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Abstract: In this paper, the constrained M-estimation of the regression coefficients

and scatter parameters in a multivariate linear regression model is considered. Ro-

bustness and asymptotic behavior are investigated. Since constrained M-estimation

is not easy to compute, an up-dating recursion procedure is proposed to simplify the

computation of the estimators when a new observation is obtained. We show that,

under mild conditions, the recursion estimates are strongly consistent. A Monte

Carlo simulation study of the recursion estimates is also provided.

Key words and phrases: Asymptotic normality, breakdown point, consistency, con-

strained M-estimation, influence function, linear model, M-estimation, recursion

estimation, robust estimation.

1. Introduction

Consider the multivariate linear regression model

yi = Bxi + ei, i = 1, 2, . . . , n, (1)

where yi ∈ Rm are the observed response vectors, xi ∈ Rp are the covariate vec-

tors, and ei ∈ Rm are identically and independently distributed (i.i.d.) random

error vectors with zero mean vector and covariance matrix V . We focus on the

robust estimation of B and V in this paper.

It is noted that when B = µ ∈ Rm and xi = 1, (1) becomes the multivariate

location model; when m = 1 and BT = β ∈ Rp, (1) is a usual linear regression

model.

There is a rich literature on estimation of the regression coefficients and

scatter parameters for the model (1). The well-known method is Least Squares.

Even though this method is efficient for normal distributed errors and is math-

ematically convenient, it is not resistant to outliers nor stable with respect to

deviations from the given distributional model. Many robust statistical proce-

dures have then been developed.
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Two standard classes of robust estimates are M-estimates and S-estimates

(Kent and Tyler (1996)), M-estimators can be tuned to have such local robust-

ness properties, as efficiency and a bound on the influence function at an un-

derlying distribution such as the multivariate normal. However, M-estimates

suffer from poor breakdown properties in high dimensions. On the other hand,

S-estimates can be tuned to have good breakdown properties, but when tuned in

this way, they tend to suffer from poor local robustness. Note that the robustness

of M-estimators of regression coefficients, and especially of location parameters,

is determined by the increasing rate of the dispersion function. Thus to pursue

most robust estimators, bounded dispersion functions are popularly employed.

However, when a dispersion function is bounded, the minimization problem would

have no solution if affine equivariant estimation is considered, because the ob-

jective function will tend to negative infinity when the smallest eigenvalue of

the estimated scatter matrix tends to 0. Hence Kent and Tyler (1996) proposed

a hybrid estimation, called constrained M-estimation (CM-estimation), for es-

timating the location and scatter parameters in a multivariate location model,

and which achieves both good local and global robustness besides being affine

equivariant. Later, Mendes and Tyler (1996) examined CM-estimates in a linear

regression model, that are regression equivariant: affine equivariant to x and

affine equivariant to y. In this paper, we will further consider CM-estimation for

B and V in the model (1).

Let Zn = {(yT
1 ,xT

1 ), . . . , (yT
n ,xT

n )} be a data set in Rm+p and let Pm denote

the set of all m × m positive definite symmetric matrices. For the data set Zn

and a prechosen constant ε ∈ (0, 1), the CM-estimates of B and V , denoted by

B̂(Zn) ∈ Rm×p and V̂ (Zn) ∈ Pm, are any pairs that minimize the objective

function

L(B,V ;Zn) =
1

n

n∑

i=1

[
ρ
{
(yi − Bxi)

T V −1(yi − Bxi)
}

+
1

2
log{det(V )}

]
(2)

over all B ∈ Rm×p and V ∈ Pm, subject to the constraint

1

n

n∑

i=1

[
ρ
{

(yi − Bxi)
T V −1(yi − Bxi)

}]
≤ ερ(∞), (3)

where ρ(s) is a bounded nondecreasing function for s ≥ 0. In general, the mini-

mization problem which defines the CM-estimates may have multiple solutions.

We use the notation (B̂(Zn), V̂ (Zn)) to refer a measurable solution to the mini-

mization problem rather than to the set of all solutions.

It can be shown that the CM-estimates defined above are regression equiv-

ariant.
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The properties of CM-estimation are to be investigated. It is noted that

most M-estimates have no explicit expressions. Often the Newton approach can-

not be applied to the computation of the parameter estimates, but, even when

it can, it is usually sensitive to initial values. Moreover, when a new observa-

tion is obtained, it is not easy to recalculate the estimates. There is often a

need to update CM-estimates when new observations are obtained. The first

attempt in this direction was made in Bickel (1975) with the so called “one-step

approximation”. Among other such attempts, one is recursive estimation of the

parameters based on the previous estimates and a new observation. Recursive

estimates can be easy to calculate and do not require extensive storage of data.

In the case of M-estimation, see Englund, Holst and Ruppert (1988), Englund

(1993), Bai and Wu (1993), Miao and Wu (1996) and Wu (1996), among others.

Note that such up-dating is also important to on-line learning in neural compu-

tation. The computation of CM-estimates B̂ and V̂ is even more complicated; it

is presented here and we study its asymptotic behavior.

