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Abstract: In longitudinal data analysis, a correct specification of the within-subject

covariance matrix cultivates an efficient estimation for mean regression coefficients.

In this article, we consider robust variable selection method in a joint mean and

covariance model. We propose a set of penalized robust generalized estimating

equations to simultaneously estimate the mean regression coefficients, the general-

ized autoregressive coefficients, and innovation variances introduced by the modified

Cholesky decomposition. The set of estimating equations select important covari-

ate variables in both mean and covariance models together with the estimating

procedure. Under some regularity conditions, we develop the oracle property of

the proposed robust variable selection method. Finally, a simulation study and a

detailed data analysis are carried out to assess and illustrate the small sample per-

formance; they show that the proposed method performs favorably by combining

the robustifying and penalized estimating techniques together in the joint mean

and covariance model.
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1. Introduction

Longitudinal data arise more and more frequently in a variety of scientific

domains that seek insightful and comprehensive research in a branch of statisti-

cal modeling. Different from other types of data, we often assume independence

among distinct subjects but dependence within each subject; within-subject cor-

relation raises a fundamental challenge for the analysis of longitudinal data.

Liang and Zeger (1986), a milestone in the development of methodology for

longitudinal data analysis, proposed generalized estimating equations (GEE) for

estimation of generalized linear regression coefficients. The main advantage of

their method is that even when the within-subject correlation is treated as a

nuisance parameter with an assumed parsimonious structure, GEE still brings

about a consistent estimator for the mean regression model. Subsequential, Qu,

Lindsay, and Li (2000) used the quadratic inference function (QIF) to enhance
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the efficiency by considering the structure of the covariance matrix. Taking ro-

bustification into account, He, Fung, and Zhu (2005) proposed the robust GEE

method to prevent the unexpected influence from outliers in a longitudinal data

set.

Ignoring the within-subject correlation can result in an inefficient estimator

of a regression model. In practice, the within-subject covariance structure itself

may be of scientific interest. Relevant topics here include component analysis

and factor analysis in multivariate statistical problems. Recent research on the

estimation of the covariance matrix includes, but is not limited to, Rothman,

Levina, and Zhu (2009), El Karoui (2008) and Bickel and Levina (2008).

Similar to the mean regression, covariances may be dependent on various

explanatory variables. Pourahmadi (1999, 2000) proposed a joint mean and

covariance regression model by decomposing the covariance matrix employing

generalized autoregressive coefficients and innovation variances. Ye and Pan

(2006) extended the joint model under the framework of generalized estimating

equations which required no assumptions on the distribution of the data. By

introducing generalized autoregressive coefficients and innovation variances, their

joint model eliminated the positive definiteness constraint in estimation of the

covariance matrix. Instead, three generalized estimating equations were proposed

to estimate the covariance matrix and the mean simultaneously.

A number of developments have been followed, see Fan, Huang, and Li

(2007), Fan and Wu (2008), and Xu and Mackenzie (2012). Leng, Zhang, and

Pan (2010) generalized Ye and Pan’s model to a semiparametric joint mean and

covariance model. Mao, Fung, and Zhu (2011) extended Leng, Zhang, and Pan

(2010)’s work further to a generalized partially linear varying coefficient model.

Zheng, Fung, and Zhu (2013) extended the robust estimating equation in He,

Fung, and Zhu (2005) to the joint mean and covariance model by creating three

robust estimating equations to mitigate the effect of outliers in both mean and

covariance estimation.

Variable selection is a technique for selecting a subset of relevant covari-

ates in constructing reliable statistical models. Many variable selection methods

are based on the penalized likelihood or penalized estimating equations. Com-

monly used penalties include LASSO, ALASSO (adaptive lasso in Zou (2006))

SCAD, and Hard penalties. In longitudinal data analysis, Fu (2003) proposed

the penalized generalized estimating equation with LASSO penalty. Other vari-

able selection criteria include AIC and Cp, extended by Pan (2001) and Cantoni,

Flemming, and Ronchetti (2005), respectively, to the case of longitudinal data

under the framework of GEE.

In contrast, little work has been done on covariance variable selection or

identification. Jeng and Daye (2011) noticed that to curve the sparsity in the
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covariance matrix can improve the efficiency on mean estimation, especially in

high dimensional problems, though their main objective was still the mean esti-

mation. Within the framework of the joint mean and covariance model, Huang

et al. (2006) proposed covariance selection and estimation via penalized nor-

mal likelihood. Kou and Pan (2011) proposed a penalized maximum likelihood

method for the joint model that employed variable selection in both models si-

multaneously, the covariance matrix being treated as of equal importance as the

mean.

In this paper, we develop a penalized robust estimating equations based

method to select important explanatory variables. Simulation studies have shown

that both the classical GEE and the joint mean and covariance model are sensi-

tive to outliers, see details in He, Fung, and Zhu (2005) and Zheng, Fung, and

Zhu (2013). Nevertheless, the discussion on robust variable selection methods

has been limited. We consider the SCAD and ALASSO penalties, and show

the oracle property of the proposed robust variable selection method. In data

analysis, the robust variable selection procedure can provide standard errors for

mean coefficients estimation, due to sensible covariance matrix modeling and the

accommodation of outliers in both subject and observation levels.

The remainder of this article is organized as follows. Section 2 describes

the main model and its asymptotic properties. Simulation results are given in

Section 3. In Section 4, we apply the proposed method to a hormone data set.

2. Robust Variable Selection in Joint Mean and Covariance Model

2.1. Joint mean and covariance model

Suppose that we have a sample of m subjects. Let yi = (yi1, . . . , yini)
T be

the ni repeated observations at time point ti = (ti1, . . . , tini)
T of the ith subject.

