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Abstract: Suppose that N identical systems are tested until failure and that each

system is based on n components whose lifetimes are independently and iden-

tically distributed with common continuous distribution function F (t) and sur-

vival function F̄ (t) = 1 − F (t). Under the assumption that the system design

is known, Bhattacharya and Samaniego (2010) obtained the nonparametric max-

imum likelihood estimate of F based on the observed system failure times and

characterized its asymptotic behavior. The estimator studied in that paper has

the form ˆ̄F 0(t) = h−1
[
ˆ̄FT (t)

]
where h(·) is the system’s reliability polynomial

(see Barlow and Proshan (1981)) and ˆ̄FT (t) is the empirical survival function of

the system lifetimes {T1, . . . , TN}. To treat this estimation problem when the

system design is unknown, the design must be estimated from data. In this pa-

per, we assume that auxiliary data in the form of a variable K, the number of

failed components at the time of system failure, is available along with the sys-

tem’s lifetime. Such data is typically available from a subsequent autopsy. The

problem considered here is motivated by the fact that component reliability under

field conditions is often not easily estimated through controlled laboratory tests.

The data (T1,K1), (T2,K2), . . . , (TN ,KN ) permits the estimation of the reliability

polynomial h (through the use of “system signatures” - Samaniego (2007)). De-

noting the estimated polynomial as ĥ, we study the properties of the estimator
ˆ̄F (t) = ĥ−1

[
ˆ̄FT (t)

]
. Our main results include (1) ˆ̄F (t) is a

√
n-consistent esti-

mator of the component reliability function F̄ (t), (2) the asymptotic distribution

of F̄ (t) is normal and its asymptotic variance is given in closed form, and (3) the

asymptotic variance of ˆ̄F (t), based on the augmented data {Ti,Ki}, is uniformly

no greater than the asymptotic variance of ˆ̄F 0(t), based on the data {Ti} and the

assumption that h is known. This latter, perhaps surprising, result is confirmed in

a variety of simulations and is illuminated through further heuristic considerations

and further analysis.
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1. Introduction

1.1. Background

In what follows, we make the tacit assumption that the engineered system

under study is a coherent system, that is, the system’s performance is a mono-

tone function of each component’s performance and each component is relevant

(see Barlow and Proshan (1981)). Suppose that N identical systems are tested

until failure and that each system is based on n components whose lifetimes are

independently and identically distributed with common continuous distribution

F . Under the standard and generally defensible assumption that the system de-

sign is known, Bhattacharya and Samaniego (2010) obtained the nonparametric

maximum likelihood estimate of F based on the observed system failure times,

and they characterized its asymptotic behavior. Studies on estimating compo-

nent characteristics from system failure time data are motivated by the following

considerations. The laboratory environment in which components are tested of-

ten differs in significant ways from the environment in which the components in

fielded systems operate. Further, the direct estimation of component character-

istics based on data from fielded systems requires extensive autopsy data on the

components that is often infeasible or otherwise unavailable. It is often feasible

to obtain lifetime data on fielded systems, while estimating the field performance

of the system’s components is difficult or impossible under laboratory conditions.

The assumption that the lifetimes of the components of the system of in-

terest are independent and identically distributed deserves further comment.

Samaniego (2007) discusses a variety of systems to which this assumption ap-

plies. A further application, somewhat larger in scale, is the case of computer

hardware that is generally referred to as “Redundant Array of Independent Disks

(RAID)” — see Patterson, Gibson and Katz (1988). RAID computers are well

known for their efficiency and speed, two characteristics that have led to their

widespread use. The performance of RAID computers with n independent disks

can be designed to perform as a k-out-of-n system that fails upon kth disk fail-

ure. With the aid of a randomization device, RAID computers can be used to

simulate the performance of an arbitrary coherent system in n components with

i.i.d. lifetimes.

Let T1, . . . , TN
i.i.d.∼ FT be a random sample of N failure times obtained

from a system with lifetime distribution FT . The NPMLE ˆ̄F of the component

reliability is the inverse of the reliability polynomial h applied to the empirical

reliability function ˆ̄F T of the system’s lifetime T . This follows from the well-

known link between the reliability function F̄T of the system’s failure time T and

that of the component reliability function F̄ : F̄T (t) = h(F̄ (t)). The coefficients

of h depend solely on the distribution-free signature vector s of the system -
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see Samaniego (2007). If X1, . . . , Xn
i.i.d.∼ F are the lifetimes of the components

in the system, then the signature vector of the system is the probability vector

s whose ith element is si = P (T = Xi:n), where T is the system’s lifetime and

Xi:n is the ith smallest component failure time in the sample X1, . . . , Xn. Setting

p = F̄ (t), Samaniego (1985) proved that

h(p) =
n∑

i=1

si

[ n∑
j=n−i+1

(
n

j

)
pj(1− p)n−j

]
≡

n∑
i=1

sihi(p) , (1.1)

where si is the ith element of the signature vector, and hi is the reliability

polynomial associated with the ith ordered component failure time Xi:n.

When the system design is unknown, it must be estimated from the data.

In this paper, we study the estimation of the component reliability function F̄

under the condition that auxiliary data is available in the form of the number

of failed components in each of the fielded systems. We take advantage of this

additional information to estimate the unknown system structure.

Though most engineered systems that are fielded by customers or clients have

a specific known design, there are exceptions where the identification of a system

structure is not possible. For example, in military operations, it is not uncommon

to capture or gain control of a collection of like systems whose precise design is

unknown. In addition, the system reliability polynomial h is not always easily

obtained, even when the structure is known, because of computational complexity

issues. The challenge is to obtain an accurate estimate of the signature vector

from system failure-time data, thereby permitting an estimation process of F

based on the estimated polynomial h.

A number of authors have studied the estimation of component lifetime dis-

tributions from system failure times in the presence of additional information.

Notable examples include Moeschberger and David (1971), who treated the es-

timation problem in a competing risks framework, and Meilijson (1981) and

Bueno (1988), both of whom considered the estimation of F based on system

failure times together with autopsy statistics on the systems components. Au-

thors who have studied the estimation of component characteristics from masked

data include Miyakawa (1984), Usher and Hodgson (1988), and Guess, Usher

and Hodgson (1991). Estimation of the component lifetime distribution from

system failure time data also arises in other contexts. Boyles and Samaniego

(1986) derived the NPMLE of the underlying component distribution F based

on nomination sampling, a sampling method that yields data equivalent to the

observed lifetimes of parallel systems (see also Boyles and Samaniego (1987)).

Inference about the underlying distribution F based on ranked set sampling has

been treated by Stokes and Sager (1988) and by Kvam and Samaniego (1993a,b,
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1994). A ranked set sample may be viewed as a set of independent lifetimes from

k-out-of-n systems with varying k and n. Much of the work cited above makes

parametric assumptions; none treats the case of systems of arbitrary design.

The present paper takes a fully nonparametric approach to estimation, treats

the problem of estimating component reliability function F̄ in a system of arbi-

trary design, and treats (to our knowledge, for the first time) the estimation of

F̄ in the important special case when the system is assumed to be of unknown

design. Assuming the availability of some auxiliary data, a consistent, asymp-

totically normal estimator of F̄ is obtained. Quite unexpectedly, this estimator

is shown to be superior, asymptotically, to the NPMLE of F̄ computed under

the assumption that the system’s design (that is, its signature vector) is known.

