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Abstract: Based on a few basic requirements on bootstraps, we derive the proper boot-
strap resampling scheme for SRS (simple random sampling without replacement in a
finite population). This concept is then extended to unequal probability samplings.
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1. Introduction

Efron (1979) introduced the bootstrap method as a general purpose non-
parametric tool to approximate the sampling distributions of estimators. Since
the estimators are unspecified, the same bootstrap resampling method works for
a class of estimators and plays the role of a summarizer. Thus, if (F(-,6))" is
the underlying data generating mechanism, then ((F(-,))" is used to generate
the bootstrap sample, where d is the parametric MLE or 6 = F’, the nonpara-
metric MLE. A key feature is that (F(-,8))" and (F(-,8))" have the same (prod-
uct) structure. Being a resampling technique, the bootstrap method shares with
other resampling schemes, e.g., the jackknife, the common implicit assumption
that they can only be applied to essentially independent observations. For the
iid case, there is no dispute regarding the resampling mechanism. Attempts to
extend the bootstrap methods to dependent data roughly fall into two categories.
One is objective-specific: new bootstrap methods are suggested on the basis that
they “work” for a certain class of problems. The trouble of this approach is
that the resulting methods may not work for some other cases, so that the mod-
ified version is no longer a general purpose summarizing tool, as it should be.
The other approach is more fundamental. One tries to ask what is the “correct”
bootstrap, in the sense that it is a natural extension of Efron’s original bootstrap.

Studies of bootstrap methods to survey data came to-the picture slowly.
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Survey data, being dependent, is a good candidate to consider when one wants to
suggest new bootstrap methods. Gross (1980) suggested the bootstrap methods
with respect to simple random sampling without replacement. For an extensive
study of its properties, see Chao and Lo (1985). For the large sampie result,
see Bickel and Freedman (1984). McCarthy and Snowden (1985) discuss the
bootstrap methods in finite population sampling in more detail. Rao and Wu
(1988) extend the bootstrap method to the case of complex survey data. For a
Bayesian bootstrap applied to finite populations, see Lo (1988).

Except for the paper by Lo (1988), there are basically two approaches to
treat the bootstrap methods in finite populations. The first type is operational.
Under this approach, one tries to suggest different bootstrap resampling methods
to approximate the sampling distributions of specific class of statistics. If the
class of estimators is specified, then it may happen that the proposed resampling
method, tailor made for such cases, do provide useful approximations to the
desired sampling distribution. A typical example is Rao and Wu (1988), where
attention is restricted to parameters defined by functions of population means
only. Another approach is to treat the more general bootstrap as the natural
extensions of the iid bootstrap. For this approach, one is more inclined to check
how many of the original features of the iid bootstrap are preserved, and the
utility for specific class of problems is not a major concern. An example is Chao
and Lo (1985).

In this paper, we use the second approach and go one step further to explore
the bootstrap method with respect to more complex probability sampling plans.
By dealing with unbalanced situations with no empirical distribution to facilitate
the large sample theory, we hope to explore the essential features of bootstrap
methods which are easily masked by the ideal case of iid observations.

The fundamental message of this paper is that the bootstrap method can
be formally formulated as a non-parametric ML method under the most general
fixed sample scheme. There is no operational reason why we have to adopt to
this principle except it is the natural thing to suggest in view of its optimal
summarizing power as discussed and suggested in Efron (1982). A key message
of this work is that an integral part of the bootstrap methods is to construct
a population to estimate the population where the observed sample is coming
from. In any case, the resampling scheme is identical to the original sampling
plan except it is applied to the bootstrap population. Hence, a bootstrap scheme
consists of two essential parts: a population that serves as a summarizer, and a
random mechanism to generate the bootstrap sample. In this way, we maintain
the tradition that the bootstrap method mimics the original sampling scheme.

Being an ML-based method, our approach suffers naturally from the general
weakness of ML. For non-standard situations, we cannot always expect good
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resampling approximations under our general setup. For example, in small area
survey, a discrete version of the Neyman-Scott problem, our approach needs
adjustment. These are the exceptions to be expected, however.

2. The Bootstrap Method

Although not very popular in statistical literature, the bootstrap methods
in finite populations have been discussed by several authors, see Chao and Lo
(1985), Bickel and Freedman (1984). For the Bayesian version, see Lo (1988).
Except for the work of Rao and Wu (1988), which deals with bootstrap methods
in complex surveys for the class of estimators which are functions of the sample
means only, essentially all such works are dealing with balanced situations; e.g.,
simpte random sampling without replacement from a finite population (SRS).
The bootstrap method of Rao and Wu (1988) is estimator-dependent and is not
a general purpose tool.