Let E(yi) = µi = (µi1, . . . , µini)
T and Cov(yi) = Σi be the ni × 1 mean vector

and ni × ni covariance matrix of yi, respectively.

To eliminate the constraint of positive definiteness in estimation of the covari-

ance matrix Σi, we implement a modified Cholesky decomposition by introducing

a unique lower triangular matrix Φi with 1’s as diagonal entries and a unique

diagonal matrix Di with positive diagonals such that

ΦiΣiΦ
T
i = Di.

Here the lower-diagonal entries of Φi are the negatives of the autoregressive

coefficients ϕijk defined in

ŷij = µij +

j−1∑
k=1

ϕijk(yik − µik),
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the linear least squares predictor of yij based on its predecessors yi(j−1), . . . , yi1.

The diagonal entries σ2ij of Di are the innovation variances σ2ij = var(εij), where

εij = yij − ŷij .

We adopt linear models for the mean, generalized autoregressive parameters,

and innovation variances as in Ye and Pan (2006):

µij = xTijβ, ϕijk = gTijkγ, log σ
2
ij = zTijλ, (2.1)

where xij , gijk, and zij are p × 1, q × 1 and d × 1 vectors of covariates, and

β, γ and λ are associated parameters. The covariates gijk and zij may contain

baseline covariates, time and associated interactions. The log-linear model of the

innovation variance follows Cook and Weisberg’s (1983) model for the variance.

Cook and Weisberg developed a log-linear model that allows for dependence of

the variance on an arbitrary set of variables. In practice, the whole set of the

covariates is difficult to define. An orthogonal form for a polynomial of time was

recommended as the covariate for the autoregressive component by Ye and Pan

(2006):

gijk = (1, (tij − tik), (tij − tik)
2, . . . , (tij − tik)

q−1)T .

The linear assumption in (2.1) can be replaced by quadratic assumptions,

or the use of nonparametric or semiparametric models after the decomposition,

see Mao, Fung, and Zhu (2011) and Leng, Zhang, and Pan (2010). To simplify

matters we start from the linear assumption.

In the models at (2.1), estimation for generalized autoregressive coefficients

and innovation variances are treated as important as the estimation for the mean.

Let θ = (θ1, . . . , θs)
T = (β1, . . . , βp; γ1, . . . , γq;λ1, . . . , λd)

T , where s = p+ q + d.

To select important subsets of the covariates, we assume that all interesting

explanatory variables, together with their interactions, are involved. By using

the same λ, the proposed method is applicable for correlated data as long as

the correlated (or longitudinal) measurements have similar correlation structure

between clusters.

2.2. Penalized robust generalized estimating equations

We propose a penalized robustified generalized estimating equations

U(θ) = ([U1(β)]
T , [U2(γ)]

T , [U3(λ)]
T )T ,

for the mean, generalized autoregressive parameters, and innovation variances,

respectively:

U1(β) =

m∑
i=1

XT
i (V

β
i )−1hβi (µi(β))−mqτ (1)(|β|)sgn(β) = 0, (2.2)
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U2(γ) =

m∑
i=1

T T
i (V γ

i )
−1hγi (r̂i(γ))−mqτ (2)(|γ|)sgn(γ) = 0, (2.3)

U3(λ) =

m∑
i=1

ZT
i Di(V

λ
i )−1hλi (σ

2
i (λ))−mqτ (3)(|λ|)sgn(λ) = 0, (2.4)

where hβi (µi(β)) = W β
i [ψ

β(µi(β)) − Cβ
i (µi(β))], h

γ
i (r̂i(γ)) = W γ

i [ψ
γ(r̂i(γ)) −

Cγ
i (r̂i(γ))] and hλi (σ

2
i (λ)) = W λ

i [ψ
λ(σ2i (λ)) − Cλ

i (σ
2
i (λ))] act as the core of the

estimating equations with Xi = (xTi1, . . . , x
T
ini

)T , Zi = (zTi1, . . . , z
T
ini

)T , gij =

(gTij1, . . . , g
T
ij(j−1))

T and Ti = (gTi1, . . . , g
T
ini

)T .

Equations (2.3) and (2.4) are in agreement with (2.2), in which ri in U2(γ)

and ε2i in U3(λ) play roles similar to that of yi in U1(β), and can be viewed as

working responses. Here covariance estimation is treated the same mean esti-

mation in the proposed model, in the spirit of the joint model in Ye and Pan

(2006).

We specify items in (2.2)−(2.4). In U2(γ), ri and r̂i are ni × 1 vectors with

jth components rij = yij − µij and r̂ij = E(rij |ri1, . . . , ri(j−1)) =
∑j−1

k=1 ϕijkrik,

where
∑0

k=1 is zero when j = 1. In U3(λ), εij = yij − ŷij and ε2i and σ2i
are ni × 1 vectors with jth components ε2ij and σ2ij , respectively, where in fact

E(ε2i ) = σ2i . Moreover, T T
i = ∂r̂Ti /∂γ is the q × ni matrix with the jth column

∂r̂ij/∂γ =
∑j−1

k=1 rikgijk and Di = diag{σ2i1, . . . , σ2ini
}.

Again at (2.2)−(2.4), V β
i = A

−1/2
i Σi, Ai is the diagonal elements of Σi,

V γ
i = D

1/2
i , V λ

i = Ã
−1/2
i Σ̃i, and Ãi is the diagonal elements of Σ̃i. The sandwich

working covariance structure Σ̃i = B
1/2
i Ri(δ)B

1/2
i can be used to model the true

Σ̃i = Cov(ε2i ) with Bi = 2diag{σ4i1, . . . , σ4ini
} and Ri(δ) mimics the correlation

between ε2ij and ε2ik by introducing a new parameter δ. This idea was proposed

by Ye and Pan (2006).

