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POISSON CONVERGENCE IN RELIABILITY

OF A LARGE LINEARLY CONNECTED
SYSTEM AS RELATED TO COIN TOSSING

James C. Fu

University of Manitoba

Abstract: Reliability of a large linearly connected engineering system is closely associ-
ated with the probability of a certain pattern occurring in a sequence of coin tossing.
In this paper a new method is developed to show that if the failure. probabilities of
components are very small then the reliability of the system can be approximated
by a Poisson random variable. The proof of the result is essentially dependent on
the Markov property of coin tossing. It is more direct and elementary than the stan-
dard tools such as Bonferroni inequalities and the Stein-Chen method. The result is
also extended for the case that the failure probabilities of components are different.
Necessary and sufficient conditions for Poisson convergence are also obtained. Numer-
ical upper and lower bounds of reliabilities of linearly connected systems developed
from the new method are obtained and compared with the bounds derived from the
Stein-Chen method.
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Poisson convergence.

1. Introduction

Reliabilities of engineering systems such as atomic power plants, airplanes,
automobiles and computers are vital to the public. Currrently, a great deal
of effort has been made to study the reliabilities of various large engineering
systems. An engineering system is called linearly connected system if it can be
imbedded in a Markov Chain {X;} on a finite state space S = {1,2,...,k, k+ 1},
with the state “k + 1” as an .absorbing state. The index t is not restricted
as time. For example, in a large linearly connected system, the index ¢ can
be interpreted as the tth component. Throughout this paper, unless otherwise
specified, we shall interpret ¢t as ¢tth component. There are many important
engineering systems such as series systems, m-standby systems, consecutive-k-
out-of-n: F systems, and repairable systems, which can all be viewed as linearly
connected systems. The reliabilities of consecutive-k-out-of-n: F systems have
been studied by many authors; for example, Derman, Lieberman and Ross (1982),
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Fu (1985) and Papastavridis (1987,1990). Recently, Chao and Fu (1989,1991)
obtained a general formula for the reliability of linearly connected system,

Rn = m [ M:Ug, (1.1)
t=1
where 7 is the initial probability of the Markov chain, for given ¢t = 1,2...,n,

M, is a (k+1) x (k + 1) transition probability matrix, and Uy = (1,...,1,0)' is a
(k +1) x 1 matrix. To the author’s knowledge, formula (1.1) is the simplest way
of computing the exact reliability for those linearly connected systems mentioned
above. Theoretically speaking, it could be used for any fixed k and n. For large
n, if the failure probabilities of components are bounded away from zero, then
the reliability of the system tends to zero exponentially in a large deviation sense:
i.e.,

lim = log Ry = -6, (1.2)

n—oo n

where 3 is the Chernoff index (Bucklew (1990)). They also show that if the failure
probabilities of components are functions of n and tend to zero at a certain rate
then the limiting reliability of a large linearly connected system has the form

nlLI&Rn =exp{—-A} > 0, (1.3)

where the ) is failure rate of the system given by

1
/\=/ (v(a), c(a))da, (1.4)

0
and (-,-) stands for the inner product of two vectors v(a) = (vi(),...,vk())
and c(a) = (c1(a),...,ck(a)). The components of the vector c(a) can be viewed
as instantaneous rates that probabilities escape from states ¢ = 1,...,k to the

absorbing state k + 1; and the components of v(c) can be interpreted as the
conditional equilibrium probabilities of the system staying at the first k states
respectively, given the system survives at the time o (0 < o = limp 0 t/n < 1).

A linearly connected system is called m-A* linearly connected when it fails
if, and only if, there are m or more non-overlapping A* patterns have occurred.
For example, a consecutive-k-out-of-n: F system is the case where the m = 1
and the pattern A* = F...F is consecutive k failures, and a k-standby system
is the special case of m = k + 1 and A* = F. This manuscript studies mainly
the reliability of a large m-A* linearly connected system when the failure proba-
bilities of components are very small. If all the components of an m-A" linearly
connected system operate independently, the reliability of the system is equal to
the probability that there are fewer than m non-overlapping A* patterns which
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occur in tossing a coin n times. Hence, to study the reliability of a m-A* lin-
early connected system, it is sufficient to study the distribution of the number of
non-overlapping A* patterns which occur in coin tossing.