An alternative trajectory of research generalizing Bhattacharya and Samaniego

(2010) is presented by Hall, Jin and Samaniego (2015), where the nonparamet-

ric estimation of component reliability is undertaken under the assumption that

failure-time data is available from multiple systems with known designs.

1.2. Outline of the methodology

Our approach to estimating F is to apply the inverse of an estimated reli-

ability polynomial ĥ to ˆ̄F T , imitating the form of the NPMLE ˆ̄F = h−1 ◦ ˆ̄F T

discussed above. Additional information is required to make this estimation

possible. Assume that the index of the ordered component failure time of the

component that caused the system to fail has been determined. This information

is typically available in a subsequent autopsy, as it can be obtained simply by

counting the number of failed components in the failed system. The identification

of the precise component that caused the system to fail is not required in the

analysis below. The count data alluded to above, together with the failure time

data from the sample of fielded systems, suffice for obtaining viable estimators

of the underlying component lifetime distribution F .

Suppose we have failure time data on a random sample of N fielded systems.

We shall assume that each fielded system yields a random pair (T,K), where T

is the failure time of the system and K is the number of failed components at the

time of system failure. The data (T1,K1), (T2,K2), . . . , (TN ,KN ) permits estima-

tion of the signature vector s. Let X1, . . . , Xn be the theoretical independently

and identically distributed component failure times from the system of interest.

Recalling that si = P (T = Xi:n), the observations K1, . . . ,KN can be viewed

as a random sample from the multinomial distribution Mn(N, s). It follows that

ŝN,i , defined as the sample proportion of K’s that are equal to i, that is:

ŝN,i =
#{Kj = i, j = 1, . . . , N}

N
, (1.2)
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is an unbiased estimator of si that converges to si almost surely as N goes to in-

finity. We estimate s by ŝN , the estimated signature vector based on K1, . . . ,KN .

Since the coefficients in the reliability polynomial h are determined by s, we de-

note the estimated reliability polynomial based on ŝN as hŝN , defined by plugging

in ŝN,i for si in (1.1):

hŝN (p) =

n∑
i=1

ŝN,ihi(p) . (1.3)

We denote the underlying reliability polynomial h(p) by hs(p) hereafter to dif-

ferentiate it from hŝN . This substitution allows for the development of an es-

timator of F by inverting the approximate relationship F̄T (t) ≈ hŝN (F̄ (t)) as
ˆ̄F = hŝN

−1 ◦ ˆ̄F T , or

ˆ̄F (t) = hŝN
−1

[
ˆ̄F T (t)

]
. (1.4)

In section 2, it is shown that the estimator ˆ̄F in (1.4) of the reliability func-

tion F̄ of component lifetimes is a consistent estimator of the true F̄ . Further,

the asymptotic normal distribution of the estimator is established, and its asymp-

totic variance is obtained in a form that permits comparisons with alternative

estimators. This derivation is followed by the somewhat surprising result that
ˆ̄F = hŝN

−1 ◦ ˆ̄F T is as good or better than ˆ̄F = hs
−1 ◦ ˆ̄F T , as measured by

asymptotic variance. In Section 3, simulation results are presented that confirm

that our asymptotic results tend to hold even for small to moderate sample sizes.

2. Estimation Using the Inversion Method

2.1. Main theoretical results

We first establish the consistency of the proposed estimator of F̄ . The proofs

of the results stated in this section have been relegated to the Appendix.

Theorem 1. Let (T1,K1), (T2,K2), . . . , (TN ,KN ) be a random sample of system

lifetimes T augmented by the count K of the number of failed components when

the system fails. Then
ˆ̄F (t) = hŝN

−1
[
ˆ̄F T (t)

]

is a consistent estimator of F̄ (t) for all t > 0, where ˆ̄F T is the empirical distri-

bution function of the system failure times and hŝN (p) is defined as in (1.3).

Now we turn to the asymptotic normality of the proposed estimator. We use
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the following notation: for a fixed t > 0,

π0 = F̄T (t), (2.1a)

π̂N = ˆ̄F T (t), (2.1b)

p0 = F̄ (t) = hs
−1(π0), (2.1c)

p̂N = ˆ̄F (t) = hŝN
−1(π̂N ), (2.1d)

p̂
(0)
N = hŝN

−1(π0). (2.1e)

Here π̂N is the sample proportion of system survival times that exceed time

t; thus, Nπ̂N follows the B(N, π0) distribution. Our first result, proven in

the Appendix, establishes the joint asymptotic normality of π̂N and the vector

(ŝN,1, . . . , ŝN,n).

Lemma 1. Let π̂N be the sample proportion of system survival beyond time t,

and let ŝN be defined as in (1.2). Then

(√
N (π̂N − π0)√
N(ŝN − s)

)
D→

(
Z1

Z2

)
∼ N (0,Σ), (2.2)

where
D→ denotes convergence in distribution. The covariance matrix can further

be partitioned as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where

Σ11 = π0(1− π0),

Σ22 =




s1(1− s1) −s1s2 −s1s3 . . . −s1sn
−s1s2 s2(1− s2) −s2s3 . . . −s2sn
. . . . . . . . . . . . . . .

−s1sn −s2sn −s3sn . . . sn(1− sn)


 ,

Σ12 = ΣT
21 =

(
s1 [h1 (p0)− π0] , s2 [h2 (p0)− π0] , . . . , sn [hn (p0)− π0]

)
.

Remark. Note that Σ22 is not of full rank; in fact, if we denote the upper-left

sub-matrix of Σ22 of dimension k × k as

Mk =




s1(1− s1) −s1s2 −s1s3 . . . −s1sk
−s1s2 s2(1− s2) −s2s3 . . . −s2sk
. . . . . . . . . . . . . . .

−s1sk −s2sk −s3sk . . . sk(1− sk)


 ,

we can use the formula det(A− uuT ) = det(A)(1− uTA−1u) and show that:
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det(Mk) = (

k∏
i=1

si)(1−
k∑

i=1

si) = 0 , if

k∑
i=1

si = 1 .

This shows that the rank of Σ22 is r − 1 < n, where sr is last non-zero element

in s. So the matrix Σ is also necessarily singular, with rank r.

The next result establishes the asymptotic distribution of the estimator ˆ̄F (t);

the proof is given in the Appendix.

Theorem 2. For fixed t > 0,
√
N

(
ˆ̄F (t)− F̄ (t)

)
D→ N

(
0, σ2

)
, where

σ2 =
{
h′s

[
F̄ (t)

]}−2
∑
i

sihi
[
F̄ (t)

] {
1− hi

[
F̄ (t)

]}
. (2.3)

Upon rewriting h as hs, the NPMLE of the component reliability ˆ̄F can be

written as
ˆ̄F 0(t) = h−1

s

[
ˆ̄F T (t)

]
. (2.4)

The final result of this section establishes the asymptotic domination of the

estimator ˆ̄F of F̄ with estimated signature over the estimator ˆ̄F 0 of F̄ when

the signature vector of the system is known with certainty. The proof is given in

the Appendix; an elementary example of the phenomenon in question is provided

as an illustration in Section 2.3.

Theorem 3. The asymptotic variance of the estimator ˆ̄F (t) is less than or equal

to that of ˆ̄F 0(t) = h−1
s

[
ˆ̄F T (t)

]
, where ˆ̄F T (t) is the NPMLE of F̄T (t) based on a

sample of system failure times when the system signature s is known.