The parameter δ has little effect on the estimation in practice. Consider-

ing the AR(1) structure, we can estimate δ by the slope from the regression of

log(ε̂2ij , ε̂
2
ik) on log(|tj − tk|). Details can be found in Example 4 in Liang and

Zeger (1986). In our simulations and data analyses, the estimate of δ always

falls in the interval [0, 0.3]. Moreover, results in Table 3 for simulation Study 2

also imply that we can ignore the difference between the independent and AR(1)

structure for Ri(δ).

Penalized robust generalized estimating equations are distinguished from

conventional generalized estimating equations in two aspects. First, the un-

desirable influence of outliers is controlled. In the core of the estimating equa-

tions, ψβ(µi) = ψ(A
−1/2
i (yi − µi)), ψ

γ(r̂i) = ψ(D
−1/2
i (ri − r̂i)), and ψλ(σ2i ) =

ψ(Ã
−1/2
i (ε2i − σ2i )). The function ψ(·) is chosen to limit the influence of out-

liers in the response variable, and a common choice is Huber’s score function
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ψc(x) = min{c,max{−c, x}} for some constant c, c = 2 in our implementa-

tion. To ensure Fisher consistency, we use Cβ
i (µi) = E[ψ(A

−1/2
i (yi − µi))],

Cγ
i (r̂i) = E[ψ(D

−1/2
i (ri − r̂i))] and C

λ
i (σ

2
i ) = E[ψ(Ã

−1/2
i (ε2i − σ2i ))]. When yi’s

are normal, the three expectations depend only on the choice of constant c in

Huber’s score function. We can also assign weights to each subject by diago-

nal weighting matrices W β
i = diag(wβ

i1, . . . , w
β
ini

), W γ
i = diag(wγ

i1, . . . , w
γ
ini

) and

W λ
i = diag(wλ

i1, . . . , w
λ
ini

). Similar to Qin, Zhu, and Fung (2009), the weight

function wij is chosen to be the Mahalanobis distance

wij = w(pij) = min
{
1,

[ b0

(pij −mp)TS
−1
p (pij −mp)

]ρ/2}
,

with ρ ≥ 1, where mp and Sp are some robust estimates of the location and scale

of pij such as the minimum covariance determinant estimators. We introduce the

weight function to bound the influence of leverage points, covariate space only.

As indicated in He, Fung, and Zhu (2005), we can include certain covariates that

are likely to contribute to the leverage. In our simulation study, b0 is chosen

as the 95th percentile of the chi-squared distribution with degrees of freedom

equal to the dimension of pij and ρ is fixed as 1. For simplicity and consistency,

we choose pij = xij for all three weighting matrices and denote them as Wi =

diag(wi1, . . . , wini).

Selecting variables is achieved by adding a penalty term to each estimating

equation. Usually, qτ (l)(·) is the first derivative for some penalty pτ (l)(·), where
l = 1, 2, 3. For brevity, we replace pτ (1) , pτ (2) and pτ (3) by pτ and qτ (1) , qτ (2)
and qτ (3) by qτ when no misunderstanding arises. In the simulation and data

analyses, we only consider SCAD and ALASSO penalties to show the asymptotic

properties. Fan and Li (2001) defined the smoothly clipped absolute deviation

(SCAD) penalty function:

pτ (|θ|) = τ(|θ|){I((|θ|) < τ)}+ (a− |θ|/2τ)
a− 1

I(τ < (|θ|) < a)

+
a2τ

2(a− 1)(|θ|)
I{(|θ|) ≥ aτ},

in which a = 3.7 was suggested by the authors. As a compromise between

LASSO and Hard penalties, SCAD enjoys unbiasedness, sparsity and continuity

properties simultaneously.

As a consistent version of the L1 penalty, ALASSO penalty is pτ = τ |θ|w, for
a known data–driven weight w. In this paper, we employ the weight w = 1/|θ̃|,
where θ̃ is the regression coefficient estimate obtained from solving (2.2)−(2.4)

without penalty.
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2.3. Asymptotic properties

We write the m subjects–based penalized estimator θ̂m = ((θ̂s1m )T , (θ̂s2m )T )T

for the true value θ0 = ((θs10 )T , (θs20 )T )T , where θs10 and θs20 are the nonzero

and zero components of θ0, respectively. Denote the dimension of θs10 by s1 and

s = s1 + s2. The parameter space is assumed compact and the true value θ0 is

in the interior of the parameter space Θ.

In what follows we show that the penalized estimator θ̂m exists and con-

verges to θ0 at the rate Op(m
−1/2), implying that it has the same consistency

rate as the ordinary estimator. We prove that the
√
m–consistent estimator θ̂s1m

is asymptotically normally distributed and possesses the oracle property under

certain regularity conditions.

Theorem 1. Under the assumptions in S1 of the supplementary material,

(a) there exists an approximate zero-crossing solution θ̂ of U(θ) = 0, such that

θ̂ = θ0 +Op(m
−1/2);

(b) for any
√
m consistent approximate zero-crossing solution of U(θ) = 0, we

have

lim
m→∞

P{θ̂j = 0, j > s1} = 1.

The definition of the zero-crossing estimator θ̂, which is introduced in John-

son, Lin, and Zeng (2008), is given in S1 of the supplementary material. Theorem

1 implies that when we choose a proper τm, our robust penalized GEE approach

can simultaneously achieve
√
m consistency of the regularized regression coeffi-

cient estimation and consistency of variable selection.