The justification of these SRS based methods fall into two categories. Chao
and Lo (1985) show that essentially all of Efron’s earlier examples (1979) with
respect to iid observations have parallel versions in an SRS setting with a natural
finite correction factor attached to the estimated variances. Bickel and Freed-
man (1984) provide large sample results. These works tell us how bootstrap
methods should be applied with respect to SRS and indicate the properties to
be expected if such methods are applied. But little indication is given as to why
the proposed method is the proper thing to do, and consequently extensions to
general sampling schemes is hardly straightforward.

In this section we show that the finite population method of Gross (1980) is a
logical thing to suggest if certain minimum properties on the proposed bootstrap
method are required. We explore and suggest the concept that a design-based
finite population bootstrap consists of two parts: an estimator Q* of the pop-
ulation 2, and a sampling scheme {p(s),s C Q} which is used as a bootstrap
sample generator on Q*. Thus, the bootstrap mimics the original structure of
the statistical problem.

2.1. Essential features of iid bootstrap

To extend the bootstrap method to non-iid cases, we first investigate the
essential features of Efron’s original bootstrap. If an extension is suggested, we
hope that the proposed method still retain these features.

If X;,Xo,..., Xy is an iid sample form F, for any statistic R(X,,Xs,..., Xn,
F) the bootstrap method suggests that the sampling distribution of R* = R(X7],
X3,...,Xz%, F) can be used to approximate the sampling distribution of R, where
X* = {X:,X},..., X2} is an iid sample from F.
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Under this setup, R is arbitrary. This means that the bootstrap is a general
purpose tool in that it can be applied to all statistic R, not just a limited class
of statistics. In this sense, I summarizes what we know about the sampling
distribution of R for all R via the random mechanism F'.

For the iid case, F represents both a population (of infinite size) and a ran-
dom mechanism from which samples can be drawn. The standard bootstrap
instruction “take a sample of size n from X = {X1,Xs,...,X,} without replace-
ment” combines these two points neatly.

As mentioned earlier, bootstrap mimics the original sampling scheme. For
any statistic R(X, F'), we use R* = R(X", F) In this process, a simple substitu-
tion is employed. In order to make such a simple substitution valid, a restriction
usually overlooked is that the support of F cannot include points outside the
support of F. This will cause trouble if, for example, F is discrete.

Example 1. If F' has jumps at 1, 2, and 3 only, then X ~ F is trinomial
with parameters p;,ps,p3 = 1 — p; — P2. The bootstrap method in this case
is parametric, and we only need the MLE (P1, P2, P3) to generate the bootstrap
sample and this is F. Intuitively, other sampling bases will be less efficient.

In fact, we have more serious problems. Let T = X — 2. Then T = T3. Let
R(t) = a0+a1t+a2t2+ (21)

then
R(T)=ao+ (a1 +as+ )T + (az + ag + - - -)T? (2.2)

so any function of X (= T + 2) is a polynomial of degree 2, since X takes the
values 1, 2 and 3 only. However (2.1) and (2.2) are not equivalent if T takes values
outside {—1,0,1}. If (2.1) and (2.2) are not the same, we have a fundamental
problem that R* may not be well-defined, because using (2.1) and (2.2), which
are equivalent for the original sample, direct substitution may give us different
values.

The finite population problems are discrete, and we shall anticipate similar
problems if we are not careful. The next result is general enough to cover al]
finite population case.

Lemma 2.1. Let § = {sy,55,...,5,} be a finite set of real numbers. If S* # S
then for any function R on S there exists a R* on S* U S such that R = R* on
S but R# R* on S* — S.

Proof. For simplicity, let S* U S = {51,82,..., Sk, t1,...,t,}. The function
R passes through k points (si, R(si)),¢ = 1,2,...,k on the Euclidean plane.
One way to express R is to use a (k — 1) degree polynomial, which can be
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determined by the Lagrange interpolation formula. Now consider the k+h points
{(si,R(s;)),i = 1,...,k; (t;, R(t;) + 1),7 = 1,2,...,h}. Construct a (k+ h — 1)
degree polynomial that passes through these k + h points. Now R*(s;) = R(s;)
by construction, but R*(t;) = R(t;) + 1 # R(t;). This completes the proof.