The organization of this paper is as follows: In Section 2, we study the

existence of the CM-estimates and CM-functionals. In Section 3, we consider

the finite sample breakdown point of the CM-estimates. In Section 4, the con-

sistency, influence functions and asymptotic normality of the CM-estimates are

investigated. In Section 5, a recursive computation of the CM-estimates is pro-

posed. The recursive estimates are shown to be strongly consistent under mild

conditions. Some simulation results are presented in Section 6. Proofs of the

theorems in this paper are given in the Appendix.

2. Existence of the CM-estimates and CM-functionals

Throughout this paper we assume that ρ satisfies the following assumption.

Assumption 2.1. For t ≥ 0, ρ is nondecreasing, 0 = ρ(0) < ρ(∞) < ∞ and ρ(t)

is continuous from above at 0.

As in Kent and Tyler (1996), results on existence can be made more general

by introducing the notion of CM-functionals.

Assume that the random vector (yT ,xT ) ∈ Rm+p has the joint distribution

F . With 0 < ε < 1 being fixed, we define the CM-functionals for B(F ) and

V (F ) in a manner analogous to (2) and (3), i.e., (B(F ), V (F )) minimizes over

all (B,V ) ∈ Rm×p × Pm the objective function

L(B,V ) = E
[
ρ{(y − Bx)T V −1(y − Bx)}

]
+

1

2
log{det(V )} (4)

subject to the constraint

E
[
ρ{(y − Bx)T V −1(y − Bx)}

]
≤ ερ(∞). (5)
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For establishing the existence of the CM-functionals, we make the following

assumption on F , the joint distribution of (yT ,xT ).

Assumption 2.2.

(a) For any B ∈ Rm×p and any hyperplane H in Rm, Pr{(y−Bx) ∈ H} < 1−ε.

(b) For any B ∈ Rm×p, B 6= 0, Pr{Bx = 0} < 1 − ε.

(c) For any B ∈ Rm×p, Pr{y = Bx} < 1 − ε.

Remark 2.1. It can be seen that Assumption 2.2(c) is a consequence of As-

sumption 2.2(a).

Remark 2.2. One can show that Assumption 2.2(a) implies the existence of a

positive constant δ such that, for any B ∈ Rm×p and any hyperplane H in Rm,

Pr{(y −Bx) ∈ H} < 1− ε− δ. Similarly, under Assumption 2.2(b), there exists

a positive δ such that 1 − ε can be replaced by 1 − ε − δ in Assumption 2.2(b).

We have the following theorem on the existence of CM-functionals. Remark

2.2 is needed in its proof.

Theorem 2.1. Under Assumptions 2.1, 2.2(a) and (b), there exists a (B0, V0) ∈
Rm×p × Pm that minimizes L(B,V ) subject to the constraint (5). Furthermore,

the set of all such (B0, V0) is bounded away from ∂(Rm×p × Pm), the boundary

set of Rm×p × Pm.

The following theorem shows that Assumption 2.2(c) is a necessary condition

of the existence of the CM-functionals, and it also plays an important role in the

next section in obtaining the breakdown point of the CM-estimates. Its proof is

given in the Appendix.

Theorem 2.2. Under Assumption 2.1, if Assumption 2.2(c) does not hold, then

there does not exist (B0, V0) ∈ Rm×p × Pm which minimizes L(B,V ) subject to

the constraint (5).

Let Fn denote the empirical distribution of {(yi,xi), i = 1, . . . , n}. Then the

CM-functionals at Fn correspond to the CM-estimates defined by (2) under the

constraint (3) for the data set.

We use the following notation:

C
(m,p)
1,n = max

B∈Rm×p, H⊂Rm
#{i : (yi − Bxi) ∈ H, 1 ≤ i ≤ n}, (6)

C
(m,p)
2,n = max

B∈Rm×p, B 6=0
#{i : Bxi = 0, 1 ≤ i ≤ n}, (7)

C
(m,p)
3,n = max

B∈Rm×p
#{i : yi = Bxi, 1 ≤ i ≤ n}, (8)

where H is an arbitrary hyperplane in Rm. Note that C
(m,p)
1,n , C

(m,p)
2,n , and C

(m,p)
3,n

are, respectively, n times the maximum values of Pr{(y − Bx) ∈ H}, Pr{Bx =
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0}, and Pr{y = Bx} for the empirical distribution Fn, defined in Assumption

2.2. Therefore Assumption 2.2(a), (b), and (c) hold for Fn if C
(m,p)
1,n < n(1 −

ε), C
(m,p)
2,n < n(1 − ε), and C

(m,p)
3,n < n(1 − ε). By the Strong Law of Large

Numbers, when Assumption 2.2 holds, the above conditions hold for all large
n with probability 1. Accordingly the results of the above theorems apply to
CM-estimates. Note that by Remark 2.1, C

(m,p)
3,n ≤ C

(m,p)
1,n .