To obtain the asymptotic distribution of θ̂, we take B = limm→∞(1/m)

Cov[UR(θ0)] and assume it to be positive definite. The definition of UR(θ0) is

given in supplement S1. We assume κm(θ) = E[ 1mU
R(θ)], κm(θ0) = 0, κm(θ) is

continuous on Θ, and κm(θ) is differentiable at θ0 with nonsingular derivative

matrix G. Define cm = (qτm(|θ
s1
01|)sgn(θ

s1
01), . . . , qτm(|θ

s1
0s1

|)sgn(θs10s1))
T and Ω =

diag{−q′τm(|θ0|)sgn(θ0)}, where τm is equal to either τ
(1)
m , τ

(2)
m , or τ

(3)
m , depending

on whether θ0j is a component of β0, γ0, or λ0 (1 ≤ j ≤ s). θ0j is the jth

component of θ0, and θ
s1
0j is the jth component of θs10 (1 ≤ j ≤ s1).

Theorem 2. Under the conditions given in S1 of the supplementary material,

for the SCAD penalty we have

√
m(Gs1

m +Ωs1
m){θ̂s1m − θs10 + (Gs1

m +Ωs1
m)−1cm} → Ns1(0, B

s1)

in distribution, where Bs1, Gs1
m , and Ωs1

m are the s1 × s1 submatrix of B, G, and

Ω corresponding to the nonzero components θs10 .



522 XUEYING ZHENG, WING KAM FUNG AND ZHONGYI ZHU

As a result, the asymptotic covariance matrix Cov(θ̂s1m ) of θ̂s1m is

1

m
(Gs1

m +Ωs1
m)−1B̂s1

m (Gs1
m +Ωs1

m)−1.

Thus, our proposed robust penalized joint model based on the SCAD penalty

possesses the oracle property. Proofs of Theorems are sketched in S1 of the

supplementary material.

2.4. Implementation

An iterative MM algorithm for estimating β, γ and λ is described in detail

in S2 of the supplementary material. Meanwhile, the choice of τ is critical. In

practice, we select τ (1) by minimizing the robustified generalized cross-validation

(GCV) criterion

GCVβ(τ) =
RSSβ(τ)/m

{1− d(τ)/m}2
,

where RSSβ(τ) is the robustified residual sum of squares

m∑
i=1

[Wiψ(A
−1/2
i (yi − xiβ̂τ ))]

2,

and d(τ) is the effective number of parameters, dβ(τ) = tr([Ĝ(β)+∆τ (β̂τ )]
−1

[Ĝ(β)]T ); here β̂τ is the solution of the penalized robust GEE when τ is fixed.

We select τ̂ = argminτGCVβ.

Similar to the choice of τ (1) we select tuning parameters τ (2) and τ (3) by

minimizing the robustified GCV statistics

GCVγ(τ) =
RSSγ(τ)/m

{1− dγ(τ)/m}2
, GCVλ(τ) =

RSSλ(τ)/m

{1− dλ(τ)/m}2
,

where RSSγ(τ) =
∑m

i=1[Wiψ(D
−1/2
i (ri− r̂i))]2 and RSSλ(τ) =

∑m
i=1[Wiψ(Ã

−1/2
i

(ε̂2i − σ̂2i ))]2. dγ(τ) and dλ(τ) are the effective numbers of covariance parameters.

To avoid computational burden, we recommend selecting parameters sequen-

tially, as follows

(1) Fix τ (2) = τ (3) = 0, choose τ̂ (1) = argminτ (1)GCVβ(τ
(1));

(2) Fix τ (1) = τ̂ (1) and τ (3) = 0, choose τ̂ (2) = argminτ (2)GCVγ(τ
(2));

(3) Fix τ (1) = τ̂ (1) and τ (2) = τ̂ (2), choose τ̂ (3) = argminτ (3)GCVλ(τ
(3));

(4) The final choice is (τ̂ (1), τ̂ (2), τ̂ (3)).

The process of tuning parameter selection has merits aside from reducing the

computational burden. From a numerical point of view, minimizing GCVγ and
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GCVλ does not always benefit mean estimation. Sequentially selecting tuning

parameters lets us adjust and stabilize selection while balancing the importance

of estimation for the mean and the covariance structure.

3. Simulation

We conducted a simulation study to assess the performance of the proposed

estimators on three aspects: The efficiency of our robust model compared with

the corresponding non-robust version; the necessity of the robust method for the

presence of outliers; comparison with the classical GEE method under covariance

matrix misspecification.

We compared model errors of different variable selection procedures using

median of model error (MME), where model errors are evaluated, following Fan

and Li (2001) as

MEβ = (β̂ − β0)
TXXT (β̂ − β0),

MEγ = (γ̂ − γ0)
TTT T (γ̂ − γ0), MEλ = (λ̂− λ0)

TZZT (λ̂− λ0),

where X = (XT
1 , . . . , X

T
m)T , T = (T T

1 , . . . , T
T
m)T , and Z = (ZT

1 , . . . , Z
T
m)T . We

employ average correctly fit percentage (CF%) to measure the accuracy of the

model selection procedure, where correctly fit means that the procedure selects

the exact subset model. Moreover, we compare the average numbers of regression

coefficients that are correctly shrunk (CS) to zeros. Replications of each scenario

were at 200.

We generated balanced data sets, ni = n, for convenience. In practice, our

method also works well for the nearly balanced data set (Zhou and Qu (2012)). In

the data example, we can also handle unbalanced data when the observation time

information is available; this is a reasonable assumption for longitudinal data, as

the subjects’ measurements are recorded along with the observation time.

Study 1. We simulated 100 (or 200) subjects, each of which had 5 observations

that were multivariate normal N5(µi,Σi). The true values of the mean parame-

ter and log-innovation variances were β = (3, 0, 0,−2, 1, 0, 0, 0, 0,−4)T and λ =

(0, 1, 0, 0, 0,−2, 0)T , respectively. Two specifications are designed for generalized

autoregressive parameters; γ = (0, 0, 0, 0, 0, 0, 0)T and γ = (0.2, 0, 0, 0, 0, 0, 0)T .

