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Abstract: We propose an algorithm for regression tree construction called GUIDE.

It is specifically designed to eliminate variable selection bias, a problem that can

undermine the reliability of inferences from a tree structure. GUIDE controls bias

by employing chi-square analysis of residuals and bootstrap calibration of signif-

icance probabilities. This approach allows fast computation speed, natural ex-

tension to data sets with categorical variables, and direct detection of local two-

variable interactions. Previous algorithms are not unbiased and are insensitive to

local interactions during split selection. The speed of GUIDE enables two further

enhancements—complex modeling at the terminal nodes, such as polynomial or

best simple linear models, and bagging. In an experiment with real data sets, the

prediction mean square error of the piecewise constant GUIDE model is within

±20% of that of CART r©. Piecewise linear GUIDE models are more accurate;

with bagging they can outperform the spline-based MARS r© method.

Key words and phrases: Bagging, bias correction, bootstrap, interaction detection,

piecewise linear.

1. Introduction

A regression tree is a piecewise constant or piecewise linear estimate of a
regression function, constructed by recursively partitioning the data and sam-
ple space. Its name derives from the practice of displaying the partitions as a
decision tree, from which the roles of the predictor variables may be inferred.
The AID algorithm (Morgan and Sonquist (1963), Fielding (1977)) is the first
implementation of this idea. It searches over all axis-orthogonal partitions and
yields a piecewise constant estimate. At each stage, the binary partition that
minimizes the total sum of the squared errors (SSE) is selected. Splitting stops
if the fractional decrease in total SSE is less than a pre-specified value γ or if the
sample size is too small.

One weakness of AID is that it is hard to specify γ. Too small or too large
a value leads to over- or under-fitting, respectively. Another weakness is that
the greedy search approach induces a bias in variable selection (Doyle (1973)).
Specifically, an ordered predictor with n distinct values gives rise to n− 1 binary
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splits of the data. Suppose X1 and X2 are two ordered predictors with n1 and
n2 distinct values, respectively, with n1 � n2. All other things being equal,
X1 will have a higher chance to be selected than X2. On the other hand, if
X1 is a categorical variable taking n distinct values, there are 2n−1 − 1 binary
splits. Since this number grows exponentially with n, there is also a selection
bias toward categorical variables that take many values. Obviously, the bias can
lead to erroneous inferences from the tree structure.

The CART r© (Breiman, Friedman, Olshen and Stone (1984)) algorithm
avoids the difficulty of choosing γ by employing a backward-elimination strategy
to determine the tree. It grows an overly large tree and then prunes away some
branches, using a test sample or cross-validation (CV) to estimate the total SSE.
It has the same problem with selection bias because it uses the greedy search
approach of AID.

Other methods have been proposed for determining the final tree: Ciampi,
Hogg, McKinney and Thiffault (1988) and Ciampi, Lou, Lin and Negassa (1991)
combine non-adjacent partitions; Chaudhuri, Huang, Loh and Yao (1994) use
a CV-based look-ahead procedure; Marshall (1995) finds non-hierarchical parti-
tions; Chipman, George and McCulloch (1998) and Denison, Mallick and Smith
(1998) employ Bayesian methods to search among trees; Li, Lue and Chen (2000)
use a stopping rule based on statistical significance tests.

The FIRM (Kass (1975); Hawkins (1997)) method addresses the bias problem
by using Bonferroni-adjusted significance tests to select predictors for splitting.
Unlike AID and CART which yield binary splits, FIRM splits each node into as
many as ten subnodes for an ordered predictor, and c subnodes for a c-category
predictor. Hawkins ((1997), p.17) mentions that the Bonferroni adjustment can
over-correct, resulting in a bias toward predictors that allow fewer splits.

As illustration, consider the baseball data from Statlib (http://lib.stat.cmu
.edu) on 1987 salaries and twenty-two other variables for two hundred sixty-
three professional baseball players (Table 1). Many regression tree models have
been proposed for mean log-salary as a function of the other variables (Conlon
and Meyer (1988); Chaudhuri, Huang, Loh and Yao (1994); Li, Lue and Chen
(2000)). Figure 1 shows a piecewise constant CART model. It splits on seven
predictors. Hoaglin and Velleman (1995) find that a continuous three-segment
linear regression model of the form

LogSal = β0+β1Runcr/Yrs+β2

√
Run86+β3 min[(Yrs−2)+, 5]+β4(Yrs−7)+ (1)

fits the data quite well. They criticize regression tree and other automated
methods for generating “complex models that fit poorly and offered no insight”
(Hoaglin and Velleman (1995), p.284).
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Table 1. Predictor variables for baseball data. The response variable is
natural log of 1987 salary in thousands of dollars.

Bat86 # times at bat in 1986 Batcr # times at bat during career
Hit86 # hits in 1986 Hitcr # hits during career
Hr86 # home runs in 1986 Hrcr # home runs during career
Run86 # runs in 1986 Runcr # runs during career
Rb86 # runs batted in in 1986 Rbcr # runs batted in during career
Wlk86 # walks in 1986 Wlkcr # walks during career
Leag86 league at end of 1986 (2 cat.) Leag87 league at start of 1987 (2 cat.)
Team86 team at end of 1986 (24 cat.) Team87 team at start of 1987 (24 cat.)
Div86 division at end of 1986 (2 cat.) Yrs # years in the major leagues
Pos86 position in 1986 (23 cat.) Puto86 # put outs in 1986
Asst86 # assists in 1986 Err86 # errors in 1986

Batcr≤ 1322

Rbcr Wlk86≤ 55.5 ≤ 52.5

Hitcr≤ 450.5 Team86 ∈ S2

4.55 5.28

Hit86≤ 92
5.80 6.52 7.13

Team87 ∈ S1

6.58

5.88 6.44

Figure 1. Piecewise constant 0-SE CART tree for baseball data. Terminal
nodes for the 1-SE tree are colored black. At a split, a case goes to the left
node if it satisfies the stated condition; otherwise it goes to the right. S1 and
S2 denote sets of baseball teams. The number beneath each terminal node
is the sample mean of log-salary.

Although none of the predictors in Figure 1 appear in (1), some of the
splits make sense—high values of performance measures are associated with high
salaries. The splits on Team86 and Team87 are harder to explain and could be
due to selection bias. Nevertheless, the highly correlated nature of some of the
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predictors suggest that it is possible to simplify the tree structure by fitting a
linear model instead of a constant at each node.