3. Finite Sample Breakdown Point

In this section, we study the breakdown point of the CM-estimates using the
finite replacement breakdown point introduced by Donoho and Huber (1983).
For a fixed n, suppose that n1(≤ n) is the smallest integer such that a replacement
of n1 data points from the original data set Zn = {(y1,x1), . . . , (yn,xn)} will
lead to a corrupted sample Z̃n. That is, for a given εn1

= n1/n, the statistic
(B̂(·), V̂ (·)) is said to break down at Zn under εn1

- contamination if replacing n1

data points by Z∗
n1

allows one of the following to happen:

(i)(B̂(Z̃n), V̂ (Z̃n)) does not exist for a choice of Z∗
n1

;

(ii)The supreme of ‖B̂(Z̃n)‖ for possible choices of Z∗
n1

is infinity;

(iii)The supremum of the largest eigenvalue of V̂ (Z̃n) for possible choices of Z∗
n1

is infinity, or the infimum of smallest eigenvalue of V̂ (Z̃n) for possible choices
of Z∗

n1
is 0.

The finite sample replacement breakdown point of (B̂(·), V̂ (·)) at Zn is then
defined to be ε∗n(Zn), the minimum of all εn1

causing breakdown.
The bounds on the number of the finite sample replacement breakdown

points are given by the following theorem. Its proof is provided in the Appendix.

Theorem 3.1. If ρ satisfies Assumption 2.1, 0 < ε < 1, and Cn = max(C
(m,p)
1,n ,

C
(m,p)
2,n ) < n(1 − ε) for the data set Zn, then we have

min
{⌈nε⌉

n
,
⌈n(1 − ε)⌉ − Cn

n

}
≤ ε∗n(Zn) ≤ min

{⌊nε⌋ + 1

n
,
⌈n(1 − ε) − C

(m.p)
3,n ⌉

n

}
,

where C
(m,p)
1,n , C

(m,p)
2,n and C

(m.p)
3,n are defined as before, ⌈κ⌉ represents the smallest

integer greater than or equal to κ if positive and zero otherwise, and ⌊κ⌋ represents

the largest integer less than or equal to κ if positive, and is zero otherwise.

4. Consistency, Influence Functions and Asymptotic Normality

The following discussion is based on the results of Kent and Tyler (1996).
We assume throughout this section that the (m + p)-dimensional random

vector (yT ,xT ) has an absolutely continuous distribution F in Rm+p. We also
assume that the following uniqueness of the CM-functional condition holds.
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Assumption 4.1. The CM-functional (B(F ), V (F )) exists and is uniquely de-

fined at F .

Remark 4.1. Note that (B(F ), V (F )) is shown to exist under Assumptions

2.1−2.2 in Section 2.

Assumption 4.2. Assumption 2.1 holds and ρ is continuous for t ≥ 0.

Suppose that Assumptions 4.1 and 4.2 hold. If Fk
w−→ F , then it follows

that

(B(Fk), V (Fk)) → (B(F ), V (F )).

This result also warrants the strong consistency of the CM-estimates since the

empirical distribution converges to the underlying distribution function almost

surely.

Given weak consistency, the influence functions and the asymptotic distri-

butions of the CM-estimates derive from the following estimating equations. Let

s = (y−Bx)T V −1(y−Bx). Assume that ρ is differentiable. Then (B(F ), V (F ))

must satisfy the estimating equations:

E[ρ′(s)(y − Bx)xT ] = 0 (9)

V =
mE[ρ′(s)(y − Bx)(y − Bx)T ]

E[sρ′(s)]
, (10)

with either

E[2sρ′(s)] = m (11)

or

E[ρ(s)] = ερ(∞). (12)

The empirical versions of (9)−(12) are given by

n∑

i=1

ρ′(si)(yi − Bxi)x
T
i = 0, (13)

V =

m

n∑

i=1

[
ρ′(si)(yi − Bxi)(yi − Bxi)

T
]

n∑

i=1

{siρ
′(si)}

, (14)

1

n

n∑

i=1

{2siρ
′(si)} = m, (15)

1

n

n∑

i=1

{ρ(si)} = ερ(∞), (16)
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where si = (yi − Bxi)
T V −1(yi − Bxi).

It can be seen that Equations (13), (14) and (15) hold whenever strict in-

equality holds in (3) for the CM-estimates, and they arise as the critical points

of (2). In contrast, Equations (13), (14) and (16) hold whenever equality holds

in (3) for the CM-estimates, and they arise as the critical points of (2) after

introducing a Lagrange multiplier to account for the constraint (16).

We note that (B,V ) consists of l = mp + (1/2)m(m + 1) parameters. Let

θ ∈ Rl represent an l-dimensional vector parameterization of (B,V ) with B being

the first mp components of θ and with the upper triangular part of V being

the remaining (1/2)m(m + 1) components. Analogously, the CM-functionals

(B(F ), V (F )) can be represented by θ(F ) ∈ Rl. It is easy to see that there

exists a function Ψ1 : Rm+p ×Rl → Rl such that (9), (10) and (11) together are

equivalent to

E[Ψ1(F,θ)] = 0, (17)

and there exists a function Ψ2 : Rm+p × Rl → Rl such that (9),(10) and (12)

together are equivalent to

E[Ψ2(F,θ)] = 0 (18)

with the first (l − 1) entries of Ψ1 and Ψ2 being the same.

Now we can obtain the local properties of the CM-estimates under the fol-

lowing assumptions.

Assumption 4.3. The function ρ has a continuous second derivative, and ρ′(t),

tρ′(t), and ρ′′(t) are bounded.

