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neering. Even though it can only focus on a limited number of topics, the review

shows that sequential analysis is still a vibrant subject after six decades of contin-
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through interactions with other branches of statistics and probability. We conclude

with some remarks on the opportunities and challenges ahead.
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1. Introduction

In his brief historical account of the subject, Ghosh (1991) dates the rudi-
ments of sequential analysis to the works of Huyghens, Bernoulli, DeMoivre and
Laplace on the gambler’s ruin problem. He traces the conception of the subject
to the sequential sampling inspection procedures of Dodge and Romig (1929), to
quality control charts introduced by Shewhart (1931) and to the two-stage de-
signs of Thompson (1933). He then describes the period 1943-1950 as the birth
and childhood of the subject, during which Wald and Barnard independently
introduced the sequential probability ratio test (SPRT), Wald and Wolfowitz
proved its optimality, and Haldane and Stein showed how sequential methods
can be used to tackle some unsolved problems in point and interval estimation.
The period from 1951 to 1990, described as “from adolescence to adulthood” by
him, was marked by many important developments and breakthroughs in the
subject. The last decade of the twentieth century, not covered in his account,
also witnessed a number of major advances and new directions. In this paper,
we review several classical problems in sequential analysis and consider some of
the new directions in the last decade and new challenges in the twenty-first cen-
tury. In particular, we show how these classical problems and new directions are
connected to other branches of statistics and probability and to applications in
other fields. We also discuss how these interactions and outreach can enrich and
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broaden the subject and help meet the challenges ahead. Because of the broad
scope of the subject and its vast and multifarious literature, our review can only
focus on a limited number of topics that are chosen to relate sequential analysis
to other fields and its past to the new challenges.

The first classical problem, which dates back to what Ghosh calls the “birth”
of the subject, is the theory of sequential tests of hypotheses. How the problem
has evolved from Wald’s (1945) seminal paper on testing a simple null versus a
simple alternative hypothesis to a relatively complete theory of sequential testing
of composite hypotheses is summarized in Section 2. We also indicate the need
to modify this theory for practical applications, particularly in the context of
comparative clinical trials, and review in Section 2 the development of group
sequential designs and statistical methods for their analysis during the past two
decades.

Closely related to sequential testing theory is the theory of sequential de-
tection. Section 3 reviews some major developments in sequential change-point
detection and diagnosis beginning with the pioneering works of Shewhart (1931)
and Page (1954) on quality control charts and culminating in the rich theory and
widespread applications at present. It also discusses the connections between the
theories of sequential testing and sequential change-point detection.

Another classical problem, which dates back to the birth and childhood years
of sequential analysis, is sequential estimation. Section 4 gives a brief review of
several different directions in the development of sequential estimation, from the
more traditional fixed-accuracy/fixed-width/risk-efficient sequential estimates in
the statistics literature to recursive estimators in signal processing and adaptive
control in the engineering literature. It also reviews important developments in
the long-standing problem of interval estimation following sequential tests, which
is of basic importance in statistical inference in clinical trials that may be stopped
early during interim analysis.

The theory of recursive estimation in the engineering literature originates
from another classical sequential analysis problem, namely, stochastic approxi-
mation, introduced by Robbins and Monro (1951). Section 5 reviews not only
important developments of stochastic approximation but also its subsequent in-
teractions with stochastic adaptive control in the engineering literature. Another
widely studied problem which also has significant impact on stochastic adaptive
control is the “multi-armed bandit problem” introduced by Robbins (1952). Sec-
tion 6 reviews important developments in this problem and their applications to
engineering and economics, together with the closely related topic of adaptive
treatment allocation in clinical trials.

Section 7 discusses some challenges and opportunities for sequential analy-
sis in the twenty-first century. The experience of the twentieth century during
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which the subject was born and grew to maturity sheds light on how to prepare
for these opportunities and challenges. We conclude with some remarks on the
interdisciplinary nature of the subject, which should therefore interact with other
disciplines and other branches of statistics and probability for its healthy devel-
opment. In view of the rich arsenal of techniques and concepts, methods and
theories developed so far, some of which are reviewed in Sections 2-6, sequential
analysis is ready to grow outwards and reach new horizons in the twenty-first
century.

2. Sequential Tests of Hypotheses: Theory and Applications

Sequential analysis was born in response to demands for more efficient testing
of anti-aircraft gunnery during World War II, culminating in Wald’s development
of the SPRT in 1943 (cf. Wallis (1980)). Let X1,X2, . . . be i.i.d. random variables
with a common distribution P . To test the null hypothesis H : P = P0 versus
K : P = P1, the SPRT stops sampling at stage

N = inf{n ≥ 1 : Rn ≥ A or Rn ≤ B}, (2.1)

where A > 1 > B > 0 are stopping boundaries and Rn =
∏n

i=1(f1(Xi)/f0(Xi))
is the likelihood ratio, fi being the density of Pi with respect to some common
dominating measure ν, i = 0, 1. When stopping occurs, H or K is accepted
according as RN ≤ B or RN ≥ A. The choice of A and B is dictated by the
error probabilities α = P0{RN ≥ A} and β = P1{RN ≤ B}. This simple test
was shown by Wald and Wolfowitz (1948) to be the optimal solution of testing H
versus K, in the sense that the SPRT minimizes both E0(T ) and E1(T ) among
all tests whose sample size T has a finite expectation under both H and K, and
whose error probabilities satisfy

P0{Reject H} ≤ α and P1{Reject K} ≤ β. (2.2)

Note the close analogy between Wald’s SPRT and the classical Neyman-Pearson
fixed sample size test of the simple null hypothesis H versus the simple alter-
native K, subject to the type I error constraint P0{Reject H} ≤ α. Both tests
involve the likelihood ratios Rn and are solutions to natural optimization prob-
lems. While the Neyman-Pearson optimization criterion is to maximize the power
P1{Reject H} for a given sample size n and type I error bound α, the Wald-
Wolfowitz criterion is to minimize both E0T and E1T under the type I and type
II error constraints (2.2).

For fixed sample size tests, a first step to extend the Neyman-Pearson theory
from simple to composite hypotheses is to consider one-sided composite hypothe-
ses of the form H0 : θ ≤ θ0 versus H1 : θ > θ0 in the case of parametric families
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with monotone likelihood ratio in a real parameter θ. In this case, the level α
Neyman-Pearson test of H : θ = θ0 versus K : θ = θ1(> θ0) does not depend on
the alternative θ1 and has level α for testing the composite hypotheses H0 versus
H1. Thus, the ability to reduce the composite hypotheses H0 versus H1 to the
problem of simple hypotheses H versus K gives an optimal solution (in the sense
of uniformly most powerful level α tests) in this case. In the sequential setting,
however, we cannot reduce the optimality considerations for one-sided composite
hypotheses to those for simple hypotheses even in the presence of monotone like-
lihood ratio. For example, let X1,X2, . . ., be i.i.d. normal random variables with
mean θ and variance 1. To test H0 : θ ≤ θ0 versus H1 : θ ≥ θ1(> θ0) with type
I and type II error probabilities not exceeding α and β, one can use the SPRT
of H : θ = θ0 versus K : θ = θ1 with type I and type II error probabilities α
and β. However, while this SPRT has minimum expected sample size at θ = θ0
and at θ = θ1 by the Wald-Wolfowitz theorem, its maximum expected sample
size over θ can be considerably larger than the optimal fixed sample size. This
led Kiefer and Weiss (1957) to consider the problem of minimizing the expected
sample size at a given θ∗ subject to error probability constraints at θ0 and θ1 in
a one-parameter exponential family with natural parameter θ. Hoeffding (1960)
derived a lower bound on Eθ∗T subject to error probability constraints at θ0
and θ1. Lorden (1976) showed that an asymptotic solution to the Kiefer-Weiss
problem is a 2-SPRT with stopping rule of the form

Ñ = inf{n :
n∏

i=1

(fθ∗(Xi)/fθ0(Xi)) ≥ A0 or
n∏

i=1

(fθ∗(Xi)/fθ1(Xi)) ≥ A1}. (2.3)

For the special case of a normal family with mean θ, he also showed numerically
that Eθ∗Ñ is close to Hoeffding’s lower bound. In this normal case, Ñ reduces to
the triangular stopping boundary introduced by Anderson (1960), and has been
shown by Lai (1973) to be an approximate solution to the optimal stopping prob-
lem associated with the Kiefer-Weiss problem. Making use of Hoeffding’s (1960)
lower bound on Eθ∗T , Hall (1980) derived a family of tests, called “minimum
probability ratio tests”, that include Lorden’s 2-SPRT as a special case.

Ideally the θ∗ in (2.3), where we want to minimize the expected sample size,
should be chosen to be the true parameter value θ that is unknown. For the
problem of testing H0 : θ ≤ θ0 versus H1 : θ ≥ θ1(> θ0) in the exponential
family, replacing θ∗ in (2.3) by its maximum likelihood estimate θ̂n at stage n
leads to Schwarz’s (1962) test which he derived as an asymptotic solution to the
Bayes problem of testing H0 versus H1 with 0-1 loss and cost c per observation,
as c → 0 while θ0 and θ1 are fixed. For the case of a normal mean θ, Chernoff
(1961, 1965) derived a different and considerably more complicated approxima-
tion to the Bayes test of H ′

0 : θ < θ0 versus H ′
1 : θ > θ0. In fact, setting θ1 = θ0
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in Schwarz’s test does not yield Chernoff’s test. This disturbing discrepancy be-
tween the asymptotic approximations of Schwarz (assuming an indifference zone)
and Chernoff (without an indifference zone separating the one-sided hypotheses)
was resolved by Lai (1988), who gave a unified solution (to both problems) that
uses a stopping rule of the form

N̂ = inf

{
n : max

[
n∑

i=1

log
fθ̂n

(Xi)
fθ0(Xi)

,
n∑

i=1

log
fθ̂n

(Xi)
fθ1(Xi)

]
≥ g(cn)

}
(2.4)

for testing H0 versus H1, and setting θ1 = θ0 in (2.4) for the test of H ′
0 versus

H ′
1. The function g in (2.4) satisfies g(t) ∼ log t−1 as t→ 0 and is the boundary

of an associated optimal stopping problem for the Wiener process. By solving
the latter problem numerically, Lai (1988) also gave a closed-form approximation
to the function g.

This unified theory for composite hypotheses provides a bridge between
asymptotically optimal sequential and fixed sample size tests. In the fixed sam-
ple size case, the Neyman-Pearson approach replaces the likelihood ratio by the
generalized likelihood ratio (GLR), which is also used in (2.4) for the sequen-
tial test. Since the accuracy of θ̂n as an estimate of θ varies with n, (2.4) uses
a time-varying boundary g(cn) instead of the constant boundary in (2.3) (with
A0 = A1) where θ is completely specified. Simulation studies and asymptotic
analysis have shown that N̂ is nearly optimal over a broad range of parameter
values θ, performing almost as well as (2.3) that assumes θ to be known; see Lai
(1988). This broad range covers both fixed alternatives, at which the expected
sample size is of the order O(| log c|), and local alternatives θ approaching θ0
(with θ1 → θ0 also) as c → 0, at which the expected sample size divided by
| log c| tends to ∞. In other words, N̂ can adapt to the unknown θ by learning
it during the course of the experiment and incorporating the diminishing uncer-
tainties in its value into the stopping boundary g(cn). Lai and Zhang (1994)
have extended these ideas to construct nearly optimal sequential GLR tests of
one-sided hypotheses concerning some smooth scalar function of the parameter
vector in multiparameter exponential families, with an indifference zone separat-
ing the null and alternative hypotheses and also without an indifference zone.
Lai (1997) has provided further extension to a general class of loss functions and
prior distributions, thereby unifying (2.4) with another type of sequential tests
involving mixture likelihood ratios which were introduced by Robbins (1970)
and whose asymptotic optimality properties under certain loss functions were
subsequently established by Pollak (1978) and Lerche (1986). For n ≥ nc with
nc/| log c| → ∞, the GLR statistics can be replaced by Rao-type score statistics.
These score statistics can be extended to nonparametric/semiparametric models,
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providing a complete analogue of the corresponding large-sample theory for fixed
sample size tests.

Ghosh (1970) summarizes the extensive literature on sequential tests of com-
posite hypotheses in multiparameter families that had grown steadily from 1945
to 1970. With the exception of Bartlett (1946), Cox (1963) and a few oth-
ers, most of the authors during this period used invariance to reduce certain
composite hypotheses to simple ones involving a single parameter for the dis-
tribution of the maximal invariant, instead of using GLR statistics or score
statistics that have been widely used in fixed sample size tests. Because of this
reduction, Wald’s SPRT can again be applied, with Rn in (2.1) now given by
Rn = f1,n(Mn)/f0,n(Mn), where Mn is a maximal invariant (based on n observa-
tions) with respect to a group of transformations leaving the problem invariant,
and fi,n is the density function of Mn under Hi, i = 0, 1. For these invari-
ant SPRTs, {logRn, n ≥ 1} is no longer a random walk, and the arguments in
the proof of the Wald-Wolfowitz theorem on the optimum character of Wald’s
SPRT are no longer applicable. By making use of approximations to logRn

and nonlinear renewal theory, Lai (1981) developed asymptotic approximations
to the expected sample size of an invariant SPRT under prescribed probability
constraints and showed that it is asymptotically minimal in the sense that for
i = 0, 1, EiN differs from inf{EiT : T is the stopping time of an invariant se-
quential test with type I and type II error probabilities α and β} by at most
O(1) as α+ β → 0 such that α log β + β logα→ 0. The O(1) term is due to the
overshoot log(RN/A) or log(RN/B) of the invariant SPRT, analogous to Wald’s
(1945) lower bound for the expected sample size of sequential tests, which is
attained by the SPRT when overshoots of the SPRT are ignored.

The reduction of composite hypotheses to simple ones using invariance may
require unduly strong restrictions on the composite hypotheses. For example,
consider the problem of testing whether the mean µ of a normal distribution
is 0 when the variance σ2 is unknown. To be able to reduce the composite
hypotheses on (µ, σ2) to simple ones on θ = µ/σ by scale invariance, one has to
formulate the null hypothesis as H : θ = 0 and pick an alternative hypothesis
K : θ = θ1. Although the invariant SPRT, which is the sequential t-test in this
case (cf. Ghosh (1970)), is asymptotically optimal for testing H versus K, it is
no longer asymptotically optimal for testing H0 : θ ≤ 0 versus H1 : θ ≥ θ1 (in the
case θ1 > 0), similar to the case of known variance discussed above. On the other
hand, it is relatively straightforward to use GLR statistics to test H0 versus H1,
or even to test H ′

0 : θ = 0 versus H ′
1 : θ �= 0 (without an indifference zone), in

conjunction with a time-varying threshold of the form g(cn) as in (2.4). Such
sequential GLR tests have nearly optimal frequentist properties over a wide range
of parameter values (ranging from θ near 0 to large θ) and are asymptotically
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Bayes with respect to a large class of prior distributions; see Lai and Zhang (1994)
and the simulation studies therein. The GLR statistics and the threshold g(cn)
basically “self-tune” the test to the unknown alternatives, irrespective of whether
they are near 0 (local alternatives) or sufficiently far away from 0 (non-local
alternatives). In the asymptotic theory, the non-local alternatives involve large
deviation approximations to the boundary crossing probabilities, while the local
alternatives involve moderate deviation approximations and functional central
limit theorems.

Roughly speaking, functional central limit theorems are applicable only to
contiguous alternatives that differ from the null by O(n−1/2), while moderate
deviation approximations are for alternatives further away from, but still within
o(1), of the null hypothesis, as the sample size n becomes infinite. When n is
a stopping time (and therefore random), the o(1) above refers to convergence
in probability, while the O refers to boundedness in probability. Functional
central limit theorems have been widely used in the analysis of nonparametric
tests; see Sen (1981, 1991) for comprehensive overviews. The distinction between
functional central limit theorems and moderate deviation approximations in the
derivation and analysis of stopping rules will be discussed further near the end
of Section 3 in the context of sequential change-point detection. Lemmas 4 and
9 of Lai (1988) illustrate such distinction in the context of the sequential GLR
test (2.4).

Sequential life testing and acceptance sampling procedures, which were in-
troduced in the decade after Wald’s pioneering work on the SPRT, have been
widely used by governments and industries; see Epstein and Sobel (1955), MIL-
STD 781C (1977) and Basu’s (1991) survey. The SPRT (2.1) was extended to
handle sequential decision problems with 3 or more hypotheses by Sobel and Wald
(1949), Armitage (1950) and Simons (1967). Sequential testing of 3 or more hy-
potheses has been applied to a variety of engineering problems, including target
detection in multi-resolution radar, pattern recognition and machine learning,
fault detection and isolation, cf. Marcus and Swerling (1962), Fu (1968) and Lai
(2000). Closely related to the sequential multi-hypothesis testing problem are
problems of sequential selection and ranking of 3 or more populations. Bechhofer,
Kiefer and Sobel (1968) give a comprehensive treatment of the so-called “indif-
ference zone approach” using vector-at-a-time sampling schemes. Gupta and
Panchapakesan (1991) review subsequent developments and other approaches,
including the “subset selection approach” and adaptive sampling schemes.

Hypothesis testing has been widely accepted by the biomedical community as
a means of assessing the reproducibility of the results of an experiment. Within
a few years after Wald’s introduction of the SPRT, it was recognized that se-
quential hypothesis testing might provide a useful tool in clinical trials to test
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new medical treatments. A number of papers appeared during the 1950s on
modifications of the SPRT for the design of clinical trials, and an overview
of these developments was given in Armitage’s (1960) book, which was subse-
quently reviewed by Anscombe (1963). In his review, Anscombe introduced a
decision-theoretic model for clinical trials to select the better of two treatments
for treating a specified number N of patients. The trial phase involves pair-
wise allocation of treatments to n pairs of patients, after which the apparently
superior treatment is given to the remaining N − 2n patients. The pairwise
treatment differences Z1, Z2, . . . , ZN are assumed to be i.i.d. normal with mean
δ and variance 1. If the magnitude |δ| is known, then the optimal fixed sam-
ple size can be shown by differentiation (assuming n to be a continuous vari-
able) to be the solution of the equation 2g(|δ|√n) = N/n, where g(0) = 0 and
g(x) = 1 + {2Φ(x) − 1}/xϕ(x), ϕ and Φ being the standard normal density and
distribution function, respectively. Since |δ| is unknown in Anscombe’s model,
Lai, Levin, Robbins and Siegmund (1980) proposed to estimate it during the
course of the trial, yielding the stopping rule T ∗ = inf{k : 2g(|Sk|/

√
k) ≥ N/k},

where Sk = Z1 + · · · + Zk. Anscombe (1963) proposed to put a normal prior
distribution on δ and compute the Bayes solution to the corresponding optimal
stopping problem. He did not carry out such computation, however, and argued
heuristically that TA = inf{k : 1 − Φ(|Sk|/

√
k) ≤ k/N} should provide a good

approximation to the Bayes stopping rule. Subsequent computation of the Bayes
rule TB by Lai, Levin, Robbins and Siegmund (1980) and Chernoff and Petkau
(1981) showed that this is actually not the case. However, the asymptotic results
and simulation studies in Lai, Levin, Robbins and Siegmund (1980) show that
T ∗, TA, TB (and in fact a general class of rules including them as special cases)
are all asymptotically optimal for large N and have similar performance as the
optimal fixed sample size test that assumes known |δ|, even for a patient horizon
N as small as 100. Thus, suitably devised sequential procedures can self-tune
themselves to unknown parameters that can be learned during the course of the
trial.

In 1969, Armitage, McPherson and Rowe proposed a new alternative to
the SPRT and its variants, called the “repeated significance test” (RST). The
underlying motivation for the RST is that, since the strength of evidence in favor
of a treatment from a clinical trial is conveniently indicated by the results of a
conventional significance test, it is appealing to apply the significance test, with
nominal significance level α, repeatedly during the trial. Noting that the overall
significance level α∗, which is the probability that the nominal significance level
is attained at some stage, is larger than α, they developed a recursive numerical
algorithm to compute α∗ in the case of testing a normal mean θ with known
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variance σ2, for which the RST of H0 : θ = 0 is of the form

T = inf{n ≤M : |Sn| ≥ aσ
√
n}, (2.5)

rejecting H0 if T < M or if T = M and |SM | ≥ aσ
√
M , where Sn = X1+· · ·+Xn.

Haybittle (1971) proposed the following modification of the RST to increase its
power. The stopping rule has the same form as (2.5) but the rejection region is
modified to T < M or |SM | ≥ cσ

√
M , where a(≥ c) is so chosen that the overall

significance level is equal to some prescribed number. In particular, a = ∞ gives
the fixed sample size test while a = c gives the RST.

In double blind multicenter clinical trials, it is not feasible to arrange for
continuous examination of the data as they accumulate to perform the RST. This
led Pocock (1977) to introduce a “group sequential” version of (2.5), in which
the Xn represents an approximately normally distributed statistic of the data in
the nth group (instead of the nth observation) and M represents the maximum
number of groups. Instead of the square-root boundary aσ

√
n, O’Brien and

Fleming (1979) proposed to use a constant stopping boundary in

T = inf{n ≤M : |Sn| ≥ b}, (2.6)

which corresponds to the group-sequential version of Wald’s SPRT.
While sequential analysis had an immediate impact on weapons testing when

it was introduced during World War II to reduce the sample sizes of such tests
(cf. Wallis (1980)), its refinements for testing new drugs and treatments received
little attention from the biomedical community until the Beta-Blocker Heart At-
tack Trial (BHAT) that was terminated in October 1981, prior to its prescheduled
end in June 1982. The main reason for this lack of interest is that the fixed sample
size (i.e., the number of patients accrued) for a typical trial is too small to allow
further reduction while still maintaining reasonable power at the alternatives of
interest, as pointed out by Peto (1985). On the other hand, BHAT, which was a
multicenter, double blind, randomized placebo-controlled trial to test the efficacy
of long-term therapy with propranolol given to survivors of an acute myocardial
infarction (MI), drew immediate attention to the benefits of sequential methods
not because it reduced the number of patients but because it shortened a four-
year study by 8 months, with positive results for a long-awaited treatment for
MI patients. The trial started in June 1978 and was scheduled for 4 years, with
all patients accrued within the first 27 months and with periodic reviews of the
data by a Data and Safety Monitoring Board (DSMB) at 11, 16, 21, 28, 34, 40
and 48 months. These interim reviews of the data were incorporated into the
trial design mainly for ethical reasons, so that patients would not be exposed to
unsafe or ineffective treatment regimens. Actually the group sequential methods
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available at that time were not quite adequate to perform the interim analy-
ses. The DSMB used some informal arguments based on stochastic curtailment,
together with a formal statistical test involving the O’Brien-Fleming boundary
applied to the null variances of the time-sequential logrank statistics (instead of
to the total sample size up to the nth group in (2.6)), whose joint asymptotic
normality was just established by Tsiatis (1981); see BHAT (1982) and DeMets,
Hardy, Friedman and Lan (1984).

The past two decades following the “success story” of BHAT witnessed not
only steadily increasing use of group sequential designs in clinical trials to test
the efficacy and safety of new drugs and treatments, but also major advances in
the development of group sequential methods in clinical trials, beginning with
the influential work of Lan and DeMets (1983) on using a “type I error spending
function” to modify a fully sequential procedure that has a prescribed maximum
sample size into a group sequential procedure when the group sizes are unequal
and unknown at the beginning of the trial; see Lan and DeMets (1989), Jennison
and Turnbull (1991, 2000) and Gu and Lai (1998) for reviews of these advances.
In particular, inspired by the statistical issues raised by BHAT, a number of
important and difficult problems concerning the design and analysis of clinical
trials with failure-time endpoints and interim analyses have been resolved.