If R* is defined outside the domain of R, we have to extend the domain
of definition of R to allow for proper substitution. Lemma 2.1 says that we
can always extend R to R* or R** so that R* # R** outside the domain of
definition of R. In terms of bootstrap substitution, this means that for all R, the
corresponding R* is not mathematically well defined.

Another important bootstrap feature is that the probability structure of
{X;,X3,...,X;} should be identical to that of {X;,X,,...,X,}, except for
differént parametric values; namely,

F(m{,...,m;,é) and F(zy,...,Zn,0)

both use the same joint distribution form F. Note that F' is only a symbol to
denote joint distribution. For a finite population problem, F includes information
such as population structure together with the proposed sampling scheme. For
example, F' may denote the probability structure of a stratified sampling plan
with Neyman allocation. In this sense the interpretation of (2.3) below is that the
sampling distribution of R(X;, ..., X,), where the X’s are drawn from a stratified
plan with the Neyman allocation, is approximated by the sampling distribution
of R(X},...,X}), where the X*’s are drawn the same stratified plan but perhaps
with a different parameter 6. Later, we shall see that we treat § = 2, the whole
unknown population and 6 = Q" is a set-valued MLE of Q. _

We do not have a formal proof for this requirement. But the heuristic is
clear. Since, in the bootstrap, we anticipate

d[R(X},..., X5, 0)] ~ d[R(Xy,..., Xn,0)] (2.3)

for any R, we see that in the expression

/exp{it-R(m;,...,x;,é)}dF(x;,...,x;,é)

the z*’s play the role of dummy variables. Hence we may drop the asterisks in
the above expression, and it reduces to the characteristic function of R, except
6 is at 8. The closeness of these two distributions is influenced only by the fact
that § may not be equal to 6. In particular, if 6 = 6, then (2.3) is exact. This is
the basic consistency requirement. If the joint distribution of {X7,X5,..., X} }
has any different structure than the joint distribution of {X,, Xo,... ,Xn}, 1t is
easy to construct R to amplify this difference.
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Moreover, F(zy,z,,... ,Tn, 0) is equivalent to the likelihood function. All
important statistical concepts, e.g., sufficiency, completeness, ancillarity, infor-
mation, score function, etc. are defined via the likelihood function. If the resam-
pling scheme uses an essentially different £, it may happen that some important
features will be lost in the new structure.

2.2. Simple random sampling

In the previous subsection, we have observed that in order for the bootstrap
technique to be a truly general purpose tool, namely, applicable to any statistic
R, it is necessary that (a) the domain of definition of R* cannot go beyond
that of R, and (b) except for different parametric values, {X},X5,..., X} and
{X1, Xo, ... , Xn} have the same joint probability structure. Based on these two
restrictions, we proceed to suggest that the bootstrap method of Chao and Lo
(1985) or Gross (1980), is the only bootstrap method that can be suggested for
the SRS without replacement.

Suppose an SRS s = {z1,2,,...,2,} is selected from = {v1,92, ..., un ).
If k = N/n is an integer, we define the bootstrap method as follows.

(i) Consider a population Q* where each element of the sample s is duplicated &
times to form a sampled image of . This is our bootstrap population.

(ii) Draw an SRS s* = {z},z},...,2%} of size n from Q.

(ili) Let R = R(6,Q) be any statistics (which may depend upon the unknown
population Q) and let §* = 6(s*). Then we shall use the sampling distri-
bution of R* = R(6*,Q*) with respect to the random mechanism in (i),
obtained by analytic methods or simulation, to approximate the sampling
distribution of R.

We proceed to argue that this bootstrap scheme is the only logical thing to
do for SRS. In this process, only the method of moments is employed.

From the basic consistency requirement, {X3,X5,..., X} should have the
same probability structure as {X;, X,,..., X n}; i.e., an SRS without replacement
from a certain finite population, (¥, say. From Lemma 2.1, in order to avoid
the problem that R* may not be well defined, * cannot contain points not in
2. In a typical survey problem in a finite population, all we see is the sample
{z1,22,...,2,}. Hence

{z1,20,...,2,} C Q.