An intrinsic difficulty in extending greedy search to piecewise multiple linear
regression models is the substantial increase in computational complexity: for
each split of a node, a linear model must be fitted to each of the subnodes. For
example, the variable Batcr has 263 distinct values. Thus there are 262 ways to
split the data into two subnodes and a search for the best split of the root node
on Batcr alone would require the fitting of more than 500 linear models.

There are two ways to combat this problem: (i) retain the greedy search
approach but fit a simple linear instead of a multiple linear regression model at
each node (Alexander and Grimshaw (1996) use this method); (ii) fit piecewise
multiple linear regression models but use statistical methods instead of greedy
search to find the splits (SUPPORT, Chaudhuri et al. (1994), and PHDRT,
Li et al. (2000)), are of this type). The main idea of SUPPORT is to apply
the split selection techniques from the FACT (Loh and Vanichsetakul (1988))
classification tree algorithm to the regression problem. At each node, it uses the
signs of the residuals to separate the observations into two classes and then uses
two-sample t-tests for variable selection. Categorical predictors are not allowed.
This idea is extended to piecewise generalized linear models and to regression
models for censored data by Chaudhuri, Lo, Loh and Yang (1995) and Ahn and
Loh (1994), respectively.

The models produced by PHDRT are even more general. While SUPPORT
yields axis-orthogonal splits (also called univariate splits), PHDRT uses princi-
pal Hessian directions to find splits on linear combinations of predictors. The
greater flexibility of the splits makes PHDRT potentially more accurate in terms
of prediction error, although the trees are much harder to interpret.

We present a new algorithm called GUIDE (for Generalized, Unbiased Inter-
action Detection and Estimation) for building piecewise constant and piecewise
linear regression models with univariate splits. It has four useful properties: (i)
negligible selection bias; (ii) sensitivity to curvature and local pairwise interac-
tions between regressor variables; (iii) inclusion of categorical predictor variables,
including ordinal categorical variables; (iv) choice of three roles for each ordered
predictor variable: split selection only, regression modeling only, or both.

The rest of the paper is organized as follows. Section 2 describes the GUIDE
method for piecewise constant regression. Chi-square tests for curvature and
interaction detection are presented and the problem of selection bias discussed.
Section 3 extends GUIDE to piecewise linear regression. We define the different
roles for ordered predictors and generalize the curvature and interaction tests.
Section 4 introduces a bootstrap bias correction method and demonstrates its
effectiveness in a simulation experiment. Section 5 examines the effect of pruning
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on selection bias. Section 6 extends the approach to piecewise best simple linear
models. Section 7 compares the prediction accuracy of GUIDE with CART and
a spline-based method called MARS r© (Friedman (1991)) on six real data sets.
The benefit of bagging (Breiman (1996)) is also evaluated.

Unless stated otherwise, the trees presented here are pruned using the cost-
complexity pruning method of CART with N -fold cross-validation, where N is
the size of the training sample. That is, an overly large tree is constructed and
then sequentially pruned back until only the root node is left. This yields a
sequence of nested subtrees. The prediction mean square error (PMSE) of each
subtree is estimated by N -fold cross-validation. The subtree with the smallest
PMSE (p0, say) is called the 0-SE tree. Letting s0 be the estimated standard
error of p0, the 1-SE tree is the smallest subtree whose estimated PMSE is less
than p0 + s0. The reader is referred to Breiman et al. (1984, Sec. 3.4) for further
details on pruning and estimation of standard error.

2. Piecewise Constant Models

The SUPPORT algorithm fits a piecewise constant model as follows. At
each node, a constant (namely, the sample Y -mean) is fitted and the residuals
computed. Then the cases in the node are divided into two groups, with one group
defined by the positive residuals and the other by the non-positive residuals. The
variable with the smallest p-value among two-sample t and Levene (1960) tests
for unequal means and variances, respectively, is chosen to split the node. The
idea is to detect non-random patterns in the two groups of signed residuals.

There are two deficiencies in the SUPPORT method: exclusion of categorical
predictors and inability to detect pairwise interactions. To solve the first problem,
we use instead the Pearson chi-square test to detect associations between the
signed residuals and groups of predictor values. If X is a c-category predictor,
the test is applied to the 2 × c table formed by the two groups of residuals as
rows and the categories of X as columns. If X is a numerical-valued variable, its
values can be grouped to form the columns of the table. We divide the range of
X into four groups at the sample quartiles to yield a 2×4 table. There are other
ways to define the groups for ordered variables, but there is probably none that
is optimal for all situations. Our experience indicates that this choice provides
sufficient detection power while keeping the chance of empty cells low.

Although the chi-square test is sensitive to curvature along the directions of
the axes, it is ineffective against simple interaction models such as

Y = I(X1X2 > 0) − I(X1X2 ≤ 0) + ε,
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where 0 is in the interior of the supports of X1 and X2 and ε is a noise variable.
A test for pairwise interactions is needed here. To do this, we can partition the
(X1,X2) space to form the columns of a new table. This yields the following
procedure, which includes categorical variables.

Algorithm 1. Chi-square tests for constant fit.
1. Obtain the residuals from a constant model fitted to the Y data.
2. For each numerical-valued variable, divide the data into four groups at the

sample quartiles; construct a 2 × 4 contingency table with the signs of the
residuals (positive versus non-positive) as rows and the groups as columns;
count the number of observations in each cell and compute the χ2-statistic and
its theoretical p-value from a χ2

3 distribution. We refer to this as a curvature
test.

3. Do the same for each categorical variable, using the categories of the variable
to form the columns of the contingency table and omitting columns with zero
column totals.

4. To detect interactions between a pair of numerical-valued variables (Xi,Xj),
divide the (Xi,Xj)-space into four quadrants by splitting the range of each
variable into two halves at the sample median; construct a 2 × 4 contingency
table using the residual signs as rows and the quadrants as columns; compute
the χ2-statistic and p-value. Again, columns with zero column totals are
omitted. We refer to this as an interaction test.

5. Do the same for each pair of categorical variables, using their value pairs to
divide the sample space. For example, if Xi and Xj take ci and cj values,
respectively, the χ2-statistic and p-value are computed from a table with two
rows and number of columns equal to cicj less the number of columns with
zero totals.