We now briefly describe these problems and related developments in time-
sequential methods for survival analysis. Suppose that a clinical trial to compare
times to failure between two treatment groups X and Y involves n patients
who enter the trial serially, are randomly assigned to treatment X or Y and are
then followed until they fail or withdraw from the study or until the study is
terminated. Let T ′

i ≥ 0 denote the entry time and Xi > 0 the survival time
(or time to failure) after entry of the ith subject in treatment group X and
let T ′′

j and Yj denote the entry time and survival time after entry of the jth
subject in treatment group Y . Thus the data at calendar time t consist of
(Xi(t), δ′i(t)), i = 1, . . . , n′, and (Yj(t), δ′′j (t)), j = 1, . . . , n′′, where

Xi(t) = Xi ∧ ξ′i ∧ (t− T ′
i )

+, Yj(t) = Yj ∧ ξ′′j ∧ (t− T ′′
j )+,

δ′i(t) = I{Xi(t)=Xi}, δ′′j (t) = I{Yj(t)=Yj},
and ξ′i(ξ′′j ) denotes the withdrawal time, possibly infinite, of the ith (jth) subject
in treatment group X(Y ). At a given calendar time t, one can compute, on the
basis of the observed data from the two treatment groups, a rank statistic of the
general form considered by Tsiatis (1982):

Sn(t) =
n′∑

i=1

δ′i(t)Qn(t,Xi(t))

{
1 − m′

n,t(Xi(t))
m′

n,t(Xi(t)) +m′′
n,t(Xi(t))

}

−
n′′∑
j=1

δ′′j (t)Qn(t, Yj(t))
m′

n,t(Yj(t))
m′

n,t(Yj(t)) +m′′
n,t(Yj(t))

, (2.7)
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where m′
n,t(s) =

∑n′
i=1 I{Xi(t)≥s}, m′′

n,t(s) =
∑n′′

j=1 I{Yj(t)≥s}, and Qn(t, s) is some
weight function satisfying certain measurability assumptions. The case Qn ≡ 1
corresponds to the logrank statistic. Letting Hn,t denote a product-limit-type es-
timator of the common distribution function of the two treatment groups under
the null hypothesis, based on {(Xi(t), δi(t), Yj(t), δj(t)) : i ≤ n′, j ≤ n′′}, Pren-
tice’s (1978) generalization of the Wilcoxon statistic is the statistic (2.7) with
Qn(t, s) = 1 − Hn,t(s), which was extended by Harrington and Fleming (1982)
to the case Qn(t, s) = (1 −Hn,t(s))ρ with ρ ≥ 0.

Let F and G denote the distribution functions of Xi and Yj, respectively.
Assuming the {T ′

i}, {T ′′
j }, {ξ′i}, {ξ′′j } to be i.i.d. sequences, Tsiatis (1982) showed

that under the null hypothesis H0 : F = G, (Sn(t1), . . . , Sn(tk))/
√
n has a lim-

iting multivariate normal distribution for any k and 0 ≤ t1 < · · · < tk, for a
large class of two-sample rank statistics that includes the logrank statistics con-
sidered previously in Tsiatis (1981). Earlier, assuming a Lehmann (proportional
hazards) family of the form 1 − G(s) = (1 − F (s))1−θ, Jones and Whitehead
(1979) considered the use of time-sequential logrank statistics Sn(t) to test se-
quentially over time the one-sided null hypothesis H ′

0 : θ ≤ 0. They suggested
plotting Sn(t) versus Vn(t), where Vn(t) is Mantel’s (1966) estimate of the vari-
ance of Sn(t) under F = G. They argued heuristically that {(Vn(t), Sn(t)), t ≥ 0}
should behave approximately like {(v,W (v)), v ≥ 0}, where W (v) is the stan-
dard Wiener process under θ = 0 and is a Wiener process with drift coefficient
depending on θ under alternatives near 0. Using this Wiener process approxima-
tion, they suggested replacing (v,W (v)) in a sequential test for the sign of the
drift of a Wiener process by (Vn(t), Sn(t)) to construct a corresponding sequential
logrank test of H ′

0, and considered in particular the case where the sequential
test based on (v,W (v)) is an SPRT. Sellke and Siegmund (1983) established
weak convergence of {Sn(t)/

√
n, t ≥ 0} to a zero-mean Gaussian process with

independent increments under F = G and general arrival and withdrawal pat-
terns, thus providing a rigorous asymptotic justification of the heuristics of Jones
and Whitehead (1979) under H0 : θ = 0. Gu and Lai (1991) later showed that
{(Vn(t)/n, Sn(t)/

√
n), t ≥ 0} converges weakly to {(v,W (v)), v ≥ 0} under con-

tiguous proportional hazards alternatives, where W (v) is a Wiener process with
EW (v)/v = c, thus giving a rigorous asymptotic justification of the heuristics of
Jones and Whitehead under H1 : θ = c/

√
n.

For a general weight function of the form Qn(t, s) = ψ(Hn,t(s)) in (2.7),
Gu and Lai (1991) showed that {Sn(t)/

√
n, t ≥ 0} converges weakly to a Gaus-

sian process with independent increments and variance function V (t) under the
null hypothesis and contiguous alternatives. The mean function of the limiting
Gaussian process is 0 under the null hypothesis and is of the form µg(t) under
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contiguous alternatives that satisfy∫ t∗

0
|dΛG

dΛF
− 1|dΛF = O(

1√
n

),
√
n{dΛG

dΛF
(s) − 1} → g(s)

as n → ∞, uniformly over closed subintervals of {s ∈ [0, t∗] : F (s) < 1}, where
ΛF and ΛG are the cumulative hazard functions of F and G. In the case of the
asymptotically optimal score function ψ(·) = g(F−1(·)) for these alternatives,
µg(t) = V (t) and therefore the Jones-Whitehead framework can be extended
from the logrank score function to general ψ. In practice, the actual alternatives
are unknown and µg need not even be monotone when ψ is not optimal for the
actual alternatives, such as using logrank statistics for non-proportional hazards
alternatives. This means that time-sequential tests based on Sn(t) can achieve
both savings in study duration and increase in power over the fixed-duration test
based on Sn(t∗), as shown by Gu and Lai (1991, 1998).

Lan and DeMets (1989) noted that there are two time scales in interim anal-
ysis of clinical trials with failure-time endpoints. One is “calendar time” t and
the other is “information time” which is the estimate Vn(t) of the variance of
Sn(t)/

√
n under the null hypothesis. There is no simple relationship between

these two time scales and Vn(t) is typically unknown before time t unless restric-
tive assumptions are made a priori. This had been a major difficulty in extend-
ing group sequential methods from immediate responses (e.g., Lan and DeMets
(1983)) to failure-time outcomes. Gu and Lai (1998) recently resolved this dif-
ficulty by modifying and extending the Haybittle method described after (2.5)
to time-sequential rank statistics, yielding simple but efficient time-sequential
rank tests that can achieve both savings in study duration and increase in power
over their nonsequential counterparts, not only when the score function used is
not optimal for the actual alternatives, but also when there is noncompliance or
crossover, which commonly occurs in practice. Gu and Lai (1999) also developed
a simulation program to compute power and expected duration of these trials and
to check the adequacy of the normal approximation to the type I error probability
under various scenarios of baseline survival, censoring pattern, noncompliance,
and accrual rate. The program gives the clinical trial designer four options for
choosing the stopping boundary, including the boundary developed in Gu and
Lai (1998), the earlier methods of Slud and Wei (1982) and Lan and DeMets
(1983), and any other boundary specified by the user. The program also allows
the user to choose the score function ψ in Qn(t, s) = ψ(Hn,t(s)) from the beta
family proposed by Self (1991), which includes the Harrington-Fleming (1982)
class of statistics. This enables the clinical trialist to select the test statistic
most sensitive to the anticipated kind of departures from the null hypothesis.
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Gu and Lai (1999) also incorporated this power calculation program into an-
other program that computes the sample size of a group sequential trial having
a prescribed power at given baseline and alternative distributions.

It is widely recognized that tests of treatment effects based on the rank
statistics (2.7) may lose substantial power when the effects of other covariates
are strong. In nonsequential trials, a commonly used method to remedy this
when logrank statistics are used is to assume the proportional hazards regression
model and to use Cox’s partial likelihood approach to adjust for other covariates.
Tsiatis, Rosner and Tritchler (1985) and Gu and Ying (1995) have developed
group sequential tests using this approach. A general asymptotic theory for time-
sequential methods in proportional hazards regression models with applications
to covariate adjustment is provided by Bilias, Gu and Ying (1997). Instead of
relying on the proportional hazards model to adjust for concomitant variables, it
is useful to have other methods for covariate adjustment, especially in situations
where other score functions than the logrank are used in (2.7) to allow for the
possibility of non-proportional hazards alternatives. Gu and Lai (1998) developed
alternative covariate adjustment methods based on M -estimators in accelerated
failure time models and established the associated asymptotic theory.

3. Sequential Change-point Detection in Quality Control and Stochas-
tic Systems

The subject of statistical quality control is concerned with monitoring and
evaluation of the quality of products from a continuous production process. She-
whart (1931) introduced the fundamental concept of a “state of statistical con-
trol”, in which the behavior of some suitably chosen quality characteristic at time
t has a given probability distribution. To detect significant departures from this
state, he introduced a process inspection scheme that takes samples of fixed size
at regular intervals of time and computes from the sample at time t a suitably
chosen statistic Xt, which can be presented graphically in the form of a control
chart.

Shewhart’s control chart is a “single-sample” scheme whose decision depends
solely on the current sample although the results of previous samples are available
from the chart. To improve the sensitivity of the Shewhart charts, Page (1954)
and Shiryaev (1963) modified Wald’s theory of sequential hypothesis testing to
develop the CUSUM and the Shiryaev-Roberts charts that have certain optimal-
ity properties. Their underlying statistical model, which will be denoted by P (ν),
is a sequence of independent random variables X1,X2, . . ., where Xt denotes a
statistic computed from the sample at monitoring time t, such that the Xt have
a common specified distribution F0 for t < ν, representing Shewhart’s “state of
statistical control”, and such that the Xt have another common distribution F1
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for t ≥ ν. We shall use P0 to denote the alternative model of perpetual statistical
control (corresponding to ν = ∞). Assuming that F0, F1 have densities f0 and f1

with respect to some measure, Moustakides (1986) showed that Page’s CUSUM
scheme

N = inf{n : max
1≤k≤n

n∑
i=k

log(f1(Xi)/f0(Xi)) ≥ cγ} (3.1)

is optimal in the following minimax sense: Let cγ be so chosen that E0(N) = γ

and let Fγ be the class of all monitoring schemes subject to the constraint
E0(T ) ≥ γ. Then (3.1) minimizes the worst-case expected delay supν≥1 ess
supE(ν)[(T − ν + 1)+|X1, . . . ,Xν−1] over all rules T that belong to Fγ . Ear-
lier Lorden (1971) showed that this minimax property holds asymptotically as
γ → ∞. Specifically he showed that E0(N) ≥ exp(cγ) and that for cγ = log γ,

sup
ν≥1

ess supE(ν)[(N − ν + 1)+|X1, . . . ,Xν−1] ∼ (log γ)/I(f1, f0)

∼ inf
T∈Fγ

{sup
ν≥1

ess supE(ν)[(T − ν + 1)+|X1, . . . ,Xν−1]}, (3.2)

where I(f1, f0) = Ef1{log(f1(X1)/f0(X1))} denotes the Kullback-Leibler infor-
mation number.

Note that the unknown change-point ν is estimated by maximum likelihood
in Page’s CUSUM scheme (3.1). Using a Bayesian approach, Shiryaev (1963,
1978) assumed a geometric prior distribution on ν (P{ν = n} = p(1−p)n−1, n =
1, 2, . . .) and formulated the problem of optimal sequential change-point detection
as an optimal stopping problem, with a loss of c for each observation taken after
ν and a loss of 1 for a false alarm before ν. He showed that the Bayes rule is
defined by the stopping time

Nq(γ) = inf{n≥1 : P (ν≤n|X1, . . . ,Xn) ≥ γ/(γ + p−1)}=inf{n≥1 : Rq,n≥γ},
(3.3)

where q = 1 − p and Rq,n =
∑n

k=1 Πn
i=k{q−1f1(Xi)/f0(Xi)}. Note that P (ν ≤

n|X1, . . . ,Xn) = Rq,n/(Rq,n + p−1). Without assuming a specified prior distri-
bution on ν, Roberts (1966) modified Shiryaev’s rule to

N(γ) = inf{n ≥ 1 : lim
q→1

Rq,n ≥ γ} = inf{n ≥ 1 :
n∑

k=1

n∏
i=k

(f1(Xi)/f0(Xi)) ≥ γ},
(3.4)

which Pollak (1985) proved to be asymptotically Bayes risk efficient as p → 0
and also asymptotically minimax as γ → ∞.

As noted by Lorden (1971), Page’s CUSUM scheme (3.1) corresponds to
stopping when a one-sided SPRT with log-boundary based on XK ,XK+1, . . .,
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rejects the null hypothesis H0 : f = f0, where K is the maximum likelihood
estimate of ν. Thus, (3.1) can be expressed as

N = min
k≥1

(Nk + k − 1), (3.5)

where Nk is the stopping time of the one-sided SPRT applied to Xk,Xk+1, . . ..
Instead of the stopping rule of the one-sided SPRT, one can use other stopping
rules. Lorden (1971) showed that if X1,X2, . . . are i.i.d. and τ is a stopping time
with respect to X1,X2, . . . such that P (τ < ∞) ≤ α, then letting Nk be the
stopping time obtained by applying τ to Xk,Xk+1, . . . and defining N by (3.5),
EN ≥ 1/α and N is a stopping time. Making use of Lorden’s result with τ = mγ

if
∑mγ

i=1 log(f1(Xi)/f0(Xi)) ≥ log γ and τ = ∞ otherwise, Lai (1995) showed that
the moving average scheme

N∗ = inf{n :
n∑

i=n−mγ+1

log(f1(Xi)/f0(Xi)) ≥ log γ} (3.6)

satisfies both E0(N∗) ≥ γ and the asymptotic minimax property (3.2) (with N

replaced by N∗) if the fixed sample size mγ of the Neyman-Pearson test in τ is
so chosen that

mγ ∼ (log γ)/I(f1, f0) and {mγ − (log γ)/I(f1, f0)}/(log γ)
1
2 → ∞. (3.7)

In fact, the moving average rule (3.6) is asymptotically as efficient as the CUSUM
and the Shiryaev-Roberts rules as γ → ∞ when the window sizemγ satisfies (3.7).

Moving averages of the type
∑n

i=1 an−iXi that put most (or all) weight on the
current and immediate past observations are popular alternatives to Shewhart’s
X̄-chart for detecting changes in the process mean. A commonly used perfor-
mance measure of the Shewhart, CUSUM, Shiryaev-Roberts and moving average
charts is the average run length (ARL), which is defined as EθT when the quality
parameter remains at a fixed level θ. Roberts (1966) studied by simulation the
ARL of moving average schemes of the form N∗ = inf{n :

∑n
i=1 an−iXi ≥ c} for

the special cases ai = pi with 0 < p < 1 (exponentially weighted moving aver-
ages, or EWMA) and a0 = · · · = am−1 = m−1, ai = 0 for i ≥ m (finite moving
averages). In the case of normally distributed Xi, Lai (1974) derived sharp upper
and lower bounds and asymptotic approximations for EθN

∗. Böhm and Hackl
(1990) extended these results to non-normal Xi. For EWMA charts, Crowder
(1987) and Lucas and Saccuci (1990) developed numerical approximations to the
ARL.

Topics of current interest in industrial quality control include use of variable
sampling rates to achieve quicker detection by increasing the sampling rate when
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the quality statistics Xt are near the control limits (cf. Assaf (1988), Reynolds,
Amin and Arnold (1990)), multivariate control charts (cf. Mason, Champ, Tracy,
Wierda and Young (1997)) and dependent observations (cf. Hunter (1990), Box
and Ramirez (1992), Box and Luceño (1997)). Stoumbos, Reynolds, Ryan and
Woodall (2000) give an overview of these topics and additional references in their
discussion of the current status of statistical process control.

Sequential change-point detection involving multivariate and dependent ob-
servations is also an important topic in the engineering literature on fault detec-
tion and diagnosis, where Xt typically represents the output of a partially ob-
servable stochastic dynamical system at time t. Basseville and Nikiforov (1993)
provide an overview of various detection algorithms in this literature. Although
it is easy to extend the CUSUM rule (3.1) to non-independent observations by
simply replacing fj(Xi) in (3.1) by the conditional density fj(Xi|X1, . . . ,Xi−1)
for j = 0, 1, it has been an open problem concerning whether the asymptotic
optimality property (3.2) of the CUSUM rule still holds. By using a change-of-
measure argument and the strong law for log-likelihood ratio statistics, similar
to that used by Lai (1981) to prove an asymptotic analogue of Hoeffding’s (1960)
lower bound for sequential tests based on dependent data, Lai (1998) recently
proved that (3.2) holds quite generally, with I(f1, f0) being the limit in the afore-
mentioned strong law. Instead of the ARL constraint E0(T ) ≥ γ, suppose one
imposes a probability constraint of the form supk≥1 P0{k ≤ T < k +m} ≤ m/γ

with m = o(γ) but m/ log γ → ∞. Then a similar change-of-measure argument
gives an asymptotic lower bound for the detection delay of the form

E(k)(T − k + 1)+ ≥ {P0(T ≥ k)/I(f1, f0) + o(1)} log γ, uniformly in k ≥ 1.
(3.8)

Alternatively, if one puts a prior distribution π on ν and imposes the false alarm
constraint P{T < ν} =

∑∞
k=1 π(k)P0{T < k} ≤ γ−1, then a similar argument

can be used to derive an asymptotic lower bound for the expected detection delay
E(T−ν+1)+ =

∑∞
k=1 π(k)E(k)(T−k+1)+ under certain conditions on π. More-

over, CUSUM rules of the form (3.1) with fj(Xi) replaced by fj(Xi|X1, . . . ,Xi−1)
for j = 0, 1 attain these asymptotic lower bounds subject to the ARL constraint
E0(T ) ≥ γ, or the probability constraint supk P0(k ≤ T < k +m) ≤ m/γ, or the
Bayesian false alarm constraint P (T < ν) ≤ γ−1 with a prior distribution π on
ν; see Lai (1998).

Subject to the Bayesian false alarm constraint, minimization of E(T − ν)+

can be formulated as the optimal stopping problem of choosing a stopping rule T
to minimize the expected loss E[λI{T<ν}+(T−ν)I{T≥ν}], where λ can be regarded
as a Lagrange multiplier associated with the probability constraint and E denotes
expectation with respect to the probability measure P under which the change-
time ν has the prior distribution π. For the case of geometrically distributed ν
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and independent Xt, Shiryaev (1978) showed that the optimal stopping rule has
the form (3.3). Yakir (1994) generalized this result to finite-state Markov chains
Xt. For more general prior distributions on ν or non-Markovian stochastic sys-
tems Xt, the optimal stopping problem associated with the Bayes detection rule
becomes intractable. Instead of solving the optimal stopping problem directly,
Lai’s (1998) approach is to develop an asymptotic lower bound for the detection
delay subject to the Bayesian false alarm constraint P (T < ν) ≤ γ−1 and to
show that the CUSUM rule with a suitably chosen threshold cγ asymptotically
attains this lower bound as γ → ∞.

In practice, the post-change distributions are usually modeled by parametric
families with unknown parameters, and the preceding theory that assumes com-
pletely specified f1(·|x1, . . . , xi−1) is too restrictive. Nevertheless, the asymptotic
lower bounds assuming known f1 provide benchmarks that we try to attain even
when unknown parameters are present. An obvious way to modify the CUSUM
rule (3.1) for the case of fθ(·|x1, . . . , xi−1) with unknown post-change parameter
θ is to estimate it by maximum likelihood, leading to the generalized likelihood
ratio (GLR) rule

NG = inf

{
n : max

1≤k≤n
sup
θ∈Θ

n∑
i=k

log
fθ(Xi|X1, . . . ,Xi−1)
fθ0(Xi|X1, . . . ,Xi−1)

≥ cγ

}
. (3.9)

For the problem of detecting shifts in the mean θ of independent normal obser-
vations with known variance, this idea was proposed by Barnard (1959), but the
statistical properties of the procedure remained a long-standing problem that
was recently solved by Siegmund and Venkatraman (1995), whose asymptotic
approximations to the ARL of the GLR rule under θ0 and under θ �= θ0 show
that the GLR rule is asymptotically optimal in the sense of (3.2).

For practical implementation, the CUSUM rule (3.1) can be written in the
recursive form N = inf{n : �n ≥ cγ}, where �n = {�n−1 + log(f1(Xn)/f0(Xn))}+

with �0 = 0. The GLR rule (3.9) does not have such convenient recursive forms
and the memory requirements and number of computations at time n grow to
infinity with n. A natural modification to get around this difficulty is to replace
max1≤k≤n in (3.9) by maxn−M≤k≤n. Such window-limited GLR rules were first
introduced by Willsky and Jones (1976) in the context of detecting additive
changes in linear state-space models. Consider the stochastic system described
by the state-space representation of the observed signals yt:

xt+1 = Ftxt +Gtut + wt (3.10a)

yt = Htxt + Jtut + εt (3.10b)

in which the unobservable state vector xt, the observable input vector ut and the
measurement vector yt have dimensions p, q and r, respectively, and wt, εt are
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independent Gaussian vectors with zero means and Cov(wt) = Qt,Cov(εt) = Rt.
The Kalman filter provides a recursive algorithm to compute the conditional ex-
pectation x̂t|t−1 of the state xt given the past observations yt−1, ut−1, yt−2, ut−2,
. . . The innovations et := yt −Htx̂t|t−1 − Jtut are independent zero-mean Gaus-
sian vectors with Cov(et) = Vt given recursively by the Riccati equations. If
at an unknown time τ the system undergoes some additive change in the sense
that u′tI{t≥τ} and/or u′′t I{t≥τ} are added to the right hand side of (3.10a) and/or
(3.10b), then the innovations et are still independent Gaussian vectors with co-
variance matrices Vt, but their means mt = E(et) for t ≥ τ are of the form
mt = ρ(t, τ)θ instead of the baseline values mt = 0 for t < τ , where ρ(t, k) is a
matrix that can be computed recursively and θ is an unknown parameter vector;
see Willsky and Jones (1976) who proposed the window-limited GLR detector of
the form

NW = inf
{
n : max

n−M≤k≤n−M̃
sup

θ

n∑
i=k

log[f(V −1/2
i (ei−ρ(i, k)θ))/f(V −1/2

i ei)]≥cγ
}

= inf
{
n : max

n−M≤k≤n−M̃

( n∑
i=k

ρT (i, k)V −1
i ei

)T( n∑
i=k

ρT (i, k)V −1
i ρ(i, k)

)−1

×
( n∑

i=k

ρT (i, k)V −1
i ei

)
/2 ≥ cγ

}
, (3.11)

where f denotes the standard r-dimensional normal density function.
Although window-limited GLR rules of the type (3.11) have found

widespread applications in fault detection of navigation and other control sys-
tems and in signal processing and tracking of maneuvering targets (cf. Basseville
and Nikiforov (1993)), how to choose M,M̃ and cγ appropriately has remained
a difficult open problem that was recently addressed by Lai (1995) and Lai and
Shan (1999). Lai (1995) began by considering the simpler situation of detecting
changes in the mean θ of independent normal observations X1,X2, . . . from a
known baseline value θ = 0. Here the window-limited GLR rule has the form

NW = inf{n : max
n−M≤k≤n

(Xk + · · · +Xn)2/2(n − k + 1) ≥ cγ}, (3.12)

and the methods of Siegmund and Venkatraman (1995) to analyze the GLR rule
(3.9) in this independent normal case can be extended to (3.12). In particular,
if we choose M ∼ γ, then we have E0NW ∼ E0NG ∼ Kc

−1/2
γ ecγ as cγ → ∞,

where an explicit formula for K is given in Siegmund and Venkatraman (1995).
Therefore, choosing cγ = log γ+ 1

2 log log γ− logK+o(1) gives E0NW ∼ E0NG ∼
γ. With this choice of cγ , we also have EθNW ∼ EθNG ∼ min{γ, (2 log γ)/θ2}
uniformly in 0 < |θ| ≤ (log γ)

1
2
−ε for every ε > 0. The choice M = γ for the
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window size in (3.12) requires computation of γ + 1 quantities (Xn−i + · · · +
Xn)2/(i+ 1), i = 0, . . . , γ, at every stage n > γ, and it is desirable to reduce the
computational burden for large γ by using a smaller window size. To develop
efficient detection schemes that involve O(log γ) computations at every stage
n, Lai (1995) used an idea similar to that in the theory of group sequential
tests, which is to replace max0≤n−k≤M in (3.12) by maxn−k+1∈N where N =
{1, . . . ,M} ∪ {[bjM ] : 1 ≤ j ≤ J}, with M ∼ a log γ, b > 1 and J = min{j :
[bjM ] ≥ γ} ∼ (log γ)/(log b). Specifically, replacing NW by

ÑW = inf{n : max
k:n−k+1∈N

(Xk + · · · +Xn)2/2(n − k + 1) ≥ cγ}, (3.13)

Lai (1995) showed that E0(ÑW ) ∼ K̃c
−1/2
γ ecγ ∼ γ if cγ = log γ + 1

2 log log γ −
log K̃+o(1), and that Eθ(ÑW ) ∼ (2 log γ)/θ2 if |θ| > √2/a while Eθ(ÑW ) ≤ (1+
o(1))min{γ, (2b log γ)/θ2} uniformly in 0 < |θ| ≤ √

2/a. Hence, choosing b close
to 1 (say b = 1.1), there is little loss of efficiency in reducing the computational
complexity of NG by its window-limited modification (3.13).