Now consider Q* = {z;,z,,... sZny Yn+1, - - -, YN }, Where, for notational con-
venience, the z’s denote the sampled points and the y’s denote the unknown
population values (parameters). We shall consider the problem of predicting Y
using s = {z,,z3,...,2,}.
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Let
YO = (2] +ap+ -+ 2 +ypg + k)N

Then Y is the rth central moment of Q*. Using the method of moments, by
equating population moments with the corresponding sample moments, we have

V) = (@] +af+ -+ 2)/n

. 1 T T T 1 T T T

(el eyt = 7 Wher T ¥npa o U
for r = 1,2,.... If N = kn and the z’s are all distinct, the above equalities hold
if and only if the y’s assume the values z1, 3, ... only, with each z duplicated
(k — 1)-times.

The above construction is EM (expectation maximizing (Dempster, Laird
and Rubin (1977)) in nature. For a finite population, the first N moments
determine the values of all N units. This EM view may provide a constructive
way to propose bootstrap methods in more complicated sampling schemes. For
truly unbalanced situations, however, it is not clear how these equations can be
established. One reason is that for unbalanced situations the population and
sample moments no longer play a natural role to identify the population 2.
Hence, the EM algorithm with respect to the moments does not work in general.

We may also adopt the traditional parametric point of view. Consider an
SRS of size n from a population of N as before. But let us assume that units in
Q) take values in a finite set T = {t1,ts,...,t,}. Let M; denote the number of
units in © that takes the value t;, and let N; denote the number of units in s that
takes the value t;. Then N = (Ny, No, ..., N,) has an r-variate hypergeometric
distribution with the population fixed at M = (M,..., M,)

G G- G)

(%)

P(NZ (NI)NQ)"'aNr) ‘ M = (Allﬁ"-vM'r)) =

The MLE of M is easily found to be
Mj = TLJ' N/TL,

j =1,2,...,7. The above holds for all r and any arbitrary set T. If r — oo
and s C T, we see that n; becomes either 0 or 1 (if elements of T are distinct)
and M,; = N/n = k for the interval j that contains a value of z; in the sample.
Thus, the MLE M ,; implies that the population should consist of k duplicates of
the sample.
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We have derived for the SRS case, the bootstrap population Q* to be the
one that suitably duplicates the sampled values. The bootstrap population so
constructed should have the same structure as except for the values of its units.
It is clear that the well-defining problem explained in Lemma 2.1 does not exist
in Q. In fact, Q* is the MLE of €1, and it satisfies the substitution principle:

MLE of g(6) = g(MLE of 6)

for any g.
If N/n is not an integer, we randomize Q*. For example, if N = 12 and
n =5, we will use
0 = {xh ceey Ty, Ty, .. 7$5>7'1)T2}>

-—

where

5
Ty = E I,Q'J,=I.’I2
1

and ;
To :ZJza:z = J'il!,
1

and the vectors I,J are iid 5-dimensional multinomials with cell probabilities
1/5 each. The general randomization scheme is clear. Randomization was first
discussed by Chao and Lo (1985). However, their method tries to match the
variances and is not consistent with the method of moments.

2.3. Unequal probability fixed size sampling

Armed with the ML principle, it is not difficult to define the bootstrap
methods for general setup. To fix ideas, we only consider the case that a sample
of fixed size n is selected from  with N items. The sampling plan is otherwise
arbitrary. The following example should make the general definition easy to
understand.

Example 2. Let Q = {y,,vs,... ,¥s} and choose a sample of size 2 from by
Murthy’s plan described in Cochran (1977) with 2) = 2z, = .1, 23 = 2,2y = 25 =
-3. The second order inclusion probabilities are

Z,‘Zj(z — Z; — Zj)
T =
Tl -z)(1-2)

for i # j. If {1,2} is selected, we find Y3, Y4, Y5 so that

Plobserve {z1,2,} by Murthy’s plan | Q = {151,332,3/3,3/4,1‘/5}]
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is maximum. There is no algorithm which we know of to effectively find the
maximizing ys,ys,ys- An exhaustive search is not out of reach in our case,
however.

It is clear that if y; (j > 3) takes any value other than those already observed,
the likelihood will decrease. Thus, we may restrict y; to {z1,z2} only. For the 8
possible cases, Table 1 shows that there are 4 possible choices of 2*, marked by
(%) in column 3. These are MLE’s.

Table 1. MLE of Q with respect to Murthy’s plan
when the first two elements of ) are sampled.