6. For each pair of variables (Xi,Xj) where Xi is numerical-valued and Xj is
categorical, divide the Xi-space into two at the sample median and the Xj-
space into as many sets as the number of categories in its range (if Xj has c

categories, this splits the (Xi,Xj)-space into 2c subsets); construct a 2 × 2c
contingency table with the signs of the residuals as rows and the subsets
as columns; compute a χ2-statistic and p-value for the table after omitting
columns with zero totals.

If the smallest p-value is from a curvature test, it is natural to select the
associated X variable to split the node. If the smallest p-value is from an in-
teraction test, we need to select one of the two interacting variables. We could
choose on the basis of the curvature p-values of the two variables but because
the goal is to fit a constant model in each node, we base the choice on reduction
in SSE.
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Algorithm 2. Choice between interacting pair of X variables.
Suppose that a pair of variables is selected because their interaction test is

the most significant among all the curvature and interaction tests.
1. If both variables are numerical-valued, the node is split in turn along the

sample mean of each variable; for each split, the SSE for a constant model
is obtained for each subnode; the variable yielding the split with the smaller
total SSE is selected.

2. Otherwise if at least one variable is categorical, the one with the smaller
curvature p-value is selected.

If a variable from a significant interaction is selected to split a node, one
strategy could be to require the other variable in the pair to split the immediate
children nodes. This has the advantage of highlighting the interaction in the tree
structure. On the other hand, by letting all the variables compete for splits at
every node, it may be possible to obtain a shorter tree. The latter strategy is
adopted for this reason.

A simulation experiment was carried out to compare the variable selection
bias of the methods, using three numerical-valued and two categorical variables.
Three dependence structures among the X variables are considered: (i) the in-
dependent case, where the X’s are mutually independent; (ii) a weakly dependent
case, where some of the Xi’s are not mutually independent; (iii) a strongly depen-
dent case where the correlation between X2 and X3 is increased to 0.995. The
marginal distributions are given in Table 2 and the joint distribution of the cat-
egorical variables X4 and X5 is in Table 3. The distribution of Y is independent
standard normal in all cases.

Table 2. Distributions of X variables used in simulation models; C5,
C10, U , T , W , and Z are mutually independent; Ck denotes a k-
category variable taking values {1, 2, . . . , k} with equal probabilities; U

is a uniform variate over the unit interval; T is a uniformly distributed
variable on the set {±1,±3}; W is an exponential variable with mean
1; Z is a standard normal variable; �.� is the greatest integer function.

Independent Weakly dependent Strongly dependent
X1 T T T

X2 W W W

X3 Z T + W + Z W + 0.1Z
X4 C5 �UC10/2� + 1 �UC10/2� + 1
X5 C10 C10 C10
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Table 3. Joint distribution of categorical variables X4 and X5 under
the weakly and strongly dependent simulation models.

X5

X4 1 2 3 4 5 6 7 8 9 10
1 1/10 1/10 2/30 1/20 2/50 1/30 2/70 1/40 2/90 1/50
2 1/30 1/20 2/50 1/30 2/70 1/40 2/90 1/50
3 1/50 1/30 2/70 1/40 2/90 1/50
4 1/70 1/40 2/90 1/50
5 1/90 1/50

Table 4. Estimated probabilities of variable selection for constant fit in
the null case where Y is independent of the X’s. Estimates are based
on 1000 Monte Carlo iterations and 1000 samples in each iteration. A
method is unbiased if it selects each variable with probability 0.2. All
but two of the GUIDE estimates are within three standard errors of 0.2.

Independent Weakly dependent Strongly dependent
Xi CART GUIDE CART GUIDE CART GUIDE
X1 .019 .176 .009 .183 .022 .201
X2 .263 .193 .269 .175 .242 .173
X3 .273 .204 .252 .178 .201 .154
X4 .057 .200 .067 .228 .010 .242
X5 .387 .227 .403 .236 .464 .230

Table 4 gives the estimated probability that each Xi is selected. To be un-
biased, a method should select each variable with probability 0.2. The estimates
in the table are based on 1000 simulation trials with 1000 samples used in each
trial. The results for CART are given for comparison.

As expected, variables with more splits are more likely to be selected by
CART. In the independent case, X2 and X3 each allow 999 splits and are preferred
twelve times more often than X1, which has only three splits. Similarly, X5 with
29 − 1 = 511 splits is preferred six times more often than X4, with 24 − 1 = 15
splits. It is interesting to note that X5 has a higher selection probability than X2

or X3 even though it has fewer splits. Thus the bias toward categorical variables
is not due to number of splits alone. In contrast, the GUIDE method is relatively
unbiased. All but two of its values are within three standard errors of 0.2 (the
two values occur in the strongly dependent model).
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So far we have concentrated on the problem of variable selection. To complete
the tree construction algorithm, we need to select the split points as well as
determine the size of the tree. For the latter, we adopt the CART method of
cost-complexity pruning with an independent test set or, in its absence, by cross-
validation.

If the selected X is an ordered predictor, there are several ways to select c
for a split of the form X ≤ c. One is to use greedy search to find the value that
minimizes the total SSE in the regression models fitted to the data subsets defined
by the split. We will refer to this as the G (for ‘greedy search’) method. It can
be computationally expensive, especially when applied to non-trivial piecewise
models. To avoid the computations, SUPPORT chooses c to be the sample mean
of X. This may seem inferior to the G method, but it ultimately depends on the
form of the true regression surface. If the surface consists of two planes joining or
breaking at some value of c along the X axis, the G method is better unless the
break occurs at the sample mean. On the other hand, if the regression surface is
nonlinear but smoothly varying, several splits would be required for an accurate
piecewise linear approximation. In that case, the mean may be as good as any
other split value.

The real disadvantage of using the sample mean for c is that the splits can
yield highly unbalanced nodes if the data are skewed. To avoid this problem, we
can use the sample median instead of the sample mean. This solution is called
the M (for ‘median’) method in the sequel. GUIDE offers the G and M methods
as well as a method in between that searches over a systematic sample of the
order statistics. It will be shown in Table 11 in Section 7 that the M method is
not always inferior to the G method.

If X is a categorical predictor, we need to find a split of the form X ∈ A,
where A is a subset of the values taken by X. We accomplish this by viewing
it as a classification problem. Label each observation in the node as class 1
if it is associated with a positive residual and as class 2 otherwise. Given a
split determined by A, let L and R denote the data subsets in the left and
right subnodes, respectively. We choose the set A for which the sum of the
(binomial) variances in L and R is minimized. This solution is quickly found
with an algorithm in Breiman et al. (1984, p.101).