This idea was subsequently extended by Lai and Shan (1999) to address
the long-standing problem concerning how the window size and the threshold
should be chosen in the Willsky-Jones rule (3.11). As pointed out by Basseville
and Benveniste (1983), the main difficulty of this problem lies in the coupling
effect between the threshold and window size on the performance of the rule.
The basic idea of Lai and Shan (1999) is to decouple the effects of the threshold
and window size. A threshold of order log γ is needed to ensure a false alarm
duration of γ, as in the simpler problem of detecting changes in a normal mean.
With the threshold thus chosen to control the false alarm rate, the choice of the
windows is targeted towards making the rule as efficient as possible for detecting
the unknown change. Putting a complexity constraint of O(log γ) on the number
of elements of the window, the Willsky-Jones window in (3.11) is enlarged to
the form Ñ = {M̃, . . . ,M} ∪ {[bjM ] : 1 ≤ j ≤ J} as in (3.11). Here we need a
minimal delay M̃ ≥ dim(θ) to avoid difficulties with GLR statistics when n−k <
dim(θ). Under certain stability assumptions on the Kalman filter, such window-
limited GLR rules with maxn−M≤k≤n−M̃ in (3.11) replaced by maxk:n−k+1∈Ñ
can be shown to be asymptotically optimal for detecting changes with I(θ, 0) >
a−1, and to be within b times the asymptotic lower bound for expected delay
in detecting smaller changes. Moreover, for these window-limited GLR rules T ,
supk≥1 P0(k ≤ T < k + m) ∼ P0(T ≤ m) ∼ m/E0(T ), as E0(T ) ∼ γ → ∞
and m/ log γ → ∞ but logm = o(log γ). Hence to determine the threshold cγ ,
the ARL constraint E0(T ) =̇ γ can be replaced by the probability constraint
P0(T ≤ m) =̇ m/γ, which is much more tractable since simulating P0(T ≤ m)
involves far fewer random variables (no more than m in each simulation run)
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than directly simulating E0(T ). Importance sampling methods have also been
developed by Lai and Shan (1999) for the Monte Carlo evaluation of P0(T ≤ m).
Making use of saddlepoint approximations for Markov additive processes, Chan
and Lai (2000a) have developed asymptotic formulas for P0(T ≤ m) when T is
a window-limited rule applied to the GLR or other functions of scan statistics
based on Markov-dependent observations. Siegmund and Yakir (2000) have used
another approach to derive asymptotic approximations for GLR rules.

Another topic in the engineering literature on sequential detection of param-
eter changes of signals and systems is concerned with detection rules based on
non-likelihood-based detection statistics, which are often used in applications.
By using weak convergence theory, the CUSUM rule has been extended to non-
likelihood-based detection statistics by Benveniste, Basseville and Moustakides
(1987), whose “asymptotic local approach” can be summarized as follows. Sup-
pose the detection statistics Yi are such that for every fixed µ,

{γ−1/2
[γt]∑
i=1

Yi, t ≥ 0} converges weakly under Pµ/
√

γ to {Wµ(t), t ≥ 0}
(3.14)

as γ → ∞, where {Wµ(t), t ≥ 0} is a multivariate Gaussian process with inde-
pendent increments such that EWµ(t) = µt and Cov(Wµ(t)) = tV . The baseline
probability measure is P0 that corresponds to µ = 0. Let Sn,k =

∑n
i=k Yi and

λ = λ1/
√
γ. Consider the CUSUM rule

Tγ = inf{n : max
1≤k≤n

[λTSn,k − (n− k + 1)λTV λ/2] ≥ c}. (3.15)

Then as γ → ∞, the weak convergence property (3.14) implies that for fixed
c, Tγ/γ converges in distribution under Pµ/

√
γ to τµ(c) = inf{t : max0≤u≤t

[λT
1 (Wµ(t)−Wµ(u))−(t−u)λT

1 V λ1/2] ≥ c}, and therefore Eµ/
√

γ(Tγ) ∼ γEτµ(c).
How should (3.15) be modified when λ is not specified in advance? Maximizing
the CUSUM statistics λTSn,k−(n−k+1)λTV λ/2 over λ yields ST

n,kV
−1Sn,k/2(n−

k+1), which leads to the following window-limited rule proposed by Zhang, Bas-
seville and Benveniste (1994):

T̃γ = inf{n > b1γ : max
n−b2γ≤k≤n−b1γ

ST
n,kV

−1Sn,k/2(n − k + 1) ≥ c}, (3.16)

with b2 > b1 > 0. For fixed c and µ, (3.14) implies that T̃γ/γ converges
in distribution under Pµ/

√
γ to τ̃µ = inf{t > b1 : maxt−b2≤u≤t−b1(Wµ(t) −

Wµ(u))TV −1(Wµ(t)−Wµ(u))/2(t−u) ≥ c}. The preceding asymptotic approach
has been called “local” because it is based on weak convergence of Tγ/γ or T̃γ/γ

under P0 to the same limiting distribution as that in the canonical setting of
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independent standard normal V −1/2Yt, when λ is of the order λ1/
√
γ in (3.15)

or when the window is of the form b1γ ≤ n − k ≤ b2γ in (3.16). Such choice of
window size (or λ) makes T̃γ (or Tγ) very inefficient for detecting changes that
are considerably larger than the O(γ−1/2) order of magnitude for the “local”
changes.

Lai and Shan (1999) and Chan and Lai (2000b) have used another approach
based on moderate deviations theory instead of weak convergence approximations
to extend the window-limited GLR rule (3.11) to non-likelihood-based detection
statistics. The detection rule has the general form

N∗
W = inf{n > M̃ : max

k:n−k+1∈NM̃

( n∑
i=k

Yi

)T
V −1

n,k

( n∑
i=k

Yi

)
/2 ≥ c}, (3.17)

where c ∼ log γ (instead of bounded c in the asymptotic local approach), NM̃ =
{M̃j : j ∈ N}, N = {1, . . . ,M} ∪ {[bjM ] : 1 ≤ j ≤ J}, b > 1,M ∼ ac, J =
min{j : [bjMM̃ ] ≥ γ}, M̃/c → ∞ (to ensure that the sums

∑n
i=k Yi become ap-

proximately Gaussian in the moderate deviations sense), and Vn,k is an estimate
of the asymptotic covariance matrix of Sn,k under P0. Note that V −1/(n−k+1)
in (3.16) corresponds to the inverse of Vn,k = (n − k + 1)V . In many applica-
tions V is unknown and needs to be estimated. Even when V is known, using
Vn,k instead of (n− k+ 1)V offers the flexibility of making adjustments for non-
normality in treating (3.17) under P0 as if it were a window-limited GLR rule
with independent standard normal V −1/2Yt, where the Yt are actually dependent
random vectors with unknown (and possibly non-normal) distributions. Note
that grouping the observations into batches as in (3.17) arises naturally in con-
ventional quality control applications, in which samples of size s are taken at
regular intervals of time, so M̃ is either s or some multiple thereof.

Another direction of research in the engineering literature is on-line fault
isolation (or change diagnosis), whose objective is to determine, upon detection of
change in a system, which one in a set of J possible changes has actually occurred
(cf. Basseville and Nikiforov (1993), Nikiforov (1995), Patton, Frank and Clark
(1989)). By making use of sequential testing theory for J+1 hypotheses together
with the basic ideas in sequential change-point detection described above, Lai
(2000) recently developed window-limited detection-isolation rules that are not
too demanding in computational and memory requirements and yet are nearly
optimal under several performance criteria.

4. Point and Interval Estimation in Sequential Experiments

In this section we first consider the topic of bounded-risk and asymptoti-
cally risk-efficient point estimates and fixed-width confidence intervals that are
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possible only in sequential designs. We then consider the difficult but impor-
tant problem of confidence intervals following sequential tests, especially those
in group sequential trials where this long-standing problem is of particular prac-
tical importance. The third topic considered is recursive estimation in signal
processing and adaptive control in the engineering literature.

4.1. Bounded-risk estimators, fixed-width confidence intervals and
asymptotically risk-efficient sequential estimation

In the same year that Wald’s pioneering paper on sequential testing ap-
peared, Haldane (1945) published a seminal paper on bounded-risk sequential
estimation. He was motivated by a biological application involving estimating
the small probability p of some attribute. Noting that the usual sample propor-
tion based on n observations has variance p(1− p)/n, he introduced a sequential
estimate that stops sampling at the first time N when m(≥ 2) successes occur
and used the estimate p̂m = (m − 1)/(N − 1). He showed that p̂m is unbiased
and has variance

p2(1 − p)
m

{
1 +

2(1 − p)
m+ 1

+
3!(1 − p)2

(m+ 1)(m + 2)
+O(m−3)

}
. (4.1)

Thus, p̂m has bounded quadratic risk E{(p̂m − p)/p}2 = O(m−1) uniformly in
0 < p ≤ 1

2 .
About thirty years later, Borisov and Konev (1977) gave another application

of sequential designs to yield a bounded-risk unbiased estimator in the AR(1)
model yn = βyn−1 + εn with i.i.d. errors εn such that Eεn = 0 and Eε2n = σ2.
The yn have a limiting distribution when |β| < 1, behave like a random walk
when |β| = 1, and exhibit exponential growth when |β| > 1. In spite of this,
they showed that it is possible to construct a sequential estimate β̂c that is
unbiased and whose variance is uniformly bounded by σ2/c over all β ∈ R.
Konev and Lai (1995) generalized the construction to the stochastic regression
model yn = βxn + εn, in which xn is measurable with respect to the σ-field
Fn−1 generated by {ε1, . . . , εn−1} and {εn,Fn, n ≥ 1} is a martingale difference
sequence such that

sup
n
E(ε2n|Fn−1) ≤ σ2 a.s. and

∞∑
n=1

x2
n = ∞ a.s. (4.2)

Let Nc = inf{n ≥ 1 :
∑n

i=1 x
2
i ≥ c}. Then Nc < ∞ a.s. by (4.2) and

∑
i≤Nc

x2
i ≥

c >
∑

i<Nc
x2

i , so we can define θc ∈ (0, 1] uniquely by the equation∑
i<Nc

x2
i + θcx

2
Nc

= c. (4.3)
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Let β̂c be the modified least squares estimator

β̂c =
( ∑

i<Nc

xiyi + θcxNcyNc

)
/c. (4.4)

Konev and Lai (1995) showed that β̂c is unbiased and Var(β̂c) ≤ σ2/c. They
also extended this to construct bounded-risk estimators in the multiple stochastic
regression model yn = βTxn +εn, in which xn is a p×1 Fn−1-measurable random
vector.

It is well known that the usual least squares estimator β̃n of the autore-
gressive parameter based on a sample of fixed size n from an AR(1) model is
asymptotically normal if |β| < 1, but its limiting distribution after studentiza-
tion is highly non-Gaussian if |β| = 1. This causes considerable difficulty in
constructing large-sample confidence intervals in non-explosive but possibly non-
stationary AR(1) models. Lai and Siegmund (1983) circumvented this difficulty
by using the stopping rule Nc = inf{n ≥ 1 :

∑n
i=1 y

2
i−1 ≥ c}. They proved the

following uniform asymptotic normality property of β̃Nc as c→ ∞:

sup
|β|≤1, x∈R

|P{√c (β̃Nc − β)/σ ≤ x} − Φ(x)| → 0, (4.5)

in which Φ denotes the standard normal distribution. Since σ̂2
n := n−1∑n

i=1(yi −
β̃nyi−1)2 is a consistent estimate of σ2, β̃Nc ± c−1/2σ̂NcΦ−1(1 − α) is an approx-
imate (1 − 2α)-level confidence interval for β in non-explosive AR(1) models.
Moreover, letting

N(d) = inf
{
n ≥ 1 : (σ̂n ∨ n−1/2)Φ−1(1 − α)

( n∑
i=1

y2
i−1

)−1/2 ≤ d
}
, (4.6)

β̃N(d) ± d is an approximate (1 − 2α)-level confidence interval for β, with fixed
width 2d→ 0.

Fixed-width confidence intervals based on stopping rules of the type (4.6)
were first proposed by Chow and Robbins (1965) for a population mean when the
variance σ2 is unknown. Letting Ȳn denote the sample mean and σ̂n the sample
variance based on a sample of size n, define

Ñ(d) = inf{n ≥ n0 : (σ̂n ∨ n−1/2)Φ−1(1 − α) ≤ d
√
n}. (4.7)

The Chow-Robbins approximate (1 − 2α)-level confidence interval for the popu-
lation mean is ȲÑ(d) ± d. When the Yi are normal, Stein (1945, 1949) introduced
a two-stage procedure, giving an exact confidence interval with width 2d. Its
first stage uses a sample of fixed size m to estimate σ and the sample size for the
second stage is based on the estimate σ̂m. Let n(σ, d) be the fixed sample size
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such that Ȳn(σ,d)±d has coverage probability 1−2α when σ is known. If m→ ∞
but m = o(n(σ, d)) as d → 0, then the expected sample size of Stein’s two-stage
procedure is of a larger order of magnitude than n(σ, d) (cf. Cox (1952)). On
the other hand, for the Chow-Robbins procedure, Woodroofe (1977) showed that
for n0 ≥ 4, E(Ñ (d)) − n(σ, d) approaches a finite limit as d → 0. Moreover, for
n0 ≥ 7, the coverage probability of ȲÑ(d)±d is 1−2α+O(d2). Hall (1981) showed
that a suitably chosen three-stage procedure can give a fixed-width interval with
similar second-order properties in comparison with the fully sequential proce-
dure. For the parametric problem of fixed-width interval estimation of the mean
of a normal distribution with unknown variance, Woodroofe (1986b) developed
an asymptotic lower bound for the expected sample size of any sequential fixed-
width procedure that has the prescribed coverage probability as the width 2d
approaches 0, and showed that this bound is attained by a fully sequential proce-
dure. For nonparametric problems, Jurečková (1991) gives a review of extensions
of the Chow-Robbins approach to the multivariate setting and to U-statistics and
R- and M-estimators.

Closely related to the Chow-Robbins theory of fixed-width confidence inter-
vals is the theory of asymptotically risk-efficient sequential estimation, introduced
by Robbins (1959) for estimating a normal mean µ with cost c per observa-
tion. If the variance σ2 is known, the optimal fixed sample size that minimizes
Rn := E(X̄n − µ)2 + cn = σ2/n+ cn is nc, which is the smallest positive integer
≥ σ/

√
c, and Rnc = 2σ

√
c + O(c) as c → 0. Without assuming σ to be known,

Robbins (1959) proposed to replace nc by the stopping rule

Tc = inf{n ≥ n0 : n2 ≥ σ̂2
n/c}. (4.8)

Woodroofe (1977) showed that (RTc −Rnc)/c converges to a finite limit as c→ 0
if n0 ≥ 4, where the risk of a stopping rule T is defined by RT = E{(ȲT −
µ)2 + cT}. Without assuming normality, Chow and Martinsek (1982) showed
under certain assumptions on n0 and the moments of Y1 the “bounded regret”
property (RTc − Rnc)/c = O(1), by using certain asymptotic expansions for the
moments of the stopping time and of the randomly stopped sample mean. A
comprehensive theory of these asymptotic expansions has been developed by Aras
and Woodroofe (1993). Extending this theory to U-statistics, de la Peña and Lai
(1997) have established the bounded regret property for sequential estimators
based on U-statistics.

Closely linked to the theory of asymptotically risk-efficient estimation is the
asymptotic theory of sequential Bayes and empirical Bayes estimators. For a
given prior, the Bayes rule involves an optimal stopping problem to determine the
stopping rule, whose explicit solution is difficult in most situations. In the case of
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a one-parameter exponential family, Bickel and Yahav (1968) derived simple stop-
ping rules whose Bayes risks are asymptotically equivalent to that of the Bayes
rule as the cost c per observation approaches 0. Woodroofe (1981) subsequently
showed that such rules are asymptotically non-deficient in the sense that their
Bayes risks are within o(c) of that of the Bayes rule. Martinsek (1987) extended
Woodroofe’s result to the problem of sequential empirical Bayes estimation of
the mean of a normal or exponential distribution where certain hyperparame-
ters of the conjugate prior are unknown and have to be estimated from auxiliary
data. Besides the Bayes risk, similar asymptotic techniques can also be applied
to analyze the frequentist risks of sequential Bayes and empirical Bayes estima-
tors. In particular, for the problem of estimating the mean vector of a p-variate
normal distribution with covariance matrix σ2V , in which V is known but σ is
unknown, Ghosh, Nickerson and Sen (1987) developed asymptotic expansions
of the frequentist risks of certain empirical Bayes estimators (the James-Stein
shrinkage estimators) when the stopping rule Tc is of the form (4.8) modified
for the present multivariate problem. These asymptotic expansions show that
the shrinkage estimators outperform the sample mean X̄Tc for p ≥ 3. Ghosh,
Mukhopadhyay and Sen (1997) give an introduction to the developments in this
problem and other topics in sequential estimation.

4.2. Confidence intervals following sequential tests

Analysis of the data at the conclusion of a clinical trial typically involves
not only testing of the null hypothesis but also providing estimates of the pa-
rameters associated with the primary and secondary endpoints. The use of a
stopping rule whose distribution depends on these parameters introduces sub-
stantial difficulties in constructing valid confidence intervals. Siegmund (1978)
developed a method, based on ordering the sample space in a certain way, to
construct confidence intervals for the mean of a normal population with known
variance following a repeated significance test. Tsiatis, Rosner and Mehta (1984)
extended Siegmund’s method to the group sequential tests of Pocock (1977) and
O’Brien and Fleming (1979). Alternative orderings of the sample space were sub-
sequently introduced by Chang and O’Brien (1986), Rosner and Tsiatis (1988),
Chang (1989) and Emerson and Fleming (1990).

For samples of fixed size, an important methodology for constructing confi-
dence intervals without distributional assumptions is Efron’s (1981, 1987) boot-
strap, which can be extended as follows to the case where the sample size is
determined from the data by a stopping rule T . Let X1,X2, . . . be i.i.d. random
variables with a common unknown distribution function F . Given a randomly
stopped sample X1, . . . ,XT , let FT denote the empirical distribution function
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that puts probability mass 1/T at each of the sample values Xi. Let X∗
1 ,X

∗
2 , . . .

be i.i.d. random variables with common distribution function FT , and let T ∗ de-
note the corresponding stopping time for the sequence {X∗

i }. The “bootstrap
sample” {X∗

1 , . . . ,X
∗
T ∗} can be used to tackle a wide range of problems in sequen-

tial analysis, and it is natural to ask whether known methods and results in the
bootstrap literature dealing with fixed sample sizes generalize to the sequential
setting. To study this problem, Chuang and Lai (1998) began by considering
the simple example where the Xi are i.i.d. with unknown mean µ and known
variance 1. If the Xi are known to be normal, then Rosner and Tsiatis (1988)
developed the following method to construct from (T, X̄T ) an exact (1−2α)-level
confidence interval for µ, when T is the stopping rule of a group sequential test.
For each value of µ, one can find by the recursive numerical integration algorithm
of Armitage, McPherson and Rowe (1969) the quantiles uα(µ) and u1−α(µ) that
satisfy

Pµ{(ST − µT )/
√
T < uα(µ)} = α = Pµ{(ST − µT )/

√
T > u1−α(µ)}. (4.9)

Hence the confidence region {µ : uα(µ) ≤ (ST − µT )/
√
T ≤ u1−α(µ)} has cover-

age probability 1− 2α. Letting X̄T = ST /T , this confidence region reduces to an
interval whose end-points are found by intersecting the line

√
T (X̄T −µ) with the

curves uα(µ) and u1−α(µ) if there is only one intersection with each curve, which
is the case commonly encountered in practice. In particular, if T is nonrandom
(corresponding to a fixed sample size), then (ST − µT )/

√
T is standard normal

with α-quantile zα, and therefore (4.9) implies that uα(µ) and u1−α(µ) are hori-
zontal lines, yielding the classical confidence interval X̄T ± zα/

√
T . One way of

relaxing the assumption of normally distributed Xi with mean µ and variance 1
is to assume that Xi −µ has some unknown distribution G that has mean 0 and
variance 1. After stopping we can estimate G by the empirical distribution ĜT

of (Xi − X̄T )/σ̂T , 1 ≤ i ≤ T , where σ̂2
T = T−1∑T

i=1(Xi − X̄T )2. Let ε1, ε2, . . .
be i.i.d. with distribution ĜT and let X ′

i = µ + εi. Let T ′ be the stopping rule
T applied to X ′

1,X
′
2, . . . (instead of to X1,X2, . . .). In analogy with (4.9), define

the quantiles ûα(µ) and û1−α(µ) of the distribution of (
∑T ′

i=1 εi)/
√
T ′ given ĜT .

An approximate 1 − 2α confidence set is

{µ : ûα(µ) <
√
T (X̄T − µ) < û1−α(µ)}. (4.10)

For every fixed µ, the quantiles ûα(µ) and û1−α(µ) in (4.10) can be computed by
simulation. Chuang and Lai (1998) developed an algorithm to compute (4.10)
and used Edgeworth expansions to establish its second-order accuracy. They
carried out simulation studies and found (4.10) to compare favorably with the
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exact confidence interval when theXi are normal. They also extended the method
to more complex situations involving nuisance parameters.

Chuang and Lai (2000a) subsequently developed a relatively complete theory
of the hybrid resampling approach. As they point out, there are three issues
that must be addressed for the practical implementation of hybrid resampling
methods. First, one must choose a root R(X, θ), where X denotes the vector
of observations and θ is the unknown parameter of interest; e.g., R(X, µ) =√
T (X̄T − µ) in (4.10). Second, one needs to find a suitable resampling family

{F̂θ, θ ∈ Θ}, where Θ denotes the set of all possible values of θ. For example, in
(4.10) we take F̂µ as the distribution of µ + εi with the εi generated from ĜT .
Finally, an “implicit” hybrid region of the form {θ : ûα(θ) < R(X, θ) < û1−α(θ)}
(such as (4.10) above) has to be inverted into an “explicit” confidence interval
in practice. These issues are addressed in Chuang and Lai (2000a), who also
provide a synthesis and refinement of a variety of basic results from the bootstrap
literature (since the bootstrap confidence interval is a special case of the hybrid
confidence set with F̂θ ≡ F̂ , the empirical distribution function).