Assumption 4.4. For the CM-functional (B(F ), V (F )), (11) and (12) do not

both hold at F .

Note that under Assumptions 4.1, 4.2 and 4.4, if Fk → F in distribution, then

(11) and (12) cannot both hold for (B(Fk), V (Fk)) for all large k. Furthermore,

for all large k, if (11) holds for F , then (11) holds for Fk and if (12) holds for F ,

then (12) holds for Fk. As shown in Kent and Tyler (1996), this allows one to

treat (17) and (18) as two cases when studying the local properties of the CM-

estimates. For convenience, we treat both cases together by defining Ψ = Ψ1 if

(11) holds and Ψ = Ψ2 if (12) holds.

The influence function of the functional θ(F ), the Rl representation of

(B(F ), V (F )), at (y0,x0), is defined by

IF (y0,x0;θ(F )) = lim
h→0+

θ(Fh(y0,x0)) − θ(F )

h

provided that the limit exists, where Fh(y0,x0) = (1 − h)F + hδ(y
0
,x0), with

δ(y
0
,x0) denoting the atomic probability distribution concentrated at (y0,x0) ∈

Rm+p.
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Let λ(θ) = E[Ψ(F,θ)]. Suppose that λ(θ) has a nonsingular derivative

Λ = ∂λ(θ)/∂θ at θ(F ). Under Assumptions 4.1, 4.2, 4.3 and 4.4, the influ-

ence function of θ(F ) can be shown to exist and is given by IF (y0,x0;θ(F )) =

−Λ−1Ψ(F,θ(F )). The limiting distribution of θ̂(Zn) is given next.

Theorem 4.1. Under Assumptions 4.1−4.4, if (y1,x1), . . . , (yn,x1) are i.i.d.

(y,x), then

√
n{θ̂(Zn) − θ(F )} → Nl(0,Λ−1M(ΛT )−1) in distribution,

where M is the variance-covariance matrix of Ψ(F,θ(F )), and Λ is defined above.

Proof. The proof mimics the proof of Theorem 4.1 given by Lopuhaä (1989).

5. Recursive Estimation

As indicated in Section 1, CM-estimation is difficult to implement and other

approaches need to be explored. Motivated by Rubinstein (1986) Englund (1993),

Bai and Wu (1993) and Miao and Wu (1996), we propose the following up-dating

recursion estimation of B and V .




τn+1 = max

{
0, τn + νn

( 1

n + 1

n∑

i=1

ρ(‖yi+1 − Bixi+1‖2
Ṽi

) − ερ(∞)
)}

,

Bn+1 = Bn + an(1 + τn+1)H1(Bn, Vn,xn+1,yn+1)S̃
−1
n+1,

Vn+1 = Vn + (n + 1)−1(1 + τn+1)H2(Bn, Vn,xn+1,yn+1),

(19)

where h(t) = (dρ(t2)/dt)/(t20t), S̃n =
∑n

i=1 vih(‖yi − Bixi‖Ṽi
)xix

T
i , and

H1(B,V,x,y) = h(‖y − Bx‖Ṽ )(y − Bx)xT ,

H2(B,V,x,y) = (y − Bx)(y − Bx)T
h(‖y − Bx‖Ṽ )

2
− V,

B0 is arbitrary, V0 is a positive definite matrix, {an} satisfies certain conditions,

and Ṽ is a Lipschitz continuous m × m matrix function of V defined as follows:

Let λi and αi be the i-th eigenvalue and corresponding eigenvector of

V respectively. Then

Ṽ =

m∑

i=1

λ̃iαiα
T
i ,

where λ̃i = (δ1 ∨ λi) ∧ δ2 and δ1, δ2 (0 < δ1 < δ2 < ∞) are two

appropriate constants.
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Here t0 is defined in Assumption 5.4, which will be given later. It is assumed
that vn = g(⌊0.00001n⌋) > 0, n = 1, 2, . . ., are chosen such that S̃n/n → A > 0.
Note that vn in (19) is a constant sequence satisfying certain conditions.

When the sample size is not too small, this estimation is shown to perform
very well in the simulation study in Section 6.

Note that (19) is a recursive analog of the unconstrained M-estimation, which
minimizes (2), if τn ≡ 0 in (19).

We make the following assumptions to facilitate the investigation of the
limiting behavior of the recursion estimators given by (19).

Assumption 5.1. (xi,ei), i = 1, 2, . . . are i.i.d. copies of (x,e), and x and e are
independent. The distribution of ei has a density |Σ|−1/2f1(‖e‖Σ), where f1 is
decreasing on [0,∞) and strictly decreasing in a neighborhood of 0. The random
vector xi has finite second moment denoted by G = Exix

T
i > 0. In the sequel,

F2 stands for the common distribution of xi.
Let {n(k)} be a sequence of increasing positive integers satisfying

∞∑

k=1

(n(k)dk)−1 < ∞, and dk → 0 as k → ∞, (20)

where dk =
∑n(k+1)

ℓ=n(k)+1 ℓ−1. Then we have

∞∑

k=1

dk = ∞. (21)

As an example, one can choose n(k) = [kδ] for some δ > 2, where [c] denotes
the integer part of c.