The left panel of Figure 2 shows a piecewise constant GUIDE tree for the
baseball data using the M method and the 1-SE rule. The first split is due
to a significant curvature in Yrs. (Recall that Yrs was also chosen in (1) to
segment the model.) The subsequent splits confirm that better past performance
is generally rewarded by higher salaries. According to the tree, past performance
is measured over the career for players with six or fewer years of experience. For
those with seven or more years, past performance is mainly based on the previous
year (Bat86).
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Yrs Yrs≤ 6 ≤ 6

Yrs Bat86≤ 4 ≤ 405.5
5.51 6.47

Hitcr Hitcr≤ 167 ≤ 462
6.131 6.807

Batcr≤ 1051
4.611 5.713 6.753

Batcr≤ 1442
5.198

5.469 6.157

Figure 2. Piecewise constant (left) and piecewise linear (right) 1-SE GUIDE
trees for baseball data with median split points. The piecewise constant 0-SE
tree has 32 terminal nodes. The piecewise linear 0-SE and 1-SE trees are the
same. The number beneath a node is the sample Y -mean.

The differences between this tree and the CART tree in Figure 1 are more
apparent than real. For instance, their initial split variables (Batcr for CART and
Yrs for GUIDE) have a correlation coefficient of 0.92. Therefore one variable is
basically substituting for the other. The more years a player spends in the game,
the longer his career and hence the more times he is at bat. Why then does
CART choose Batcr instead of Yrs? We suspect the reason is selection bias,
since there are 256 ways to split on Batcr but only 20 to split on Yrs.

3. Piecewise Linear Models

While no distinction between ordered and categorical variables is necessary
for piecewise constant models, the situation is different for piecewise linear mod-
els. Previous piecewise linear regression tree algorithms have required categorical
predictor variables to be transformed into 0-1 vectors before use. One problem
with this approach is that a split on a categorical predictor X then takes the form
X ∈ A, with A a singleton or the complement of a singleton. If the relationship
between Y and X is a function of a set A that is not of this form, several splits
on X will be required. This exaggerates the importance of the predictor and
makes the tree more complicated than necessary.

Another problem with using 0-1 vectors is that an analysis of covariance
(ANCOVA) model is fitted in each node. A predictor with c categorical values
thus requires the estimation of (c − 1) coefficients, compared to one coefficient
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for each ordered predictor. If c is large, this consumes a disproportionately
large number of degrees of freedom. To avoid these problems, GUIDE employs
categorical variables to split the nodes only; they are not used as regressors in
the linear models. (GUIDE can be used to fit ANCOVA models but the user
must first convert each categorical variable into 0-1 variables and treat them as
ordered.)

For greater flexibility, GUIDE allows a numerical-valued predictor to play one
of several roles. It can simultaneously compete for splits and act as a regressor,
or it can be restricted to splitting only. In the latter situation, it can split the
nodes but not enter into the regression equations. A useful consequence is that
if all ordered variables are given this role, the algorithm produces a piecewise
constant tree. Conversely, a numerical-valued predictor can act as a regressor
in the linear models but not be allowed to compete for splits. To simplify the
discussion, we use the following terminology:
n-variable: a numerical-valued predictor used to fit the regression models and

to split the nodes;
f-variable: a numerical-valued predictor used to fit the regression models but

not split the nodes;
s-variable: a numerical-valued predictor used to split the nodes but not fit the

regression models;
c-variable: a categorical predictor used to split the nodes but not fit the regres-

sion models.
Thus a numerical-valued predictor can be employed as an n, s, or f-variable.

The type to use depends on the application. For example, if it is desired to
fit piecewise quadratic models, we can define the predictor X2 as an f-variable.
This will prevent X2 from being selected for splitting. In other situations, where
there is no obvious choice, a regression tree model can be fitted for each variable
type and the final one selected according to cross-validation estimates of error
and/or interpretability of the trees. The s-variable type can be used on an ordinal
categorical variable after its values are given order-preserving numerical codes.

We can now extend Algorithm 1 to piecewise linear models.

Algorithm 3. Chi-square tests for linear fit.
1. Obtain the residuals from a linear model fitted to the n- and f-variables,

leaving out the s- and c-variables.
2. For each n-variable, divide the data into four groups at the sample quartiles;

construct a 2 × 4 contingency table with the signs of the residuals (positive
versus non-positive) as rows and the groups as columns; count the number
of observations in each cell and compute the χ2-statistic and its theoretical
p-value from a χ2

3 distribution.
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3. Do the same for each s and c-variable. For the latter, the categories of the
variable form the columns of the table. Columns with zero column totals are
omitted.

4. To detect interactions between each pair of n-variables (Xi,Xj), divide the
(Xi,Xj)-space into four quadrants by splitting the range of each variable into
two halves at the sample median; construct a 2×4 contingency table using the
residual signs as rows and the quadrants as columns; compute the χ2-statistic
and p-value. Again, columns with zero column totals are omitted.

5. Do the same for each pair of s-variables.
6. Also do the same for each pair of c-variables, using their value pairs to divide

the sample space. For example, if Xi and Xj take ci and cj unique values,
respectively, the χ2-statistic and p-value are computed from a table with 2
rows and number of columns equal to cicj less the number of zero columns.

7. Compute a χ2-statistic and p-value for each pair (Xi,Xj) where Xi is an n-
variable and Xj is a c-variable. If Xj has c categories, the table has 2 rows
and number of columns equal to 2c less the number of zero columns.

8. Similarly, compute a χ2-statistic and p-value for each pair where Xi is an
s-variable and Xj is a c-variable.

9. Finally, do the same for each pair where Xi is an s-variable and Xj is an
n-variable as in step 4.

Nine sets of chi-square tests are computed here: three sets to detect curvature in
the n-, s-, and c-variables; another three sets to detect interactions between pairs
of variables of the same type; three more sets to detect interactions between pairs
of predictors of different types. If the smallest p-value comes from a curvature
test, the associated variable is selected to split the node. For example, if it is
an n-variable, we expect the curvature would be reflected in the different values
its regression coefficient takes in the two subnodes. The next algorithm extends
Algorithm 2.