Without loss of generality, unless otherwise specified, we define n-tuple w =
(SFSS...F) as a realization of tossing a coin n times and A* = F...F as a
pattern of consecutive k failures. Further, the coordinates throughout this pa-
per will be referred to as “positions”. Given w, let N, x(w) be the number of
non-overlapping failure runs of size k. For example, with n = 8, k = 2, and
w = (SFFSFFFF), the total number Ng 2(w) of non-overlapping failure runs of
size 2 in w is 3. Therefore, the reliability of a consecutive-k-out-of-n : F System is
equal to the probability of Ny, » = 0 and the reliability of a k-out-of-n : F system is
equal to the probability N, ; < k. It is a well-known fact that if the failure proba-
bilities of components are very small and n is large then the random variable NV,
converges to a Poisson random variable. Technically, such a Poisson convergence
problem requires computing the tail probability for an unusual event (a pattern).
The standard tool for computing the tail probability of this type was based on
Bonferroni’s inequalities (see, for example, Watson (1954), and Karlin and Ost
(1987)). Recently, a popular alternative method to establish Poisson convergence
for dependent events is to use the Stein-Chen method (Chen (1975), Stein (1986)),
as utilized, for example, by Arratia, Goldstein and Gordon (1989), Arratia, Gor-
don and Waterman (1990), Barbour and Holst (1989), Godbole (1991), Smith
(1988), and Arratia and Waterman (1989). Further, Chrysaphinou and Papas-
tavridis (1990), and Barbour, Holst and Janson (1991), also used the Stein-Chen
method to obtain the upper and lower bounds of the reliability of the consecutive-
k-out-of-n: F System. Besides the two methods mentioned above, there are sev-
eral other similar approaches to establish Poisson convergence and bounds, for
example, the results of Nedelman and Walleniu (1986) and Wang (1989,1991).
The main advantage of the Stein-Chen method over Bonferroni’s inequalities is
that the Stein-Chen method only requires computing the first two moments of
the process but needs no computation of higher-order moments.

In Section 2, based on a simple large deviation inequality from Fu (1985),
this manuscript provides a new elementary and more direct method to show that
the random variable N, converges to a Poisson random variable. Hence, the
result yields the reliability for a large m-A* linearly connected system when the
failure probabilities of components are small. The method needs no computation
of moments of any order. For the special case, N, 1 = Sy, the method yields some
well-known results obtained by Von Mises (1921), Hoeffding (1956), Nedelman
and Wallenius (1986), Samuels (1965), Arratia, Goldstein and Gordon (1989),
Barbour and Holst (1989), and Wang (1989,1991), on the Poisson convergence of
S, in n independent Bernoulli trials with unequal failure probabilities. Necessary
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and sufficient conditions for Poisson convergence of N, are also obtained.

Section 3 mainly studies the bounds and the reliabilities of large m-A* linearly
connected systems with very small failure probabilities of components. Numerical
results show that upper and lower bounds derived from the new method perform
extremely well even in the case of small n.

2. Poisson Convergence of n Independent Bernoulli Trials

Let {X;,} be a double sequence of independent Bernoulli trials, and EX;, =
gin forn =1,2,...and i = 1,2,...,n be failure probabilities. This section studies
Poisson convergence of the random variable N, ; for the following two cases:

(a) independent and identical Bernoulli trials, i.e. for every given n, gn = EXin
fori=1,...,n
(b) independent but non-identical Bernoulli trials, i.e. gin = EX;, not all equal.

Theorem 2.1. For given k, if the failure probability gin = qn for 1 < i < n and

satisfies the condition
ngs — A (2.1)

as n — oo, then the random variable Ny, i, converges to a Poisson random variable
with mean A; i.e., for every z = 0,1,...

. ATy
nlLrgo P(Npp=1z)= pr (2.2)
Given k, n, and z, define a subset
A= A(z,n, k) ={w: Npx(w) = z}. (2.3)

Both the Bonferroni and Stein-Chen methods have one thing in common. They

estimate the probability P(A(z,n, k)) of the event N,, ; = z, directly by obtaining

the upper and lower bounds based on the moments of the process. Both methods

require computation of moments. Unlike the methods mentioned above, our

method is to find two suitable subsets A* and A, which have the following desired

properties:

(1) AkCAC A,

(2) the lower bound of P(A.) and the upper bound of P(A”) can be easily ob-
tained,

(3) both bounds converge to the same limit.