Assumption 5.2. The sequence {an, n = 1, 2, . . .} is adaptive, i.e., an is Fn-
measurable, Fn the sigma field generated by the random vectors (xT

i ,yT
i )T , i =

1, . . . , n, and 0 < π0 ≤ an ≤ π1 < ∞ for some π0 and π1 and all n.

Assumption 5.3. 0 < νn ≤ O(n−υ) and υ > 1.

Assumption 5.4. There exists t0 > 0 such that h is constant for t > t0 and
h(t) < h(t0) for t < t0. th(t) is uniformly continuous for t < t0. h(0) 6= 0.

For describing Assumption 5.5, we need the following notation:
Suppose that f1 and u are given as above. Let ω > 0 be the solution of the

equation

2m =

∫
ωzT zh(ω‖z‖2)f1(‖z‖2)dz,

where m is the dimension of dependent variable z. Let Ω=ω−1Σ. By Bai and Wu
(1993), Ω satisfies

Ω = EeeT h(‖e‖2
Ω)

2
. (22)
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Define

ζ =

{
1

8m

∫ [
ω‖z‖2h(ω‖z‖2) − ω

1.5
‖z‖2h

( ω

1.5
‖z‖2

)]
f1(‖z‖2)dz

}
∧ 0.1.

Assumption 5.5. Suppose that δ1 < ζλ∗(Ω) and δ2 > 3λ∗(Ω), where λ∗(Ω) and
λ∗(Ω) are the smallest and largest eigenvalue of Ω, δ1 and δ2 are used to define

Ṽn in (19), and ζ is given above.

The following theorem states that (Bn, Vn) is strongly consistent. Its proof

is provided in the Appendix.

Theorem 5.1. Under Assumptions 5.1−5.4, Bn is a strongly consistent estimate

of B. Further, with Assumption 5.5, Vn is a strongly consistent estimate of Ω.

It is noted that f1 is usually unknown and so is Ω. How to obtain a good

estimator of Σ based on (19) is an interesting problem. In order to estimate Σ,
we propose to add the following to (19) for n ≥ n0:




Sn+1 = Sn + (yn+1−Bnxi+1)(yn+1−Bnxi+1)
T I

[
ρ(‖yn+1 − Bnxn+1‖2

Ṽn
) 6= 0

]
,

kn+1 = kn + I
[
ρ(‖yn+1 − Bnxn+1‖2

Ṽn
) 6= 0

]
,

Σn+1 =
Sn+1

kn+1
,

(23)
with kn0

= 1, where I(A) is an indicator function on a set A. Since Bn is strongly

consistent, it can be shown that Σn is a consistent estimator of Σ.

6. Simulation Study

In this section, we study the finite sample performance of the recursion esti-

mation given by (19). Let ρ be Tukey’s biweight function

ρ(t̃2) = c ×





t̃2

2
− t̃4

2
+

t̃6

6
, for 0 < t̃ ≤ 1,

1

6
, for t̃ > 1,

where t̃ = t/t0.
Hence,

h(t̃) = c ×
{

1 − 2t̃2 + t̃4, for 0 < t̃ ≤ 1,

0, for t̃ > 1.

In the following simulation, c = 2, t0 = 100, νn = 1/n2, an = 0.9, vn = 1,

δ1 = 0.1, δ2 = 5, ε = 0.5 and B =




5 − 6

0 7

−9 3


.
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Figure 1. The estimates of regression coefficients: - - - - - by (19); · · · · · by

(19) with τi = 0 for all i (unconstrained case) for Tukey’s biweight function

with c = 2.

Let xi, i = 1, 2, . . ., be generated as follows: First generate xi from the

distribution N

((
1

2

)
,

(
1 0.5

0.5 1

))
. Then select an element xi randomly with

equal probability and add a value generated from N(100, 10) to it with probability
0.8. Let

A =




0.8 0 0

0.2 1.2 0

0.1 0.4 1.1




and Σ−1 = AAT . The random error vectors ei, i = 1, 2, . . ., are generated as
follows. First generate ei from the distribution 0.6N(0,Σ)+0.4N(0, 36Σ). Then
select an element of ei randomly with equal probability and add a value generated
from N(1, 000, 100) to it with probability 0.8. We calculate yi, i = 1, 2, . . ., as

yi = Bxi + ei, i = 1, 2, . . . .

The simulation results are reported in Figures 1−4. From Figures 1−2, it
can be seen that for Tukey’s biweight function, CM-estimates seem to perform
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Figure 2. The estimates of scatter parameters: - - - - - by (19); · · · · · by

(19) with τi = 0 for all i (unconstrained case) for Tukey’s biweight function
with c = 2.

better than the M-estimates. Figure 3 shows that the estimates of σij given by

(23) tend to the true values when the sample size increases. From Figure 4, it can

be observed that the recursion estimation (19) using Tukey’s biweight function

with c = 2 seems to perform much better than the recursion estimation (19)

with τi = 0 using Huber ρ function with c = 1.345 for estimating the regression

coefficients.

Appendix

Proof of Theorem 2.1. It is clear that if (B,V ) ∈ Rm×p×Pm, then L(B,V ) <

∞. For all large λ, (B,λV ) ∈ Rm×p × Pm satisfies (5).