Another approach to the construction of confidence intervals following se-
quential tests in exponential families has been developed by Woodroofe (1986a,
1992), Woodroofe and Coad (1997) and Weng and Woodroofe (2000). This ap-
proach makes use of “very weak” asymptotic expansions that provide confidence
intervals I whose integrated coverage errors

∫
Pθ(θ �∈ I)ξ(θ)dθ differ from the

nominal value 2α by o(a−1) for a large class of smooth probability densities ξ,
where a(→ ∞) denotes the boundary of the stopping rule Ta. This average
coverage accuracy differs from the usual sense of second-order accuracy used in
the bootstrap literature where Edgeworth expansions are applied to the coverage
errors Pθ(θ �∈ I) for all parameter values θ (cf. Hall (1992), Efron and Tibshi-
rani (1993)). On the other hand, the very weak expansions are computation-
ally much more appealing than the Edgeworth-type expansions (which involve
difficult fluctuation-theoretic quantities) for randomly stopped sample sums in
Woodroofe and Keener (1987), Woodroofe (1988) and Lai and Wang (1994).
However, as pointed out by Chuang and Lai (2000a, b), these Edgeworth-type
expansions can be implemented indirectly by simulation via the bootstrap or hy-
brid resampling, which has the additional advantage of not requiring parametric
assumptions on the underlying distribution. Resampling methods are particu-
larly attractive in clinical trials with multiple endpoints, where the stopping rule
may be based on a primary outcome variable of interest and the estimation may
be related to a secondary variable. It is often difficult to come up with tractable
and realistic statistical models between the primary and secondary variables, al-
though some progress has been made in this direction; see e.g., Whitehead (1986,
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1997) and Yakir (1997). Instead of explicit modeling, the hybrid resampling ap-
proach uses nonparametric estimates of the joint distribution of the primary and
secondary variables to adjust for early stopping in the construction of confidence
intervals.

4.3. Recursive estimation in signal processing and adaptive control

The sequential estimation problems in Section 4.1 are actually sequential
design problems in which a conventional estimate, based on a sample whose size
is determined by a suitably chosen stopping rule, achieves certain properties such
as bounded risk or asymptotic risk efficiency that are unattainable by samples
of fixed size. This is in sharp contrast with sequential (or on-line) estimation
in engineering, where methods for fast updating of parameter or state estimates
as new data arrive in real time are known as “recursive identification” in the
control systems literature, and as “adaptive algorithms” in signal processing.
Prototypical of these recursive procedures is the well-known Kalman filter, which
expresses in a recursive form the conditional expectation of the state xt given
current and past observations yt, ut, yt−1, ut−1, . . . for the filtering problem (or
given the past observations yt−1, ut−1, . . . for the prediction problem) in the linear
state-space model (3.10). Applying the Kalman filter to the matrix parameter θ
(as the unobservable state) in the stochastic regression model

Yn = θXn + wn, (4.11)

the least squares estimate θ̂n = (
∑n

i=1 YiX
T
i )(

∑n
i=1XiX

T
i )−1 can be represented

recursively as
θ̂n = θ̂n−1 + (Yn − θ̂n−1Xn)XT

n Pn, (4.12a)

Pn = Pn−1 − Pn−1XnX
T
n Pn−1/(1 +XT

n Pn−1Xn). (4.12b)

The Yn in the multivariate regression model (4.11) are k×1 vectors, θ is a k×hma-
trix of unknown parameters, Xn is an Fn−1-measurable h×1 vector of regressors
and the unobservable disturbances wn form a martingale difference sequence with
respect to an increasing sequence of σ-fields Fn. Note that (4.12a) updates the
previous estimate θ̂n−1 by using the prediction error Yn − θ̂n−1Xn, while (4.12b)
computes Pn = (

∑n
i=1XiX

T
i )−1 recursively without having to invert matrices,

an obvious advantage when h is large or when
∑n

i=1XiX
T
i is ill-conditioned.

A special case of (4.11) is the ARX model (autoregressive model with ex-
ogenous inputs) A(q−1)Yn = B(q−1)Un−d + wn, where A(q−1) = I + A1q

−1 +
· · · + A
q

−
 and B(q−1) = B1 + · · · + Brq
−(r−1) are matrix polynomials in the

unit delay operator q−1 (defined by q−1xn = xn−1) and d ≥ 1 represents the
delay. Here XT

n = (Y T
n−1, . . . , Y

T
n−
, U

T
n−d, . . . , U

T
n−d−r−1). While the least squares
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estimate of θ = (A1, . . . , A
, B1, . . . Br) has a simple recursive form (4.12) for
on-line updating, a major topic in the literature is the development of similar
recursive algorithms for the ARMAX model (in which MA stands for “moving
average” disturbances):

A(q−1)Yn = B(q−1)Un−d + C(q−1)wn, (4.13)

in which C(q−1) = I + C1q
−1 + · · · + Cνq

−ν . Many recursive algorithms have
been proposed in the literature for the ARMAX model (cf. Ljung and Söderström
(1983)). However, little was known about their statistical properties until the
1980s, when convergence results were established for the stochastic gradient algo-
rithm by Goodwin, Ramadge and Caines (1981) and for extended least squares al-
gorithms by Lai and Wei (1986). These recursive estimates, however, are asymp-
totically less efficient than the off-line maximum likelihood estimates. Lai and
Ying (1991) showed how parallel recursive algorithms can be developed to attain
full asymptotic efficiency. The basic idea is to use an extended least squares algo-
rithm AML, which is consistent but inefficient, to monitor a recursive maximum
likelihood algorithm (RML2) that is obtained by linearizing the likelihood func-
tion in some neighborhood of θ̂n−1. Thus, AML and RML2 are run in parallel.

The stochastic gradient algorithm in Goodwin, Ramadge and Caines (1981)
is a special case of stochastic approximation, which will be considered in the next
section. Stochastic approximation offers a simple approach to construct and to
analyze recursive estimators; see Nevel’son and Has’minskii (1973), Fabian (1978)
and Ljung and Söderström (1983).

5. Stochastic Approximation and Sequential Optimization

Consider the regression model

yi = M(xi) + εi (i = 1, 2, . . .) (5.1)

where yi denotes the response at the design level xi, M is an unknown regression
function, and εi represents unobservable noise (error). In the deterministic case
(where εi = 0 for all i), Newton’s method for finding the root θ of a smooth
function M is a sequential scheme defined by the recursion

xn+1 = xn − yn/M
′(xn). (5.2)

When errors εi are present, using Newton’s method (5.2) entails that

xn+1 = xn −M(xn)/M ′(xn) − εn/M
′(xn). (5.3)

Hence, if xn should converge to θ, so that M(xn) → 0 and M ′(xn) → M ′(θ)
(assuming M to be smooth and to have a unique root θ such that M ′(θ) �= 0),
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then (5.3) implies that εn → 0, which is not possible for many kinds of random
errors εi (e.g., when the εi are i.i.d. with mean 0 and variance σ2 > 0). To
dampen the effect of the errors εi, Robbins and Monro (1951) replaced 1/M ′(xn)
in (5.2) by constants that converge to 0. Specifically, assuming that

inf
ε≤|x−θ|≤ε−1

{M(x)/(x − θ)} > 0 for all 0 < ε < 1, (5.4)

the Robbins-Monro scheme is defined by the recursion

xn+1 = xn − αnyn (x1 = initial guess of θ), (5.5)

where αn are positive constants such that
∞∑
1

α2
n <∞,

∞∑
1

αn = ∞. (5.6)

It is well known that many stochastic models of random noise εn (e.g., i.i.d. ran-
dom variables with mean 0 and finite variance, L2-bounded martingale difference
sequences) have the property that

∞∑
1

αnεn converges a.s. for all contants αn such that
∞∑
1

α2
n <∞. (5.7)

Assuming that {εn} satisfies (5.7) and that M satisfies (5.4) and

|M(x)| ≤ c|x| + d for some c, d and all x, (5.8)

Blum (1954) showed that the Robbins-Monro scheme (5.5) indeed converges a.s.
to θ. Earlier, Robbins and Monro (1951) showed that the scheme converges to
θ in L2 under additional assumptions. It should be noted that although Blum’s
assumptions on {εn} were stronger than (5.7), his proof in fact consisted of
showing that the scheme converges if (5.7) obtains.

Noting that maximization of a smooth unimodal regression function M :
R → R is equivalent to solving the equation M ′(x) = 0, Kiefer and Wolfowitz
(1952) proposed the following recursive maximization scheme

xn+1 = xn + αn(xn), (5.9)

where at the nth stage observations y(1)
n = M(x(1)

n )+ε(1)n and y(2)
n = M(x(2)

n )+ε(2)n

are taken at the design levels x(1)
n = xn − cn and x(2)

n = xn + cn, respectively, αn

and cn are positive constants such that
∞∑
1

(αn/cn)2 <∞,
∞∑
1

αn = ∞, cn → 0, (5.10)
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and (xn) = (y(2)
n − y

(1)
n )/2cn is an estimate of M ′(xn). Blum (1954) proved

a.s. convergence of the Kiefer-Wolfowitz scheme to the maximizer of M under
certain assumptions on M, ε

(1)
n and ε(2)n .

Beginning with the seminal papers of Robbins and Monro (RM) and Kiefer
and Wolfowitz (KW), there is a vast literature on stochastic approximation (SA)
schemes of the type (5.5) and (5.9) in statistics and engineering. In particular,
for the case of i.i.d. εi with mean 0 and variance σ2 in (5.1), it has been shown by
Sacks (1958) that an asymptotically optimal choice of αn in the RM scheme (5.5)
is αn ∼ (nβ)−1, for which

√
n(xn − θ) has a limiting normal distribution with

mean 0 and variance σ2/β2, assuming that β := M ′(θ) > 0. This led Venter
(1967) and Lai and Robbins (1979) to develop adaptive SA schemes of the form

xn+1 = xn − yn/nbn, (5.11)

in which bn is an estimate of β based on the current and past observations. It is
relatively easy to estimate β consistently, by using bn = ζn∨{ξn∧n−1∑n−1

j=1 (y(2)
j −

y
(1)
j )/(2cj)}, with ζn → 0 and ξn → ∞ and with suitably chosen cj, as in the

KW scheme. Venter took yn = (y(1)
n + y

(2)
n )/2 in (5.11) as an estimate of the

unobserved response at xn, and chose cj of the order j−γ for some 1/4 < γ < 1/2
to meet the goal of attaining the variance σ2/β2 in the limiting distribution
of

√
n(xn − θ). Motivated by adaptive control applications in engineering (as

reviewed in Section 4.3) and economics (as in Anderson and Taylor (1976)), Lai
and Robbins (1979) considered the efficiency of the final estimate xN of θ as
well as the “regret” (or cost)

∑N
i=1(xi − θ)2 of the design. The rationale is that

if θ were known, then the inputs for the finite-horizon regulation problem of
minimizing E(

∑N
i=1 y

2
i ) should be set at xi ≡ θ. While Venter’s design has regret

of the algebraic order of constant times N1−2γ , Lai and Robbins (1979) showed
that it is possible to have both asymptotically minimal regret and efficient final
estimate, i.e.,

N∑
i=1

(xi − θ)2 ∼ (σ2/β2) logN a.s. and
√
N(xN − θ) ⇒ N(0, σ2/β2) (5.12)

as N → ∞, by using a modified least squares estimate in (5.11) or by certain
modifications of Venter’s design. Wei (1987) generalized (5.12) to the multivari-
ate case in which xn, yn, θ and M(θ) are p× 1 vectors and 1/bn is replaced by a
p× p matrix An that estimates the inverse of the Jacobian matrix ∂M/∂θ using
a modified Venter-type design.

Asymptotic normality of the KW scheme (5.9) has also been established
by Sacks (1958). However, instead of the usual n−1/2 rate, one has the n−1/3
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rate for the choices αn = a/n and cn = cn−1/6, assuming M to be three times
continuously differentiable in some neighborhood of θ. The reason for the slower
rate is that the estimate (x) of M ′(x) has a bias of the order O(c2n) when
M ′′′(x) �= 0. This slower rate is common to nonparametric regression and density
estimation problems, where it is known that the rate of convergence can be
improved by making use of additional smoothness of M . Fabian (1967, 1971)
showed how to redefine (xn) in (5.9) when M is (s + 1)-times continuously
differentiable in some neighborhood of θ for even integers s, so that letting cn =
cn−1/(2s+2), ns/(2s+2)(xn − θ) has a limiting normal distribution.

In the engineering literature, SA schemes are usually applied to multivari-
ate problems and dynamical systems, instead of to (static) regression functions
considered in the statistics literature. Besides the dynamics in the SA recursion,
the dynamics of the underlying stochastic system also plays a basic role in the
convergence analysis. Ljung (1977) developed the so-called ODE method that
has been widely used in such convergence analysis in the engineering literature;
it studies the convergence of SA or other recursive algorithms in stochastic dy-
namical systems via the stability analysis of an associated ordinary differential
equation (ODE) that defines the “asymptotic paths” of the recursive scheme; see
Kushner and Clark (1978) and Benveniste, Metivier and Priouret (1987). More-
over, a wide variety of KW-type algorithms have been developed for constrained
or unconstrained optimization of objective functions on-line in the presence of
noise. ForM : Rp → R, Spall (1992) introduced “simultaneous perturbation” SA
schemes that take only 2 (instead of 2p) measurements to estimate a smoothed
gradient approximation to ∇M(θ) at every stage; see also Spall and Cristion
(1994). For other recent developments of SA in the engineering literature, see
Kushner and Yin (1997). Ruppert (1991) gives a brief survey of the statistics
literature on SA up to 1990.

6. Adaptive Treatment Allocation and the Multi-Armed Bandit Prob-
lem

The pioneering paper of Robbins (1952) introduced the multi-armed bandit
problem and stochastic approximation as two new problems in sequential design
of experiments, “different from those usually met in statistical literature”. The
latter problem deals with the continuous case where the design points can be
chosen sequentially from R or a finite interval to maximize E(

∑N
i=1 yi), in which

yi is given by the regression model (5.1), while the former problem deals with
the finite case where the design chooses sequentially which of k populations to
sample from so that E(

∑N
i=1 yi) is maximized. Actually Robbins considers only

the case k = 2, but his results in fact apply to any k. He cites Wald’s (1950)
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book on statistical decision theory as “the first significant contribution to the
theory of sequential design”, and comments that although it “states the problem
in full generality” it does not provide concrete solutions to these two particular
sequential design problems. Both problems have subsequently been extensively
studied and undergone far-reaching generalizations, and have become fundamen-
tal problems in the field of stochastic adaptive control; see Kumar (1985) and
Benveniste, Metivier and Priouret (1987).

The “multi-armed bandit problem” derives its name from an imagined slot
machine with k ≥ 2 arms. When an arm is pulled, the player wins a random
reward. For each arm j, there is an unknown probability distribution Πj of
the reward, and the player’s problem is to choose N successive pulls on the k
arms so as to maximize the total expected reward. The problem is prototypical
of a general class of adaptive control problems in which there is a fundamental
dilemma between “information” (such as the need to learn from all populations
about their parameter values) and “control” (such as the objective of sampling
only from the best population), cf. Kumar (1985). Suppose Πj has finite mean
µ(θj) and density function f(x; θj) with respect to some nondegenerate measure
ν, where f(·; ·) is known and the θj are unknown parameters belonging to some
set Θ. An adaptive allocation rule consists of a sequence of random variables
φ1, φ2, . . . taking values in {1, . . . , k} such that the event {φt = j} (“Xt+1 is sam-
pled from Πj”) belongs to the σ-field generated by φ0,X1, φ1, . . . ,Xt−1, φt−1,Xt.
Let θ = (θ1, . . . , θk). If θ were known, then we would sample from the population
Πj(θ) with the largest mean; i.e., µ∗θ := max1≤j≤k µ(θj) = µ(θj(θ)). In ignorance
of θ, the problem is to sample X1,X2, . . . sequentially from the k populations to
maximize Eθ(

∑N
i=1Xi), or equivalently to minimize the regret

RN (θ) = Nµ∗θ − Eθ

(
N∑

i=1

Xi

)
=

∑
j:µ(θj)<µ∗

θ

(µ∗θ − µ(θj))EθTN (j), (6.1)

where TN (j) =
∑N

t=1 I{φt−1=j} is the total number of observations from Πj up to
stage N .

Lai and Robbins (1985) showed how to construct sampling rules for which
RN (θ) = O(logN) at every θ. These rules are called “uniformly good”. They also
developed asymptotic lower bounds for the regret RN (θ) of uniformly good rules
and showed that the rules constructed actually attain these asymptotic lower
bounds and are therefore asymptotically efficient. Specifically, they showed that
under certain regularity conditions

lim infN→∞RN (θ)/ logN ≥
∑

j:µ(θj)<µ∗
θ

(µ∗θ − µ(θj))/I(θj , θ
∗), (6.2)
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for uniformly good rules, where θ∗ = θj(θ) and I(λ, λ′) is the Kullback-Leibler
information number. Their result was subsequently generalized by Anantharam,
Varaiya and Walrand (1987) to the multi-armed bandit problem in which each Πj

represents an aperiodic, irreducible Markov chain on a finite state space S so that
the successive observations from Πj are no longer independent but are governed
by a Markov transition density p(x, y; θj). This extension was motivated by the
more general problem of adaptive control of finite-state Markov chains with a
finite control set, whose development up to the mid-1980s has been surveyed by
Kumar (1985).

Let {Xn, n ≥ 0} be a controlled Markov chain on state space S, with a
parametric family of transition density functions p(x, y;u, θ) with respect to
some measure M on S, where u belongs to a control set U and θ is an un-
known parameter taking values in a compact metric space Θ. Thus the tran-
sition probability measure under control action u and parameter θ is given by
P u

θ (Xn+1 ∈ A|Xn = x) =
∫
A p(x, y;u, θ)dM(y). The initial distribution of X0

under P u
θ is also assumed to be absolutely continuous with respect to M . Let

G = {g1, . . . , gk} be a finite set of stationary control laws gj : S → U such that
for every g ∈ G, the transition probability function P g(x)

θ (x,A) is irreducible with
respect to some maximal irreducibility measure and has stationary distribution
πg

θ . Let r(Xt, ut) represent the one-step reward at time t, where r : S × U → R,
and define the long-run average reward

µθ(g) =
∫
r(x, g(x))dπg

θ (x), (6.3)

assumed to be finite. If θ were known, then one would use the stationary control
law gj(θ) such that

µ∗θ := max
g∈G

µθ(g) = µθ(gj(θ)). (6.4)

Suppose there is no switching cost among the (typically equivalent) optimal sta-
tionary control laws that attain the maximum in (6.4) and a cost a(θ) for each
switch from one g ∈ G to another g′ ∈ G when g and g′ are not both optimal. An
adaptive control rule φ is a sequence of random variables φ1, φ2, . . . taking values
in G such that {φt = g} ∈ Ft for all g ∈ G and t ≥ 0, where Ft is the σ-field
generated by X0, φ0, . . . ,Xt−1, φt−1,Xt. We can generalize (6.1) to controlled
Markov chains by letting

RN (θ) =
∑

g∈G:µθ(g)<µ∗
θ

(µ∗θ − µθ(g))EθTN (g), with TN (g) =
N−1∑
t=0

I{φt=g}. (6.5)
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In view of the additional switching cost a(θ) for each switch between two control
laws in G, not both optimal, we define the overall regret to be Rn(θ)+a(θ)Sn(θ),
where

SN (θ) = Eθ

(
N∑

t=1

I{φt 	=φt−1,min(µθ(φt),µθ(φt−1))<µ∗
θ
}

)
.

An adaptive control rule φ is said to be uniformly good if

RN (θ) = O(logN) and SN (θ) = o(logN) for every θ ∈ Θ. (6.6)

Graves and Lai (1997) extended the asymptotic lower bound (6.2) for the regret
RN (θ) in multi-armed bandits to a similar lower bound for the regret in (6.5)
for controlled Markov chains. Moreover, by making use of sequential testing
theory, they constructed uniformly good adaptive control rules that attain this
asymptotic lower bound.

Besides control engineering, the theory of multi-armed bandits also has an
extensive literature in economics. In particular, it has been applied to pric-
ing under demand uncertainty, decision making in labor markets, general search
problems and resource allocation (cf. Rothschild (1974), Mortensen (1985), Banks
and Sundaram (1992), Brezzi and Lai (2000)). Unlike the formulation above, the
formulation of adaptive allocation problems in the economics literature involves
a discount factor that relates future rewards to their present values. Moreover,
an economic agent typically incorporates his prior beliefs about the unknown
parameters into his choice of actions. Suppose an agent chooses actions sequen-
tially from a finite set {a1, . . . , ak} such that the reward r(aj) of action aj has
a probability distribution depending on an unknown parameter θj which has a
prior distribution Π(j). The agent’s objective is to maximize the total discounted
reward ∫

. . .

∫
Eθ1,...,θk

{ ∞∑
t=0

βtr(ut+1)

}
dΠ(1)(θ1) . . . dΠ(k)(θk), (6.7)

where 0 < β < 1 is a discount factor and ut denotes the action chosen by
the agent at time t. The optimal solution to this problem, commonly called
the “discounted multi-armed bandit problem”, was shown by Gittins and Jones
(1974) and Gittins (1979) to be the “index rule” that chooses at each stage the
action with the largest “dynamic allocation index” (DAI).

The DAI is a complicated functional of the posterior distribution Π(j)
n given

the rewards Yj,1, . . . , Yj,Tn(j) of action aj up to stage n. Bounds and approxima-
tions to the DAI have been developed by Brezzi and Lai (2000) and Chang and
Lai (1987). Making use of these bounds, Brezzi and Lai (2000) gave a simple
proof of the incompleteness of learning from endogenous data by an optimizing
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economic agent. Specifically, they showed that with positive probability the index
rule uses the optimal action only finitely often and that it can estimate consis-
tently only one of the θj, generalizing Rothschild’s (1974) “incomplete learning
theorem” for Bernoulli two-armed bandits. Moreover, the DAI can be written
as an “upper confidence bound” of the form µj,n + √

vj,n ψ(β,Π(j)
n ), where µj,n

and vj,n are the mean and variance of the posterior distribution Π(j)
n and ψ is

a nonnegative function of β and Π(j)
n . When the Yj,i are normal with mean θj

and variance 1 and the prior distribution Π(j) is normal, Chang and Lai (1987)
showed that ψ(β,Π(j)

n ) can be expressed as

ψ̃(s) = {2 log s− log log s− log 16π + o(1)}1/2 (6.8)

as β → 1 and s := vj,n/(1 − β) → ∞.
There is also a similar asymptotic theory of the finite-horizon bandit problem

in which the agent’s objective is to maximize the total reward∫
. . .

∫
Eθ1,...,θk

{
N−1∑
t=0

r(ut+1)

}
dΠ(θ1, . . . , θk), (6.9)

where Π is a prior distribution of the vector (θ1, . . . , θk). Even when the θi are
independent under Π (so that Π is a product of marginal distributions as in
(6.7)), the optimal rule that maximizes (6.9) does not reduce to an index rule.
In principle, one can use dynamic programming to maximize (6.9). In the case of
k = 2 Bernoulli populations with independent Beta priors for their parameters,
Fabius and van Zwet (1970) and Berry (1972) studied the dynamic programming
equations analytically and obtained several qualitative results concerning the
optimal rule. Lai (1987) showed that although index-type rules do not provide
exact solutions to the optimization problem (6.9), they are asymptotically opti-
mal as N → ∞, and have nearly optimal performance from both the Bayesian
and frequentist viewpoints for moderate and small values of N .

The starting point in Lai’s approximation to the optimal rule is to consider
the normal case. Suppose that an experimenter can choose at each stage n(≤ N)
between sampling from a normal population with known variance 1 but un-
known mean µ and sampling from another normal population with known mean
0. Assuming a normal prior distribution N(µ0, v) on µ, the optimal rule that
maximizes the expected sum of N observations samples from the first population
(with unknown mean) until stage T ∗ = inf{n ≤ N : µ̂n + an,N ≤ 0} and then
takes the remaining observations from the second population (with known mean
0), where µ̂n is the posterior mean based on observations Y1, . . . , Yn from the first
population and an,N are positive constants that can be determined by backward
induction. Writing t = n/N, w(t) = (Y1 + · · ·+ Yn)/

√
N , and treating 0 < t ≤ 1
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as a continuous variable, Lai (1987) approximates an,N by
√
vn h(n/N), where

vn is the posterior variance of µ and

h(t) =



{2 log t−1 − log log t−1 − log 16π
+0.99exp(−0.038t−1/2)}1/2 if 0 < t ≤ 0.01,

−1.58
√
t+ 1.53 + 0.07t−1/2 if 0.01 < t ≤ 0.28,

−0.576t3/2 + 0.299t1/2 + 0.403t−1/2 if 0.28 < t ≤ 0.86,

t−1(1 − t)1/2{0.639 − 0.403(t−1 − 1)} if 0.86 < t ≤ 1.