The mean covariates xij = (xijt)
10
t=1 were drawn from the multivariate normal

with mean 0 and covariance matrix of AR(1) structure with variance σ2 =

1 and correlation parameter ρ = 0.5 (i = 1, . . . , 100; j = 1, . . . , 5). Then

gijk = (xijt − xikt)
7
t=1 and zij = (xijt)

7
t=1 were covariates for the generalized

autoregressive parameters and the log-innovation variances. Using these values,

the mean µi and covariance matrix Σi were constructed through the modified

Cholesky decomposition from (2.2)−(2.4). The responses yi’s were then drawn

from N(µi,Σi) (i = 1, . . . , 100).



524 XUEYING ZHENG, WING KAM FUNG AND ZHONGYI ZHU

We consider two contaminations:

C0: randomly choose 1% of xij1 to be xij1 − 1;

C1: randomly choose 2% of xij1 to be xij1 − 3 and 2% of yij to be yij + 10.

NC represents no contamination situation hereafter. C1 is a commonly used

contamination setting in previous research on robust methods, and we consider a

tiny contamination in C0. The initial value of the mean estimation was obtained

from the robust GEE estimation in He, Fung, and Zhu (2005) with independent

working correlation that guarantees consistency of the autoregressive parameters

and innovative parameters after the first iteration. If the covariance matrix falls

into the spanned space of the covariates, the proposed method converges quickly

under no contamination, usually in a few steps. However, in non-robust modeling,

the traditional MM algorithm has a large probability of non-convergence under

contaminations. Typically, in C1, 180 of 200 replications cannot obtain a final

estimation due to divergence of iteration in covariance estimation, even when the

initial value of estimation for the mean parameter β is close to the true value.

Moreover, in 10%-20% of replications the non-robust algorithm fails to converge

in C0, where the perturbation is almost negligible.

To check asymptotic properties, we simulated with sample size of 100 and

200 subjects. In Table 1, we list the median of model error (MME), average

correctly fit percentage (CF%), and average numbers of regression coefficients

that are correctly shrunk (CS) for both robust and non-robust methods, under

NC (no contamination) and C0 (tiny contamination). Notice that the results for

C0 were obtained based on convergence cases only. Rscad and Ralasso represent

the proposed robust method employing SCAD and ALASSO, respectively. NR

is the non-robust method.

As the number of subjects m increases, the MME of both robust and non-

robust methods decreases, while CF% and CS approach 1 and the true number

of zero parameters, respectively. These are consistent with the oracle property.

The Rscad and NR methods perform equally well in variable selection under NC,

although an acceptable loss of efficiency for the robust method can be detected

from the slightly larger MME (in NC Rscad compared to NC NR). However,

under C0, the robust method apparently outperforms the non-robust method in

both estimation efficiency and variable selection. Especially in covariance model

identification, the non-robust method fails to correctly identify the innovation

variance model under small contamination in most replications.

We compare the performance of Rscad and Ralasso to find that Rscad outper-

forms Ralasso in β and λ estimation and Ralasso performs better in γ estimation.

In fact, SCAD allows almost no penalty if the true parameter is far from 0 while

ALASSO penalizes all parameters, which increases the MME, especially in λ. In
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Table 1. Parameter estimation and selection in Study 1.

γ = 0 γ ̸= 0
n = 100 n = 200 n = 100 n = 200

MME CF% CS MME CF% CS MME CF% CS MME CF% CS
NC NRscad

β 0.040 66.0 5.61 0.030 80.5 5.79 0.032 56.5 5.47 0.021 73.5 5.70
γ 0.016 36.5 5.86 0.000 76.0 6.62 0.021 45.0 5.09 0.004 86.0 5.82
λ 0.057 73.5 4.71 0.032 93.5 4.93 0.043 77.5 4.71 0.026 96.0 4.96
NC Rscad

β 0.050 72.0 5.68 0.040 84.0 5.82 0.039 53.0 5.38 0.026 73.0 5.70
γ 0.018 35.5 5.77 0.000 69.5 6.49 0.025 37.5 5.00 0.006 76.0 5.67
λ 0.078 92.5 4.92 0.048 100 5.00 0.060 93.0 4.92 0.040 99.5 5.00
NC Ralasso

β 0.047 54.5 5.41 0.033 75.5 5.73 0.049 52.0 5.38 0.030 69.0 5.65
γ 0.012 44.5 6.01 0.000 72.0 6.50 0.021 47.0 5.00 0.003 85.5 5.85
λ 0.242 51.0 4.28 0.193 73.5 4.71 0.318 67.0 4.57 0.265 86.0 4.84
C0 NRscad

β 0.068 65.0 5.57 0.067 81.5 5.79 0.068 57.5 5.42 0.066 71.5 5.63
γ 0.021 33.0 5.66 0.000 59.5 6.37 0.061 28.0 4.45 0.039 52.5 5.14
λ 0.331 17.5 3.12 0.520 15.0 3.02 0.408 19.0 3.06 0.575 12.0 2.83
C0 Rscad

β 0.053 72.0 5.67 0.043 85.0 5.84 0.052 52.0 5.34 0.065 87.5 5.87
γ 0.018 35.0 5.82 0.000 72.0 6.55 0.040 31.5 4.77 0.000 71.0 6.53
λ 0.068 91.0 4.91 0.052 99.5 5.00 0.088 85.0 4.83 0.069 99.0 4.99
C0 Ralasso

β 0.055 52.5 5.41 0.038 74.0 5.70 0.091 50.5 5.29 0.061 64.5 5.54
γ 0.013 41.5 5.93 0.000 74.5 6.55 0.049 28.5 4.54 0.017 71.5 5.61
λ 0.280 43.5 4.22 0.224 67.5 4.63 0.550 60.0 4.49 0.420 84.0 4.82

Simulation results of median of model error (MME), average correctly fit percentage (CF%),

and average numbers of regression coefficients that are correctly shrunk (CS) for both robust

(Rscad, Ralasso) and non-robust (NR) methods, under NC (no contamination) and C0 (tiny

contamination), with 200 replications.

sum, although both robust methods can resist the contamination according to

our simulations, Rscad is preferred.