Therefore, to complete the proof it suffices to show that if a sequence of

(Bk, Vk) → ∂(Rm×p × Pm), then either L(Bk, Vk) → ∞ or the constraint (5) is

not met for large k.

Let λ1,k and λm,k represent the largest and smallest eigenvalues of Vk re-

spectively. If constraint (5) holds for some (Bk, Vk), then for any s̃ ≥ 0 and
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Figure 3. ———— true values of σij ; · · · · · estimates of σij by (23) for
Tukey’s biweight function with c = 2.

Ak = {(x,y) : (y − Bkx)T V −1
k (y − Bkx) ≥ s̃},

ερ(∞) ≥
∫

Ak

ρ{(y − Bkx)T V −1
k (y − Bkx)}dF (y,x) ≥ ρ(s̃) Pr(Ak).

Thus, for any δ > 0, we can choose s̃0 being so large that

ρ(s̃0) ≥
ε

ε + δ
ρ(∞),

and hence

Pr{(y − Bkx)T V −1
k (y − Bkx) < s̃0} ≥ 1 − ε − δ. (24)

This in turn implies that

Pr
{

[aT
k (y − Bkx)]2 < λm,ks̃0

}
≥ 1 − ε − δ, (25)

where ak is an eigenvector of Vk associated with λm,k and is normalized so that

aT
k ak = 1.

If λm,k → 0 along some subsequence, then (25) will lead to a contradiction

to Remark 2.2. Thus, we may assume λm,k > λm > 0.
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Figure 4. The estimates of the regression coefficients: · · · · · by (19) with
τi = 0 for Huber ρ function with c = 1.345; - - - - - by (19) for Tukey’s

biweight function with c = 2.

If there is a set of positive probability on which λ1,k → ∞ along some

subsequence, then L(Bk, Vk) → ∞ since ρ is bounded and λm,k is bounded away

from zero. Therefore there must exist an upper bound for λ1,k.

Suppose ‖Bk‖ → ∞. We then have

Pr{(y − Bkx)T V −1
k (y − Bkx) < s̃}

≤ Pr{Bkx = 0} + Pr
{

(y − Bkx)T V −1
k (y − Bkx) < s̃, Bkx 6= 0

}
,

with the last term going to zero since we know λm,k is bounded away from zero

and λ1,k is bounded above. This leads to a contradiction to Remark 2.2 about

Assumption 2.2(b). The proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. If Assumption 2.2(c) does not hold, then there exists

a B ∈ Rm×p such that for all V ∈ Pm

∫
ρ[(y − Bx)T V −1

k (y − Bx)]dF (y,x)
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=

∫

y 6=Bx
ρ[(y − Bx)T V −1

k (y − Bx)]dF (y,x)

≤ ρ(∞) Pr{y 6= Bx} ≤ ρ(∞)ε.

That is, there exists a B such that constraint (5) holds for all V ∈ Pm. But, as

V approaches a singular matrix, log ‖V ‖ → −∞ and so L(B,V ) → −∞. This

completes the proof of the theorem.

Proof of Theorem 3.1. By Theorem 2.1, under the conditions of Theorem

3.1, the CM-estimates exists. Denote by (B,V ) the CM-estimates of the original

data set.

(a) Upper bound. Suppose n1 > nε. Consider a sequence of contaminated

data set obtained by replacing {(yi,xi); 1 ≤ i ≤ n1} by {(yi,k,xi); 1 ≤ i ≤ n1}
with ‖yi,k‖ → ∞ as k → ∞ for 1 ≤ i ≤ n1, and let (Bk, Vk) represent the

corresponding CM-estimates of the contaminated data sets. Denote the largest

and smallest eigenvalues of Vk by λ1,k and λm,k, respectively. If breakdown does

not occur under εn1
-contamination, then none of (i)−(iii) in the definition of

breakdown would happen, that is, there must exist constants a, v1, v2 such that

‖Bk‖ < a < ∞ and 0 < v1 < λm,k ≤ λ1,k < v2 < ∞. Hence, as k → ∞,

(yi,k − Bkxi)
T V −1

k (yi,k − Bkxi) → ∞

for i = 1, 2, . . . , n1 and so for large k,

lim inf
k→∞

1

n

n∑

i=1

[
ρ
{

(yi,k − Bkxi)
T V −1

k (yi,k − Bkxi)
}]

≥ n1ρ(∞)

n
> ερ(∞),

This shows that when k is large, the constraint (3) is violated and so ε∗n ≤
(⌊nε⌋ + 1)/n.

Now suppose n1 > n(1−ε)−C
(m,p)
3,n . By definition, for some B ∈ Rm×p there

exists C
(m,p)
3,n data points in Zn so that yi = Bxi, say 1 ≤ i ≤ C

(m,p)
3,n without loss

of generality. If we replace n1 other data points in Zn by (y1,x1), then Z̃n has

C
(m,p)
3,n + n1 data points for which yi = Bxi. Since (C

(m.p)
3,n + n1)/n > (1 − ε),

Theorem 2.2 implies (B̂(Z̃n), V̂ (Z̃n)) /∈ Rm×p × Pm, which results in one of

(i)−(iii). That is, the estimates break down. Therefore ε∗n ≤ (⌈n(1 − ε) −
C

(m,p)
3,n ⌉)/n.