(6.10)

This function h is obtained by evaluating numerically the boundary of the corre-
sponding optimal stopping problem for Brownian motion, first studied by Cher-
noff and Ray (1965), and then developing some simple closed-form approximation
to the boundary. Although it differs from the function ψ̃ in (6.8) because of the
difference between the finite-horizon criterion and the discounted criterion, note
that h(t) = ψ̃(t−1) + o(1) as t→ 0.

More generally, without assuming a prior distribution on the unknown pa-
rameters, suppose Yj,1, Yj,2, . . ., are independent random variables from a one-
parameter exponential family with density function fθj

(y) = exp{θjy − ω(θj)}
with respect to some dominating measure. Then µ(θ) = EθY1 = ω′(θ) is increas-
ing in θ since Var(Yj,1) = ω′′(θj), and the Kullback-Leibler information number is
I(θ, λ) = Eθ[log(fθ(Y )/fλ(Y ))] = (θ−λ)µ(θ)− (ω(θ)−ω(λ)). Assuming that all
θj lie in some open interval Γ such that infθ∈Γ ω

′′(θ) > 0 and supθ∈Γ ω
′′(θ) <∞,

and letting θ̂j,n be the maximum likelihood estimate of θj based on Yj,1, . . . , Yj,n,
Lai (1987) considered an upper confidence bound for µ(θj) of the form µ(θ∗j,n),
where

θ∗j,n = inf{θ ∈ Γ : θ ≥ θ̂j,n , 2nI(θ̂j,n, θ) ≥ h2(n/N)}. (6.11)

Note that nI(θ̂j,n, θ0) is the GLR statistic for testing θ = θ0, so the above upper
confidence bound is tantamount to the usual construction of confidence limits
by inverting an equivalent test. Lai (1987) showed that this upper confidence
bound rule is uniformly good and attains the lower bound (6.2) not only at
fixed (θ1, . . . , θk) as N → ∞ (so that the rule is asymptotically optimal from
the frequentist viewpoint), but also uniformly over a wide range of parameter
configurations, which can be integrated to show that the rule is asymptotically
Bayes with respect to a large class of prior distributions Π for (θ1, . . . , θk). There
is also an analogous asymptotic theory for the discounted multi-armed bandit
problem as β → 1, as shown by Chang and Lai (1987).

Adaptive treatment allocation has also been studied in the statistics litera-
ture in the context of clinical trials. Bather (1985) and Basu, Bose and Ghosh
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(1991) survey many important developments and basic results in this direction.
Unfortunately, except for the allocation schemes to achieve balance following
Efron’s (1971) seminal paper on the biased coin design, these adaptive treatment
allocation methods, which are mostly targeted towards minimizing the number of
patients receiving the inferior treatment(s), “(have) found no application what-
soever in the actual conduct of trials”, as noted by Armitage (1985), because
of the practical difficulties in implementing them and because the objectives of
clinical trials are much more complex than the simple criterion of minimizing the
expected number of patients receiving the inferior treatment, subject to either a
given patient horizon or a prescribed type I error probability.

7. Future Opportunities and Challenges

Sequential analysis has been developing steadily but at a somewhat uneven
pace during the past six decades. There is now a rich arsenal of techniques and
concepts, methods and theories, that will provide a strong foundation for further
advances and breakthroughs. The subject is still vibrant after six decades of
continual development, with many important unsolved problems and with new
interesting problems brought in from other fields.

Indeed, new directions and new problems in sequential analysis have been
inspired by applications to engineering, economics and medicine, as the preceding
sections have shown. There are basic sequential statistical problems in these
fields, which have their own specialists and journals. For sequential analysis to
remain a vibrant statistical subject, it has to grow not only inwards in the form of
further methodological advances and breakthroughs, but also outwards through
active involvement in the biomedical, socio-economic and engineering sciences.
Integrating its internal and external growth is a new challenge that will provide
it with increasing opportunities and visible roles in the changing world of science,
technology and socio-economic activities.

In his critique of previous work on adaptive treatment allocation in clinical
trials, Armitage (1985) suggests “that statisticians concerned with the develop-
ment of optimization models and those concerned directly in clinical trials should
meet to discuss the feasibility of these methods for various sorts of trials” and
“that members of the two groups should work in collaboration on specific trials
so as to foster closer understanding and to explore the possibilities in a realis-
tic setting”. As we have pointed out in Sections 2 and 4, the relatively small
sample size and the multi-center environment, together with the multiplicity of
study objectives, make conventional sequential testing procedures and adaptive
treatment allocation procedures unattractive to the clinical trials community. To
develop methods that are usable in practice, modifications and refinements are
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needed. Considerable work in this direction has been done in sequential testing,
as reviewed in Section 2. This illustrates the need for collaborative, interdisci-
plinary research to bridge the gap between statistical methods and substantive
applications, which is another challenge for sequential analysis in the twenty-first
century.

The difficulties in using adaptive treatment allocation rules in clinical trials
pointed out by Armitage (1985) and the discussants of his paper disappear in
the applications to control engineering and economics reviewed in Section 6. A
challenge for sequential analysis, therefore, is to identify the right “clientele” for
its variety of tools and methods. We next give an example of an emerging clientele
from financial economics in which we show how sequential analysis techniques
can be applied to the valuation of American options.

To begin with, a call (put) option gives the holder the right to buy (sell)
the underlying asset by a certain date, known as the “expiration date” or “ma-
turity”, at a certain price, known as the exercise (or strike) price. European
options can be exercised only on the expiration date. In the case of a complete
market in which the price of the underlying asset can be modeled by geometric
Brownian motion, there is the celebrated Black-Scholes formula for pricing Eu-
ropean options. In contrast, an American option can be exercised at any time
up to the expiration date. Except for American calls written on non-dividend-
paying stocks that reduce to European calls, American option valuation does not
have explicit formulas, and an active area of research in the past two decades
is the development of fast and accurate numerical methods for the valuation of
option books and implementation of dynamic hedging strategies. AitSahlia and
Lai (1999) recently made use of ideas similar to those used in developing the
approximation (6.10) for the multi-armed bandit problem to come up with a
simple and accurate method to compute the values and early exercise bound-
aries of American options. A key idea underlying the method is the reduction
of American option valuation to a single optimal stopping problem for standard
Brownian motion, indexed by one parameter in the absence of dividends, and by
two parameters in the presence of a dividend rate. Unlike the commonly used
Cox-Ross-Rubinstein (1979) method that is based on approximating the under-
lying geometric Brownian motion by a binomial tree with the given spot price as
the root node, AitSahlia and Lai (1999) first use a change of variables to reduce
the optimal stopping problem to a canonical form involving a standard Brown-
ian motion and then solve the optimal stopping problem by using the numerical
method developed by Chernoff and Petkau (1986). Motivated by applications
to sequential analysis, in which the stopping boundary associated with the op-
timal sequential procedure is of primary interest, Chernoff and Petkau (1986)
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developed a continuity correction method to address the issue of approximating
Brownian motion by a discrete-time and discrete-state Bernoulli random walk.
After computing the optimal exercise boundary, the American option prices for
different maturities and spot prices are readily computed by using the following
decomposition formula of Carr, Jarrow and Myneni (1992):

American option price = European option price + Early exercise premium,

in which the early exercise premium is a one-dimensional integral whose integrand
is an explicit function of the optimal exercise boundary. Numerical results show
that the optimal exercise boundary can be well approximated, in the canonical
space-time scale, by a linear spline with a few knots. This has led to two fast
and accurate approximations to the prices and hedge parameters of American
options proposed in AitSahlia and Lai (1999), which show marked improvements
in both speed and accuracy over previous approximations in the literature.

Sequential analysis has both contributed to and benefited from developments
in many areas of statistics and probability. For example, the work of Wald and
Wolfowitz (1948) on the optimality of the SPRT marked the beginning of op-
timal stopping theory, while the papers of Wald (1950) and Arrow, Blackwell
and Girshick (1951) on sequential decision theory marked the beginning of the
theory of stochastic control and dynamic programming. On the other hand, re-
newal theory and martingale theory have provided powerful tools to analyze the
SPRT and randomly stopped likelihood ratio statistics. Extension of the renewal-
theoretic tools to handle nonlinear stopping boundaries and nonlinear functions
of sample sums led to the development of nonlinear renewal theory by Woodroofe
(1976), Lai and Siegmund (1977, 1979) and Zhang (1988), which in turn has made
nonlinear problems in sequential analysis much more tractable. Concerning the
construction of confidence intervals following sequential tests in Section 4.2, the
resampling methods of Chuang and Lai benefited from the comprehensive boot-
strap theory developed in the past two decades, while Woodroofe’s asymptotic
expansions benefited from Stein’s (1981) identity in the theory of multivariate
normal mean estimation. Strengthening and increasing such interactions with
other branches of statistics and probability is another challenge that will be im-
portant for sequential analysis to enhance its growth and impact in the field of
statistics.
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COMMENTS

Herman Chernoff

Harvard University

Sequential Experimental Design

This paper by Professor Lai constitutes a tour de force, introducing and
describing a vast literature in substantial detail and in so limited a space. One
area which I consider slightly neglected in this presentation, because of my own
major interest in it, is that of sequential experimental design, and I would like
to expand on this.

First, let me describe my general philosophy about Statistics. I believe that
Wald’s decision theory formulation completed the stages taken by Fisher and
Neyman and Pearson to describe the mathematical formulation of problems of
statistical inference. It built on the Neyman-Pearson introduction of alterna-
tive hypotheses by adding cost considerations. Making alternative hypotheses
and cost considerations explicit clarified many of the issues that used to cause
confusion. Also, I feel that a statistical problem is not well understood unless
one can describe it from the point of view of a Bayesian decision problem. The
very formulation of the relevant possible alternatives requires some subjective
consideration based on previous experience. Having understood the problem, it
is often not necessary to analyze it from a Bayesian or decision theoretic point
of view.

The Robbins (1952) formulation of the problem of experimental design intro-
duced the two armed bandit problem and publicized the Robbins-Monro (1951)
stochastic approximation method. As Professor Lai points out, the two armed
bandit problem raises the issue “Is it ultimately economical to sacrifice, by pulling
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the apparently poorer arm, in the hope of thereby getting more useful informa-
tion?”

To review this special problem, we wish to maximize the expected number of
successes with n pulls distributed sequentially among the two arms with specified
success probabilities p1 and p2, where p1 > p2 but it is not known which arm
belongs to p1, each arm equally likely to be the better arm. It was widely
conjectured that the optimal strategy was to always select the arm for which the
posterior probability of being the better arm was greater. This conjecture baffled
a substantial number of mathematical statisticians until Feldman (1962) derived
a proof in his doctoral dissertation.

In the meantime the Robbins paper illuminated the more general issue of
sequential experimentation which is at the very heart of inductive inference and
scientific progress. How should one use past experience to help select the next
experiment to perform, or to decide to stop experimentation? Previously, sequen-
tial analysis problems had been formulated in terms of when to stop repeating a
given experiment, and no serious thought was given to deciding among alternative
experiments.

For the single experimental scheme applied to estimation, there is relatively
little to gain from sophisticated sequential analysis. As Chow and Robbins (1965)
and others later pointed out, optimality results there involved higher order im-
provements over rather natural naive procedures. The Robbins-Monro method
represented a significant variation and innovation which has led to an immense
literature. But for testing hypotheses, sequential analysis led to substantial gains.
Would sequential analysis be equally productive in the presence of a choice of
experimentation?

Interestingly enough, the Feldman proof of the conjecture suggested that the
two armed bandit problem would not serve as a useful example to pursue this
question, because it consisted of optimizing by maximizing the short run pay off.

It was this situation that partly was responsible for my attack, Chernoff
(1959), on the problem of deciding among a finite number of alternative compos-
ite hypotheses when sequential experimentation was allowed and there were sev-
eral possible “elementary experiments” available to be performed at each stage.
My results, complemented by those of some of my students, Bessler (1960a, b)
and Albert (1961), clearly demonstrated the role of a minimax game involving
Kullback-Leibler information numbers where the experimenter tries to select the
experiment to maximize the information, treating nature as an opponent trying
to select an alternative to minimize that information. These results were different
in that the choice of experiments were not as limited as in the Robbins paper,
and the problem attacked was one of discriminating among a finite number of
hypotheses. As in the simple testing problem pioneered by Wald, the gains in
using sequential methods were substantial first order effects.
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Backward Induction

The Arrow, Blackwell, Girshick (1949) approach to the optimizing problem
of sequential analysis involved a nontrivial backward induction argument to by-
pass a measure theoretic difficulty in the original Wald-Wolfowitz (1948) proof.
As Professor Lai pointed out, this backward induction approach was the basis
for the future development of dynamic programming. In principle the solution of
sequential problems in a Bayesian framework involves such a backward induction
argument, and an optimal solution cannot bypass such an argument. An inter-
esting aspect of many asymptotic results is that asymptotic optimality is often
achieved by methods that seem to ignore this requirement of using backward
induction. I would like to offer an explanation.

Consider a sequential problem such as testing whether the mean of a normal
distribution with variance one is positive or negative. Suppose that an obser-
vation may be taken every hour at a cost of 1 per observation, and the cost of
making the wrong decision is equal to the absolute value of the unknown mean
which has a normal prior with mean 0 and standard deviation 1 million. The
optimal stopping procedure could possibly lead to sampling a long time. Sup-
pose now that the experimenter is told that the experiment is to be truncated,
and a decision must be reached by the end of the year. In principle this raises
a different backward induction problem with a different stopping rule. On the
other hand, with this prior, it is most likely that the unknown mean will be quite
large in magnitude, and the experimenter will receive overwhelming evidence in
the first few observations, and the effect of a slightly different stopping cost, im-
posed by truncation at the end of the year, will be practically irrelevant. It is
obvious that this type of reasoning is not feasible in all sequential or dynamic
programming problems, but in the many where it is relevant, there is room for
asymptotically optimal procedures which do not invoke the need to use backward
induction calculations explicitly.

Composite Hypotheses

The Kiefer-Weiss (1957) attack on the problem of testing composite hy-
potheses was innovative but, in my opinion, misguided. As Professor Lai pointed
out, they formulated the problem of minimizing the expected sample size for
θ = θ0 (indifference zone) subject to specified error probabilities at θ = θ1 and
θ = θ2 (alternative hypotheses). This optimization task represents a well defined
mathematical problem, but one which does not fit well into a decision theoretic
framework. Why should one neglect the costs incurred in the expected sample
sizes under the alternative hypotheses? The Schwarz (1962) approach addressed
the real problem by attacking a proper decision theoretic problem, incidentally
presenting some elegant asymptotic results.
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There is a hidden subtext, on which I will not elaborate here. It involves
the remarkable Wald-Wolfowitz optimality result that the sequential probability
ratio test simultaneously minimizes both expected sample sizes for given error
probabilities, which would ordinarily have seemed too ambitious a project to
attempt.

Clinical Trials and Ethical Problems

As Armitage (1985) pointed out, the objectives of clinical trials are too com-
plex to be easily formulated as a simple sequential problem. Nevertheless, sequen-
tial theory represents a useful method of evaluating how well one accomplishes
some of the goals of such a trial. One aspect that has evaded proper consideration
is the ethical issue.

Given the doctor’s ethical requirement to provide what he considers the best
possible treatment to his patient, how can he participate in a randomized study
where he may be consciously applying a technique that he does not believe to be
the best? The medical profession has struggled with this issue and has adopted
justifications which I regard as weak rationalizations that do not confront the
issue directly. One such has been that as long as we are not sure which is the
better treatment we are entitled to treat them as equally good. This argument
has been bolstered somewhat by providing informed consent to patients selected
to be given the experimental treatment. Petkau and I (1985) once proposed
the use of an ethical cost proportional to the current estimate of the difference
in expected treatment outcomes. This represents a somewhat naive, but direct
attack on the issue.

Group Testing

The increase of computer power has made it much easier to evaluate proposed
sequential strategies by direct computing effort. Nevertheless, theory still plays
an important role. In situations where there are many factors involved, it is
difficult to present the outcomes of the computations on individual strategies in a
suitable form for comparison without the dimension reducing effects of relatively
simple theoretical results.

As an example consider the problem of testing for the sign of the mean of a
normal distribution with known variance. The original problem has five param-
eters of concern besides the unknown mean. These are the cost of sampling, the
(linear) cost of the wrong decision, the variance of the distribution, and the mean
and variance of the normal prior distribution. Embedding this problem in the
continuous time version involving a Wiener process with unknown drift, Chernoff
(1961), provided two major advantages. One could consider the original discrete
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time problem as a variation of the continuous time problem where stopping was
only allowed at specified times.

One advantage was the ability to use the continuous technology of partial
differential equations, and the other was that one could apply several normal-
izations to reduce the number of effective parameters. The outcome was that
the solution could be represented by a single stopping set in a two dimensional
graph representing the path of a Wiener process. The five parameters simply
determined the starting point of the process.

Incidentally this simplification has relevance to the problem of group testing.
In group testing the set of times of possible stopping (measured, for example, in
the number of observations between possible stopping times) is further restricted.
But there is a simple approximate correction (see Chernoff (1965) and Chernoff
and Petkau (1986)) to relate the solution of the continuous time problem to the
original discrete time problem. That correction is easily modified for the group
testing problem.

With the insights from such theoretical analyses, it is easy to determine
plausible strategies worth evaluating further.

Department of Statistics, Harvard University, Cambridge, MA 02138, U.S.A.

E-mail: chernoff@stat.harvard.edu

COMMENTS

Cheng-Der Fuh and Inchi Hu

Academia Sinica, Taipei and Hong Kong University of Science and Technology

Professor Lai’s paper constitutes a comprehensive review of recent develop-
ments in sequential analysis and of some challenges and opportunities ahead. The
review focuses on several classical problems and new horizons which highlight the
interdisciplinary nature of the subject.

In the development of sequential change-point detection in dynamic systems,
the window-limited detection rules introduced in this paper are first-order asymp-
totically optimal (up to order o(log γ) of the average delay to detection). The
properties of second-order (up to O(1)) asymptotically optimal detection rules
can also be considered in the stochastic dynamic system (3.10a, b). By represent-
ing the likelihood function of a finite state hidden Markov model as a Markovian
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iterated random function, Fuh (2000) established the asymptotic optimality of
the SPRT and Cusum in hidden Markov models. It appears that the second-
order asymptotic optimality of the detection rules can be investigated along this
line.

An idea quite popular in adaptive control and stochastic approximation is
the certainty equivalence principle (CEP). The stochastic approximation can be
viewed as a control scheme following this principle if one assumes the slope at
the regression root is known (cf. Lai and Robbins (1979)). However, strictly ap-
plying this principle meets difficulty in establishing consistency of the parameter
estimator, which is necessary for the efficiency of control schemes. Some techni-
cal conditions need to be imposed for obtaining parameter consistency (cf. Lai
and Robbins (1981)). In Hu (1997, 1998), it was shown that if one employs the
Bayes estimates in connection with CEP, one can obtain a control scheme with
consistent parameter estimates in simple linear regression models. It seems that
with more information on the convergence rate, these results can be generalized
to nonparametric regression models as in the framework of Robbins and Monroe
(1951). It would be interesting to see whether similar results can be obtained
under the frequentist setting for general stochastic control models.

The multi-armed bandit problem was originally introduced by Robbins
(1952). Lai and Robbins (1985) established a lower bound on the regret (cf.
(6.1) and (6.2)) and they called any rule achieving the lower bound an asymp-
totically efficient control rule. Recently, by adopting the approach of Lai and
Robbins, Fuh and Hu (2000) considered a stochastic scheduling problem with
order constraints. The scheduling problem is motivated by stratified multistage
computerized adaptive tests. They first transformed the problem to an irre-
versible correlated multi-armed bandit problem with Markovian rewards and
then constructed a lower bound of the regret for any uniformly good control
rule, characterized by a deterministic constraint minimization problem. In igno-
rance of the parameter value, they constructed a class of efficient control rules,
which achieve the lower bound, based on the theory of sequential testing. They
also generalized the results to partial order constraint cases. It is known that the
asymptotically efficient control rule approximates the celebrated Gittins’ index
rule, cf. Chang and Lai (1987) and Brezzi and Lai (2000). The extention of the
preceding results to correlated multi-armed bandit problem with partial order
constraints seems to be an issue which deserves further investigation.

Concerning the valuation of option price in financial economics, AitSahlia
and Lai (1999) applied the theory of optimal stopping to first reduce the prob-
lem to a canonical form involving a standard Brownian motion. Employing a nu-
merical method to evaluate the optimal stopping boundary described by (6.10),
they provided an approximation of the American option price. This approach is
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based on the classical Black-Scholes model, which is inadequate to describe em-
pirical data. A natural extension of this model is the stochastic volatility model
or the jump diffusion model. The stochastic volatility model, with its intrinsic
model structure, can describes the phenomena of volatility smile; while the jump
diffusion model explains this phenomena by incorporating an exogenous jump
process into the geometric Brownian motion. An analytic approximation of the
American option, barrier option and look-back option to these two models would
be an interesting task.
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technology, Clear Water Bay, Kowloon, Hong Kong.
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COMMENTS

B. K. Ghosh

Lehigh University

Professor Lai is an eminent and prolific researcher in sequential statistical
analysis and numerous related areas. Over the last thirty years his research has
extended from sophisticated asymptotic analysis of sequential methods to their
applications in quality control, clinical trials, recursive estimation and, more re-
cently, financial markets. This paper gives a comprehensive review of practically
all subfields of sequential analysis and clearly exhibits Professor Lai’s command
of, and research contributions to, the general subject. The reader gets a clear
idea about the nature of the problems, the solutions available at the moment,
and what is yet to be done.

I have only one comment, which is not a criticism but rather a point of
information. Practically all useful results in sequential analysis since 1970 are
asymptotic in nature. It is not at all clear to me how adequate they are, i.e.,
how close the approximate formulas are to their exact counterparts in various
problems of sequential analysis. In fact, a logical topic among Professor Lai’s
future challenges could be simulation studies and numerical calculations for ver-
ifying the adequacy of every asymptotic result. Appleby and Freund (1962) and
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Chernoff and Petkau (1986) are two prototypes I have in mind. I like to believe
that such undertakings are now feasible in view of recent advances in simulation
techniques, numerical analysis, and personal computers. Perhaps Professor Lai
can amplify on this in his rejoinder.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015, U.S.A.

E-mail: bkg0@lehigh.edu

COMMENTS

M. G. Gu

The Chinese University of Hong Kong

First I want to thank Professor Lai for a thorough and illuminating review
of the subject of sequential analysis. This is a tremendous task since sequential
analysis is composed of many different areas of applications with their own sub-
ject headings in their respective fields. Maybe the word “analysis” does not serve
well for many sequential procedures and turns away potential users of methods
contained in this interesting and vast field.

I agree completely that “for sequential analysis to remain a vibrant statistical
subject, it has to grow not only inwards ... but also outward through active
involvement in the biomedical, socio-economic and engineering sciences”. In the
following, I point out another possible application for sequential analysis that is
related to the computer intensive Markov chain Monte Carlo (MCMC) methods
in spatial statistics.

Consider the following problem. Suppose that image x0 is sampled from the
Gibbs distribution f(x; θ) of the form

f(x; θ) = [c(θ)]−1exp[−U(θ, x)], (1)

where c(θ) is an unknown normalizing factor and U(θ, x) is a known function.
Finding the maximum likelihood estimate of θ based on the observation x0, one
has to maximize the function logf(x0, θ) = −logc(θ)−U(θ, x0). Equivalently one
has to find the zero of the function h(θ), where

h(θ) = −[∇θc(θ)]/c(θ) −∇θU(θ, x0) (2)
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and ∇θ is the gradient operator with respect to the argument θ. Using the
identity Eθ[∇θlogf(X, θ)] = 0 with X having density f given in (1), we obtain
that

Eθ[∇θU(θ,X)] = −[∇θc(θ)]/c(θ).

Therefore, the function h defined in (2) can be approximated by

ĥ(θ) =
1
n

n∑
i=1

∇θU(θ,Xi) −∇θU(θ, x0) (3)

if X1,X2, . . . ,Xn is a sample from the Gibbs density in (1). Based on this and
the recent advances in the field of MCMC and stochastic approximation (see
Section 5 of the paper for an introduction), a procedure for finding the zero θ̂

of h(θ) is given in Gu and Zhu (2001). The procedure was applied successfully
to find the MLE for some spatial models with moderate dimension of the image
vector X.