2.2. Discussion

Remark/Heuristic consideration: If a nuisance parameter is known, one

would think that the use of an ancillary statistic to estimate it could not pro-

vide an improved estimator of the target parameter. In our context, F̄ is the

target parameter, while the signature vector s is the nuisance parameter; system

lifetimes are sufficient for estimating F̄ when s is known, and K is an ancillary

statistic whose distribution depends only on s. From the proof of the theorem it

can be seen that the smaller asymptotic variance comes from the positive corre-

lation between T and K. Actually, if s is estimated independently, for example

if we observe K in a separate experiment, the covariance matrix in (2.2) is a

diagonal matrix. Then V12 is 0, and the asymptotic variance of the estimator is

V1 + V2, clearly larger than V1, the asymptotic variance of ˆ̄F . The examples in

Sections 2.3 and A.2 shed further light on this phenomenon.
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the following notation: for a fixed t > 0,
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π̂N = ˆ̄F T (t), (2.1b)

p0 = F̄ (t) = hs
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p̂
(0)
N = hŝN

−1(π0). (2.1e)
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(√
N (π̂N − π0)√
N(ŝN − s)

)
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(
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)
∼ N (0,Σ), (2.2)
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(
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)
,
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

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 ,
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)
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
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k∏
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k∑

i=1

si) = 0 , if

k∑
i=1

si = 1 .

This shows that the rank of Σ22 is r − 1 < n, where sr is last non-zero element

in s. So the matrix Σ is also necessarily singular, with rank r.

The next result establishes the asymptotic distribution of the estimator ˆ̄F (t);

the proof is given in the Appendix.
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2.3. Example

For i = 1, . . . , N , assume (Xi, Yi) are independent, with X1, . . . , XN
i.i.d.∼

B(1, θ) and for each i, Yi|Xi = x ∼ B(x, p) where B(0, p) ≡ δ0 is a degenerate

distribution with mass 1 at the value 0. Marginally, Y1, . . . , YN
i.i.d.∼ θB(1, p) +

(1− θ)δ0. In particular, P (Yi = 1) = θp and P (Yi = 0) = 1− θp.
If only Y1, Y2, . . . , YN are observed and the parameter θ is known, then the

MLE of p is p̂1 = Y /θ. Since Y1, Y2, . . . , YN
i.i.d.∼ F with mean θp and variance

θp(1− θp), it follows that
√
N(Y − θp)

D→ U ∼ N
(
0, θp(1− θp)

)
, and hence that

√
N(p̂1 − p)

D→ U∗ ∼ N (0, V1) , (2.5)

where V1 = p(1− θp)/θ.
Now assume we have auxiliary data X1, X2, . . . , Xn. Since we know that X

is a good estimator of θ, we might be inclined to construct a plug-in estimator
Y /X of p by replacing θ by X.

Since X can take the value 0 with positive probability, we take

p̂2 =

{
Y
X

if X > 0,

0 if X1, . . . , XN = 0,

to obtain a well-defined estimator for p.
Since EX = θ, Var(X) = θ(1 − θ), EY = θp, Var(Y ) = θp(1 − θp) and

Cov(X,Y ) = θp(1− θ), we have, by the CLT, that as N → ∞,

√
N

[(
X

Y

)
−
(
θ

θp

)]
D→ V ∼ N

[(
0

0

)
,

(
θ(1− θ) θp(1− θ)

θp(1− θ) θp(1− θp)

)]
.

If g(x, y) = y/x, the bivariate delta method theorem implies that, asN → ∞,
√
N

[
Y

X
− p

]
D→ V ∼ N [0, V2] ,

where

V2 =

(
−p

θ
,
1

θ

)(
θ(1− θ) θp(1− θ)

θp(1− θ) θp(1− θp)

)(
−p

θ

−1
θ

)

=
p2(1− θ)

θ
− 2p · θp(1− θ)

θ2
+

θp(1− θp)

θ2

=
p(1− p)

θ
.

Since |p̂2 − Y /X| p→ 0, if follows that
√
N (p̂2 − p)

D→ V ∼ N (0, V2). (2.6)

It is clear that V2 = p(1− p)/θ < p(1− θp)/θ = V1.
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Figure 1. Structure of three systems.

This shows that, when the parameter θ is known, the estimator p̂2 which

only utilizes the auxiliary data X1, . . . , XN (and ignores the known value of θ)

asymptotically outperforms the estimator p̂1 which utilizes the known value of θ.

3. Numerical Results

Here, we simulate the behavior of ˆ̄F (t) and ˆ̄F 0(t). We are going to assume

that the components’ lifetimes follow (i) Exp(1), (ii) Weibull(1, 0.5) and (iii)

Weibull(1, 5) distributions, which enable us to consider models with constant

failure rate, decreasing failure rate (DFR), and increasing failure rate (IFR).

Three coherent systems are studied, where the number of components is 3, 4 and

5 respectively. The first two are series-parallel systems, and the third is a bridge

system; their structures are shown in Figure 1. The signature vectors for the

first two coherent systems are (1/3, 2/3, 0) and (0, 1/3, 2/3, 0), while that of the

five-component bridge system is (0, 1/5, 3/5, 1/5, 0).

The asymptotic domination of the estimator ˆ̄F over the estimator ˆ̄F 0 is

proven in Theorem 3 when the signature vector of the system is estimated rather

than known with certainty. In order to reflect asymptotic behavior, the number

of samples, N was taken to be 100. We first obtained both estimators, ˆ̄F (t) and
ˆ̄F 0(t), for t between the 1 and 99 percentiles of the underlying component lifetime

distribution in 1,000 replicated simulation runs. Then we were able to calculate

the standard deviations of the 1,000 replications of ˆ̄F (t) and ˆ̄F 0(t), respectively,

and plot them against F̄ (t). Figure 2 shows the simulation results for system (i),

where the solid line represents the standard deviation of ˆ̄F (t) and the dash line

is for ˆ̄F 0(t).

As shown in Figure 2, the estimators are eventually identical at the ends of

their domains, and have maximum standard deviation when F̄ (t) is small. As

the underlying distribution of components lifetime varies, the difference between

the two estimators changes. For the three models examined above, and for the

moderate sample size N = 100, the inequality V
(
ˆ̄F (t)

)
≤ V

(
ˆ̄F 0(t)

)
is seen to

hold for all nonnegative t.
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Weibull(1, 5) distributions, which enable us to consider models with constant
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5 respectively. The first two are series-parallel systems, and the third is a bridge

system; their structures are shown in Figure 1. The signature vectors for the

first two coherent systems are (1/3, 2/3, 0) and (0, 1/3, 2/3, 0), while that of the

five-component bridge system is (0, 1/5, 3/5, 1/5, 0).

The asymptotic domination of the estimator ˆ̄F over the estimator ˆ̄F 0 is

proven in Theorem 3 when the signature vector of the system is estimated rather

than known with certainty. In order to reflect asymptotic behavior, the number

of samples, N was taken to be 100. We first obtained both estimators, ˆ̄F (t) and
ˆ̄F 0(t), for t between the 1 and 99 percentiles of the underlying component lifetime

distribution in 1,000 replicated simulation runs. Then we were able to calculate

the standard deviations of the 1,000 replications of ˆ̄F (t) and ˆ̄F 0(t), respectively,

and plot them against F̄ (t). Figure 2 shows the simulation results for system (i),

where the solid line represents the standard deviation of ˆ̄F (t) and the dash line

is for ˆ̄F 0(t).