Standard errors for SCAD estimators in Study 1 for non-zero parameters

(β1, β4, β5, β10, γ1, λ2, and λ6) are attached in Table S3.1 of the supplemen-

tary material. In fact, the standard errors of the robust method are close to

those of the non-robust method under no contamination and are much smaller

under contamination C0. To investigate the influence of outliers in covariance

estimation, we list entropy losses and quadratic losses (defined in S3 of the supple-

mentary material) in Table 2. Again, we find poor performance of the non-robust

method in C0 compared to the robust approach.
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Table 2. Entropy loss (L1) and quadratic loss (L2) in estimating Σ in Study 1.

γ = 0 γ ̸= 0
n = 100 n = 200 n = 100 n = 200
L1 L2 L1 L2 L1 L2 L1 L2

NR 0.097 0.253 0.024 0.091 0.104 0.249 0.038 0.097
NC Rscad 0.117 0.318 0.036 0.129 0.135 0.361 0.054 0.144

Ralasso 0.189 0.756 0.122 0.528 0.251 1.112 0.151 0.698
NR 0.255 1.070 0.289 1.454 0.463 2.318 0.479 2.911

C0 Rscad 0.107 0.272 0.038 0.139 0.190 0.601 0.049 0.187
Ralasso 0.215 0.900 0.134 0.610 0.436 2.289 0.286 1.473

Study 2. In this study, we looked into the effect of covariance misspecification

on mean estimation. We compared the performance of the robust penalized

joint model, denoted rpj in Table 3, method with that of robust and non-robust

penalized generalized estimating equations, denoted rpgee and pgee, methods

that assume a fixed working correlation matrix and solve (2.2) for the mean.

The most salient difference of the three methods is that our joint model builds

regression models after decomposing the covariance matrix, while RPGEE and

PGEE treat the covariance matrix as a nuisance and the marginal variance of

yi is estimated from the sample. In PGEE, we set the tuning parameter of the

Huber function c as 1,000 and the weightW = I when solving (2.2) for the mean.

Under the same mean set-up as in Study 1, we considered the covariance

structures working independence (IN), auto-regressive (AR), and exchangeable

(EX) with correlation parameter 0.5. We compared the performance of eight

estimators: rpjar and rpjin are robust joint models with independent and AR(1)

correlation structure assumptions for Cov(ε2i ) in (2.4), respectively; rpgeeein,

rpgeeear, and rpgeeeex (or pgeeein, pgeeear, and pgeeeex) are robust (or non-

robust) penalized GEE estimations with IN, AR and EX as working correlation

matrices. We adopted SCAD penalty in the study.

Table 3 lists the results under NC and C1. In the table, we employed MRME

(the median of relative model error) to compare the performance of the eight

estimators

ME (model error) of the estimator

ME of PGEE estimator with true covariance matrix
.

In the absence of outliers (NC), in general, pgee estimators performed slightly

better than rpgee estimators which in turn were better than the rpj estimators.

Besides, rpjin and rpjar had similar performances, which suggests that the choice

of the δ in (2.4) has little effect on the mean and covariance estimation. As a

result, we fixed δ = 0 in a later application.
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Table 3. Simulation results for Study 2.

IN AR EX
MRME CF% CS MRME CF% CS MRME CF% CS

rpjar 1.09 92.0 5.92 1.33 76.0 5.74 1.87 67.5 5.63
rpjin 1.09 92.0 5.92 1.34 75.5 5.73 1.87 67.5 5.63
rpgeear 1.04 94.5 5.94 1.12 96.0 5.96 1.56 92.0 5.92

NC rpgeeex 1.04 93.5 5.93 1.20 92.0 5.92 1.15 91.0 5.91
rpgeein 1.07 93.0 5.93 1.33 80.0 5.79 1.92 69.0 5.65
pgeear 0.99 91.5 5.91 1.01 94.5 5.95 1.41 89.5 5.90
pgeeex 0.99 90.5 5.90 1.11 86.5 5.87 1.01 83.5 5.83
pgeein 1.00 91.5 5.92 1.26 72.0 5.70 1.83 63.0 5.57

rpjar 0.08 92.0 5.92 0.08 95.5 5.96 0.10 89.0 5.89
rpjin 0.08 92.0 5.92 0.08 95.5 5.96 0.10 89.0 5.89
rpgeear 0.16 90.0 5.90 0.11 88.5 5.88 0.13 83.0 5.83

C1 rpgeeex 0.16 89.5 5.90 0.10 88.5 5.88 0.13 88.0 5.88
rpgeein 0.15 89.0 5.89 0.09 76.5 5.75 0.11 71.0 5.68
pgeear 0.95 30.0 4.94 0.62 67.0 5.63 0.76 62.5 5.59
pgeeex 0.96 30.5 4.93 0.58 65.0 5.58 0.75 67.5 5.62
pgeein 0.92 28.0 4.88 0.52 54.0 5.43 0.63 48.0 5.34

Simulation results of median of relative model error (MRME), average correctly fit percentage

(CF%), and average numbers of regression coefficients that are correctly shrunk (CS) under NC

(no contamination) and C1 (contamination), with 200 replications. rpjar and rpjin are robust

joint models with independent and AR(1) correlation structure in (2.4), respectively; rpgeeein,

rpgeeear, and rpgeeeex (or pgeeein, pgeeear, and pgeeeex) are robust (or non-robust) penalized

GEE estimations with IN, AR, and EX as working correlation matrices.