(b) Lower bound. Suppose n1 < min{⌈nε⌉, ⌈n(1 − ε) − Cn⌉}. For any εn1

-contaminated samples Z̃n = {(y∗
i ,x

∗
i ); 1 ≤ i ≤ n}, the parameters C

(m,p)
1,n and

C
(m,p)
2,n for the contaminate dataset are less than n(1 − ε). Thus, Assumption

2.2(a), (b) and (c) are met for the empirical distribution. By Theorem 2.1, the
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CM-estimates (B̂(Z̃n), V̂ (Z̃n)) exist. To show that breakdown of CM-estimation

has not occurred, we need to show that none of (i)−(iii) can happen. That is, if

λ1(Z̃n) and λm(Z̃n) represent the largest and smallest eigenvalues of V̂ (Z̃n), we

must show that for all possible εn1
-contaminated samples Z̃n, λ1(Z̃n) is uniformly

bounded above, λm(Z̃n) is uniformly bounded below and ‖B̂(Z̃n)‖ is uniformly

bounded above. This will imply ε∗n ≥ (min{⌈nε⌉, ⌈n(1 − ε) − Cn⌉})/n.

First we show that λm(Z̃n) is uniformly bounded below. If this is not true,

then there are εn1
-contaminated data sets {Z̃nk} such that the CM-estimates are

B̂k(Z̃nk), V̂k(Z̃nk) and λm(Z̃nk) → 0 as k → ∞. Since n1 < n(1 − ε) − Cn, there

exists δ > 0 such that n1 + Cn < n(1 − ε − δ). Choose s̃0 as in the proof of

Theorem 2.1 (recall that s̃0 depends on ρ and ε only). The constraint (3) for

each k implies that the number of i ≤ n such that

[ỹ∗
i − B̂k(Z̃nk)x̃

∗
i ]

T V̂k(Z̃nk)
−1[ỹ∗

i − B̂k(Z̃nk)x̃
∗
i ] ≤ s̃0

is not less than n(1 − ε − δ), where (ỹi, x̃i) are data points in the contaminated

set Z̃nk. Noticing the condition on n1, we know that there are at least Cn + 1

such values from the original data set Zn. That is,

#{i : [yi − B̂k(Z̃nk)xi]
T V̂k(Z̃nk)

−1[yi − B̂k(Z̃nk)xi] ≤ s0} ≥ Cn + 1. (26)

Consequently,

#{i : {aT
mk[yi − B̂k(Z̃nk)xi]}2 ≤ λm(Z̃nk)s0} ≥ Cn + 1, (27)

where amk is a unit eigenvector of V̂k(Z̃nk) associated with λm(Z̃nk). If {B̂k(Z̃n)}
has a bounded subsequence, then we can select a subsequence {k′} such that

{amk′ → a and B̂k′(Z̃nk′) → B. Recall that λm(Z̃nk′) → 0. Then (27) implies

that

#{i : (aT (yi − Bxi)) = 0} ≥ Cn + 1 ≥ C
(m,p)
1,n + 1,

which contradicts the definition of C
(m,p)
1,n . If ‖B̂k(Z̃mk)‖ → ∞, then we may

select a subsequence {k′} such that amk′ → a and B̂k′(Z̃mk′)/‖B̂k′(Z̃mk′)‖ → B.

Then, (27) implies that

#{i : (aT Bxi)) = 0} ≥ Cn + 1 ≥ C
(m,p)
2,n + 1,

which contradicts to the definition of C
(m,p)
2,n .

Next we show that λ1(Z̃n) is uniformly bounded above over all possible Z̃n.

If there is a sequence of n1 contaminated data sets Z̃nk such that λm(Z̃nk) → ∞,

then, by what has been proved, λm(Z̃nk is bounded from below. Thus, we have
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L{B̂k(Z̃nk), V̂k(Z̃nk); Z̃nk} → ∞. Note that n1 < ⌈nε⌉. For any n1-contaminated

data set Z̃nk, for (Bk, Vk) = (0, λI) we have

lim
λ→∞

1

n

n∑

i=1

ρ(
ỹT

i ỹi

λ
) ≤ n1

n
ρ(∞) < ερ(∞).

This shows that there is a λ so that the constraint (3) holds for all Z̃nk, hence

that B̂k(Z̃nk), V̂k(Z̃nk) are not CM estimates of the data sets Z̃nk for all large k.

This contradiction completes the proof of the boundedness of λ1(Z̃n).

Finally, it is noted that (26) also implies that ‖B̂(Z̃n)‖ is bounded since

λm(Z̃n) ≤ λ1(Z̃n), which is bounded above. Otherwise, there must exist B 6= 0

so that

#{i : Bxi = 0} ≥ Cn + 1 ≥ C
(m,p)
2,n + 1,

which contradicts the definition of C
(m.p)
2,n .

Proof of Theorem 5.1. Without loss of generality, we can assume that B = 0,

and hence yi = ei for any i ≥ 1. By Assumption 5.3, it can be seen that {τn}
converges. Hence, we may assume that τn is a constant in (19).