Q value of likelihood | MLE

- 1,2,1,1,1 .1996

1,2,1,1,2 6175 *

1,2,1,1,2 6175 *

1,2,1,2,2 .5210

1,2,2,1,1 .5210

1,2,2,1,2 6175 *

1,2,2,2.1 6175 N

1,2,2,2,2 .1996

In unequal probability sampling, the labels of y are usually associated with
covariates z. Hence the positions taken by the parameter values cannot be ig-
nored. For example, 1,2,1,1,2 in Table 1 means that Q* = {z, %2, 1,21, 22}, in
that order. More precisely, we have 93 = 1,04 = Z1,Us = 2 when {z;,z,} at
{1,2} are observed.

Having constructed 2*, which has the same structure as {2 except for some
of its parameter values, we shall resample from Q~, using the same Murthy’s plan
and the same 7;;. For any statistic R = R(6,{2) we approximate its sampling
distribution by the sampling distribution of R* = R(6*,2*). This completes our
bootstrap construction.

The general definition is only slightly more complicated. Let 2 = {¥1,925- - -»
yn} be a finite population to be sampled. For each s C Q, let p(s) = P(s|Q?)
denote the probability that the subset s is sampled. A sampling plan corresponds
to a probability measure over the subset of 2 such that >~ p(s) = 1. For example,
a fixed size (= n) plan is one for which p(s) = 0 if s does not contain exactly n
units.

Suppose s = {z1,Zs,...,Z,} is sampled. Treating 2 as the population, the
likelihood is obtained as follows:

L(Qs) = P(s|).
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The MLE Q* is defined by
P(sl") > P(s|)

for all Q) satisfying the assumed population structure. We remark here that in
this framework, the structure of the population is taken into account by restrict-
ing the maximizing only to the populations satisfying the assumed structure.
On the other hand, the structure of the sample is automatically taken into ac-
count by the sampling plan {p(s),s C 2}. Now Q* is our bootstrap population.
Resamplings are done in Q* according to the original plan p(-). Let s* be its
corresponding sample in Q*.- If R(6(s),Q2) is any statistic with respect to the
sampling plan p(-), the estimator § and the population {2, we shall approximate
the —éampling distribution of R by the sampling distribution of R* = R(6(s*), Q).
This completes our definition of the bootstrap method.

It is easy to see that the MLE Q* must contain elements from s only. This
is because p(s) will increase when Q* contains duplications. For example, if
Q = {z;,z}, then the sample s = {z;} will be observed with probability 1
instead of 7 for any sampling plan with sample size 1.

If N,n are small, it is not difficult to carry out the bootstrap scheme. If,
however, N and n are even moderate, the general bootstrap method becomes
impossible to program. Fortunately, large scale pure unequal probability plans
are seldom used in practice. The definition we proposed is more useful to serve as
the starting and check point of other, perhaps more structured, sampling plans.
It also helps demonstrating that many standard estimators in sampling theory
are actually MLE’s. We shall discuss these points in later sections. The following
example, however, shows the limitation of the bootstrap method.

Example 3. Systematic Sampling.
Suppose (2 contains 50 elements and a systematic sample of size 5, s =
{z1,...,z5} is taken. Then

*
Q ={xl,...,xl,mg,...,xz,...,135,...,.’115}

(each z is duplicated 10 times, in that order) is the bootstrap population of Q
because under * and the systematic sampling, we shall observe s with proba-
bility 1. For the same reason, R* is a constant for all §* and one cannot expect
to approximate the sampling distribution of R by that of R* except the trivial
location match E*R* = ER, where E* denotes the expectation with respect to
the sampling plan applied to 2*. Hence unbiased estimators can be constructed
but nothing more, even with the help of the bootstrap method. This is, of course,
to be expected.
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3. The Bootstrap Method for Stratified Sampling

If a sampling scheme is basically defined via blocks of SRS’s, it is relatively
easy to propose the corresponding bootstrap method. However, there are two
views for this problem. We can either treat a complex sampling plan as a general
unequal probability plan and define its bootstrap method accordingly, or con-
sider the bootstrap method through conditioning, for example, treat the second
stage plans as SRS’s within each stratum and bootstrap accordingly. The latter
approach is used in Bickel and Freedman (1984), but it is not at all clear whether
these two approaches agree. In this section we start with the general bootstrap
definition and derive the corresponding bootstrap method for the stratified plan.
We show that the natural conditional approach agrees with the general bootstrap
definition of Section 2. This provides positive evidence of our general definition.