Under C1, rpj estimators improved substantially over the rpgee and pgee

estimators. Without the bounded score on the mean estimator, pgee mean esti-

mators collapsed in any of the IN, AR or EX covariance structure, as all MRME’s

for rpj and rpgee are less than 1 in C1. By adopting the robust estimator for the

mean, rpgee estimators had reasonable performances on the mean estimation.

However, rpj estimators further improved the performance of the mean estima-

tor (variable selector). Standard errors for the mean estimators can be found in

supplementary Table S3.2, which reveals the influence of outliers on the mean

estimation.

Table S3.3 of the supplementary material lists entropy losses and quadratic

losses on covariance matrix estimation. When there is no contamination, rpgee

and pgee had comparable performances, and better than rpj. However, under

C1, rpgee and pgee can be seriously affected by the contamination.

4. Data Analysis

In this section, we illustrate our method analyzing the hormone data that
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has been analyzed be Fung et al. (2002), He, Zhu, and Fung (2002), Fan, Qin,

and Zhu (2012), and Qin, Zhu, and Fung (2009). The data set contains 492

observations of progesterone level within a menstrual cycle, collected from 34

women clinical participants. In our model, the response variable yij is the log-

transform of progesterone level and the observation time is tij , apart from which

patient’s age and body mass index (BMI) are recorded. Two objectives were

considered when we implemented the robust variable selection method in the

joint mean and covariance model to this hormone data set: to accommodate the

influence of outliers and leverage points, and to detect outliers in the data set;

to identify statistically significant covariates in linear models of both mean and

covariance matrix.

The starting mean model we proposed was

yij = β0 + β1Agei + β2BMIi + β3tij + β4t
2
ij

+β5Agei ×BMIi + β6Agei × tij + β7BMIi × tij + eij

= xTijβ + eij .

For the covariance model, we followed the model in (1) and chose the correspond-

ing covariates as

gijk = (1, (tij − tik), (tij − tik)
2, (tij − tik)

3)T , zij = xij .

Three estimators were under consideration: rpj is the robust penalized joint

model; pj is the penalized joint model proposed by Kou and Pan (2011); gee

is the widely-used GEE estimator. Table 4 summarizes estimators of the mean

parameters with standard errors. We noticed that the joint models (rpj and

pj) are more parsimonious than gee as they choose time as the only significant

variable. This is consistent with previous research that found that both Age,

BMI, their interaction and interactions with time are not statistically significant

in the model. We found that the regression coefficients for Time obtained by rpj

and pj rather different, the non-robust pj estimator is affected by outliers.

Estimates with standard errors for the generalized autoregressive coefficients

and innovation variances are summarized in Table 5. We found that the cubic

polynomial of time is statistically significant for autoregressive coefficients γ in

all fits. Standard errors in non-robust method are larger than those in the robust

method. Unlike estimators of generalized autoregressive coefficients, significant

covariates for innovation variances were not found in our analysis. Due to the

existence of outliers, the non-robust method failed to select significant covariates

for innovation variances.

Outlier detection was practiced with our procedure. By investigating the

standardized residuals sij and the weight function wij , we found one observation-

level outlier (observation 10) and one subject-level leverage point (subject 18).
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Table 4. Estimators of the mean parameters β and standard errors (inside
brackets) for progesterone data.

Intercept Age BMI Time Time2 Age× BMI Age× Time BMI× Time
rpj 0.837 0 0 0.691 0 0 0 0

(0.074) (-) (-) (0.053) (-) (-) (-) (-)
pj 0.892 0 0 0.562 0 0 0 0

(0.078) (-) (-) (0.056) (-) (-) (-) (-)
gee 0.870 1.684 -2.671 0.709 0.186 -4.829 1.493 0.701

(0.126) (2.180) (2.928) (0.049) (0.085) (50.09) (0.827) (0.857)

In the table, rpj represents the robust penalized joint model; pj represents penalized joint model

proposed by Kou and Pan (2011); gee is the traditional GEE estimator. Working independence

is considered.

Table 5. Estimates of the generalized autoregressive parameters γ and inno-
vation variance parameters λ for progesterone data.

γ1 γ2 γ3 γ4
rpj 0.902 -2.726 2.339 -0.579

(0.056) (0.203) (0.190) (0.050)
pj 0.882 -2.623 2.185 -0.523

(0.063) (0.234) (0.223) (0.060)

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
rpj -1.111 0 0 0 0.180 45.30 0 -1.317

(0.103) (-) (-) (-) (0.120) (34.50) (-) (2.435)
pj -0.882 -1.527 -0.283 0.186 0.029 56.98 0.175 1.313

(0.099) (1.398) (1.761) (0.086) (0.115) (29.03) (1.699) (2.044)

pij = (AGEi, BMIi) contributed to the weight functions wij in our robust

method. Subject 18 is a leverage point which had not been identified before;

it has an extremely high BMI of 38 that heavily downweights the cluster of ob-

servations from the patient. A careful inspection of the standardized residual sij
tells us that case 10 is the most extreme point with sij = −6.09. The proges-

terone level of the 10th observation for subject 1 (case 10) is 2.46, which is very

different from its neighborhood observations 9 and 11 measured one day before

and one day after. This inconsistency has not been noticed in the literature. All

other thirteen observations of subject 1 range from 8.5 to 13.4 and in particular,

this observation was the lowest progesterone level in the data set. We concluded

that case 10 of subject 1 is a clear outlier. The influence of this outlier on the

parameter estimates is detailed in Table S4.1 of the supplementary material.

We also noticed that some observations have large standardized residuals, such

as cases 117, 334 and 372, due to the fact that they are extreme values of the

progesterone level within a subject. The effects on these potential outliers are

downweighted by our robust method in the estimation of mean and covariance
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parameters.