Note that ρ(s) is a bounded nondecreasing function for s ≥ 0. Hence by

(19), there exists M > 0 such that for any n, tr(Vn) < M , which in turn implies

that

max
n(k)<ℓ≤n(k+1)

‖Vl − Vn(k)‖ = o(1), a.s.. (28)

Let H1(B,V ) = E[H1(B,V,x,y)]. By (19), we have, for n(k) < ℓ ≤ n(k + 1),

Bℓ = Bn(k) +
ℓ∑

i=n(k)+1

ai−1H1(Bi−1, Vi−1,xi,ei)S̃
−1
i

= Bn(k) +

ℓ∑

i=n(k)+1

i−1ai−1H1(Bn(k), Vn(k))A + Rk,ℓ + Tk,ℓ + Wk,ℓ, (29)

where

Rk,ℓ =

ℓ∑

i=n(k)+1

i−1ai−1

[
H1(Bi−1, Vi−1,xi,ei) − H1(Bi−1, Vi−1)

]
A,

Tk,ℓ =

ℓ∑

i=n(k)+1

i−1ai−1

[
H1(Bi−1, Vi−1) − H1(Bn(k), Vn(k))

]
A,

Wk,ℓ =
ℓ∑

i=n(k)+1

i−1ai−1H1(Bi−1, Vi−1,xi,ei)
[
(i−1S̃i)

−1 − A
]
.
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Note that ρ is bounded nondecreasing function for s ≥ 0. By Lemma 2.1 of

Bai and Wu (1993), Assumptions 5.2 and 5.4 and (28), it can be shown that

max
n(k)<ℓ≤n(k+1)

|Rk,ℓ| = o(dk); (30)

max
n(k)<ℓ≤n(k+1)

|Tk,ℓ| ≤ O(dk)
(

max
n(k)<ℓ≤n(k+1)

‖Bℓ − Bn(k)‖ + o(1)
)
; (31)

max
n(k)<ℓ≤n(k+1)

|Wk,ℓ| = o(dk). (32)

Hereafter the symbols o(.) and O(.) are in the sense of “with probability one”,

unless otherwise specified.

Note that by Assumptions 5.1 and 5.4, it can be shown that

ℓ∑

i=n(k)+1

i−1ai−1H1(Bn(k), Vn(k)) = O(dk).

Hence, by (29)−(32),

max
n(k)<ℓ≤n(k+1)

‖Bℓ − Bn(k)‖ = O(dk). (33)

Since dk → 0 as k → ∞, to show that Bn → 0, a.s., one need only prove that

Bn(k) → 0, a.s.. (34)

By (31) and (33), we have maxn(k)<ℓ≤n(k+1) |Tk,ℓ| = o(dk). Therefore,

Bn(k+1) = Bn(k) +

n(k+1)∑

i=n(k)+1

i−1ai−1H1(Bn(k)Vn(k)) + o(dk). (35)

Here the estimate o(dk) holds uniformly for n(k) < ℓ ≤ n(k + 1). Since B = 0,

H1(B,V ) = [det(Σ)]−
1

2

∫ ∫
h(‖e − Bx‖2

Ṽ
)(e − Bx)xT f1(‖e‖Σ)dedF2(x),

and then

tr[BT H1(B,V )] = tr[det(Σ)]−
1

2

∫ ∫
(Bx)T h(‖e − Bx‖2

Ṽ
)(y − Bx)

×f1(‖e‖Σ)dedF2(x)].

Let z = OT
2 OT

1 Σ−1/2e, B̃ = OT
2 OT

1 Σ−1/2B, where O1 and O2 are orthog-

onal matrices such that ∆1 = OT
1 Σ−1/2Ṽ Σ−1/2O1 and ∆2 = OT

2 OT
1 ΣO1O2 are

diagonal. Then we have

tr[det(Σ)]−
1

2

∫
(Bx)T h(‖e − Bx‖2

Ṽ
)(e − Bx)f1(‖z‖)de
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= tr

∫
(B̃x)T ∆2h(‖z − B̃x‖2

∆1
)(z − Bx)f1(‖z‖)de.

Mimicking the proof of (3.12) in Bai and Wu (1993), it can be shown that Con-

dition (ii) of Lemma 2.2 there is satisfied. Hence by applying Lemma 2.2 of

Bai and Wu (1993), we have that Bn(k) → 0, a.s., which in turn implies that

Bn → 0, a.s..

Further assume that Assumption 5.5 holds. By similar arguments as in the

proof of Theorem 3.2 in Bai and Wu (1993), it can be shown that Vn → Ω, a.s..

Acknowledgement

We thank the referees for helpful comments and suggestions. We also thank

Prof. Jiahua Chen for reviewing an earlier draft of this paper. The research was

supported by the Natural Sciences and Engineering Research Council of Canada.

The work of Prof. Bai was supported by NSFC Grant 10571020 and NUS Grant

R-155-000-061-112.

References

Bai, Z. and Wu, Y. (1993). Recursive algorithm for M-estimators of regression coefficients and

scatter parameters in linear models. Sankhyā Ser. B 55, 199-218.
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