Algorithm 4. Choice between interacting pair of variables.
Suppose that a pair of variables is selected because their interaction test is

the most significant among the curvature and interaction tests.
1. If neither is an n-variable, choose the one with the smaller curvature p-value.
2. If both are n-variables, temporarily split the node along the sample mean of

each variable; choose the variable whose split yields the smaller total SSE.
3. If exactly one is an n-variable, choose the other variable.

The main reason for preferring the non n-variable in Step 3 is that it simplifies the
tree structure in some situations. For example, suppose that X1 is an n-variable,
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X2 ∈ {a1, a2} is a binary c-variable, and that the true model is

Y =

{
X1 + ε, if X2 = a1

−X1 + ε, if X2 = a2.

Owing to the symmetry, the p-values from the curvature tests on X1 and X2 are
likely to be of similar magnitude and be less significant than the p-value from
the interaction test. The ideal split is on X2, but there is no guarantee that this
will happen if the choice is based on the p-values of the curvature tests.

After a variable is selected to split a node, the split point may be chosen by
the G, M, or other method as described for piecewise constant models.

4. Bootstrap Bias Correction

Two simulation experiments were carried out to study the probabilities of
variable selection in the case of piecewise linear regression when Y is independent
of the X’s. The distributions of the X’s are the same as in Table 2. The only
difference between the two experiments is that X3 is an n-variable in the first and
an s-variable in the second. Table 5 gives the results for the uncorrected method
in the columns labeled “Unc.” The large bias toward the c and s-variables is
obvious.

Table 5. Estimated probabilities of variable selection for the uncorrected (de-
noted by “Unc.”) and bias-corrected (denoted by “BC”) chi-square methods
for linear fit when Y is standard normal and independent of the X ’s. The
distributions of the X ’s are given in Table 2. The results are based on 1000
Monte Carlo iterations and 1000 samples in each iteration. The bias-corrected
method uses 50 bootstrap replications. A method is unbiased if it selects each
variable with probability 0.2.

Indep. Xi Weak. dep. Xi Strong. dep. Xi

Expt. Xi Type Unc. BC Unc. BC Unc. BC
X1 n 0 .178 0 .191 0 .178
X2 n 0 .232 0 .206 0 .215

1 X3 n 0 .200 0 .194 0 .197
X4 c .469 .181 .519 .200 .532 .214
X5 c .531 .209 .481 .209 .468 .196
X1 n 0 .202 0 .181 0 .197
X2 n 0 .217 0 .228 0 .214

2 X3 s .352 .203 .288 .134 .313 .121
X4 c .307 .178 .360 .238 .360 .256
X5 c .341 .200 .352 .219 .327 .212

The bias is not due solely to the preference for c and s-variables in Step 3
of Algorithm 4. It persists even when the selection is based on curvature p-value
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as in Step 1. The reason is that the n-variables serve as regressors while the c
and s-variables do not. As a result, the n-variables have zero sample correlation
with the residuals. Therefore the distribution of their χ2 values is stochastically
much smaller than a chi-square distribution with the same degrees of freedom.
The c and s-variables, on the other hand, are independent of the residuals and
their χ2 values follow the theoretical chi-square distributions more closely.

One way to correct the bias is to shrink the p-values of the chi-square tests
involving the n-variables so that their chance of selection is increased. Finding
the right shrinkage multiplier is tricky because some p-values may be near 0. To
get around this problem, we convert the p-value from each chi-square test into
a two-tailed z-value via the transformation z = Φ−1(1 − p/2), where Φ is the
standard normal distribution function, and then scale up the z-values associated
with the n-variables by a constant factor denoted by r. Since the best value of
r will likely depend on factors such as the number and mix of variables, their
degree of association with one another, the sample size, and the configuration of
the design points, we employ a bootstrap method to find r adaptively.

Algorithm 5. Bootstrap calibration for bias correction.
1. Let Z = (Y,X1, . . . ,Xk) denote the matrix of training samples, where Y =

(y1, . . . , yn)′ is a column vector of n responses and Xi = (x1i, . . . , xni)′ is a
column vector containing the corresponding observations on the ith predictor
variable. Define the bootstrap sample as Z∗ = (Y ∗,X1, . . . ,Xk), where Y ∗ =
(y∗1 , . . . , y∗n)′ and each y∗j is a random draw with replacement from the set
{y1, . . . , yn}.

2. Fit a linear model to Z∗ using only the n- and f-variables and obtain the
residuals.

3. Compute the χ2 p-values described in Algorithm 3 for this set of residuals and
convert the p-values to two-tailed z-values.

4. Let zn denote the largest z-value from a curvature test on an n-variable and
let znn denote the largest z-value from an interaction test between two n-
variables. Similarly, let zs and zss denote the corresponding largest z-values
for the s-variables, and zc and zcc the corresponding largest z-values for the
c-variables. Finally, let znc, zns, and zsc denote the largest z-values from the
set of n-c, n-s, and s-c interaction tests. Given r > 1, select the n-variable
if r max{zn, znn} ≥ max{zs, zc, zss, zcc, zsc, znc, zns}.

5. Repeat steps 1–4 B times over a grid of values of r. For each r, let π(r) denote
the proportion of times that an n-variable is selected.

6. Linearly interpolate, if necessary, to find the value of r such that π(r) is equal
to the proportion of n-variables among (X1, . . . ,Xk).

The results for the bias-corrected chi-square method are given in the columns
labeled “BC” in Table 5. They are based on B = 50 and an equi-spaced grid of 40



REGRESSION TREES 375

values of r in the interval [1, 5]. (The selected value of r is almost always less than
2.) The bias correction is clearly effective—all entries lie within three simulation
standard errors of 0.2 (the value for unbiased selection). Similar results were
observed when different distributions, mix of variable types, and sample sizes
were used.

In our examples and in the GUIDE program, bootstrap estimation of the
scale factor r is carried out only at the root node. One argument for not boot-
strapping at every node is that it reduces computational cost. Another is that
the value of r is unlikely to change much in the first few levels of splits. At splits
further down, estimation of r could become unstable because of the small sample
sizes at the nodes. To assess the amount of computation incurred by bootstrap-
ping, note that a one-time bias correction with B bootstrap iterations adds the
equivalent of about B node computations. On the other hand, V -fold cross-
validation requires V + 1 trees to be constructed and pruned. Letting M denote
the average number of nodes in the trees, the total number of node computations
is thus B + M(V + 1) if bootstrapping is performed once, and BM(V + 1) if it
is carried out at every node. For the baseball data, M ≈ 30 and N = 263. With
N -fold cross-validation pruning, this yields M(V + 1) ≈ 30 × 264 = 7920. Since
B = 50, the cost of a one-time correction increases the total cost by less than one
percent. The results in the next and subsequent sections show that a one-time
correction yields models with reasonably good fits in terms of SSE.