Acknowledgement

The authors are grateful to two reviewers, an associate editor, and the Co-

Editor for their insightful comments and suggestions which have improved the

manuscript significantly. This work was supported by the National Natural Sci-

ence Foundation of China (10931002, 11271180).

References

Bickel, P. J. and Levina, E. (2008). Regularized estimation of large covariance matrices. Ann.

Statist. 36, 199-227.

Cantoni, E., Flemming, J. M. and Ronchetti, E. (2005). Variable selection for marginal longi-

tudinal generalized linear models. Biometrics 61, 507-514.

Cook, R. D and Weisberg, S. (1983). Diagnostics for heteroscedasticity in regression. Biometrika

70, 1-10.

El Karoui, N. (2008). Operator norm consistent estimation of large dimensional sparse covari-

ance matrices. Ann. Statist. 36, 2717-2756.

Fan, J., Huang, T., and Li, R. (2007). Analysis of longitudinal data with semiparametric esti-

mation of covariance function. J. Amer. Statist. Assoc. 35, 632-641.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. J. Amer. Statist. Assoc. 96, 1348-1360.

Fan, J. and Wu, Y. (2008). Semiparametric estimation of covariance matrices for longitudinal

data. J. Amer. Statist. Assoc. 103, 1520-1533.

Fan, Y. L., Qin, G. Y. and Zhu, Z. Y. (2012). Variable selection in robust regression models for

longitudinal data. J. Multivariate Anal. 109, 156-167.

Fu, W. J. (2003). Penalized estimating equations. Biometrics 59, 126-132.

Fung, W. K., Zhu, Z. Y., Wei, B., and He, X. (2002). Influence diagnostics and outlier tests for

semiparametric mixed models. J. Roy. Statist. Soc. Ser. B 64, 565-579.

He, X., Fung, W. K., and Zhu, Z. Y. (2005). Robust estimation in generalized partial linear

models for clustered data. J. Amer. Statist. Assoc. 472, 1176-1184.

He, X., Zhu, Z. Y., and Fung, W. K. (2002). Estimation in a semiparametric model for longitu-

dinal data with unspecified dependence structure. Biometrika 89, 579-590.

Huang, J., Liu, N., Pourahmadi, M., and Liu, L. (2006). Covariance matrix selection and

estimation via penalised normal likelihood. Biometrika 93, 85-98.

Jeng, X. J. and Daye, Z. J. (2011). Sparse covariance thresholding for high-dimensional variable

selection. Statist. Sinica 21, 625-657.

Johnson, B., Lin, D. Y., and Zeng, D. (2008). Penalized estimating functions and variable

selection in semiparametric regression models. J. Amer. Statist. Assoc. 103, 672-680.

Kou, C. and Pan, J. (2011). Variable selection for joint mean and covariance models via penalised

Likelihood, Technical report, Probability and Statistics Group School of Mathematics, The

University of Manchester.

Leng, C., Zhang, W., and Pan, J. (2010). Semiparametric mean-covariance regression analysis

for longitudinal data. J. Amer. Statist. Assoc. 105, 181-193.



VARIABLE SELECTION IN ROBUST JOINT MEAN AND COVARIANCE MODEL 531

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.

Biometrika 73, 13-22.

Mao, J., Fung, W. K. and Zhu, Z. Y. (2011). Joint estimation of mean–covariance model for

longitudinal data with basis function approximations. Comput. Statist. Data Anal. 55,

983-992.

Pan, W. (2001). Akaike’s information criterion in generalized estimating equations. Biometrics

73, 13-22.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data:

unconstrained parameterisation. Biometrika 86, 677-690.

Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multi-

variate normal covariance matrix. Biometrika 87, 425-435.

Qin, G. Y., Zhu, Z. Y., and Fung, W. K. (2009). Robust estimation of covariance parameters

in partial linear model for longitudinal data. J. Statist. Plann. Inference 139, 558-570.

Qu, A., Lindsay, B., and Li, B. (2000). Improving generalised estimating equations using

quadratic inference functions. Biometrika 87, 823-836.

Rothman, A. J., Levina, E., and Zhu, J. (2009). Generalized thresholding of large covariance

matrices. J. Amer. Statist. Assoc. 104, 177-186.

Xu, J. and Mackenzie, G. (2012). Modelling covariance structure in bivariate marginal models

for longitudinal data. Biometrika 99, 649-662.

Ye, H. and Pan, J. (2006). Modelling covariance structures in generalized estimating equations

for longitudinal data. Biometrika 93, 927-941.

Zheng, X. Y., Fung, W. K., and Zhu, Z. Y. (2013). Robust estimation in joint mean-covariance

regression model for longitudinal data. Ann. Inst. Statist. Math. 65, 617-638.

Zhou, J. and Qu, A. (2012). Informative estimation and selection of correlation structure for

longitudinal data. J. Amer. Statist. Assoc. 107, 701-710.

Zou, H. (2006). The Adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101,

1418-1429.

Department of Biostatistics, Fudan University, Shanghai, China.

E-mail: xyzheng@fudan.edu.cn

Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong.

E-mail: wingfung@hku.hk

Department of Statistics, Fudan University, Shanghai, China.

E-mail: zhuzy@fudan.edu.cn

(Received October 2011; accepted February 2013)

xyzheng@fudan.edu.cn
wingfung@hku.hk
zhuzy@fudan.edu.cn

	1. Introduction
	2. Robust Variable Selection in Joint Mean and Covariance Model
	2.1. Joint mean and covariance model
	2.2. Penalized robust generalized estimating equations
	2.3. Asymptotic properties
	2.4. Implementation

	3. Simulation
	4. Data Analysis