As shown in Figure 2, the estimators are eventually identical at the ends of

their domains, and have maximum standard deviation when F̄ (t) is small. As

the underlying distribution of components lifetime varies, the difference between

the two estimators changes. For the three models examined above, and for the

moderate sample size N = 100, the inequality V
(
ˆ̄F (t)

)
≤ V

(
ˆ̄F 0(t)

)
is seen to

hold for all nonnegative t.
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Figure 2. Three component system.

The same study was also undertaken for systems (ii) and (iii). Figure 3a

shows results for system (iii), and Figure 3b shows those for system (iii). The

pattern of standard deviations is more complicated than that in Figure 2. There

are two peaks in the variation: one for small F̄ (t) and another for large F̄ (t),

while the DFR model is different from the other two models. Regardless of the

shape, we can still see that the dashed line lies above the solid line so that, the

domination also exists here. A similar figure is drawn for the bridge system; see

Figure 3b.

The comparison of the two estimators ˆ̄F and ˆ̄F 0 is of interest as well. Here

we turn our attention to global performance measures for the proposed estima-

tors. We calculated, from 1,000 replicated simulation runs, the mean Integrated

Squared Error (ISE) of each of the estimators. We do not show the estimator

of F̄ when t is beyond the 1 and 99 percentiles of the underlying component

lifetime distribution, where it is either 0 or 1. Table 1 shows the mean of ISEs

over 1,000 replications of the estimators when the sample size N goes from 10 to

50, incremented by 10, when the bridge system has structure (iii). It can be seen

that ISE1 is always smaller than ISE0, showing that ˆ̄F has a smaller ISE then
ˆ̄F 0 even for small to moderate sample size.
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(a) four component system (b) bridge system

Figure 3. Four and five component systems.

Weibull(1,0.5) Exp(1) Weibull(1,5)

N ISE0 ISE1 ISE0 ISE1 ISE0 ISE1

10 0.5611 0.5395 0.8548 0.8162 0.9929 0.9434
20 0.3473 0.3390 0.4626 0.4390 0.5220 0.4988
30 0.2628 0.2520 0.3349 0.3211 0.3538 0.3356
40 0.2059 0.1988 0.2549 0.2417 0.2795 0.2632
50 0.1781 0.1744 0.2160 0.2033 0.2227 0.2099

Table 1. Comparison of behavior in a bridge system.

4. Discussion and Summary

In this paper, we have considered an engineering problem which arises quite

often in practice. The field performance of the components of an engineered sys-

tem is not easily estimated through independent experiments of the components

themselves. The primary difficulty lies in the construction of a testing envi-

ronment which effectively simulates the environment in which they will operate

when used in the field. This leads us to focus on the inverse problem of inferring

component performance from the observed performance of fielded systems. This

problem is examined under the assumption that the systems being tested are

identical copies of a coherent system and that the components of each system

have i.i.d. lifetimes with common reliability function F̄ (t) for t > 0.

In most applications, the design of the system being tested is known, as the

systems themselves would likely have been constructed or acquired (by purchase

or commission) by the agency doing the testing. Since the performance of a

coherent system in i.i.d. components is fully characterized by its signature vector

s, we have taken the assumption that the system design is known to mean that
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problem is examined under the assumption that the systems being tested are
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have i.i.d. lifetimes with common reliability function F̄ (t) for t > 0.

In most applications, the design of the system being tested is known, as the
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coherent system in i.i.d. components is fully characterized by its signature vector

s, we have taken the assumption that the system design is known to mean that
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the system has a known signature. Under that assumption, Bhattacharya and

Samaniego (2010) obtained the nonparametric maximum likelihood estimator of

the component reliability F̄ (t) from system failure time data and characterized

its asymptotic behavior.

In the present work, we have assumed that, in addition to system lifetime

data, one is able to observe the number K of failed components in each sys-

tem that has failed. This additional data, which is typically obtainable through

a straightforward autopsy following system failure, provides information from

which the systems signature can be consistently and efficiently estimated.

An issue of practical interest is the identification of instances in which one

must deal with systems whose design is unknown. The circumstance of interest

can occur, as well, in ordinary business or industrial settings in which the precise

design of a system developed by a competing firm is unknown. In such cases,

the estimation process we have described can serve two important functions in

that it provides insight into the unknown design through the system’s estimated

signature and can also be the basis for inference concerning the performance of

the systems components.

The asymptotic behavior of our estimator is given in Theorem 2. In prac-

tical applications, it is important to try to determine how large a sample size is

required to ensure that the normal distribution of the estimator ˆ̄F (t) described in

Theorem 2 is a reliable approximation. Simulations suggest that, for systems of

small to moderate size, N = 100 is a sample size for which the result in Theorem

2 can be safely applied.

The estimator of the component reliability F̄ (t) developed in this paper is

shown to have the unexpected property that it has better asymptotic statistical

performance than the estimator one would use (i.e., the NPMLE) if the system

design were in fact known. It is tempting to try to explain this dominance as

being due to the fact that when the system signature is assumed known, ones

estimator depends only on the lifetime data T1, . . . , TN , while when the system

signature is unknown, the proposed estimator depends on, indeed requires, the

bivariate data (Ti,Ki), i = 1, . . . , N . Thus, when the system design is unknown,

more data is utilized in estimating F̄ (t) and it should not be surprising that a

stronger estimator is possible in this latter scenario. But consider the following

mind game.

Suppose that there were parallel universes in which experiments were run on

separate collections of N identical systems, where the system design was known

in the first instance and was unknown in the second. Suppose further that the

bivariate data (Ti,Ki), i = 1, . . . , N were available from both experiments. Now,

since the distribution of the discrete variable K depends only on the signature
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vector s, it could justifiably be dismissed as irrelevant in the problem of esti-

mating F̄ (t) when s is known. But our work shows that it is advantageous (in

sufficiently large samples) to ignore the “known” signature s in this scenario and

use the estimator developed in the present paper that utilizes the full bivariate

data. A proof is provided in Section 3, and is augmented for heuristic reasons,

by two simpler examples in which the “surprising” phenomenon is shown to oc-

cur. As stated in Section 2, the key to understanding the phenomenon in the

reliability problem on which we have focused is the recognition of the fact that T

and K are positively correlated and that that correlation can be exploited with

profit.

An anonymous referee suggested that the “domination phenomenon” that

arises in the problem we have studied here is reminiscent of “a similar result in

(the area of) sample survey in estimating the population mean, where estimation

of the known population size from the survey data results in an estimator of the

population mean with a smaller MSE than the usual estimator which uses the

known population size N”. We thank the referee for calling our attention to an

additional example of this interesting phenomenon.
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the system has a known signature. Under that assumption, Bhattacharya and

Samaniego (2010) obtained the nonparametric maximum likelihood estimator of

the component reliability F̄ (t) from system failure time data and characterized

its asymptotic behavior.

In the present work, we have assumed that, in addition to system lifetime

data, one is able to observe the number K of failed components in each sys-

tem that has failed. This additional data, which is typically obtainable through

a straightforward autopsy following system failure, provides information from

which the systems signature can be consistently and efficiently estimated.

An issue of practical interest is the identification of instances in which one

must deal with systems whose design is unknown. The circumstance of interest

can occur, as well, in ordinary business or industrial settings in which the precise

design of a system developed by a competing firm is unknown. In such cases,

the estimation process we have described can serve two important functions in

that it provides insight into the unknown design through the system’s estimated

signature and can also be the basis for inference concerning the performance of

the systems components.