A vital property of coin tossing important to the proofs of Theorem 2.1
and 2.2 is that, at any time t, the occurrence of a pattern A* in the future is
independent of the past.
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Let £ > 1. Select x positions randomly from the n — z(k — 1) positions
and put the A* = F...F patterns into the z positions respectively. Denote
by ti,...,t5., the numbers of positions between the selected z of A" patterns
respectively (including the number of positions preceding the first selected pattern
A* and the number of positions after the last selected pattern A*). It follows
that ¢7, 7 = 1,...,z + 1, are integers, 0 < t7 and Zf;’ll t7 = n — zk. Write
t* = (t3,...,t5,1) and define

z+1

Ir={(&,. .. 1) 3t =n—zk, ] >0}, (2.4)
=1
The total number of t*’s in I'}, is (”_(kz_l)z). For every given t* = (1],...,t;,1) €
Iz, we define subsets
A*(z,n, k,t") = {w:w = (SFSt.’.. FA, .. .,/\*St.‘ ..... F), and no A* pattern
1 x+1
has occurred in all the subsequences (SSt ) FS), i=1,...,2+ 1}. (2.5)
Denote the union of these subsets by
A* = A*(z,n k)= | A%(z,n,k,t°). (2.6)
t*els :

Define an auxiliary pattern A = SF ... F, ie., an S followed by consecutive
k failures. Similarly, select z positions randomly from the n — zk positions and
put z of the A patterns into the z positions. Denote by ?,...,%z41 the numbers
of positions between the patterns respectively. It follows that ¢;,2=1,...,z+1
are integers satisfying 0 < t; < n — z(k + 1) and 274 t; = n — z(k + 1). Write
t = (t1,...,tz+1) and define

z+1
I‘zz{t:(tl,...,t$+1):;tizn—x(k—i-l)}. (2.7)

The total number of ¢ in T is (*7**). For every t € I';, we define subsets

Ad(z,n,k,t) = {w:'w: (FS{" FA...ANFS ... SF), and no A patterns
1

t.’l‘+l

have occurred in all the subsequences (S e FS), 1=1,...,z+ 1} (2.8)

1

and their union
A, = A (z,n k) = U A(z,n, k,t). (2.9)
tel,
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Note that for all ¢, ¢ € I'; and t' # t,
Au(z,n k, t) N Au(z,n, k, t') = ¢. (2.10)
It follows from the definitions of A*(z,n, k) and A.(z,n, k) that
A.(z,n, k) C A(z,n, k) C A*(z,n, k). ' (2.11)
Hence,
P(A.(z,n,k)) < P(A(z,n,k)) < P(A*(z,n,k)). (2.12)
To prove the main result, we need the following lemmas.

Lemma 2.1. For given k, n and 0 < m < n,

(1 - q,’i)m < P(A(O,'m, k)) < (1 _ qﬁ n q£+1)m—k+1

(2.13)

Proof. See Fu (1985,1986), Papastavridis & Koutras (1992) and Fu & Koutras
(1992).

Lemma 2.2. For any two fized non-negative integers ¢ and cy

(e Reo) G —Ee e

as n — oo.
Proof. It is trivial.

Proof of Theorem 2.1. Note that, at any stage ¢, the occurrence of the pattern
A* in the future is independent of the past. Hence it follows from the definitions
of A*(z,n,k) and A*(z,n, k,t*) and from Lemma 2.1 that, for z = 0,1,..., there
exists cp such that

P(A*(z,n,k)) = P( U A*(z,n,k,t*))

t~eI'z
< Y P(A(z,n k1)
t*el's
:+1(t:_k+1)

<Y (1-ga)Ee

t*el:

( . (];_ Ve ) (1-gk+g5*)" “(eh)y.  (215)

(ah)*
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Similarly, for given z it follows from (2.10) and the definition of A.(z,n,k,1)
that there exists ¢3 such that

P(A*(:z,n,k)) = P( U A*(:c,n,k,t))

teT
Z::lt"' z
> 3 (1-¢5)7" " (padh)
tel,
n — zk e z
= (" e e

Condition (2.1) and inequalities (2.15) and (2.16) yield

(" )o-2e(2) Geld))

< P(Npx =1z)
(Y2 G

Taking n — oo, the result follows immediately from the Lemma 2.2.

