Applying the results of x4.1 yields c-optimal designs.

5. Concluding Remarks

We have considered D- and c-optimal designs for binary response models

with two design variables, and have given straight-forward methods for obtaining
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them, which do not di�er in numerical complexity from, and allow the use of some

of the completed numerical work of, the one variable case. We feel this work has

also revealed some interesting directions for further research. We are presently

considering extensions to generalized linear models, multiple design variables,

and bounded design spaces of a more complex nature. Some recent results on

multiple design variables for generalized linear models appear in Burridge and

Sebastiani (1994), Sitter and Torsney (1992) and Cao (1992).
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