The asymptotic behavior of our estimator is given in Theorem 2. In prac-

tical applications, it is important to try to determine how large a sample size is

required to ensure that the normal distribution of the estimator ˆ̄F (t) described in

Theorem 2 is a reliable approximation. Simulations suggest that, for systems of

small to moderate size, N = 100 is a sample size for which the result in Theorem

2 can be safely applied.

The estimator of the component reliability F̄ (t) developed in this paper is

shown to have the unexpected property that it has better asymptotic statistical

performance than the estimator one would use (i.e., the NPMLE) if the system

design were in fact known. It is tempting to try to explain this dominance as

being due to the fact that when the system signature is assumed known, ones

estimator depends only on the lifetime data T1, . . . , TN , while when the system

signature is unknown, the proposed estimator depends on, indeed requires, the

bivariate data (Ti,Ki), i = 1, . . . , N . Thus, when the system design is unknown,

more data is utilized in estimating F̄ (t) and it should not be surprising that a

stronger estimator is possible in this latter scenario. But consider the following

mind game.

Suppose that there were parallel universes in which experiments were run on

separate collections of N identical systems, where the system design was known

in the first instance and was unknown in the second. Suppose further that the

bivariate data (Ti,Ki), i = 1, . . . , N were available from both experiments. Now,

since the distribution of the discrete variable K depends only on the signature
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vector s, it could justifiably be dismissed as irrelevant in the problem of esti-

mating F̄ (t) when s is known. But our work shows that it is advantageous (in

sufficiently large samples) to ignore the “known” signature s in this scenario and

use the estimator developed in the present paper that utilizes the full bivariate

data. A proof is provided in Section 3, and is augmented for heuristic reasons,

by two simpler examples in which the “surprising” phenomenon is shown to oc-

cur. As stated in Section 2, the key to understanding the phenomenon in the

reliability problem on which we have focused is the recognition of the fact that T

and K are positively correlated and that that correlation can be exploited with

profit.

An anonymous referee suggested that the “domination phenomenon” that

arises in the problem we have studied here is reminiscent of “a similar result in

(the area of) sample survey in estimating the population mean, where estimation

of the known population size from the survey data results in an estimator of the

population mean with a smaller MSE than the usual estimator which uses the

known population size N”. We thank the referee for calling our attention to an

additional example of this interesting phenomenon.
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Appendix

A.1. Proofs of the theorems and lemmas

Proof of Theorem 1. Since ŝN,i is the sample proportion from a random

sample of systems of a fixed design, ŝN is clearly a consistent estimator of s.

Since the reliability polynomial h of a coherent system is continuous and strictly

increasing, hŝN (x) converges to hs(x) almost surely for any fixed x ∈ (0, 1). Using
a.s.→ to denote almost sure convergence, then

hŝN
−1(x)

a.s.→ h−1
s (x).

Moreover, the almost sure convergence of ˆ̄F T (t) to F̄T (t) for any fixed t, along

with the continuity of hŝN leads to

hŝN
−1

[
ˆ̄F T (t)

]
− hŝN

−1
[
F̄T (t)

] a.s.→ 0.

So

hŝN
−1

[
ˆ̄F T (t)

]
a.s.→ hs

−1
[
F̄T (t)

]
= F̄ (t) .

Proof of Lemma 1. The convergence result follows directly from the Central

Limit Theorem. The work that remains is to identify the elements of the covari-

ance matrix Σ. The diagonal terms Σ11 and Σ22 are derived from the fact that

N × π̂N ∼ B(N, π0) and N × ŝN ∼ Mn(N, s). The kth element in the asymptotic

covariance matrix is obtained as follows:

Cov(π̂N − π0, sN,k − sk)

= E(π̂NsN,k)− E(π̂N )E(sN,k)

=N−2E (#{T > t}#{K = k})− π0sk

=N−2E
[∑

i

∑
j

I(Ti > t)I(Kj = k)
]
− π0sk

=N−2
∑
i

E [I(Ti > t,Ki = k)]

+N−2
∑
i ̸=j

E [I(Ti > t)]E [I(Kj = k)]− π0sk (A.1)

=N−1P (T > t,K = k) +
N − 1

N
π0sk − π0sk

=N−1P (T > t,K = k)−N−1π0sk

=N−1P (K = k)P (T > t|K = k)−N−1π0sk = N−1skF̄(k)(t)−N−1π0sk

=N−1sk
[
F̄(k)(t)− π0

]
= N−1sk

{
hk

[
F̄ (t)

]
− π0

}

=N−1sk [hk (p0)− π0] , (A.2)
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where (A.1) follows from the fact that the ith observation is independent of

the jth if i ̸= j. Therefore
(√

N (π̂N − π0) ,
√
N(ŝN − s)

)T
converges to the

multivariate Normal distribution as stated in (2.2).

Proof of Theorem 2. The difference ˆ̄F (t)− F̄ (t) = hŝN
−1(π̂N )− hs

−1(π0) can
be decomposed into the sum of two terms by adding and subtracting the term
hŝN

−1(π̂0). This decomposition leads to the representation√
N

[
ˆ̄F (t)− F̄ (t)

]
=

√
N

[
hŝN

−1(π̂N )− hs
−1(π0)

]

=
√
N

[
hŝN

−1(π̂N )−hŝN
−1(π̂0)

]
+
√
N

[
hŝN

−1(π̂0)−hs
−1(π̂0)

]

≡
√
N

(
p̂N − p

(0)
N

)
+
√
N

(
p
(0)
N − p0

)
. (A.3)

We now prove that the two terms in this decomposition can be approximated
by two normally distributed random variables. The variance and covariance of
these variables will be specified. First, the Taylor series expansion of hŝN

−1 at
π0 maybe written as,

√
N

(
p̂N − p̂

(0)
N

)
≡

√
N

[
hŝN

−1(π̂N )− hŝN
−1(π0)

]
(A.4)

=
√
N

{[
d

dπ
hŝN

−1(π)

����
π=π0

]
(π̂N − π0) + o(π̂N − π0)

}

⇒
√
N

(
p̂N − p̂

(0)
N

)
=

[
d

dπ
hŝN

−1(π)

����
π=π0

]
√
N(π̂N − π0) + oP (1) . (A.5)

In (A.5), we have

d

dπ
hŝN

−1(π)

����
π=π0

a.s.→ d

dπ
h−1
s (π)

����
π=π0

=
1

h′s
[
hs

−1(π0)
] =

1

h′s(p0)
.

(using (2.1c) and the property that ŝN converges to s almost surely).

In addition,
√
N(π̂N − π0)

D→ Z1 (see Lemma 1). By Slutsky’s Theorem,
√
N

(
p̂N − p̂

(0)
N

)
D→ 1

h′s(p0)
Z1 ∼ N (0, V1) , (A.6)

where
V1 =

[
h′s (p0)

]−2
Σ11 =

[
h′s (p0)

]−2
π0(1− π0) . (A.7)

On the other hand, if we consider p to be fixed, we may view the reliability
polynomial hs(p) as a function of s. From (1.1), we see thaths(p) =

∑
i hi(p) si

is a linear function of the vector s. Define ∇shs(p) as the gradient of the n× 1
vector s for fixed p. Then

∇T
s hs(p) =

(
h1(p), h2(p), . . . , hn(p)

)
, (A.8)

and hence
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Appendix

A.1. Proofs of the theorems and lemmas

Proof of Theorem 1. Since ŝN,i is the sample proportion from a random

sample of systems of a fixed design, ŝN is clearly a consistent estimator of s.