Table 6. Regression coefficients for the piecewise linear model in Figure 2

Predictor Left node Right node
Constant 4.16 6.17
Bat86 −2.50E−3 1.23E−3
Hit86 6.16E−3 2.24E−3
Hr86 3.23E−3 −1.00E−2
Run86 9.51E−3 −6.86E−4
Rb86 −1.20E−3 5.91E−4
Wlk86 −8.13E−4 6.97E−4
Yrs 1.14E−1 −9.39E−2
Batcr 4.18E−4 −2.53E−4
Hitcr −1.13E−3 6.30E−4
Hrcr −3.00E−3 −5.13E−4
Runcr 3.89E−4 7.04E−4
Rbcr 3.49E−3 9.29E−4
Wlkcr 1.84E−3 3.44E−4
Puto86 −1.09E−4 2.93E−4
Asst86 1.78E−4 −6.46E−4
Err86 −2.37E−3 6.79E−3
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The piecewise linear GUIDE tree for the baseball data is shown on the right
side of Figure 2. It splits only once, on Yrs. The same tree is obtained with
the 0-SE or 1-SE rules. Compared with the piecewise constant 1-SE tree which
has 8 terminal nodes, this tree is much shorter. Its simplicity is obtained by
transferring some of the model complexity to the linear regression models whose
coefficients are given in Table 6.

5. Effect of Pruning

The role of pruning has so far been ignored in our discussion of selection bias.
In the null case where Y is independent of the X’s, pruning may be expected
to produce a tree with no splits. If that is the case, bias would be a problem
only in non-null situations where the pruned trees are non-trivial. To study this
problem, we performed a simulation experiment with the six regression models
in Table 7. The first three models are simple functions of X1 only. Therefore X1

should be selected for splitting. The fourth model is additive in X1 and X5 with
the latter acting as a c-variable. Since X1 alters the mean of Y from -2.1 to 2.1
while X5 changes it from 0.05 to 1.0, it is better to select X1 than X5. The fifth
(Cross) model involves an interaction between X1 and X2. Clearly, a piecewise
linear model should split on X1. In the last (Steps) model, splitting on X1 or X3

would be correct.

Table 7. Distributions and models for simulation experiment on effect of
pruning: Ck is a c-variable taking values in the set {1, 2, . . . , k} with equal
probabilities; N(0, 1) and E(0, 1) denote the standard normal and exponen-
tial distributions, respectively; the predictors are mutually independent, with
X1, X2, X3 used as n-variables and X4, X5 as c-variables.

Distributions Models
X1 ∼ U{±1,±3} Jump Y = 0.7I(X1 > 0) + ε

X2 ∼ E(0, 1) Quadratic Y = 0.08X2
1 + ε

X3 ∼ N(0, 1) Cubic Y = 0.02X3
1 + ε

X4 ∼ C5 Additive Y = 0.7I(X1 > 0) + 0.05
∑20

i=1 iI(X5 = i) + ε

X5 ∼ C20 Cross Y = 0.5sgn(X1)X2 + ε

ε ∼ N(0, 1) Steps Y = 0.5sgn(X1X3) + ε

We simulated data from the models to compare the piecewise constant CART
method with the piecewise constant and piecewise linear GUIDE methods with
G split point selection. The predictors are mutually independent and the trees
are pruned with ten-fold cross-validation and the 1-SE rule. Tables 8 and 9 give
the estimated conditional and unconditional probabilities that the right variables
are selected to split the root node, the condition being the event that the pruned
tree is non-trivial. The results are based on 100 iterations and 500 samples per
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iteration. Also reported are the estimated root mean square error (RMSE) of
each method and the total CPU time on a 300MHz DEC Alpha workstation for
100 iterations. The RMSE is defined as the square root of E{f̂(X) − f(X)}2,
where f̂(x) denotes the estimated regression function at x and the expectation
is over an independent set of X values.

Table 8. Results of simulation experiment on effect of pruning for models
without interactions. |T̃ | denotes the number of terminal nodes in a tree and
A is the event that {|T̃ | > 1}. P (X1) denotes the probability that X1 is
selected to split the root node. The GUIDE entries are obtained with the G
split point selection method. Estimates are based on 100 iterations, with 500
samples per iteration. Simulation standard errors of RMSE are about 0.01.

True Tree Conditional on A CPU
Model Model Method P (X1) P (A) P (X1) E|T̃ | RMSE sec.
Jump Constant CART 1.00 0.77 1.00 2.00 0.12 1760

Constant GUIDE 1.00 0.52 1.00 2.00 0.20 1227
Linear GUIDE 0.70 0.00 - - 0.18 1684

Quadratic Constant CART 0.89 0.33 1.00 2.91 0.25 3701
Constant GUIDE 0.96 0.34 1.00 2.85 0.25 2458
Linear GUIDE 0.98 0.20 1.00 2.00 0.30 3355

Cubic Constant CART 1.00 0.69 1.00 2.09 0.27 5615
Constant GUIDE 1.00 0.72 1.00 2.10 0.27 3472
Linear GUIDE 0.43 0.00 - - 0.14 5044

Additive Constant CART 0.84 0.92 0.86 2.15 0.32 1867
Constant GUIDE 0.96 0.80 0.96 2.08 0.33 1268
Linear GUIDE 0.28 0.01 0.00 2.00 0.34 1684

Table 9. Results of simulation experiment on effect of pruning for models
containing interactions. |T̃ | denotes the number of terminal nodes in a tree
and A is the event that {|T̃ | > 1}. P (X1) denotes the probability that X1 is
selected to split the root node. The GUIDE entries are obtained with the G
split point selection method. Estimates are based on 100 iterations, with 500
samples per iteration. Simulation standard errors of RMSE are about 0.01.