The procedure is briefly described in the following. Suppose that θ(k) is the
current estimate of θ̂, then we first simulate X1,X2, . . . ,Xn from the Gibbs den-
sity f(x; θ(k)) (this usually involves iterating the Gibbs sampler or the Metropolis-
Hastings algorithm), and then update the parameter by

θ(k+1) = θ(k) + λkĥ(θ(k)), (4)

where ĥ(θ(k)) is defined by (3) and λk is a diminishing (vector) constant of the
order O(1/kα) for some α larger than 0 but not exceeding 1.

Similar to many iterative procedures for application, we have the problem of
when to stop iteration in (4) and declare θ(k) is a good enough estimate of θ̂. At
first sight, we might think that, since simulations are done by a computer, one
should do as much iteration as possible. But in reality, especially when we deal
with larger size problems, we usually do not have a clue as to how many iterations
of (4) are good enough. We note that each simulated Xi is a high dimensional
vector representing an image which itself can only be simulated through MCMC
methods. Our experience is that if the model is complex, such as the Very-Soft-
Core model for spatial patterns, a few hours of simulation on a top-of-the-line
WorkStation for a medium size problem usually does not produce enough itera-
tion to guarantee convergence. So an automatic convergence criterion-stopping
criterion is needed here. This is intrinsically a sequential search problem. There
are certain similarities between this problem and the adaptive treatment alloca-
tion and the fixed-width confidence interval problems discussed in the paper. We
find no standard procedure for the stopping problem in the literature.

The approach adopted in Gu and Zhu (2001) for the stopping criterion is
to base it on the relative size of the value h(θ(k)). Monte Carlo error has to
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be considered, since the function h is unknown and has to be estimated. For
details, we refer the reader to Section 3 of Gu and Zhu (2001). We note that the
approach there is only a first attempt to deal with an important and complicated
sequential problem.

Department of Statistics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.

E-mail: minggao@cuhk.edu.hk

COMMENTS

Gary Lorden

Caltech
Pasadena

Professor Lai’s survey makes an important contribution to the field of se-
quential analysis, as we should expect from a scholar whose research contribu-
tions over the last three decades of the subject’s history have been wide-ranging
and masterful.

As an aid to organizing my remarks, I will characterize the elements of what
I think a mathematical statistician would ideally like to do in a piece of work in
sequential analysis.

1. Formulation. Define a statistical problem that is worth solving for the
sake of applications, and identify measures of performance that are useful and
appropriate for comparing statistical procedures for solving the problem.

2. Prescription. Propose a class of statistical procedures to solve the prob-
lem.

3. Performance Description. Give formulas (or algorithms) for approximat-
ing the operating characteristics of the proposed procedures, i.e., their perfor-
mance as described by the identified measures.

4. Assessment. Show that the performance of the proposed procedures
is better than other proposals (good), is nearly optimal (better), or is exactly
optimal (best).

The canonical example is the work of Wald and Wolfowitz on the Sequential
Probability Ratio Test. In response to the needs of certain applications, Wald
considered the general problem of testing two simple hypotheses, identifying the
error probabilities and the expected sample sizes as measures of performance. He
proposed the class of SPRT’s with critical values A and B, and gave quite useful
approximate formulas for the error probabilities and expected sample sizes in
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terms of A and B and the readily computable information numbers. Finally, Wald
and Wolfowitz proved that for any choices of A and B, the SPRT is optimal in an
appropriate exact sense, somewhat analogous to the Neyman-Pearson optimality
of any fixed-sample likelihood ratio test, but even more startling in the fact that
an SPRT simultaneously optimizes both expected sample sizes.

How wonderful it would have been if the post-Wald history of research in
sequential analysis could have continued the pattern of formulating and solv-
ing important problems so completely in one or two papers! But of course, the
problems got harder, and the development of new formulations, methods, and
mathematical results about them typically stretched over many years and many
authors. Still, as Professor Lai skillfully explains, major developments have con-
tinued, and fruitful areas of application have been found and exploited, both as
inspiration for new research and as sources of new “customers” for sequential
analysis.

By way of echoing Lai’s description of the progress over the last fifty years,
I would assert that it teaches important lessons about the roles of the four ele-
ments in my idealized list, especially the lesson that progress in the first three
elements has had larger impact than progress in assessment, even though the
ideal of optimality (or “statistical efficiency”), and the mathematical challenges
of demonstrating it, continue to have fundamental appeal and have inspired much
fruitful effort. As one example, two of the three post-Wald papers that inspired
me to write my mathematics Ph.D. thesis in the field of sequential analysis —
Chernoff’s (1959) paper laying the foundations of asymptotic optimality theory
for sequential testing and design of experiments, and Kiefer and Sacks’ (1963)
quite general formulation of first-order asymptotic optimality theorems in the
same vein, do not even appear in Lai’s bibliography! (The third paper, Schwarz’s
(1962) beautiful work on “asymptotic shapes”, does appear.) This observation is
intended not at all as a criticism of Professor Lai’s choices, but as evidence for my
assertion that optimality theory has not been very influential in the development
of sequential analysis in the last forty years.

Another case in point concerns the Kiefer-Weiss problem. As Lai’s discus-
sion makes clear, this problem — to minimize the maximum expected sample size
rather than the two expected sample sizes the SPRT optimizes, was a natural
outgrowth of the realization that the SPRT minimizes the expected sample size
when the parameter θ is far from the “worst case”. In that sense it represented
progress in the element of “formulation”, and as Lai explains, my proposal of
the 2-SPRT (Lorden (1976)), sharpened previous work of Anderson (1960). The
2-SPRT was shown to minimize the expected sample size at any given θ to within
o(1) as the error probabilities go to zero. For the well-known problem of testing
the mean of a normal distribution with equal error probability specifications at



362 TZE LEUNG LAI

θ = ±δ, considerations of symmetry reduce the problem of attaining minimax
expected sample size to this “modified” Kiefer-Weiss problem of minimizing for
θ = 0. Without any reliance on symmetry, my student Huffman (1983) showed
how to construct 2-SPRT’s for testing in one-dimensional exponential families so
as to attain the minimax expected sample size to within o(

√
EN ); and Dragalin

and Novikov (1987) refined Huffman’s results to achieve the minimax expected
sample size to within O(1). Since their work includes useful approximations to
expected sample sizes, it would seem that the chain of work from Kiefer and
Weiss to Dragalin and Novikov completes my “ideal” of progress from formula-
tion through prescription to performance description and proof of (near) opti-
mality. Why, then, isn’t this work well-known and widely used? I submit that
it is largely because, as Lai effectively points out in his Section 2, there exist
generally preferable prescriptions like Lai’s sequential versions of the General-
ized Likelihood Ratio (GLR) test, which (at least for large samples) “self-tune”
to approximately minimize the expected sample size at whatever is the true θ!
Thus, the problem of “nearly minimizing” the expected sample size for every θ

� is simply a better formulation than the Kiefer-Weiss problem, and statistical
procedures which perform reasonably well in that context (first exemplified in
Schwarz (1962)) are simply more attractive than even exact Kiefer-Weiss solu-
tions would be.

The same theme regarding the importance of formulating the right problem
and proposing procedures that address it appears in Lai’s excellent discussion
of sequential analysis for clinical trials. He makes an effective case for the view
that progress in the development of influential sequential methods for these prob-
lems depends on finding formulations and prescriptions that address the complex
needs of practitioners. The cited work of Gu and Lai (1998, 1999) appears to
contain the right elements for maximizing the impact and usefulness of sequen-
tial analysis in this field: formulating problems with flexible features and an
array of performance measures and descriptions that address the multiple needs
of users. Moreover, their performance descriptions have two aspects — a “the-
oretical” method that gives reasonable approximations and aids understanding,
as well as a computer program that can make a variety of calculations (and sim-
ulations) to accurately portray the consequences of choosing different features of
the statistical procedure.

The richness and scope of Lai’s description of the past, present, and future
of sequential analysis will undoubtedly stimulate much discussion and will also, I
expect, encourage an acceleration of progress and stimulate increased interest in
this branch of statistics. In an effort not to abandon totally the ideal of brevity,
I will limit my discussion at this point to the following additional remarks.

1. For the “internal” growth of the field of sequential analysis, I agree that
strengthening ties with other branches of probability and statistics is critical. An
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exciting example is the recent progress (Chuang and Lai (1998, 2000a, 2000b)) in
the exploitation of bootstrap methods (and modifications called “hybrid” meth-
ods) to solve important problems of constructing confidence intervals after ter-
mination of a group sequential trial. Another example is the development of
what might be called “semi-Bayes” formulations, e.g., the problem of minimizing
a given weighted average of the expected sample sizes of a test, subject to the
classical bounds on the probabilities of Type I and Type II error.

2. In the twenty-first century the impact of readily available computer power
on problem formulations and proposals of sequential methods is likely to accel-
erate. As the popularity of the bootstrap and other computer-intensive methods
illustrates, the amount of computation that it is feasible to perform in apply-
ing a statistical procedure to data is astronomically larger than it was during
the “adolescence” of sequential analysis. Moreover, to meet the need to give
performance descriptions of sequential procedures, it should be anticipated that
relatively simple computer calculations, particularly intelligently designed sim-
ulations, will supplant and perhaps replace many of the intricate formulas that
have been developed to yield performance descriptions, e.g., those that make
corrections for “excess over the boundary”.

3. Given the exciting and colorful panorama of progress sketched by Pro-
fessor Lai, the question that intrudes on one’s sense of optimism is — why isn’t
sequential analysis more popular? It continues to be something of a “niche” sub-
ject within the field of statistics, not well-represented in the usual statistics texts
and courses, with an often frustrating slowness of “technology transfer” from
researchers to practitioners. There are many explanatory variables – the subject
is hard, understanding it requires delicate probability theory and a high level of
mathematical sophistication, using it in practice requires a high level of disci-
pline, etc. But one factor has always tended to limit its appeal: one-at-a-time
sampling is in many applications impractical or at least unattractive. Sampling
in multiple stages — particularly in two or three stages (as in Stein (1945) and
Hall (1981))– can be an appealing compromise between fixed-sample procedures
and fully sequential procedures, with nearly as good performance as the latter,
provided that the sample size in each stage can be chosen flexibly to depend on
the results of previous stages. (Unfortunately, this is not typically the case in
clinical trials.) In the context of asymptotic theory of hypothesis tests, Lorden
(1983) suggests that three stages are sufficient to equal the performance of fully
sequential tests (to first order), but for practical “small sample” problems, it’s
not clear how to prescribe three-stage procedures whose error probabilities and
expected sample sizes can be readily approximated and whose performance is
highly efficient.
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COMMENTS

Adam T. Martinsek

University of Illinois

I would like to congratulate Professor Lai on his excellent presentation of the
history and future prospects of sequential analysis. He skillfully interweaves the
evolution of key methods with practical considerations in the fields of medicine,
engineering and economics that influenced the evolution. Both the work de-
scribed and the description are therefore interdisciplinary in the truest sense of
the word.

I agree completely with Professor Lai’s statement “For sequential analysis
to remain a vibrant statistical subject, it has to grow not only inwards in the
form of further methodological advances and breakthroughs but also outwards
through active involvement in the biomedical, socio-economic and engineering
sciences”. In my comments I will focus on several recent developments in the
area of sequential estimation that follow this model, either because they arose
from actual applied problems or because they are clearly applicable to other
disciplines. These developments fall under three general headings: sequential
estimation in logistic regression and generalized linear models, sequential density
estimation, and sequential estimation of the maximum and the mean in models
for bounded, dependent data. Research under the first two headings is relevant
to interdisciplinary work in medicine and engineering. The work described under
the third heading has its origin in an engineering problem and is also potentially
useful in economics.

In medical applications it is often important to model the probability of
getting a disease as a function of a vector of covariates X. A model that has
proved enormously useful over the years is the logistic regression model, for which

P [Yi = 1|Xi] =
exp(Xi

Tβ)
1 + exp(Xi

Tβ)
,

where Yi = 1 if the ith patient has the disease and 0 otherwise, Xi is a p-
dimensional vector of covariates thought to influence the incidence of the disease,
and β is an unknown p-dimensional vector of parameters.

The model is especially relevant in observational studies, such as cohort stud-
ies, and in many situations it is important to estimate the unknown parameter
vector β very accurately. One approach is to construct a confidence ellipsoid for
β that is sufficiently small, e.g., for which the longest axis has length no greater
than a prescribed upper bound. This problem was first considered by Grambsch
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(1989). She proposed a stopping rule to determine the sample size, very much
in the spirit of the pioneering work of Chow and Robbins (1965) and subsequent
work on linear regression models by Gleser (1965), Albert (1969), and Srivastava
(1967, 1971). She showed that the resulting procedure is asymptotically efficient
in terms of the almost sure behavior of the sample size and that it achieves the
desired accuracy and confidence level.

One drawback of Grambsch’s procedure is that it relies on knowledge of the
distribution of the covariate vectors Xi. Chang and Martinsek (1992) proposed a
different procedure that is nonparametric (or least semiparametric) in that it does
not require knowledge of the distribution of the Xi. They showed that the highly
desirable behavior obtained by Grambsch (1989), namely almost sure sample size
efficiency along with specified accuracy and confidence level, carries over to the
nonparametric version of the stopping rule. They also showed that the expected
sample size is asymptotically optimal. Chang (1995, 1996) extended these results
substantially beyond the logistic regression case, to general link functions F for
which P [Yi = 1|Xi] = F (Xi

Tβ).
Sequential nonparametric estimation of a probability density function at a

point has been considered by Yamato (1971), Carroll (1976), Isogai (1981, 1987,
1988) and Stute (1983). In applications to engineering it is of interest to esti-
mate the entire density function, and Martinsek (1992) addressed the problem
of estimating the density with sufficient global precision, i.e., with mean inte-
grated squared error (MISE) that is smaller than a specified bound. The Parzen-
Rosenblatt kernel estimate was considered a stopping rule and was formulated
based on an asymptotically optimal sequence of bandwidths and the well-known
expansion∫ ∞

−∞
(f̂n(x) − f(x))2dx

= (nhn)−1
∫ ∞

−∞
K2(t)dt + (k2

2h
4
n/4)

∫ ∞

−∞
(f ′′(x))2dx+ o((nhn)−1 + h4

n)

for the MISE, whereK is the kernel, hn is the bandwidth, and k2 =
∫∞
−∞ t2K(t)dt.

The resulting sequential procedure was shown to achieve the desired bound on
the MISE and to do so using a sample size that is first order optimal both
almost surely and in mean. Analogous results for L1 error, as opposed to mean
integrated squared error, have been obtained by Kundu and Martinsek (1997).

A related global density estimation problem is to construct a fixed width
confidence band for an unknown density f on a finite interval, as opposed to
merely providing a fixed width confidence interval for the value of the density at
a single point. Simultaneous accuracy is especially important when the density
estimate will be used for classification, e.g., classification of patients as having
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heart disease or not based on heart rate data (Izenman (1991)). Misclassification
can have serious consequences, and accurate classification is difficult to achieve
without an accurate estimate of the density.

Xu and Martinsek (1995), using results of Bickel and Rosenblatt (1973)
on maximal deviations of kernel density estimates, proposed a stopping rule to
bound the maximum width of the confidence band by a specified positive num-
ber ε, while achieving a desired confidence coefficient 1 − α for the entire band.
The user is then guaranteed that all values of the unknown density have been
determined to within ±ε, with simultaneous confidence 1−α. Xu and Martinsek
showed that the resulting procedure achieves the desired accuracy and confidence
level asymptotically as the upper bound ε on the maximum width of the confi-
dence band approaches zero, i.e., when one requires a high degree of accuracy
in estimating the density. Martinsek and Xu (1996) obtained similar results for
censored data.

Sequential estimation of the maximum and the mean for bounded, dependent
data arises naturally in problems involving monitoring of underground pipelines
for corrosion. A typical approach in such problems is to send a remote-controlled
sensor into the pipeline. As the sensor moves, it uses sound waves to measure
the thickness of the wall at a series of locations. The original wall thickness at
the time of manufacture is known. Let Xi denote the pit depth (original wall
thickness minus current thickness) recorded at the ith location. The Xi have
support [a, b], where a and b are unknown. It is important to estimate b with
a high degree of accuracy, as the estimate will be used to decide whether or
not to replace the pipeline, and the consequences of an incorrect decision are
serious. Imprecise estimates may result in needless and expensive replacement
of a pipeline that is still in good shape, or else leaving in place a pipeline that
presents a significant threat of near-term leakage. Similarly, it is essential to
obtain an accurate estimate of the mean pit depth in the pipeline, as it gives an
overall measure of the extent of corrosion. Sampling efficiency, i.e., producing an
accurate estimate with as few observations as possible, is also important when
estimating these parameters: running the sensor involves significant expense and
one would like to minimize this expense, subject to the accuracy requirement.

Because the Xi are bounded, it is natural to model them by

Xi = (b− a)Yi + a, (1)

where the Yi have a beta density

fα,β(y) =
Γ(α+ β)
Γ(α)Γ(β)

yα−1(1 − y)β−1 (2)

for 0 < y < 1, with α and β positive but unknown. This is a fairly flexible family
for modeling the marginal distribution of the pit depths: as α and β vary, a
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wide variety of density shapes and endpoint behavior can be achieved. Because
the observations Xi are clearly positively correlated rather than independent, we
assume further that the Yi satisfy the following random coefficient autoregressive
model, introduced by McKenzie (1985):

Yn = 1 − Un(1 −WnYn−1), (3)

where Y0 has density (2), Un and Wn are independent sequences of independent,
identically distributed (i.i.d.) random variables, Un has a beta distribution with
parameters β and α−p, Wn has a beta distribution with parameters p and α−p,
and p is positive and strictly less than α. Then (3) defines a strictly stationary
sequence with marginal density given by (2) and autocorrelation function ρ(k) =
ρk for k = 0, 1, . . . , where

ρ = E(Un)E(Wn) = pβ/α(α + β − p). (4)

For fixed α and β, (4) is increasing in p, and by varying p one can achieve any
positive correlation ρ. McKenzie (1985) refers to this model as a PBAR model,
where P denotes positive correlation. Note that the correlation structure of the
observable Xi’s will be the same as that of the unobservable Yi’s.

Using results from strong mixing and extreme value theory, Martinsek
(2000a) shows that under the model given by (1)-(3), the maximum observation
Mn = max(X1, . . . ,Xn) has the following limit distribution as n→ ∞:

P
[ n1/β(Mn − b)
(b− a)[β/C(α, β)]1/β

≤ y
]
→ e−(−y)β

(5)

for y < 0, where C(α, β) = Γ(α+β)
Γ(α)Γ(β) , i.e., Mn has a Type III limit distribution.

We would like to construct a confidence interval for b whose width is at most
2d for a prespecified d > 0, and whose confidence level is approximately 1 − γ,
where γ ∈ (0, 1) is also prespecified. Based on (5), Martinsek (2000a) defines a
stopping rule Td by

Td = first n ≥ 2 such that

(Mn−mn)[
β̂n

C(α̂n, β̂n)
]1/β̂n [(−log(γ1))1/β̂n−(− log(γ2))1/β̂n ]+n−1≤2dn1/β̂n ,

where 0 < γ1 < γ2 ≤ 1 satisfy γ2 − γ1 = 1 − γ, mn = min(X1, . . . ,Xn), and
α̂n and β̂n are suitable estimates of α and β, respectively. Then the confidence
interval

ITd
= [MTd

+ Td
−1/β̂Td (MTd

−mTd
)[β̂Td

/C(α̂Td
, β̂Td

)]1/β̂Td (− log(γ2))1/β̂Td ,

MTd
+ Td

−1/β̂Td (MTd
−mTd

)[β̂Td
/C(α̂Td

, β̂Td
)]1/β̂Td (− log(γ1))1/β̂Td ]
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has width at most 2d. As d → 0, P [b ∈ ITd
] → 1 − γ, i.e., the confidence level

of the procedure is close to the target value when one requires a high degree of
accuracy. Moreover, for

n∗d = (2d)−β(b− a)β [β/C(α, β)][(− log(γ1))1/β − (− log(γ2))1/β ]β,

we have Td/n
∗
d → 1 a.s. Rounding n∗d to the nearest integer yields the smallest

nonrandom sample size that, if it were known, would provide the desired accuracy
and confidence level, asymptotically. Thus the stopping rule Td is asymptotically
efficient almost surely in the sense that it is equivalent to the ideal but unavailable
n∗d.

Because the parameter a is of interest in other applications of the model
given by (1)-(3), e.g., to economic data such as the market share of a product or
the unemployment rate, Martinsek (2000a) also considers sequential estimation
of the minimum, as well as joint estimation of the maximum and minimum. Work
addressing accurate estimation of the mean of the model appears in Martinsek
(2000b). Shibata (1996) provides a nice survey of a variety of previous statistical
and probabilistic approaches to corrosion.

Department of Statistics, University of Illinois, Champaign, IL 61820, U.S.A.

E-mail: martins@stat.uiuc.edu

COMMENTS

Moshe Pollak

Hebrew University

Professor Lai should be thanked for a very interesting and informative paper.
It provides the reader with a wealth of knowledge regarding the state of the art of
sequential analysis, as well as an ordered (sequential!) description of the evolution
of its various successes.

The saying goes: “Necessity is the mother of invention”. As is clear from
Professor Lai’s presentation, sequential analysis was born because it was neces-
sary. However, although the subject has been alive and kicking for six decades, a
nonnegligible part of its development seems to have been born out of the minds of
theoreticians: the problems are mathematically interesting, but their application
in real life seems to be meager (e.g., risk-bounded estimation, multi-hypotheses
testing). One of the reasons mentioned in Professor Lai’s article for this dearth
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of application is that sometimes (as in medicine) the maximal potential num-
ber of observations is so small that one does not want to try to diminish it (for
reasons of power). However, there is another side to the phenomenon: neces-
sity is not only the mother of invention, but also the mother of application. In
many areas, observations are abundant and cheap. Sequential analysis requires
formidable mathematics, and the investment required to apply it is heavy, as it
cannot be applied by a layman (the usual case is that one must hire a statisti-
cian to explain it and to apply it), and even run-of-the-mill statisticians balk at
learning the subject. Consequently, most people will try to do without sequen-
tial analysis unless absolutely necessary. (Proof? Even today, Shewhart is the
most popular form of control chart, and one can even find papers studying its
properties in contexts where it clearly shouldn’t be applied.) Also, the history of
application of sequential analysis does not go hand-in-hand with its theoretical
evolution. Quite a few of the methods proposed over the years were originally
ad hoc procedures; some of them were later proven to possess optimality proper-
ties (e.g., Wald’s SPRT or Page’s or cusum), others remain popular even though
sub-optimal (e.g., Shewhart and EWMA control charts).

In parallel to the story of the problems, I would like to see a delineation of
the techniques characteristic of constructions and proofs in sequential analysis.
For example, finding a martingale within a problem’s structure can do wonders
(especially in sequential analysis): the fact that a sequence of likelihood ratios
is a martingale (even when the observations are dependent) plays a major role
in the evaluation of operating characteristics of tests of hypotheses (c.f. Robbins
and Siegmund (1970, 1973)); other martingales play similar roles in other con-
texts (e.g., Pollak (1987), Novikov (1990)). Change-of-measure considerations
are a powerful tool: Wald (1947) used a transformation from H0-measure to H1-
measure to evaluate the power and expected sample size of sequential tests of
hypotheses; Yakir (1995) developed a special change-of-measure technique which
is powerful for assessing probabilities (and other functionals) associated with ran-
dom fields; even simulations can benefit from changes of measure (c.f. Siegmund
(1975)).

Regarding the various methods and methodologies described in Professor
Lai’s paper, I would alter some of its emphasis. For example, I would put more
weight on Wald’s “weight functions” (referred to in the paper as mixture rules)
and other methods of estimation (such as martingale-preserving methods of esti-
mation, c.f. Robbins and Siegmund (1973), Dragalin (1997)). Such methods can
be shown to have very strong (“second order”) optimality properties (which the
GLR methods emphasized in Professor Lai’s paper may also possess, but proof
as of now is lacking).