The proof of the main result, Theorem 2.1, is more direct and elementary
than using the Bonferroni inequalities and the Stein-Chen method. The proof
needs no computation of moments of any order. It is almost as elementary as the
proof that a binomial random variable tends to a Poisson random variable under
the condition ng, — A, as n — oo.

It can also be seen from the proof that the pattern does not have to be
restricted to the form A* = F...F of consecutive k failures. For example, if
the pattern A* is SFFSFFS and the condition np3gt — X as n — oo is satisfied,
then the results remain true. Theorem 2.1 can be easily extended to any pattern
A* = SFF...SFS with fixed length (I + k) if the condition nplgt — X, as
n — oo is satisfied, where [ is the number of S’s and k (k > 1) is the number of
F’s in the pattern A* respectively. In view of Lemma 2.1, the following result is
a by-product of the proof; for every z = 0,1,.. .,

1, if nplg® — 0, asn— oo,
. AT
lim P(Npx = z) = Fe_’\ if nplgk — A, asn— oo, (2.18)

0, if nplqgk — o0, as n — oo.
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The condition np',g® — X implies that either np!, — X or ngt — X (since
Pntqn =1). If nqﬁ — X then the above result does not depend on ! (the number
of S in the pattern A*) as long as [ is finite and fixed. By the same token, if
np! — X then the above result also holds and it does not depend on k. This
yields an interesting phenomenon that if the failure probability g, is very small,
then one can always find a predetermined pattern A* (in which [ and k are fixed)
in a long sequence of independent Bernoulli trials.

In the case of independent but non-identical Bernoulli trials with unequal
failure probabilities, the Poisson convergence of the sum S, = > 7" Xin = Np1
have been studied by Hoeffding (1956), Nedelman and Wallenius (1986), Arratia,
Goldstein and Gordon (1989), Barbour and Holst (1989), Wang (1989, 1991), and
others. In the case of equal failure probability, a necessary and sufficient condition
under which the random variable S,, converges to a Poisson random variable is

n
Zqin=nqn-—+)\>0asn—>oo. (2.19)
=1

For the case of unequal component failure probabilities, the condition

Y gin—A>0asn— oo (2.20)
i=1
is not sufficient for S, to converge to a Poisson random variable, as illustrated
by the following.

Example. Consider a series system of n components having failure probabili-
ties gin = 1/2%, i = 1,2,...,n. Clearly, the condition (2.20), which reduces to

w1/ 2* — 1 as n — 0o, is satisfied. Note that the random variable Np1 =S5,
does not converge to a Poisson random variable with A = 1, but to a non-Poisson
random variable which has the following probability at 0:

lim P(N,; =0)=e¢* =0.2894
n—oo
where

I -

In order to generalize Theorem 2.1 to the case of unequal failure probabilities,
we shall focus on the case k = 1 in Theorem 2.2 to show how our theorem works,
and then consider the case of general k in Theorem 2.3.

Theorem 2.2. The random variable Ny 1 converges to a Poisson random variable
if and only if gin, i = 1,...,n, satisfy conditions (2.20) and

n
Zq,—zn — 0, as n— oo (2.21)
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The technique used to prove this result is based on the distribution of the
number of non-overlapping patterns developed in Theorem 2.1 and illustrated in
the example. Define

lim Zq] =X, j=12,... (2.22)

n—oo

To prove the result we need the followmg lemmas.

Lemma 2.3. (i) If 0 < ¢;n < 1 for all n and 1 < ¢ < n, then the product
T2, (1 — gin) and the sum Y ;- qin converge and diverge together.

(i) If
) o0 1 mn . .
nILngO; ; Z;qfn =\>0 (2.23)
i= 1=

then

»

) |
dim Hl(l ~ Gin) = €7 (2.24)

Proof. Part (i) is proved in Apostol (1958, p.382). Part (ii) follows from (2.23).
Lemma 2.4. If condition (2.21) is satisfied, then
(i) lim sup ¢in =0

N0 1Li<n
(i) im > gl =X =0, ¥Yj>2
(iii) for ev_ery 1<z<n,
S o=
(a1,..-,02)€((n.2) i=1

as n — oo, where {(n, ) is the collection of all subsets of size z; 1.e.
((n,z) = {(al,...,am);ai €(1,...,n), and a; #a; if z’;éj}.