True Tree Conditional on A CPU
Model Model Method P (A) P (X1) P (X2) E|T̃ | RMSE sec.
Cross Constant CART 1.00 1.00 0.00 3.15 0.41 1984

Constant GUIDE 1.00 1.00 0.00 3.35 0.40 1359
Linear GUIDE 0.90 0.98 0.01 2.16 0.18 1771

True Tree Conditional on A CPU
Model Model Method P (A) P (X1) P (X3) E|T̃ | RMSE sec.
Steps Constant CART 0.05 0.00 0.20 5.40 0.50 3906

Constant GUIDE 0.82 0.51 0.49 5.67 0.29 2761
Linear GUIDE 0.87 0.05 0.95 2.11 0.30 3519
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We first compare CART with the piecewise constant GUIDE method. Ta-
ble 8 shows that the non-trivial trees are very similar for the first three models—
they always split on the right variable and have about the same average size.
The selection bias of CART, however, is apparent in the Additive model, where
it selects X1 10% less often than GUIDE. In terms of RMSE, the two methods
are also quite comparable, except at the Jump model, where GUIDE has a higher
RMSE because it yields trivial trees twice as often as CART (48% versus 23%).
Table 9 shows that the two methods are also comparable in the Cross model.
Both split on X1 all the time and they have similar sized trees and RMSEs.

The situation is quite different for the Steps model. Table 9 shows that
CART gives a non-trivial tree only 5% of the time. The reason is that CART has
a high probability of selecting uninformative variables for its splits here. Because
these splits are noisy, they are eventually pruned away. In the rare instances
where the CART tree is non-trivial, the first split is on a right variable (X1 or
X3) only 20% of the time. As a result, the RMSE of CART is almost twice as
large as that of GUIDE.

The piecewise linear GUIDE method almost never yields any splits for the
four models in Table 8. Despite this, its RMSE is quite good, especially at the
Cubic model. It does split (and on the right variables) in the Cross and Steps
interaction models. Its RMSEs at these two models are good, especially at the
Cross model. The results also show that the piecewise constant and piecewise
linear GUIDE algorithms are faster than the piecewise constant CART algorithm
over the six simulation models.

These simulations show that, in the absence of interactions, pruning can
reduce the selection bias of the greedy search approach. On the other hand, when
interactions are present, pruning does not help. We expect the same observations
to hold in more complicated models.

6. Piecewise Best Simple Linear Models

A model that is in between a piecewise constant and a piecewise linear model
is one in which a best simple linear model is fitted to each node. Such a model
is useful when a piecewise constant model has too many nodes but a piecewise
linear one has too few. In the baseball data, for example, the piecewise constant
1-SE tree has eight terminal nodes while the piecewise linear tree has two.

Alexander and Grimshaw (1996) implement this idea using greedy search to
find the splits. But, possibly because of computational cost, they use a direct
stopping rule instead of pruning to determine the tree size. Since our chi-square
test approach is based on residuals, it can be applied in a straightforward manner
to fit piecewise best simple linear models.
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Yrs≤ 6

Batcr≤ 985 5.4 + 0.0095Hit86
6.47

4.0+0.0057Hitcr 4.9+0.0025Hitcr
4.85 6.18

Figure 3. Best simple linear 1-SE GUIDE tree for baseball data using the M
split point selection. A fitted equation is given beside each terminal node.
The number beneath a node is the sample Y -mean. The 0-SE tree has nine
terminal nodes.

Figure 3 shows the best simple linear GUIDE tree for the baseball data.
It is shorter than the piecewise constant tree but has more structure than the
piecewise linear tree. A unique advantage of a piecewise simple linear model is
that the data and fitted line in each terminal node can be plotted and examined
for lack of fit. For example, panels (b)–(d) of Figure 4 show that the data in
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Figure 4. Plots of baseball data at the root node and the terminal nodes of
the tree in Figure 3.
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the terminal nodes of the tree fit their respective simple linear models well. This
is not true in panel (a) which shows the relationship of Logsalary with Hitcr at
the root node—here all kinds of problems with nonlinearity, heterogeneity and
outliers are visible.

7. Prediction Accuracy for Real Data

To compare the prediction accuracy of the algorithms on real data, we test
them on six data sets.

Baseball: This is the data set on salaries of baseball players introduced earlier.

Boston: The data contain information on median housing values and 13 related
variables on 506 census tracts around Boston (Belsley, Kuh and Welsch
(1980)). The response variable is the logarithm of the median housing
value. Breiman et al. (1984) use the data to illustrate the CART method.

Mpg: This is a subset of the auto-mpg data at the University of California,
Irvine, Repository of Machine Learning Databases (Merz and Murphy
(1996)). The full data set was used in the 1983 American Statistical Asso-
ciation Exposition. We use the 392 cases with complete observations. There
are 7 predictor variables; the dependent variable is mpg rating.

Mumps: This is taken from the Statlib archive. The data give the incidence
of mumps in each of the 48 contiguous states of the U.S. (excluding the
District of Columbia) from 1953 to 1989. There are 1523 observations on 4
variables. The dependent variable is the logarithm of the number of mumps
cases reported per million population in each state. The predictor variables
are year and the longitude and latitude of each state’s center. Chaudhuri
et al. (1994) use the data to illustrate the SUPPORT method.

TA: These data give the teaching evaluation scores of 324 teaching assistants at
the University of Wisconsin, Madison, between 1993 and 2000. The problem
is to predict the scores from two numerical and four categorical predictor
variables: year, number of respondents, course (30 values), instructor (40
values), session (3 values), and whether or not the teaching assistant is a
native English speaker (2 values).

Tecator: This is also taken from the Statlib archive. The data were collected
by the Danish meat industry to calibrate a Tecator infrared spectrometer for
the purpose of predicting the fat content of minced pork meat (Borggaard
and Thodberg (1992)). The light transmitted through each of 215 meat
samples was measured by the spectrometer at 100 different wavelengths.
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Thodberg (1996) used the first ten principal components of the wavelengths
to predict the actual fat content as measured by wet-chemistry methods.
We employ the same predictors.

Table 10. Characteristics of real data sets.

Predictors
Data set #cases #n #c
Baseball 263 16 6
Boston 506 13 0
Mpg 392 6 1
Mumps 1523 3 0
TA 324 2 4
Tecator 215 10 0

Table 10 summarizes the characteristics of each data set. We use ten-fold
cross-validation to estimate the prediction mean square error (PMSE), defined
as E(Y − f̂(X))2, where f̂ is the regression function estimated from the training
sample and (X,Y ) is an independent observation. Each data set is randomly
divided into ten roughly equal parts. One part is held out in turn and a regression
estimate is constructed from the remaining nine parts. Ten-fold cross-validation
is used to prune the trees. The held-out part is then used to estimate the PMSE.
The average of the ten estimated PMSEs is reported in Table 11.