Since the reliability polynomial h of a coherent system is continuous and strictly

increasing, hŝN (x) converges to hs(x) almost surely for any fixed x ∈ (0, 1). Using
a.s.→ to denote almost sure convergence, then

hŝN
−1(x)

a.s.→ h−1
s (x).

Moreover, the almost sure convergence of ˆ̄F T (t) to F̄T (t) for any fixed t, along

with the continuity of hŝN leads to

hŝN
−1

[
ˆ̄F T (t)

]
− hŝN

−1
[
F̄T (t)

] a.s.→ 0.

So

hŝN
−1

[
ˆ̄F T (t)

]
a.s.→ hs

−1
[
F̄T (t)

]
= F̄ (t) .

Proof of Lemma 1. The convergence result follows directly from the Central

Limit Theorem. The work that remains is to identify the elements of the covari-

ance matrix Σ. The diagonal terms Σ11 and Σ22 are derived from the fact that

N × π̂N ∼ B(N, π0) and N × ŝN ∼ Mn(N, s). The kth element in the asymptotic

covariance matrix is obtained as follows:

Cov(π̂N − π0, sN,k − sk)

= E(π̂NsN,k)− E(π̂N )E(sN,k)

=N−2E (#{T > t}#{K = k})− π0sk

=N−2E
[∑

i

∑
j

I(Ti > t)I(Kj = k)
]
− π0sk

=N−2
∑
i

E [I(Ti > t,Ki = k)]

+N−2
∑
i ̸=j

E [I(Ti > t)]E [I(Kj = k)]− π0sk (A.1)

=N−1P (T > t,K = k) +
N − 1

N
π0sk − π0sk

=N−1P (T > t,K = k)−N−1π0sk

=N−1P (K = k)P (T > t|K = k)−N−1π0sk = N−1skF̄(k)(t)−N−1π0sk

=N−1sk
[
F̄(k)(t)− π0

]
= N−1sk

{
hk

[
F̄ (t)

]
− π0

}

=N−1sk [hk (p0)− π0] , (A.2)
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where (A.1) follows from the fact that the ith observation is independent of

the jth if i ̸= j. Therefore
(√

N (π̂N − π0) ,
√
N(ŝN − s)

)T
converges to the

multivariate Normal distribution as stated in (2.2).

Proof of Theorem 2. The difference ˆ̄F (t)− F̄ (t) = hŝN
−1(π̂N )− hs

−1(π0) can
be decomposed into the sum of two terms by adding and subtracting the term
hŝN

−1(π̂0). This decomposition leads to the representation√
N

[
ˆ̄F (t)− F̄ (t)

]
=

√
N

[
hŝN

−1(π̂N )− hs
−1(π0)

]

=
√
N

[
hŝN

−1(π̂N )−hŝN
−1(π̂0)

]
+
√
N

[
hŝN

−1(π̂0)−hs
−1(π̂0)

]

≡
√
N

(
p̂N − p

(0)
N

)
+
√
N

(
p
(0)
N − p0

)
. (A.3)

We now prove that the two terms in this decomposition can be approximated
by two normally distributed random variables. The variance and covariance of
these variables will be specified. First, the Taylor series expansion of hŝN

−1 at
π0 maybe written as,

√
N

(
p̂N − p̂

(0)
N

)
≡

√
N

[
hŝN

−1(π̂N )− hŝN
−1(π0)

]
(A.4)

=
√
N

{[
d

dπ
hŝN

−1(π)

����
π=π0

]
(π̂N − π0) + o(π̂N − π0)

}

⇒
√
N

(
p̂N − p̂

(0)
N

)
=

[
d

dπ
hŝN

−1(π)

����
π=π0

]
√
N(π̂N − π0) + oP (1) . (A.5)

In (A.5), we have

d

dπ
hŝN

−1(π)

����
π=π0

a.s.→ d

dπ
h−1
s (π)

����
π=π0

=
1

h′s
[
hs

−1(π0)
] =

1

h′s(p0)
.

(using (2.1c) and the property that ŝN converges to s almost surely).

In addition,
√
N(π̂N − π0)

D→ Z1 (see Lemma 1). By Slutsky’s Theorem,
√
N

(
p̂N − p̂

(0)
N

)
D→ 1

h′s(p0)
Z1 ∼ N (0, V1) , (A.6)

where
V1 =

[
h′s (p0)

]−2
Σ11 =

[
h′s (p0)

]−2
π0(1− π0) . (A.7)

On the other hand, if we consider p to be fixed, we may view the reliability
polynomial hs(p) as a function of s. From (1.1), we see thaths(p) =

∑
i hi(p) si

is a linear function of the vector s. Define ∇shs(p) as the gradient of the n× 1
vector s for fixed p. Then

∇T
s hs(p) =

(
h1(p), h2(p), . . . , hn(p)

)
, (A.8)

and hence
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hŝN (p) = hs(p) +∇T
s hs(p) (ŝN − s) . (A.9)

This linear expansion, along with a Taylor series expansion, helps us to
determine the asymptotic behavior of the second term in the decomposition in
(A.3). Indeed, setting the fixed argument p in (A.9) to be p̂

(0)
N , we have

hŝN (p̂
(0)
N ) = hs(p̂

(0)
N ) +∇T

s hs(p̂
(0)
N )(ŝN − s) . (A.10)

Then, if we apply the inverse function hs
−1 to both sides of (A.10), and expand

the function h−1
s around hs(p̂

(0)
N ), Taylor’s theorem shows that

h−1
s

[
hŝN (p̂

(0)
N )

]
= h−1

s

[
hs

(
p̂
(0)
N

)
+∇T

s hs

(
p̂
(0)
N

)
(ŝN − s)

]

= h−1
s

[
hs(p̂

(0)
N )

]
+

[
d

dπ
h−1
s (π)

����
π=hs(p̂

(0)
N )

] [
∇T

s hs(p̂
(0)
N )(ŝN − s)

]

+o
[
∇T

s hs(p̂
(0)
N )(ŝN − s)

]

= p̂
(0)
N +

[
d

dπ
h−1
s (π)

����
π=hs(p̂

(0)
N )

] [
∇T

s hs(p̂
(0)
N )(ŝN − s)

]

+oP (∥ŝN − s∥). (A.11)

It follows that h−1
s

[
hŝN (p̂

(0)
N )

]
can be expressed as

p̂
(0)
N +

[
d

dπ
h−1
s (p)

����
π=hs(p̂

(0)
N )

] [
∇T

s hs(p̂
(0)
N )(ŝN − s)

]
+ oP (∥ŝN − s∥) ,

while h−1
s

[
hŝN (p̂

(0)
N )

]
equals to p0 as well, in view of the definitions in (2.1a)-

(2.1e), since

p0 = h−1
s (π0) = h−1

s

{
hŝN

[
hŝN

−1(π0)
]}

= h−1
s

[
hŝN (p̂

(0)
N )

]
.

Hence

p0 = p̂
(0)
N +

[
d

dπ
h−1
s (π)

����
π=hs(p̂

(0)
N )

] [
∇T

s hs(p̂
(0)
N )(ŝN − s)

]
+ oP (∥ŝN − s∥) .