Proof. Since 0 < ¢;n < 1foralli=1,2,...,nand n =1,2,..., the results (i)
and (ii) follow directly from the condition (2.21). For z = 1, it reduces to (2.20).
Define forz =2,...

T
H(z,n)=z! Z H Ga;n (2.25)
(a1,..y02)€¢(n,x) i=1

and

R(z,n) = (qu> (z,n). (2.26)
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To prove the result (iii), it is sufficient to prove R(z,n) — 0, as n — oo.
Mathematical induction is used to prove this result. For £ = 1 and 2, the results
are obvious. Suppose the result is true up to z — 1. The result again follows from
the condition (2.21) and the following general inequalities

H(z,n) < (qu) < R(z-1 n)qu +(z-1)H(z -2 n)qu + H(z,n)
i=1 i=1
(2.27)
by taking n — oo. This completes the proof of part (iii).
Take k = 1. The same argument in the proof of Theorem 2.1 yields

n

P(Np1=1z)= H(l — Gin) Z H(@z;,n/l = Ga;n)- (2.28)

1'=1 (al y---’az)EC(ny-'L') 2=1

If all the components have the same failure probabilities, (¢;n = g, for all 1 <
i < n), then it reduces to classical i.i.d. Bernoulli case.

Proof of Theorem 2.2. If the conditions (2.20) and (2.21) are satisfied, it
follows from the second part of Lemma 2.3 that
n

nangoZ Z an = nllrgquin = A1. (2.29)

i= 1‘7 1=1

For any z = >1, 2,..., the following inequalities hold;

S o< X IIs%

(215,82 )€((n,z) =1 (a1,...,02)EC(n,z) 1=1 Qa;n
1 : _Gain
. (m) > H . (230)
lslsn o (a’lv »az)EC(n 3,‘)1 1 a;n

Hence, the result follows immediately from (2.28), (2.29), (2.30) and Lemma 2.4.

This completes the sufficiency part.
To prove the necessity, assume that the random variable NV, ; converges to a

Poisson random variable with mean A* > 0. For z = 0, we have P(N,; = 0) —
exp{—A*}, where )\* is defined by (2.23). Note that for z = 1,

(e o]
> L S > Aj, as n— . (2.31)
i=1

are((n1) - dean

Hence, the following equation has to hold

o0

> (1-5)-0

Jj=1
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The above equation holds only if A; = 0 for all j = 2,... This completes the
proof of the necessity.

For the more general case that the components may have different failure
probabilities, let A* = F ... F be a pattern of k consecutive failures. Define

k-1
Uin = [] @itjm, for i=1,...,n—k+1 (2.32)
s

It is clear that the property N, is a sum of outcomes of n independent
Bernoulli trials has never been used in the proof of the above theorem. Combining
the results of Theorem 2.1 and Theorem 2.2, the following theorem gives necessary
and sufficient conditions for the random variable N, x to converge to a Poisson
random variable in the case of independent Bernoulli trials with unequal failure
probabilities.

Theorem 2.3. If limsup; <<y, gin = 0 then the random variable Ny , converges
to a Poisson random variable if and only if

n—k+1
S uin—A>0 (2.33)
1=1
and
n—k+1
E ui — 0 (2.34)
i=1

as n — 0o, where u;, are defined by (2.32).

Proof. Replace gin by uin, this result can be proved along the lines of Theorems
2.1 and 2.2 with some simple modifications. We leave the details to the readers.

3. Reliability and Bounds

For convenience, let A* be the pattern of k consecutive failures throughout
this section. If the components operate independently and the failure probabilities
of components are small, then the reliability of a large m-A* (m = 1,2,...)
- linearly connected system can be approximated by the tail probability of Poisson
random variable N, k.