Table 11. Ten-fold cross-validation estimates of PMSE. The column labeled
“Model” indicates whether the fitted model is piecewise constant, piecewise
simple linear, piecewise multiple linear, or spline. For GUIDE, “G” and “M”
stand for the greedy search and median split selection methods, respectively.
All trees are pruned with the 0-SE rule. Bagged models are based on fifty
bootstrap replicates.

Bagged Model Method Baseball Boston Mpg Mumps TA Tecator
No Constant CART 0.230 0.045 11.64 0.94 0.898 52.07
No Constant GUIDE(G) 0.192 0.041 9.87 1.10 0.749 57.02
No Constant GUIDE(M) 0.184 0.047 14.68 1.54 0.740 42.85
No Simple GUIDE(M) 0.178 0.040 9.54 1.25 0.778 43.79
No Multiple GUIDE(G) 0.133 0.028 9.67 0.87 0.786 7.45
No Multiple GUIDE(M) 0.133 0.079 10.24 1.02 0.774 5.53
Yes Constant CART 0.159 0.032 8.37 0.79 0.740 34.16
Yes Constant GUIDE(G) 0.140 0.027 8.46 0.81 0.763 27.47
Yes Constant GUIDE(M) 0.136 0.034 9.56 1.39 0.762 24.79
Yes Simple GUIDE(M) 0.133 0.027 7.20 1.05 0.742 16.99
Yes Multiple GUIDE(G) 0.126 0.028 10.22 0.76 0.755 4.94
Yes Multiple GUIDE(M) 0.123 0.024 7.44 0.86 0.762 4.06
No Spline MARS 0.156 0.030 7.89 1.40 0.911 6.78
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Also reported are results from bagging the CART and GUIDE trees. Bag-
ging (Breiman (1996)) is a technique for improving the prediction accuracy of
regression trees. It creates an ensemble of trees by repeatedly drawing bootstrap
samples from the training sample and constructing a tree from each sample. The
predicted value of a new observation is obtained by averaging the predictions
from the ensemble. The bagging results in Table 11 are obtained from ensem-
bles of fifty bootstrap trees each. For comparison, we also include the results for
MARS (Friedman (1991)), a nonparametric spline method that does not produce
a tree structure.

Figure 5 gives a visual representation of the results. The length of each bar
is equal to the PMSE of a method divided by that of CART without bagging.
Among methods that do not employ bagging, we see the following.

1. The accuracy of the piecewise constant GUIDE models is quite similar to
that of the CART models. In one-to-one comparisons, GUIDE(G) beats
CART in four of six data sets and loses in two. GUIDE(M) is even against
CART, and so is GUIDE(G) vs. GUIDE(M).

2. Piecewise linear models tend to possess better prediction accuracy than
piecewise constant models, although the former are not uniformly supe-
rior. The performance of the piecewise multiple linear GUIDE models is
especially impressive on the Tecator data set.

3. The two piecewise multiple linear GUIDE models hold up well against
MARS. Each is more accurate than MARS four of six times.

4. The accuracy of the piecewise best simple linear GUIDE model is generally
between that of the piecewise constant and the piecewise multiple linear
models. Model simplicity is obtained at the cost of some loss in prediction
accuracy.

Bagging usually reduces the PMSE, except in three instances: the piecewise
constant GUIDE models in the TA data, and the multiple linear GUIDE(G)
model in the Mpg data. The bagged piecewise constant CART model is more
accurate than the corresponding GUIDE(M) model four of six times and is even
against the bagged piecewise constant GUIDE(G) model. Bagging is particularly
effective for the piecewise multiple linear GUIDE(M) method, which beats MARS
uniformly across the data sets. It is recommended for sheer prediction accuracy.
Of course, since the bagged model consists of fifty piecewise linear models, it is
practically impossible to interpret.
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Figure 5. Barcharts of prediction mean square error relative to CART for
the results in Table 11. CG and CM refer to the GUIDE piecewise constant
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linear method with M split point, and LG and LM the multiple linear methods
with G and M split points. The b in a label indicates bagging. The bars are
arranged in the same order as the rows of Table 11.
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8. Conclusion

GUIDE is designed to solve three problems that can adversely affect the
interpretability of a regression tree: bias in variable selection, insensitivity to
local interactions, and complicated tree structures. Since the chief advantage
of a regression tree over other models is the ease with which the model can be
interpreted, it is important that the construction method be free of selection bias.
GUIDE achieves this goal by employing lack-of-fit tests followed by bootstrap
adjustment of the p-values. The latter is critical because the appropriate amount
of adjustment is typically data dependent.

A welcome by-product of the bootstrap is that it permits greater freedom
in split selection without the worry of selection bias. GUIDE exploits this by
including tests for local interactions between pairs of variables. Splits that are
sensitive to pairwise interactions can produce shorter trees.

Because interpretability of a tree structure decreases rapidly with increase
in its complexity, a tree with a large number of splits can be harder to com-
prehend than a standard linear regression model. This problem is exacerbated
by the traditional practice of fitting constants to each partition. One way to
simultaneously reduce the complexity of a tree structure and increase prediction
accuracy is to fit more complex models than constants. Unfortunately this is
too computationally expensive to be practical with the standard greedy search
approach. As a result, past attempts to fit piecewise linear models were forced
to employ non-greedy search approaches. We showed that abandonment of the
greedy search approach opens the way not only to computational savings but to
the possibility of bias reduction.

It should be emphasized that although the greedy search approach of simul-
taneous optimization over the set of variables and their split points produces
selection bias, this does not mean that greedy search cannot be employed to
search for a split point after a split variable is found. The GUIDE results for
the G split point selection show that there is nothing wrong with doing this. Fi-
nally, it is interesting to observe that in applications where model interpretation
is unimportant, bagging a piecewise multiple linear GUIDE model can produce
a highly accurate predictor.

Some of the ideas in this paper have been extended to quantile regression and
classification problems in Chaudhuri and Loh (1998) and Kim and Loh (2001),
respectively.
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