Let us consider a stratified plan as follows. There are H strata. For the hth
stratum 2, an SRS of size n, is taken from the Nj units of Qy, A =1,2,..., H.
Let Q = Q,UQU---UQy and n = ny+ng+- - -+ng. Then this stratified plan can
be viewed as an unequal probability plan of size n from €2 with population size
N = N;+No+---+Ng. Let s be a sample of the form s = s;Us;U---Usy = {z; :
3=1,2,...,np5h=1,2,.. .,H}, where z;; is taken from 2. For generality, we
do not assume that elements of s are distinct. According to our general bootstrap
definition, we need to construct Q* such that

P(s|2") = P(s[$2) (3.1)

for all Q. .

To maximize (3.1), we shall see that we should have Q" = Q] UQ; U---UQy
and 2} must contain elements from s, only. Since Q = Q; U---U g, we can
represent the parameters (elements of {2 — s) with vectors Ry, = (Ra1,- .-, Rhn),
h = 1,2,...,H where Ry represents the number of repetitions that the kth
elements in s appear in 2.

In the following, we take the sample s as an unordered set of values. This
means that when we see z € s, we only know that x € €2 for some h, but we
do not know the value of h. If we also know the value of h for all z € s N,
h=1,2,...,H, the maximizing procedure would be much simpler.

Since we can always increase the likelihood of observing s by allowing more
repetitions of elements of s in 4, it is clear that we can restrict our attention to
those R; such that

Ryi + Rpa + -+ + Run = Ni. (3.2)

Consider a partition 7 of the index set {1,2,... ,n} as follows: m = (my, 2,
...,7y), where 7, contains exactly n;, elements. Then for Q satisfying (3.2), we
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have

— E'}r Hf:l HjEwh Rh.?
Hllle (i\z’:)

Hence, to find Q*, it suffices to maximize

> ﬁ II 7+ (3.4)

P(s|)

(3.3)

T h=1j€En,

subject to

H

Dorhi=1, >0, (3.5)

Jj=1
where

ThjZth/Nh, h=1,2,...,H. (36)

Let

T;j = n;l’ for ny+--+np_, <j Sn1+...+nh,
=0, otherwise. (3.7)

We see that the configuration (3.7) represents an Q* = QUBU---UQy in
which 2} contains exactly N, /ny, duplicates of each Zhj,J =1,2,...,np; namely,
Q" is constructed by bootstrapping each 2; by SRS.

The following theorem can be proved by pure analytic argument. It says
that the Q* defined by (3.7) is the Q* that maximizes (3.1).

Theorem 3.1. The configuration {ri;} defined in (3.7) mazimizes the expres-
ston (3.4). Therefore the Q* so defined is the bootstrap population of  with
respect to stratified sampling.

For proof, see the Appendix. The message of this theorem is as follows. A
stratified plan can be viewed as a special case of an unequal probability plan.
When we take such a general view, it is not clear whether the general ML con-
figuration of Section 2 will agree with the simple minded one stratum at a time
bootstrap scheme. Theorem 3.1 confirms this important check point. In this
process, we deliberately dropped the “labels” of elements in s so we directly es-
tablished this result from the basic definition without using the bootstrap result
in SRS. More importantly, it provides a clue to define bootstrap methods via
conditioning in more complex sampling schemes.

As a by product, we have just shown that Q* is the MLE of Q in stratified
sampling.

Remark. If, in addition to the values of z € s, we also know which stra-
tum it belongs to, then the summation sign 2., in (3.3) will disappear and
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{1,2,....,m}+{m+1,...,m+n}+-+{ni+-+ng_1+1,...,n} is the
only partition of {1,2,...,n}. Without the summation Y _, the proof simplifies
considerably.

4. Two-Stage Sampling

In this section we start with a balanced two-stage sampling plan and discuss
its corresponding bootstrap methods.

Consider a two-stage setup as follows. Let Q consist of M primary sampling
units (psu’s). An SRS of size m is taken to select the first stage psu’s. For each
selected psu, an SRS of size n is taken to select the second stage samples. For
simplicity, we assume all psu’s are of the same size N.

Exar;lple 4. Consider the special case M = 3,m = 2,N = 4 and n = 2.
Assume the first two psu’s are selected and the second stage samples are s; =
{x1,2:},82 = {y1,y2}. We proceed to find Q*, the bootstrap population of 2
under this two-stage plan. An analytic search of 2* (such as the method for the
stratified plan) turns out to be surprisingly difficult. But we can suggest a few
possible candidates.