Theorem 3.1. (i) If all the components operate independently and have same
failure probability g, which satisfies the condition that ngt — A, asn — oo, then

m-—1 T

lim Ry (m-A") = > ge—’\. (3.1)
z=0 7’
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(ii) If all the components operate independently and have different failure proba-
bilities gqin,t = 1,...,n, which satisfy the conditions

(a) limsup;<j<p gin = 0

(b) limp—eo Soreq Uin = 0 and

(c) limpoo Sor u2, = 0, where u;y = ;‘f;é Gitin,
then,
m—1 Oz
. *\ v -6
nlLr{:oRn(m-A ) = z:o e (3.2)
=

Proof. The reliability of an m-A* linearly connected system has the following
relationship with the random variable N, : for every m =1,2,...,

R, (m-A")
= P(less than m non-overlapping A* patterns have occurred in n trials)
= P(Npx <m-—1). (3.3)

Both the above results (i) and (ii) are immediate consequences of (3.3), The-
orem 2.1 and Theorem 2.3, respectively.

The condition g, ~ (A/n)*/* is vital to the above results. In other words,
to have nontrivial reliability for a large linearly connected system, the failure
probabilities of components should be inversely proportional to the kth root of
the size of the system. Theorem 3.1 yields many previous results about the
reliabilities of large linearly connected systems, for example, the results of Chao
& Fu (1989), Papastavridis (1987,1990), and Fu and Lou (1991). Theorem 2.1
and Theorem 2.3 also yield some results of Poisson convergence in Godbole (1991),
Barbour and Holst (1989), Wang (1989,1991), and Arratia, Goldstein and Gordon
(1989).

Lemma 2.1 is indispensable to our proofs of results. It also yields good
upper and lower bounds for the reliability R(k,n) of a consecutive-k-out-of-n: F
systems:

)n—k+1 (34)

(1-gf)" < R(k,n) < (1 - gk + gt

This fundamental inequality can be interpreted as follows: the reliability of

a 1-A* linearly connected system is bounded above by the réliability of a series
system with failure probabilities u},(u},, = pngF in the i.i.d. case), and is bounded
below by the reliability of a series system with failure probabilities u;,(uin = ¢* in
the i.i.d. case). There are several other upper and lower bounds which have been
proposed, for example, Derman et al. (1982) and Papastavridis (1987). Recently,
the Stein-Chen method has become a very popular tool for studying Poisson
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convergence for sequences of dependent random variables. Using the Stein-Chen
method, Chrysaphinou and Papastavridis (1990) proved that

R(k,n) — e~ | < (2k — 1)g* + 2(k — 1)gn, where A\, = (n—k+ 1)¢F, (3.5)

which also yields upper and lower bounds for R(k,n).
Barbour, Holst and Janson (1992), also using the Stein-Chen method (along
with a certain coupling), gave the following improved inequality

|R(k,n) — e7P*| < (2kpn + 1)gp- (3.6)

In the next table, L and U are the lower and upper bounds of (3.4), and
Lep,Ucp, Lp, and Up are the lower and upper bounds obtained by (3.5) and
(3.6) respectively.

n k gn Lcp Lp L U Up Ucp
10 2 0.50 0.8703 0.9669 0.9777 0.9788 0.9909 1.0853
10 2 0.20 0.1777 0.5818 0.6925 0.7462 0.9180 1.2177
10 4 0.10 0.3986 0.9986 0.9993 0.9994 1.0002 1.6000
10 4 0.20 -0.2223 0.9792 0.9889 0.9911 1.0029 2.2001
50 2 0.05 0.7772 0.8781 0.8846 0.8900 0.9021 0.9922
50 2 0.10 0.3826 0.5674 0.6111 0.6421 0.6894 0.8426
50 4 0.05 0.6997 0.9997 0.9997 0.9997 0.9998 1.2998
50 4 0.10 0.3946 0.9950 0.9953 0.9958 0.9966 1.5960

100 2 0.05 0.6733 0.7785 0.7805 0.7903 0.8025 (.8883
100 2 0.10 0.1416 0.3642 0.3697 0.4086 0.4562 0.6016

It is surprising that the bounds developed by Stein-Chen method perform
poorly, especially for n being small. The precise reason why the bounds given by
Stein-Chen method perform poorly remains unknown. The Stein-Chen method
is a general and useful tool for Poisson convergence, using only the first two
moments but not the structure of the process. The bounds given by (3.4) depend
on the Markov structure of the reliability system. Hence, the bounds derived from
(3.4) are expected to perform well in this case. In view of the above numerical
results for n reasonably large and ¢, small, the bounds given by (3.4) provide an
excellent approximation for the exact reliability of the linearly connected system.
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