Furthermore,

p̂
(0)
N − p0

= p̂
(0)
N −

{
p̂
(0)
N +

[ d

dπ
h−1
s (π)

����
π=hs(p̂

(0)
N )

] [
∇T

s hs(p̂
(0)
N )(ŝN − s)

]
+ oP (∥ŝN − s∥)

}

=
{
−
[ d

dπ
h−1
s (π)

����
π=hs(p̂

(0)
N )

]
∇T

s hs(p̂
(0)
N )

}
(ŝN − s) + oP (∥ŝN − s∥) . (A.12)
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Since p̂
(0)
N = hŝN

−1(π0)
a.s.→ h−1

s (π0) = p0, we have

(i) hs(p̂
(0)
N )

a.s.→ hs(p0) ,

(ii)
d

dπ
h−1
s (π)

����
π=hs(p̂

(0)
N )

a.s.→ d

dπ
h−1
s (π)

����
π=hs(p0)

=
1

h′s
{
hs

−1 [hs(p0)]
} =

1

h′s(p0)
,

(iii) ∇T
s hs(p̂

(0)
N )

a.s.→ ∇T
s hs(p0) ,

and hence the gradient in (A.12) satisfies

(iv) −

[
d

dπ
h−1
s (π)

����
π=hs(p̂

(0)
N )

]
∇T

s hs(p̂
(0)
N )

a.s.→ 1

h′s(p0)
∇T

s hs(p0) .

Applying Slusky’s Theorem to (A.12), we have:
√
N

(
p̂
(0)
N − p0

)
D→ − 1

h′s(p0)
∇T

s hs(p0)Z2 ∼ N (0, V2) , (A.13)

where V2 = [h′ (p0)]
−2 ∇T

s hs(p0) Σ22∇shs(p0).
To calculate the value of V2, recall that from (A.8) that

∇shs(p0) =
(
h1(p0), h2(p0), . . . , hn(p0)

)T
.

Thus,

V2 =
[
h′ (p0)

]−2
(
h1(p0), . . . , hn(p0)

)



s1(1− s1) . . . −s1sn
−s1s2 . . . −s2sn
. . . . . . . . .

−s1sn . . . sn(1− sn)







h1(p0)

h2(p0)

. . .

hn(p0)




=
[
h′ (p0)

]−2
[∑

i

si(1− si)h
2
i (p0)−

∑
i̸=j

sisjhi(p0)hj(p0)
]

=
[
h′ (p0)

]−2
[∑

i

sih
2
i (p0)−

∑
i

s2ih
2
i (p0)−

∑
i̸=j

sisjhi(p0)hj(p0)
]

=
[
h′ (p0)

]−2
[∑

i

sih
2
i (p0)−

∑
i,j

sisjhi(p0)hj(p0)
]

=
[
h′ (p0)

]−2
{∑

i

sih
2
i (p0)−

[∑
i

sihi(p0)
]2}

=
[
h′ (p0)

]−2
[∑

i

sih
2
i (p0)− h2s(p0)

]
. (A.14)

Now, it is apparent from (A.6) and (A.13) that the two summands in the
last line of (A.3) have the limits

√
N

(
p̂N − p̂

(0)
N

)
D→ 1

h′s(p0)
Z1 ∼ N (0, V1) ,

√
N

(
p̂
(0)
N − p0

)
D→− 1

h′s(p0)
∇T

s hs(p0)Z2 ∼ N (0, V2).
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hŝN (p) = hs(p) +∇T
s hs(p) (ŝN − s) . (A.9)

This linear expansion, along with a Taylor series expansion, helps us to
determine the asymptotic behavior of the second term in the decomposition in
(A.3). Indeed, setting the fixed argument p in (A.9) to be p̂

(0)
N , we have

hŝN (p̂
(0)
N ) = hs(p̂

(0)
N ) +∇T

s hs(p̂
(0)
N )(ŝN − s) . (A.10)

Then, if we apply the inverse function hs
−1 to both sides of (A.10), and expand

the function h−1
s around hs(p̂

(0)
N ), Taylor’s theorem shows that

h−1
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N

)
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d
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����
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∇T

s hs(p̂
(0)
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Since p̂
(0)
N = hŝN

−1(π0)
a.s.→ h−1
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����
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=
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(0)
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)
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∇T

s hs(p0)Z2 ∼ N (0, V2) , (A.13)

where V2 = [h′ (p0)]
−2 ∇T

s hs(p0) Σ22∇shs(p0).
To calculate the value of V2, recall that from (A.8) that

∇shs(p0) =
(
h1(p0), h2(p0), . . . , hn(p0)

)T
.

Thus,
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[
h′ (p0)

]−2
(
h1(p0), . . . , hn(p0)

)

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s1(1− s1) . . . −s1sn
−s1s2 . . . −s2sn
. . . . . . . . .
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



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h2(p0)

. . .

hn(p0)




=
[
h′ (p0)

]−2
[∑

i

si(1− si)h
2
i (p0)−

∑
i̸=j

sisjhi(p0)hj(p0)
]

=
[
h′ (p0)

]−2
[∑

i

sih
2
i (p0)−

∑
i

s2ih
2
i (p0)−

∑
i̸=j

sisjhi(p0)hj(p0)
]

=
[
h′ (p0)

]−2
[∑

i

sih
2
i (p0)−

∑
i,j
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]

=
[
h′ (p0)

]−2
{∑

i

sih
2
i (p0)−

[∑
i

sihi(p0)
]2}

=
[
h′ (p0)

]−2
[∑

i

sih
2
i (p0)− h2s(p0)

]
. (A.14)

Now, it is apparent from (A.6) and (A.13) that the two summands in the
last line of (A.3) have the limits

√
N

(
p̂N − p̂

(0)
N

)
D→ 1

h′s(p0)
Z1 ∼ N (0, V1) ,

√
N

(
p̂
(0)
N − p0

)
D→− 1

h′s(p0)
∇T

s hs(p0)Z2 ∼ N (0, V2).
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The asymptotic covariance between the summands is hence

V12=Cov
( 1

h′s(p0)
Z1,−

1

h′s(p0)
∇T

s hs(p0)Z2

)
=−

[
h′s(p0)

]−2
Cov(Z1, Z2)∇shs(p0).

It follows from (2.2) in Lemma 1 that

V12 = −
[
h′s(p0)

]−2
Σ12∇shs(p0)

= −
[
h′s (p0)

]−2
(
s1 [h1 (p0)− π0] , . . . , sn [hn (p0)− π0]

)



h1(p0)

h2(p0)

. . .

hn(p0)




= −
[
h′s (p0)

]−2
∑
i

{si [hi (p0)− π0]hi(p0)}

= −
[
h′s (p0)

]−2
[∑

i

sih
2
i (p0)−

∑
i

sihi(p0)π0

]

= −
[
(h′s (p0)

]
)−2

[∑
i

sih
2
i (p0)− h2s(p0)

]
= −V2 . (A.15)

Finally, the summation in (A.3) has the following asymptotic property:√
N (p̂N − p0)

D→ N (0, σ2), where

σ2 = V1 + V2 + 2V12 = V1 + V2 − 2V2 = V1 − V2 (A.16)

=
[
h′s (p0)

]−2
π0(1− π0)−

[
h′s (p0)

]−2
[∑

i

sih
2
i (p0)− h2s(p0)

]

=
[
h′s (p0)

]−2
{
hs(p0) [1− hs(p0)]−

∑
i

sih
2
i (p0) + h2s(p0)

}

=
[
h′s (p0)

]−2
[
hs(p0)−

∑
i

sih
2
i (p0)

]

=
[
h′s (p0)

]−2
∑
i

sihi(p0) [1− hi(p0)] . (A.17)

Proof of Theorem 3. In fact, ˆ̄F 0(t) can be written as h−1
s (π̂N ), then similar

to the proof in Theorem 2, we have

√
N

[
h−1
s (π̂N )− h−1

s (π0)
] D→ N


0,

[
d

dπ
h−1
s (π)

����
π=π0

]2

Var(Z1)


 , (A.18)

by using the delta method. The asymptotic variance is therefore
[
d

dπ
h−1
s (π)

����
π=π0

]2

Var(Z1) = V1 ,
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and moreover, the asymptotic variance of ˆ̄F (t) has been proven to be σ2 =

V1 − V2 ≤ V1 in (A.16).