Finally, to the list of challenging problems in sequential analysis I would
add those which deal with robustness of the methods. Some work on this has
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been done: a few sequential rank methods (even for non-contiguous alternatives;
e.g., Savage and Sethuraman (1966), Sethuraman (1970), McDonald (1990), Gor-
don and Pollak (1995)) have been developed, and some work in the line of Huber’s
approach to robustness has been done (e.g., Quang (1985)). But all in all, this is
one of the underdeveloped areas of sequential analysis which deserve attention.

Department of Statistics, Hebrew University, Jerusalem 91905, Israel.

E-mail: msmp@mscc.huji.ac.il

COMMENTS

David Siegmund

Stanford University

Professor Lai has given us an authoritative review of both the theoretical
advances in sequential analysis since its beginnings in the 1930’s and ’40’s, and
its applications in medicine, engineering and economics. My own immersion in
sequential analysis began in graduate school and lasted for roughly three decades.
For me the appeal of the subject is the combination of challenging theory and
interesting applications along with a natural focus on certain issues at the foun-
dation of statistical inference. Following are some idiosyncratic thoughts that
occurred as I read this stimulating paper.

Sequential analysis presents difficult technical problems, which can be so
fascinating that they take on lives of their own. On occasion solutions to these
problems expand our conceptual horizons. An outstanding example is the beau-
tiful proof of the optimality of the sequential probability ratio test, where a
formal Bayes optimization problem is introduced as a deus ex machina in order
to prove an optimality property that is stated entirely in terms of error probabil-
ities and expected sample sizes. The papers by Wald and Wolfowitz (1948) and
Arrow, Blackwell and Girshick (1949) spawned the field of dynamic program-
ming/stochastic control theory.

Sequential analysis was closely associated with statistical decision theory,
also developed by Wald; and its applications to quality control seem well suited
to a decision theoretic framework. Applications to clinical trials have been most
successful when approached from the more flexible inferential viewpoint of Ar-
mitage’s Sequential Clinical Trials (Armitage (1975)). Anscombe’s (1963) ex-
tended review of the first edition of Armitage’s book failed in its primary goal
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of changing the Weltanschauung of clinical trials from an inferential to a deci-
sion making viewpoint, although it did provide a class of challenging theoretical
problems, reviewed here by Professor Lai. (Anscombe wrote as a Bayesian, but
I find this aspect of his paper much less significant than its decision making
orientation.)

Sequential analysis has also provided grist for philosophical ruminations
about the foundations of statistical inference, for example by illustrating the
effect that uncritical adherence to the likelihood principle might have on “sam-
pling to a forgone conclusion.” In this regard I find particularly interesting the
paper of Cornfield (1966), who wrote as a Bayesian adherent of the likelihood
principle, but with an inferential viewpoint that at the end of the day produced
a test very much in tune with Armitage’s repeated significance tests, which by
their focus on Type I and Type II errors are philosophically, if not practically, at
odds with the likelihood principle.

Other problems suggested by applications to clinical trials have been solved
by systematic progress over a number of years. A not uncommon sentiment
of several decades ago was, “You can’t use sequential methods in clinical trials
because · · ·” (fill in the blanks) (a) we cannot afford the unbounded sample
size of a sequential probability ratio test, (b) truncated sequential tests are less
powerful than comparable fixed sample tests, (c) we don’t know how to estimate
a treatment effect if we use a sequential test, (d) we don’t know how to deal with
censored survival data if we use a sequential test. Professor Lai shows us that
these problems have by now been successfully addressed.

Continuing challenges in the design and analysis of sequential clinical trials
are problems of multiple endpoints (e.g., Lin (1991)) and comparisons of more
than two treatments or multiple treatment levels (e.g., Lin and Liu (1992), Sieg-
mund (1993)), where one may want to eliminate treatments during the course of
the trial.

Professor Lai also shows us an example in option pricing where methods
originally developed to solve problems of sequential analysis can be applied to
solve new problems. Change-point detection, which was originally studied in a
sequential formulation and applied to quality control, provides another example
where methods developed in sequential analysis have proved useful in a broader
domain. An example of personal interest of the technological “spin off” of these
ideas is found in the statistical theory of genetic mapping, or linkage analysis.
The primary goal of genetic mapping is to identify certain regions of the genome
as the location of the genes controlling particular traits, e.g., inherited diseases
in humans. The standard paradigm of (parametric) linkage analysis was handed
down, as if from Mount Sinai, by Morton (1955), who was very much influenced
by Wald’s ideas of sequential testing. Although the sequential aspect, at least
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with regard to sample size determination, was probably never more than a con-
ceptual possibility, Morton’s arguments, which were built on Wald’s analysis of
the error probabilities of the sequential probability ratio test, have dominated
the field until relatively recently. Spurred by the recognition that Morton’s ap-
proach depends on strong modeling assumptions and by the new possibilities
opened up by the abundance of molecular genetic markers now available, a dif-
ferent approach has developed, which emphasizes natural connections to (fixed
sample) change-point problems. For example, the Type I error probability of
a genome scan can be approximated (Feingold, Brown and Siegmund (1993),
Lander and Kruglyak (1995)) by adapting methods developed during the 1970’s
in sequential analysis (e.g., Woodroofe (1976b)). Genetic mapping also poses
incompletely understood problems of sequential design, where one must decide
how many markers to use in a preliminary genome scan, then how to increase
the marker density for a closer examination of genomic regions where there is
some evidence of linkage.

Department of Statistics, Stanford University, Stanford, CA 94305, U.S.A.
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COMMENTS

Gordon Simons

University of North Carolina

I am impressed by the quality and breadth of Lai’s presentation but remain
less than fully convinced of the paper’s thesis. Professor Lai is to be congrat-
ulated for his splendid exposition of major themes in sequential analysis – past
and present. And perhaps of the future. I shall be teaching a course in se-
quential analysis this spring and will undoubtedly find his description of recent
developments a most helpful reference source.

But to the question: does sequential analysis have a promising future? Per-
haps this question needs to be raised within a broader context. There are many
mathematicians today – we certainly have them here at the University of North
Carolina – who wonder aloud, but not too publicly, whether pure mathematics
has a promising future. Closer to home, a professionally active, distinguished
colleague poses this question to me on an irregular basis: does (mathematical)
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statistics have a future? Though, to be honest, his musings seem primarily con-
cerned with future attitudes 50 and 100 years from now, when statistical theory
might be of historical interest only. But still, his pessimism on this matter reflects
his personal assessment of current trends in the subject.

Perhaps this is a normal concern of senior academics as they are closing
their careers and the baton is being passed on to a new generation. Clearly,
subject areas do not remain static – even if they continue to develop. In this
regard, it is interesting happened in the last couple of decades within the realm
of Bayesian statistics. While modern Bayesians, when challenged, are quick to
pay lip service to the brilliant foundational work of Leonard Savage – in defense
of genuinely subjective priors – these same modern Bayesians are busily working
away on statistical applications using priors (and hyperpriors) of convenience,
with little or no regard for issues of subjectivity. Two weeks ago I attended an
interesting talk at Duke concerned with objective considerations in choosing a
prior – with not a single apology offered to Savage!

In his last section entitled Future Opportunities and Challenges, Pro-
fessor Lai writes: “Sequential analysis has been developing steadily but at a
somewhat uneven pace during the past six decades. There is now a rich arsenal
of techniques and concepts, methods and theories, that will provide a strong foun-
dation for further advances and breakthroughs. The subject is still vibrant after
six decades of continual development, with many important unsolved problems
and with new interesting problems brought in from other fields.”

Despite my earlier remarks, I readily concede that Lai has made a persuasive
case. But is this enough? Academic subjects operate within a culture, and it
must be said that the present culture is very different from the one that spawned
the development of sequential analysis, a culture which was warm and receptive
to the seminal ideas of Wald and Wolfowitz and Stein, receptive to the brilliant
conceptual innovations of a Herbert Robbins, and to the probabilistic prowess of
a Y. S. Chow and a Francis Anscombe, receptive to the mathematical elegance of
a Wassily Hoeffding, and receptive to the path-breaking analytical innovations of
a Herman Chernoff, a David Siegmund and a Michael Woodroofe, and, of course,
of a Tze Leung Lai – and receptive to the contributions of a host of others.

Whether or not sequential analysis will see a successful seventh and eighth
decades will depend on its ability to adapt to, without being consumed by, a cul-
ture that seriously undervalues mathematical analysis in favor of computational
facility.

In conclusion, I remain more than a little bit skeptical concerning the future
of sequential analysis.

Department of Statistics, University of North Carolina, Chapel Hill, NC 27599, U.S.A.
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COMMENTS

Bruce W. Turnbull

Cornell University

Although he claims to be giving only a “brief review”, Professor Lai is to be
commended for his insightful and comprehensive tour of the state of the art of
sequential statistical analysis. Indeed it has been Professor Lai himself who has
contributed much to the advancement of this area of statistical research over the
past thirty years. As the author states, it is indeed a “vibrant” field as witnessed
by the many new articles, books and computer software that continue to appear,
and the success of the specialized journal Sequential Analysis. This vibrancy is
not extraordinary — we live in a world that is inherently dynamic, not static.
Situations are constantly changing and our statistical toolbox must reflect this
reality. Here I will comment on just a few applications where there may be “new
challenges”, particularly in the field of clinical biostatistics.

First we consider a major “success” of sequential statistical methods – that
is the design and monitoring of clinical trials. Initially, Armitage (1975) had
proposed the application of sequential analysis to clinical trials; however, it was
not until the mid 1980’s, when formal DSMB’s became established, that use of
group sequential methods became widely recognized. In the U.S., the Food and
Drug Administration (FDA) included requirements of interim analyses in pub-
lished regulations for Phase III trials in 1985 and 1988. Most recently the FDA’s
1998 publication E9 (prepared under the auspices of the International Conference
on Harmonization) gives detailed recommendations on all aspects of statistical
principles and methodology, including trial monitoring, interim analysis, sample
size adjustment and DSMBs. My own thinking on the role of stopping rules in
Phase III trials has come full circle. Initially, following the pioneering work of
Armitage (1975) and others, the emphasis was on formal stopping rules. Later,
as Meier (1975) and others pointed out, the decision to stop a trial is a highly
complex one involving many factors, both qualitative and quantitative. This led
to the idea of stopping guidelines, not stopping rules (DeMets (1984)), and the
search for more flexible methods. These included repeated confidence intervals
and stochastic curtailment — the latter proving especially useful in evaluating
the futility of continuing a trial. However, having served on some DSMBs, I have
recently seen occasions where members of the DSMB — clinicians, ethicists and
patient advocates — were particularly unsure of whether to proceed further with
a trial and seemed to be looking to the statisticians on the panel for a formal,
objective rule to help them out of their dilemma.
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One area where flexibility is needed is in the timing of interim analysis.
It is natural to schedule the analyses dynamically, using accumulating results.
For example, Lan and DeMets (1989) suggested that a DSMB may decide to
switch from group sequential to continuous monitoring if it appears that a testing
boundary is likely to be crossed soon. Betensky (1998) has addressed some of
computational problems involved. However Proschan, Follmann and Waclawiw
(1992) have documented how properties of statistical tests can break down if
data dependent timing of analyses is employed. This is a “new challenge” area
where further research could prove fruitful.

Section 3 of Professor Lai’s paper concerns change-point detection. His main
application is to the area of quality control and engineering. However another
major application is to disease diagnosis. One area of sustained interest has been
the optimum timing of screening tests both in individuals and in populations.
This is currently the subject of special effort by the U.S. National Cancer Insti-
tute’s CISNET program for breast, prostate and colon cancer. Optimal intervals
between tests should be tailored to the individual’s risk factors and accumulating
information, but also incorporating knowledge from existing data bases. These
screening intervals are of interest not only to guide physicians’ recommendations
but also to health insurance companies and HMOs who need to make economic
decisions.

Serial biomarkers are becoming increasingly used to monitor individuals for
onset of a particular disease of interest — PSA for prostate cancer, or CD4 count
for onset of AIDS, for example. Even though for each study subject, the series
of biomarker readings is typically quite short, irregularly spaced and subject to
error, it is possible to use sequential change-point detection techniques, where
the change-point is defined as onset of the disease of interest. For example, Slate
and Turnbull (2000) have described two methods. The first uses a fully Bayesian
hierarchical model for a mixed effects segmented regression model. Posterior
estimates of the change-point distribution in a given individual are obtained by
Gibbs sampling, these estimates featuring the “borrowing of strength” from other
subjects in the study population, usual in such an approach. The second uses a
hidden stochastic process model in which the onset time distribution is instead
estimated by maximum likelihood via the EM algorithm. It can be viewed as
an empirical Bayes version of the first approach. Both methods lead to a dy-
namic index that represents a strength of evidence that onset has occurred by
the current time in a given subject. A question remains on how to evaluate such
diagnostic rules. Tests given at a single time are typically evaluated using ROC
curves that plot sensitivity and specificity. For dynamic index rules based on ac-
cruing longitudinal data, Slate and Turnbull (2000) proposed a three-dimensional
generalization of the ROC curve, but it seems that further research needs to be
done in this area.
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I find the last paragraph of Section 6 overly pessimistic about the appli-
cability of multi-armed bandit type ideas in biomedical trials. When there are
nuisance parameters or where variances depend on means, adaptive designs can
lead to a reduced total sample size. This class of designs is not only valuable
in the hypothesis testing framework but also for point and interval estimation
(Hayre and Turnbull (1981a, b)). When there are three or more treatments and
the goal is to select the best one, adaptive allocation can again lead to reduced
total sample size — Jennison, Johnstone and Turnbull (1982), Coad (1995). In
fact there have been a few clinical trials where a response-adaptive design has
been used, notably the ECMO trials reported by Ware (1989) and two trials
of anti-depression drugs sponsored by Eli Lilly and Co. (Tamura et al. (1994);
Andersen (1996)), the latter being an interesting example of a four-armed adap-
tive trial. An important consideration in the utility of an adaptive design is
that it should be able to be incorporated easily into a familiar group sequential
design. Jennison and Turnbull (2000, Chapter 17), describe two-armed group
sequential designs in which the allocation fraction by which incoming subjects
are randomized to one treatment or the other is different in each stage and de-
pends on responses from previous stages. An asymptotically optimal rule, which
can also accommodate nuisance parameters, can be simply described. Because
the summary statistics and stopping boundaries are the same as those used in a
standard group sequential test, the outlook for the application of such rules in
clinical trials may not be as bleak as Professor Lai suggests.

The stochastic approximation ideas discussed in Section 5 are key to the
dose finding experimental designs in Phase I clinical trials. As such, they play
an extremely important role in the drug development process. However, it seems
that the classic methods of Robbins and Monro (1951) and subsequent variations
are only rarely used in practice. Rather, more ad hoc methods such as the “up-
and-down” method (Dixon and Mood (1948), Wetherill (1963)) or the “continual
reassessment (CRM) method” suggested by O’Quigley, Pepe and Fisher (1990)
and modifications (Faries (1994), Goodman, Zahurak and Piantadosi (1995)) are
more commonly applied. Indeed the CRM method has been extended to allow
incorporation of auxiliary information such as pharmacokinetic measurements
(Piantadosi and Liu (1996)). Use of such information has the potential to increase
the efficiency of any stochastic approximation procedure. Thus I feel there are
still “challenges” to be found in this area — ones that could have important
practical impact in biopharmaceutical research and development.

Suppose we consider the stochastic approximation problem of Section 5, but
now impose the constraint that the dose levels x1 ≤ x2 ≤ · · · are nondecreasing.
Thus there is more emphasis on caution early on to avoid “overshooting”. This
problem arises in animal carcinogenicity studies to find the median (say) onset
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time for an occult tumor in a group of mice. The presence of such tumors can
only be ascertained upon death of the animal via necropsy. Here x1 ≤ x2 ≤ · · ·
correspond to sacrifice times which can be chosen sequentially. However, if too
many animals are sacrificed too early before any have tumors, there is little
information; and similarly if a majority of the animals are sacrificed too late when
almost all possess the tumors. This is the same as the problem in quality control
of estimating the reliability of an item when failure can only be ascertained by
means of a quantal response at a destructive life test. The addition of this simple
monotonicity constraint seems to radically change the nature of the problem and
make it much more difficult. Various authors have attempted to attack this
problem — Bergman and Turnbull (1983), Louis and Orav (1985), Turnbull and
Hayter (1985), Morris (1987), Hu and Wei (1989). However, as yet, there is no
established practical solution.

Another example of a very important biostatistical problem where practice
does not quite meet theory is that of internal pilot studies or sample size rees-
timaton. Such designs are often needed where there is an unknown nuisance
parameter without knowledge of which it is impossible to design a clinical trial
with a desired prespecified power. There is a growing literature on the subject
— see Jennison and Turnbull (2000, Chap.14) for a survey. Yet, there has been
little theoretical advance since the original paper on two-stage designs by Stein
(1945), as described by Professor Lai in Section 4.1. However, the Stein design
has proved inefficient and impractical so other more pragmatic solutions have
been sought. Often numerical methods are employed. For example, Denne and
Jennison (2000) have investigated multi-stage Stein-type procedures, which have
the advantage of being quite efficient and incorporate a familiar feature of group
sequential monitoring. The importance of the area suggests that more research
is needed here also.

So what of the future of sequential statistical methodology? Currently much
statistical research is turning towards the analysis of enormous databases —
“data mining”. Vast improvements in computing power, algorithms and infor-
mation technology are rapidly becoming available to all. Thus it is essential that
statisticians address how sequential decision making can be made practical in
the face of a bombardment of accruing information. This might be to aid dis-
ease prognosis and diagnosis in an individual patient when 200 biomarkers are
being serially monitored, to control inline a manufacturing production line when
over 400 quality characteristics are recorded on each item produced, or to make
investment decisions when thousands of financial time series are being observed.
This is clearly a most challenging “challenge”!

School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY 14853,
U.S.A.

E-mail: bruce@orie.cornell.edu
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C. Z. Wei

Academia Sinica, Taipei

This is a long-awaited paper. Professor Lai, an important leader in the field
of sequential analysis, should be thanked for his willingness to share his view of
the development of this vibrant subject. The directions and challenges pointed
out in the paper are definitely going to stimulate a lot of future research. The
following discussions are meant to serve as an annotation to some of the issues
described in Lai’s paper.

1. Recursive Estimation and Adaptive Control

Adaptive prediction is a step between recursive estimation and adaptive con-
trol, albeit it is of interest in its own right (cf. Goodwin and Sin (1984)). For
the stochastic regression model (4.11), one may use a recursive estimator θ̃n−1

to construct a predictor θ̃n−1xn. The certainty equivalence principle leads one to
investigate the performance of the predictor through the study of the consistency
of the estimator θ̃n−1. Recent results of Hu (1997) and Chen and Hu (1998) on
the Bayes control problem is in this spirit.

However, the Bayes theory developed so far seems difficult to apply to the
dynamic system. The approach developed in Wei (1987b) directly handled the
accumulated prediction error squares

∑n
k=1(yk − θ̃k−1xk)2 without recourse to

consistency. It had been used to help establish the logarithm law of the least
squares self- tuning controller (Guo (1994)) under a non-Baysian setting. A
parallel theory for the Baysian problem is of interest.

2. Stochastic Approximation and Sequential Optimization

The multivariate Robbins-Monro procedure given in Wei (1987) can be
viewed as an asymptotically efficient procedure that achieves specific means of
several characteristics simultaneously. In the field of quality technology, Taguchi’s
philosophy emphasizes the design that obtains the target mean value while min-
imizing the variance. For the past ten years, a dual response surface approach
has been developed to achieve Taguchi’s goal. (cf. Vining and Myers (1990); see
also Fan (2000) for more recent references).

However, a stochastic approximation procedure that achieves the same goal
remains to be developed. It seems that a hybrid of the Robbins-Monro procedure
and the Kiefer-Wolfowitz procedure would suffice. But the setting of this problem
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needs to be explored. The priority of estimating variance first, as advocated in
the Taguchi method, still requires a satisfactory theory.

Furthermore, in contrast with the “target is the best” case as described
above, one may consider “the larger (smaller) the better” one. In this situation,
the mean response is maximized (minimized) while controlling the variance at
a specific level. It is not clear what is the effect of the roles of the mean and
variance on the associated procedures.

3. Adaptive Treatment Allocation and the Multi-armed Bandit Prob-
lem

As described in Lai’s paper, the multi-armed bandit problem has a funda-
mental conflict between “information” and “control”. To learn sufficient infor-
mation from all populations {πj , j = 1, . . . , k} about their parameter values, the
allocation (control) rule is allowed to sample from any population irrespective of
the choice of φt. The “information learning flow” among all populations is there-
fore completely connected. From this point of view, it seems that the results
in the classical bandit problem can be extended to the case where the unknown
parameters {θj} do not necessarily belong to the same set.

Motivated by serial sacrifice experiment problems, a variant of the multi-
armed bandit problem was proposed by Hu and Wei (1989). In this problem, the
information learning flow has a strict order which forces a constraint φt ≤ φt+1

on the allocation rules. These rules are irreversible. Due to this nature, these
rules are only applicable to the experiments which are specified by distributions
with one parameter.

The research on irreversible adaptive allocation rules is still underdeveloped.
A recent result due to Fuh and Hu (2000) relaxes the i.i.d. sampling mechanism
to being Markov. Their motivating example is computerized adaptive testing.
In destructive experiments, as in the study of estimating the due date of a film,
multi- parameter problems are often encountered. The multi-phase problems in
which certain proportions of the samples have to be saved for the later phases
are also interesting.

In practice, one may require rules which are simple (and possibly sub-
optimal) but easy to implement. For theory, one may consider the problem
with general structure on the information learning flow. These problems seem to
be of interest too.

Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan.

E-mail: czw@stat.sinica.edu.tw
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Michael Woodroofe
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I want to thank Professor Lai for summarizing his contributions to sequential
analysis along with those of his students and many others, and for setting these
contributions in historical perspective. This review will be a valuable resource
for current and future workers in the area. In the following comments, I advocate
some particular ways of formulating problems.

Group Sequential Tests. I certainly agree that it was not feasible to arrange
for continuous examination of the data as they accumulate in double blind clinical
trials when group sequential tests were introduced, about 25 years ago. Is this
still the case? Certainly data that are recorded at any site can simultaneously
be recorded at a central processing site that can be completely separated from
the treatment of patients. It should be possible for the central site to monitor
the data frequently, for example daily or weekly, computing current likelihood
functions and/or test statistics. At the very least, this frequent monitoring could
be used to trigger a meeting of an oversight committee. Implementing such a
scheme would be difficult, both technically and administratively, and the reduced
expected sample size may only be worth the effort in cases where the outcomes
are literally life and death. In such cases, however, statisticians should advocate
efficient designs.

The Change Problem. Wu, Woodroofe and Mentz (2000) have identified a
connection between change point problems and isotonic methods, as described
by Robertson, Wright and Dykstra (1988). Suppose that there are observations
of the form Xk = µk +Yk, where Yk is a stationary process that exhibits suitable
short range dependence and µk is known to be non-decreasing. Consider the null
hypothesis H0 : µ1 = · · · = µn, where n is the horizon. The alternative here
allows an arbitrary non-decreasing trend and, therefore, differs from that of the
change point problem which allows only a single change. For this problem, Wu,
Woodroofe and Mentz (2000) suggest the test statistic

Λn =
1
σ̂2

n

n∑
k=1

(µ̂n,k − X̄n)2,

where µ̂n,k are the isotonic estimators of µk, penalized as in Woodroofe and Sun
(1993), and σ̂n is an estimate of scale. Under assumptions like (3.14) of the paper,
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they obtain the limiting null distribution of Λn and the distribution under local
alternatives.

Very Weak Expansions. Very weak expansions agree with Edgeworth expan-
sions in many cases, especially if the latter hold uniformly on compacts in the
parameter and the coefficients of n−

1
2
r are equicontinuous, where n is either the

sample size or a design parameter, like a. There are many problems in which
the coefficients are not equicontinuous, and especially problems in which they
oscillate wildly as n increases. Brown, Cai and Das Gupta (2000) have recently
considered cases like this involving discrete exponential families and provide in-
formative graphs. When Edgeworth expansions contain small oscillations, is it
really necessary for the actual coverage probabilities to exceed or equal the nomi-
nal value (or the nominal value +o(1/n)) for all θ; or is it enough for the nominal
value to pass through the middle of the oscillations over small intervals or re-
gions that contain many oscillations? The conventional definition of confidence
requires the actual to be at least the nominal. Very weak expansions come down
squarely in the middle.