Consider

Qr ={z1,%2, 21, T2} U {y1, 92, %1, %2} U {z1, 22,91, 92},
Q; ={x17m2’ m13‘7:2} U {yby%yby?} U {.’171,372,331,.’132}.

Since Q} is more “balanced” than {25 one would conjecture that the likelihood
of observing s = s; U s, would be larger under Qf than under 5. The fact,
however, is

P(s|07)/P(s]23) = 3/5.
Furthermore, the above relation holds not just for N = 4, but for all N = 2k.

An obvious message from this example is that in constructing 2*, we prob-
ably should first bootstrap each sampled psu by evenly filling their sampled
duplicates as in SRS. After this is done, we should fill the population of unsam-
pled psu’s with these bootstrapped psu’s with respect to the first stage plan. In
doing so, we treat each bootstrapped psu as an indivisible unit. It is these whole
units that we use to fill the unobserved psu’s. In other word, we do not try to
break {z,Z,,%1,%2} and {y1,¥2,¥1,¥2} in halves to construct {z1,22,y1,Y2} as
in 27 of Example 4.

We can use the multivariate hypergeometric distribution to construct the
bootstrap population for the balanced two-stage plan. Assume there are K dif-
ferent psu’s, p1, P2, .- ., Pk, say. There are L possible values for the second stage
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units to take, say t,,t2,...,¢,. In the hth psu, assume Nj, units take the value
te,=1,2,..., L. We have

L
> Nwy=N, h=12...,M.
=1

If Q is sampled, let ny, be the number of units in that sample that take the
value t,. Then

L
ZTL}MZTL, h=1,2,...,m.
{=1

Let M; denote the number of psu’s that are of the kth type, and let m, be
the number of psu’s in the first stage sample that are of the kth type, k =
1,2,...,K. The random variables become m = (my,mo,...,mg) and n, =
(Mh1, Mh2, - - -, ar). The parameters to be estimated become M = (M, ..., M)
andNh=(Nhl,...,NhL),h=1,2,...,M. ‘

The notation m can either be written as a vector of 0’s and 1’s, or in terms
of i3, < iy < -+ < 4. For example, m = (1,0,1,0,1) is equivalent to the
ordered indices 1 < 3 < 5. With this in mind, the full likelihood of the sample
(m,nh,hz 1,...,m) is

L R e I G Y R
Izll J | G Gea) - G

it mi/ \mag my
(%)
n

()

The maximizing point is easy to see: M, = M /m for the sampled psu’s and
M; = 0 otherwise. For fixed m of the form i; < i, < -+ < i, say,

Nue= N/n, for h =i1,is,...,00; £=1,2,...,L,

=0, otherwise.

This covers the two-stage bootstrap suggested in Example 4.

In general, as long as the sample sizes and psu sizes are balanced, there is no
difficulty to use the same decomposition to establish the general two-stage plan.
If the m psu’s are selected from the M psu’s with a sampling plan P;(-), from
the hth selected psu €2, a plan P,,(-) is applied to select the units of Q,,h =
1,2,...,m. Then we should first bootstrap each selected psu to form Q;,h =
1,2,...,m. We then treat each §2; as an indivisible, sampled unit of 2 to form a
bootstrap population of psu’s 2*. In each stage, the general bootstrap definition
of Section 2 is applied.

This is equivalent to considering a joint version of these two stages to form a
general one stage plan of size nm from a population of size NM. The conditional
approach, of course, offers many more practical implications.



BOOTSTRAP METHOD . 403

5. Conclusion

The key ingredient for the finite population bootstrap method is the con-
struction of a population, through the ML principle, from which the samples are
drawn from. Hence the bootstrap population should be identical in structure
to the population under study. A bootstrap procedure consists of two compo-
nents: the estimated population and the method of sampling. If the sample size
is infinity, we should be able to estimate the population with certainty. Hence
the resampling method should produce the desired sampling distribution for any
statistics if the resampling method is identical to the original one.

We have demonstrated that a key step is to estimate the true population by
the ML principle, whether this population is finite or infinite, with or without
the independence structure. In fact, there is no real reason that we should use
the ML principle except for its well-known credibility. This provides a solid base
for the investigation of bootstrap methods in other non-standard cases.

The bootstrap methods suggested in this paper are meant to be of general
purpose. We are concerned mostly with the problem of a correct bootstrap, which
works for a wide class of estimators, rather than convenient sampling schemes for
specified problems. For complex surveys, if 8 is a function of the means, Rao and
Wu (1988) suggested special purpose sampling procedures. Their methods do not
agree with the general requirement for bootstrap methods stated in Subsection
2.1. It is possible to construct samples in which it will fail.