A.2. An additional example for Section 2.3

In Section 2, we provide an elementary example showing that the estimator

of a known nuisance parameter can indeed prove efficacious in estimating a given

target parameter. Here we provide another example in a linear model setting

that shares a similar feature.

In the context of small area estimation (see, e.g., Rao and Molina (2015)),

the Fay-Herriot model (see Fay and Herriot (1979)) is well known for estimating

the small area means with area-level data. The model can be expressed as

yi = XT
i β + Vi + ei, i = 1, . . . ,m,

where Xi is a vector of known covariates, β is a vector of unknown regression

coefficients, Vi is a random effect, and ei is a sampling error. It is assumed that

Vi, ei, i = 1, . . . ,m are independent with Vi ∼ N(0, A) and ei ∼ N(0, Di), where

Di, i = 1, . . . ,m are known variances, but A is a additional variance.

Under the traditional Fay-Herriot model, the random effects, Vi, are unob-

served, and A is unknown. Below we consider two variations from the tradi-

tional setting. First, assume that A is known that A is known but that the

V
′
i s are unobserved. In this case, the observations are Yi, i = 1, . . . ,m, and it is

well known [see e.g., Jiang (2007, (2.33))] that the MLE of β is given by β̂ =

(XTV −1X)−1XTV −1y, where Y = (Yi)1≤i≤m, X = (XT
i )1≤i≤m, and V = AIm+

D, with Im being the m-dimensional identity matrix and D = daig(D1, . . . , Dm).

It follows that the covariance matrix of β̂ is Var(β̂) = (XTV −1X)−1.

Now suppose, in addition, that the Vi are actually observed. Then, the

observations are (Yi, Vi), i = 1, . . . ,m. To derive the MLE of β, one can write the

joint density of (Y, V ), with V = (Vi)1≤i≤m, as f(Y, V |β,A) = f(Y |V, β)f(V |A),

where f(Y |V, β) denotes the conditional density of Y given V , and f(V |A) the

density of V . Although A is known, below we ignore this and try to “estimate”

A via maximum likelihood. However, because f(V |A) does not involve β, the

MLE of β is the same as the maximizer of f(Y |V, β), over β (while the MLE of

A is the same as the maximizer of f(V |A) over A). Furthermore, we have

f(Y |V, β) =
m∏
i=1

1√
2πDi

exp

{
−(Yi − Vi −XT

i β)
2

2Di

}
.

The latter is the same as the density function under the above Fay-Herriot model

with Y replaced by Y −V and A = 0 (hence V = D). Thus, by the above results,
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=−
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It follows from (2.2) in Lemma 1 that
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= −
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)−2
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Finally, the summation in (A.3) has the following asymptotic property:√
N (p̂N − p0)

D→ N (0, σ2), where

σ2 = V1 + V2 + 2V12 = V1 + V2 − 2V2 = V1 − V2 (A.16)

=
[
h′s (p0)

]−2
π0(1− π0)−

[
h′s (p0)
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}

=
[
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]−2
[
hs(p0)−

∑
i

sih
2
i (p0)

]

=
[
h′s (p0)
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∑
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Proof of Theorem 3. In fact, ˆ̄F 0(t) can be written as h−1
s (π̂N ), then similar

to the proof in Theorem 2, we have

√
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h−1
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] D→ N


0,
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s (π)
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by using the delta method. The asymptotic variance is therefore
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π=π0

]2

Var(Z1) = V1 ,
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and moreover, the asymptotic variance of ˆ̄F (t) has been proven to be σ2 =

V1 − V2 ≤ V1 in (A.16).

A.2. An additional example for Section 2.3

In Section 2, we provide an elementary example showing that the estimator

of a known nuisance parameter can indeed prove efficacious in estimating a given

target parameter. Here we provide another example in a linear model setting

that shares a similar feature.

In the context of small area estimation (see, e.g., Rao and Molina (2015)),

the Fay-Herriot model (see Fay and Herriot (1979)) is well known for estimating

the small area means with area-level data. The model can be expressed as

yi = XT
i β + Vi + ei, i = 1, . . . ,m,

where Xi is a vector of known covariates, β is a vector of unknown regression

coefficients, Vi is a random effect, and ei is a sampling error. It is assumed that

Vi, ei, i = 1, . . . ,m are independent with Vi ∼ N(0, A) and ei ∼ N(0, Di), where

Di, i = 1, . . . ,m are known variances, but A is a additional variance.

Under the traditional Fay-Herriot model, the random effects, Vi, are unob-

served, and A is unknown. Below we consider two variations from the tradi-

tional setting. First, assume that A is known that A is known but that the

V
′
i s are unobserved. In this case, the observations are Yi, i = 1, . . . ,m, and it is

well known [see e.g., Jiang (2007, (2.33))] that the MLE of β is given by β̂ =

(XTV −1X)−1XTV −1y, where Y = (Yi)1≤i≤m, X = (XT
i )1≤i≤m, and V = AIm+

D, with Im being the m-dimensional identity matrix and D = daig(D1, . . . , Dm).

It follows that the covariance matrix of β̂ is Var(β̂) = (XTV −1X)−1.

Now suppose, in addition, that the Vi are actually observed. Then, the

observations are (Yi, Vi), i = 1, . . . ,m. To derive the MLE of β, one can write the

joint density of (Y, V ), with V = (Vi)1≤i≤m, as f(Y, V |β,A) = f(Y |V, β)f(V |A),

where f(Y |V, β) denotes the conditional density of Y given V , and f(V |A) the

density of V . Although A is known, below we ignore this and try to “estimate”

A via maximum likelihood. However, because f(V |A) does not involve β, the

MLE of β is the same as the maximizer of f(Y |V, β), over β (while the MLE of

A is the same as the maximizer of f(V |A) over A). Furthermore, we have

f(Y |V, β) =
m∏
i=1

1√
2πDi

exp

{
−(Yi − Vi −XT

i β)
2

2Di

}
.

The latter is the same as the density function under the above Fay-Herriot model

with Y replaced by Y −V and A = 0 (hence V = D). Thus, by the above results,

497



20 Y. JIN, P. G. HALL, J. JIANG AND F. J. SAMANIEGO

the MLE of β is β̃ = (XTD−1X)−1XTD−1(Y − V ), whose covariance matrix is

Var(β̃) = (XTD−1X)−1.

Because V ≥ D (for symmetric matrices A,B, A ≥ B iff A−B is nonnegative

definite), it follows that V −1 ≤ D−1 (e.g., Jiang (2010, (i) of Sec. 5.3.1)); hence

X ′V −1X ≤ X ′D−1X. Thus, by the same argument, we have

Var(β̂) = (X ′V −1X)−1 ≥ (X ′D−1X)−1 = Var(β̃).

The last result shows that, if the Vi’s are available, one can actually do better in

estimating β by estimating a nuisance parameter, A, which one already knows.
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