But generality also pays a price, at least in some practical problems when no
generality is required. Nevertheless statisticians struggle between practicability
and generality; the former is concerned with how statistical methods are used,
and the latter contributes to basic understanding.

Appendix

We prove Theorem 3.1 in this appendix. A few lemmas are needed. The
first one is standard and can be proved by a few applications of the Holder’s
inequality.

Lemma A.1l. Assume Ay; are real, h=1,2,...,H,i=1,2,..., K. Then

i

H
ZHAM < H | Anllz,
h h=1

where

Jnls = (3 14nd®) "
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Lemma A.2. Leta; >0 and 3" ,a;,=1. Forp=2,3,.. ., define

L= Z (ailai2 TGy )p.

1<i < <ix<n
Then L < k=*P. Further, this inequality s sharp.

Proof. We may assume without loss of generality that a; > ay > --- > q,,.
Fix a1,...,a,_, and first differentiate L with respect to a,. By noting that
an-1 + a, = constant, we have, after simplification,

oL
éa_n = B(an) ) (an - an—l)’

where
B(an) ZP{Z(%az‘z U aikq)p(ag_z + aﬁ'3an_1 + -
5 '
-3 -2 - -
+ anaf"“l + aﬁ_l) - Z(a’il Qiy * - aik—z)pa‘ﬁ—]iafz 1}a
S2
where §; = {1 <41 < <4y <n -1} and S, = {1 <), <ip < - <ip g <
n—1}.
We claim that L is maximized at a, = 0.

Case 1. If B(a,) > 0 for all a,. Then % < 0, and the maximum is at the

extreme point a, = 0.

Case 2. B(a,) < 0 for some a, < %(1 — a1 — - —an_3) = £, say. Note that
B(a,) is of the form

=l — (e —a,)P?

an
Blan) = G- 2a, — ¢

— Ceal ™ (c—ay)P 7,

where C;,Cy; > 0. Let z = a,,/c, then
Bla,)=Cs- (2P = (1 - 2)P™ 1) /(22 — 1) — Cy(z(1 — )71,

0<z<1/2,C3,Cq > 0. We shall measure B with the new z-scale. Now

B(#) = 7522 = Dl(p - D72 + (p = 1)1 ~ )7~
=207 = (1= 2P ) = Culp - Dl - )21 - ).

If B'(z) < 0, then since B(0) > 0, the function B changes sign only once in
(0,1/2). It follows that £~ = B(a,) - (2z — 1) is negative at a,, = 0, crosses the
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z-axis at some point zo and remains to be positive until at z = 1/2. Hence L,
as a function of z, assumes a minimum at £ = zy. To show L(0) is maximum is
equivalent to showing L(0) > L(1/2). This can be verified by direct substitution.

For p > 2, Lemma A.3 shows that B'(z) < 0 so that L(a,) has maximum at
a, = 0. Therefore we have shown that L(a,) is maximized at a,, = 0.

Now we fix a;,...,8n_3,a, = 0 and consider L as a function of a,,_;. This
same argument shows that L is maximized at a,_; = 0. In this way we show
that L is maximized at ay4; =---=a, = 0; or

L<(aaz---ax)?, a1+ -+a=1

The right hand side is maximized at a; = - - - = ay = 1/k, which yields the upper
bound k~*?. We need to show

Lemma A.3. Ifp=2,3,4,..., then B'(z) <0.

Proof. Note that the second term of B’(z) is negative for 0 < z < 1/2. It
suffices to show

F(z)=(p-Da(l-2)(@° = (1-2)°) = (p=3)(="" —(1-=2)") 2 0.
If p = 2, then F(z) = 0. We thus assume p > 3. Let y = /(1 — z). Then
F(z) > 0 is equivalent to

Hy)= (-1 ~y) —(p-3)¢" 1) 20

for 0 < y < 1. The last inequality holds because H"(y) > 0, H'(0) < 0, H(0) =
p—3>0,H(1)=0.

Proof of Theorem 3.1. Index the partitions 7 from 1 to K. If 7 = (7,72, ...,
7y ) corresponds to the ith partition, write

Then (3.4) becomes

which, by Lemma A.1, is bounded by the product of the norms. The fact that
the upper bound of Lemma A.2 is achieved by {r;,} of (3.7) is easy to check.
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