Bayesian Bandit Problems. In the context of Bayesian bandit problems,
Equation (6.9) of the paper, results of Woodroofe (1979) and Sarkar (1991) sug-
gest that the nature of the problem may change radically in the presence of a
suitable covariate. They show that the myopic procedure, which treats each
subject as is currently thought to be best for him or her, is asymptotically opti-
mal to second order (minimizes the asymptotic regret). That is (under Sarkar’s
conditions), the fundamental conflict between learning and immediate gain disap-
pears; and if subjects represent patients that have to be assigned to a standard or
experimental treatment, then the ethical problems disappear. The exact mean-
ing of “suitable” is complicated; it requires that there be enough variability in
the covariate and also that regression lines (or curves) not be parallel. To il-
lustrate, consider one of Sarkar’s examples in which there are two treatments,
labeled 0 and 1, and responses are either success or failure, labeled 1 and 0.
Suppose that for each subject, there is a covariate X and potential responses Y i

to treatment i, i = 0, 1, that X has a known distribution F over [0,1], and that
Pθ[Y 0 = 1|X = x] = x, Pθ[Y 1 = 1|X = x] = θ, where θ is an unknown parameter.
Thus, X is the probability of success with treatment 0, assumed known. Finally
suppose that θ has bounded density ξ over [0,1]. The myopic procedure assigns
the kth subject to treatment 0 or 1 accordingly as Eξ[θ|Xk,Fk−1] < or > Xk

where Fk is the sigma-algebra generated by the first k covariates and responses,
and Eξ denotes expectation in the Bayesian model. If F has a positive, bounded
density f , then the myopic procedure is asymptotically optimal to second order
(minimizes the asymptotic regret).
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Introduction

The paper of T. L. Lai summarizes recent developments in several topics re-
lated to sequential analysis. Undoubtedly, the field of sequential statistics looks
very different today than it did only a decade ago. The author’s impressive con-
tribution to the field has much to do with this fact. Naturally, the choice of
topics and results is biased towards those which involve the author’s contribu-
tions. I will take the same liberty and remark only on the topic of optimality in
the context of sequential change-point detection.

The two main approaches for proving optimality rely either on decision the-
ory, or on the construction of a lower bound and the demonstration that a given
procedure attains the lower bound (or at least approaches it). The first approach
has been successfully applied in the setting of independent observation and sim-
ple hypothesis. In more complex situations, only the second approach seems to
be working. Indeed, using inequality (3.8) of his paper, Lai was able to demon-
strate the asymptotic optimality for detecting changes in the important setting
of state-space models.

It should be noted, however, that inequality (3.8) provides only a first-order
asymptotic lower bound. Unfortunately, the resolution of first-order asymptotics
is very limited. Indeed, in this resolution one cannot distinguish between the
performance of most reasonable candidate procedures (like the cusum, Shiryayev-
Roberts, EWMA, etc.). Only when a higher-order asymptotic expansion is con-
sidered can we hope to be able to rank the different procedures.
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In these notes we attempt to extend Lai’s results and in the direction of
addressing this drawback. Theorem 1 of the next section formulate an alternative
lower bound, motivated by the known optimality properties of the Shiryayev-
Roberts procedure. This lower bound is demonstrated in Section 3 in the simple
setting of a shift of a normal mean. The proof of the theorem is given in an
appendix.

A lower bound on the expected delay in detection

We start with some notations: Let X1,X2, . . . , be a random sequence. De-
note by P the in-control distribution on the sequence. The distribution of the
process may change at some unknown point in time k, 0 ≤ k < t. Denote by Pk

the distribution when a change occurs at time k. (The measure Pk is a change-
point measure in the sense that the marginal joint distribution of X1, . . . ,Xn is
identical both under P and under Pk for all n ≤ k. In other words, the first k
observations are from the in-control distribution. However, the observations that
follow — Xk+1,Xk+2 . . . — are from the new regime.) We denote by �k(n) the
log-likelihood ratio of Pk, relative to the null distribution P. This log-likelihood
is based on the first n observations.

Denote,

R(n) =
n∑

k=0

e
k(n), S =
t−1∑
n=0

n∑
k=0

e
k(n) =
t−1∑
n=0

R(n), and M = max
0≤n<t

R(n).

Given a > 0, consider the Shiryayev-Roberts stopping time Na = min{n : R(n) ≥
ea}. In particular, note that {Na < t} = {M ≥ ea}.

Let N be any stopping time N (with respect to the sequence of observations)
that satisfies the constraint:

P(N ≥ t) ≥ P(Na ≥ t). (1)

We are interested in comparing the properties of N as a change-point detection
procedure to those ofNa. One can use, for example, the average delay in detection
over the interval [0, t), 1

t

∑t−1
k=0 E k(N−k;N ≥ k), as a measure of the efficiency of

N . In Theorem 1 below, the comparison is carried out in terms of a lower bound
on the difference of efficiency between the two procedures. The lower bound in
Theorem 1 is independent of N . It depends only on the properties of S, M , Na,
and the sequence {R(n) : 0 ≤ n < t}.
Theorem 1. Let N be any stopping time which satisfies the constraint (1) with
respect to the Shiryayev-Roberts stopping rule Na. Then

1
t

t−1∑
k=0

E k(N − k;N ≥ k)
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≥ 1
t

t−1∑
k=0

E k(Na − k;Na ≥ k)

−1
t

{
E (S;S ≥ ea;M < ea) − E (S; ea ≤ S < eas) +

3∑
i=1

ri

}
,

where r1 =
∑t−1

k=0

∑∞
n=t Pk(Na > n) ≤ ∑t−1

k=0

∑∞
n=t Pk(�k(n) < a), r2 = e−a∑t−1

n=0 E (R2(n);R(n) < ea), r3 = e−a∑t−1
n=0(t− n)E (R(n);R(n) < ea), and as is

the solution of the equation

P(S ≥ eas) = P(Na < t) = P(M ≥ ea). (2)

Quantification of the terms appearing in the lower bound can lead to state-
ments of optimality. An example is given in the next section. The proof of the
theorem is given in an appendix.

An optimality result in terms of the average delay in detection, subject to a
constraint on the probability of false alarm, can be translated to other forms of
optimality. The translation to a Bayesian formulation with the uniform prior is
straightforward. The consideration of other priors requires only minor modifica-
tions.

Moreover even the traditional formulation, which measures the efficiency in
terms of the worst (conditional) delay in detection and puts a constraint on the
expected run length to false alarm can be handled. For example, one can re-
formulate the constraint (1) in terms of not stopping in the interval (jt, (j+1)t],
given that no stopping occurred prior to jt — a hazard rate type of condition.
The relation between the expectation and the hazard rate can be combined with
the (asymptotic) quasi-stationarity of the Shiryayev-Roberts procedure in order
to prove the asymptotic optimality of Na. Indeed, we believe that using this
approach may potentially yield refined optimality results in complex models like
the state-space models discussed in Lai. We have applied it, for example, in the
context of the detection of a change of the slope in a regression model (Yakir
(2001)).

An example: detecting a shift in a normal mean

Let us demonstrate Theorem 1 in the simple case of a normal shift of the
mean. For this case it is known that for some formulation the cusum, and for
other formulations the Shiryayev-Roberts or a variant thereof, are optimal in a
strict sense (see the references in Lai’s paper, and also Yakir (1997b)). Still, one
better try one’s new machinery in a familiar environment before trying to expand
into a new territory.
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We specify here the random sequence to be a sequence of independent normal
random variables with variance 1. The mean prior to the change-point is 0, and
the mean thereafter is µ > 0. The log-likelihood ratios, {�k(n) : 0 ≤ k ≤ n < t},
are normally distributed. Moreover, it is useful to note that in this case these
log-likelihood ratios are also log-likelihood ratios for the complete sequence of
observation. The measure for which �k(n) is a likelihood ratio, denoted here by
Pk,n, assigns mean µ to the observations Xk+1, . . . ,Xn. The observation up to
time k and the observation past the time n are assigned a zero mean.

A measure transformation technique or the more traditional renewal theory
can be used in order to bound the tail of the statistics S, M , and R(n). (More
details on the measure transformation technique, with application in various
fields, can be found in Yakir and Pollak (1998); Siegmund (1999); Siegmund and
Yakir (2000, 2000b). This bound, together with some straightforward derivations
can be used in order to show that ri → 0, i = 1, 2, 3 (provided a → ∞ and
a� t� ea/2).

Next, since S now is a sum of likelihood ratios, one can rewrite the remaining
lower bound terms in the form:

E (S;S ≥ ea;M < ea) =
t−1∑
n=0

n∑
k=0

Pk,n(S ≥ ea;M < ea), and

E (S; ea ≤ S < eas) =
t−1∑
n=0

n∑
k=0

Pk,n(ea ≤ S < eas).

Define sk,n = log(S/e
k(n)), mk,n = log(M/e
k(n)) and µk,n = E k,n�k(n) =
(n − k)µ2/2. The Pk,n-asymptotic independence between �k(n) and (sk,n,mk,n)
can be used in order to show that

Pk,n(S ≥ ea;M < ea) = Pk,n(a− sk,n ≤ �k(n) < a−mk,n)

∼ 1
(2a)1/2

φ

(
a− µk,n

(2a)1/2

)
E k,n(sk,n −mk,n).

This approximation is valid whenever µk,n ∈ a ± o (a), the relevant region of
indices k and n. Similarly,

Pk,n(ea ≤ S < eas) = Pk,n(a− sk,n ≤ �k(n) < as − sk,n)

∼ 1
(2a)1/2

φ

(
a− µk,n

(2a)1/2

)
(as − a).

The terms E k,n(sk,n−mk,n) converge, as n−k → ∞, to a constant we denote
by −E µ[log(M/S)]. The limit is independent of k and n and can be associated
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with the additive constant in the expansion of the average run length of the
power-one SPRT under the alternative. Likewise, the difference as − a converges
to a term we denote by − log(E µ[M/S]). This limit doesn’t depend on both k

and n as well, and is associated with the overshoot correction of the significance
level of the SPRT.

By summing over k and n, 0 ≤ k ≤ n < t, we can conclude that

1
t

t−1∑
k=0

E k(N − k,N ≥ k) ≥ 1
t

t−1∑
k=0

E k(Na − k,Na ≥ k)

− 1
µ2

{log(E µ[M/S]) − E µ[log(M/S)]} + o (1) .

The asymptotic lower bound, as a function of the mean µ, is presented in Figure 1.
Note that as the mean increases, the bound becomes tighter. Only when the mean
is below 0.4 do we get that the gap between the efficiency of the Siryayev-Roberts
procedure and the given bound is less then −1.

Mean

0.5 1.0 1.5 2.0

−
1
5

−
1
0

−
5

0

Figure 1. The asymptotic lower bound.
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Appendix. A proof of Theorem 1.

Note that E k(N − k,N ≥ k) =
∑∞

n=k Pk(N > n) ≥ ∑t−1
n=k Pk(N > n).

But, Pk(N > n) = E (e
k(n);N > n), by the likelihood-ratio identity, since the
event {N > n} is determined by X1, . . . ,Xn. The random variables e
k(n) are
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non-negative and {N ≥ t} ⊂ {N > n}. Thus,

t−1∑
k=0

E k(N − k;N ≥ k) ≥
t−1∑
k=0

t−1∑
n=k

E (e
k(n);N > n) ≥ E (S;N ≥ t).

The fact that E (Y ;C) ≥ E (Y ;Y < y) for any non-negative random variable
Y , event C and real number y, such that P(C) ≥ P(Y < y), can be used in order
to conclude that

1
t

t−1∑
k=0

E k(N − k;N ≥ k) ≥ E (S/t;S < eas). (3)

Next we consider the average delay in detection of the Shiryayev-Roberts
stopping time Na. As in the previous derivation,

t−1∑
k=0

E k(Na − k;Na ≥ k) =
t−1∑
k=0

∞∑
n=k

Pk(Na > n)

=
t−1∑
k=0

t−1∑
n=k

E (e
k(n);Na > n) +
t−1∑
k=0

∞∑
n=t

Pk(Na > n)

=
t−1∑
n=0

E (R(n);Na > n) + r1.

However, E (R(n);Na > n) = E (R(n);Na ≥ t)+E (R(n);n < Na < t). Con-
ditioning on X1, . . . ,Xn, using Doob’s inequality and the definition of Na we get
that E (R(n);n < Na < t) ≤ e−a{E (R2(n);R(n) < ea) + (t− n)E (R(n);R(n) <
ea)}. When we sum over all the n’s we get

t−1∑
n=0

E (R(n);Na > n) ≤ E (S;Na ≥ t) + e−a
t−1∑
n=0

E (R2(n);R(n) < ea)

+e−a
t−1∑
n=0

(t− n)E (R(n);R(n) < ea)].

The above discussion can be summarized by the statement

1
t

t−1∑
k=0

E k(Na − k;Na ≥ k) ≤ E (S/t;M < ea) +
r1 + r2 + r3

t
. (4)

The inequalities (4) and (3), and the fact that as > a, lead to the theorem.
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REJOINDER

Tze Leung Lai

I wish to thank all discussants for their inspiring, insightful and informative
contributions. In the rejoinder I will address some of the issues they have raised
and also use this opportunity to elaborate on several topics that I had left out of
the paper to preserve its smooth flow and to keep it within manageable length.

1. Sequential Experimental Design

The paper considered sequential experimentation along the lines pioneered
by Robbins (1952), namely stochastic approximation and multi-armed bandits,
for which experimentation is targeted toward and constrained by certain control
objectives, but does not treat more traditional experimentation goals. Professor
Chernoff’s discussion has filled this gap for the case where the goal of experi-
mentation is to discriminate among a finite number of hypotheses and the exper-
imenter can choose among a set of experiments. Excellent introductions to the
topic and additional references can be found in Chernoff (1972, 1975). Another
important case is optimal experimental design in nonlinear regression. Although
classical optimal design theory for least squares estimation in linear regression
models can in principle be extended to nonlinear regression models of the form
yn = f(xn; θ) + εn (using the same notation as in (5.1) with M(x) = f(x; θ)),
the extension has serious practical difficulties since an optimal design measure
typically involves the unknown parameter θ. To circumvent these difficulties, a
commonly used approach is to construct designs sequentially, using observations
made to date to estimate θ, and choosing the next design point by replacing the
unknown θ in the optimal design with its estimate (cf. Federov (1972)). Thus
sequential experimentation has played a central role in experimental designs for
nonlinear regression models since the seminal paper of Box and Wilson (1951)
on response surface methodology.

Unlike classical experimental design theory where the design levels are non-
random constants, the design levels xn in a sequential design are sequentially
determined random variables, and it remained a long-standing problem concern-
ing whether inference based on the repeated-sampling principle is asymptotically
valid for such sequential designs. For linear regression models, a positive answer
was provided by Wu (1985) by making use of the asymptotic theory of (linear)
least squares estimates in stochastic regression models (Lai and Wei (1982)).
Lai (1994), and recently Skouras (2000), extended that theory to nonlinear least
squares estimates, thereby providing a positive answer for sequential designs in
nonlinear regression models. In the case of linear regression models with normal
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errors, Woodroofe (1989) and Woodroofe and Coad (1997) have developed “very
weak” asymptotic expansions of the sampling distributions to refine the normal
approximations for least squares estimates in sequentially designed experiments.

2. Multivariate Observations, Multiple Endpoints and Multiple Tests

Professors Lorden, Pollak and Simons have given various reasons why se-
quential analysis has not been as “popular” as we think it should be. I will
give a few additional reasons and offer some suggestions. One important rea-
son, in my opinion, is that a large portion of the sequential analysis literature
has been narrowly focused on very simple models, in which the observations are
i.i.d. univariate random variables having some density function fθ with unknown
parameter θ belonging to some simple set (e.g., finite, or a subset of the real
line). Although this narrow focus provides a good starting point, since simplicity
enables one to see the central issues clearly without being sidetracked into com-
plicated technical details that are “non-sequential” in essence, it is too restrictive
for a “final product” to attract the interest of researchers not working in sequen-
tial analysis. We should go far beyond the relatively simple settings in which
fundamental innovations have been made, and follow up on the initial break-
throughs with further advances to make the methodology widely applicable. To
accomplish this, interactions with other areas of statistics and probability, and
with substantive fields of application, are of vital importance.

A case in point is the interface of sequential analysis with multivariate statis-
tics. The need to extend sequential analysis, from the simple univariate settings
considered by Wald to multivariate problems with nuisance parameters, became
apparent soon after Wald’s introduction of the SPRT and, in the fifties and six-
ties, there was considerable effort to develop sequential tests for multivariate data
and general linear hypotheses; see Ghosh (1970). As pointed out in Section 2 of
the paper, most of this work involved the use of invariance to reduce composite
hypotheses to simple ones so that Wald’s SPRT could be applied to the maxi-
mal invariants, but this approach only applies to a restrictive class of composite
hypotheses. Moreover, except for Wald’s approximations (ignoring overshoots)
to the type I error probabilities, the operating characteristics and optimality
properties, if any, of these invariant SPRTs remained an open problem until the
mid-seventies and early eighties; see Lai (1981). The insistence on using likeli-
hood ratios (via invariance or weight functions) also made it difficult to relate to
concurrent developments in fixed sample size tests, for which GLR statistics had
been found to provide flexible and highly efficient tests for multivariate data and
in multiparameter problems with nuisance parameters; see e.g., Neyman (1965)
and Bahadur (1967).
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One reason why GLR statistics were not used in developing sequential tests
during this period is that it was not clear how the stopping boundaries should
be set for GLR statistics. Section 2 of the paper reviews several developments to
resolve this problem, first for one-parameter and eventually for multiparameter
exponential families. There is now a comprehensive theory involving stopping
rules of the type (2.4). Another reason why GLR statistics were not used in
developing sequential tests during the fifties and sixties is that Wald’s method
to analyze error probabilities of the SPRT can no longer be applied when the
likelihood ratios are replaced by GLRs. To get around this difficulty, Lai and
Siegmund (1977) and Woodroofe (1978) made use of nonlinear renewal theory to
develop asymptotic approximations to the type I error probabilities of sequential
GLR tests. A review of subsequent developments was given by Hu (1988), who
also extended the “backward method” of Siegmund (1985) to multiparameter ex-
ponential families. Recently Chan and Lai (2000c) developed a general method
to derive asymptotic approximations to the error probabilities (both type I and
type II) that can be applied not only to GLR statistics but also to other func-
tions of the sufficient statistics in a multiparameter exponential family. Moreover,
the method is applicable to both sequential and fixed sample size tests. In the
fixed sample size case, following the seminal work of Chernoff (1952), Hoeffd-
ing (1965) and Bahadur (1967) on asymptotic efficiencies of tests at non-local
alternatives, most papers on large deviation approximations to type I and type
II error probabilities give only the order of magnitude of the logarithms of the
probabilities. Chan and Lai (2000c) have refined these approximations to the
form (C+o(1))e−ρn and have further improved them to higher-order approxima-
tions for moderate deviation probabilities (when the alternatives approach the
null hypothesis as n → ∞). In the sequential case, they have also shown how
the method can be used to develop approximations to the error probabilities of
sequential GLR tests when the underlying parametric family is misspecified.

Therefore, it is now ripe for a much better interface of sequential analysis
with multivariate statistics. There are many important problems in sequential
analysis that are of a multivariate nature, and conversely there are many exciting
new directions in multivariate analysis that involve sequential ideas. Concern-
ing the former, Professor Siegmund has pointed out active areas of research in
group sequential methods for clinical trials with multiple endpoints and for trials
with several arms. Beginning with O’Brien’s (1984) seminal paper, the prob-
lem of constructing one-sided tests for comparing multivariate treatment effects
has received much attention for fixed sample size tests, and subsequently for
group sequential trials; see Lin (1991), Jennison and Turnbull (1993, 2000) and
the references therein. Bloch, Lai and Tubert-Bitter (2000) recently gave a new
formulation of the multiple-endpoint problem, motivated by certain studies in
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arthritis, rheumatism and cancer, in which treatment effects are measured by
both efficacy and toxicity. In these studies, efficacy is often measured by more
than one response variable and so is toxicity. Univariate methods for assessing
each response variable individually have been widely used in these studies be-
cause of their flexibility and ease of interpretation. On the other hand, usually
there is additional need for a single, overall comparison, and combining the uni-
variate comparisons by Bonferroni’s inequality ignores the correlations between
the response variables and therefore lacks power for alternatives at which the
response variables are strongly correlated. In the fixed sample size case, Bloch,
Lai and Tubert-Bitter (2000) developed a bootstrap test that incorporates the
essential univariate and multivariate features of the treatment effects to be com-
pared. Extending it to the group sequential setting will entail modifying the
hybrid resampling approach described in Section 4.2 for this problem.

While the multiple endpoint problem is concerned with testing a single null
hypothesis on multivariate treatment effects, the multi-hypothesis (or multiple)
testing problem is concerned with testing k hypotheses on multidimensional pa-
rameters. Contrary to what Professor Pollak says, the “application in real life”
of multi-hypothesis testing is far from being “meager”. In classical (nonsequen-
tial) multivariate analysis, it arises e.g., in multiple comparisons (developed by
Tukey, Scheffé, Dunnett and others) and classification. Using a sequential (step-
down) approach and Bonferroni’s inequality, Holm (1979) introduced a multiple
test procedure that controls the so-called “family-wise type I error rate” (FWE).
The procedure rejects the hypotheses sequentially one at a time until no further
rejections can occur, and is therefore called sequentially rejective. After Holm’s
seminal paper, a number of variants of sequentially rejective procedures appeared,
including the step-up procedures of Hommel (1988) and Hochberg (1988), and
there was a resurgence of interest in multiple tests, partly spurred by applica-
tions to psychology and educational testing. Shaffer (1995) gave a survey of these
developments and their applications. Recently there have been exciting appli-
cations to microarray analysis in genetics which also call for new techniques in
multiple testing; see Dudoit, Yang, Callow and Speed (2000). Sequential analy-
sis ideas and related boundary crossing probability approximations may provide
important advances in this area. Professor Simons says, “Clearly, subject areas
do not remain static – even if they continue to develop.” Multiple testing, which
is not much younger than sequential analysis, is another example besides the
Bayesian methodology he cites.

3. Sequential Analysis and Time Series

The assumption of i.i.d. observations in traditional sequential analysis is too
restrictive for many applications in engineering and economics. As pointed out in
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the last paragraph of Section 5, stochastic approximation underwent a separate
development in the engineering literature where, unlike static regression functions
in the statistics literature, dynamic input-output systems are considered. This
was also the motivation behind Anantharam, Varaiya and Walrand (1987) in
extending the work of Lai and Robbins (1985) on the multi-armed bandit problem
from i.i.d. to Markovian arms. Motivated by queuing control and applications
to machine learning, Lai and Yakowitz (1995) developed a nonparametric bandit
theory that makes no parametric assumptions on the underlying dynamics of the
individual arms and yet can still attain a regret of the order O(αn log n), where
αn is any nondecreasing sequence of positive numbers such that limn→∞ αn = ∞.

To expand its scope and increase its impact, sequential analysis should have
more interactions with time series analysis. These two areas of statistics are
actually closely related, particularly if we broadly interpret sequential analysis
as statistical methods (including design and decisions) for data that arrive se-
quentially. In Lai (1981, 1995, 1998, 2000), it is shown how lower bounds on the
expected sample size/expected detection delay can be developed for sequential
testing/changepoint detection procedures subject to type I error/false detection
constraints and how asymptotically efficient procedures can be constructed to
attain these lower bounds for general stochastic sequences (including i.i.d. se-
quences as special cases). The method of Chan and Lai (2000c) described above
can be extended to derive asymptotic approximations to error probabilities of
sequential tests when the observations are Markovian (instead of i.i.d.). Details
of the extension are given in Chan and Lai (2000a,b) for the considerably more
difficult problem of sequential change-point detection. Melfi (1992) extended non-
linear renewal theory while Fuh and Lai (1998) extended Wald’s equation and the
Wiener-Hopf factorization to Markov random walks. Sriram (1987) generalized
Robbins’ (1959) theory of asymptotically risk-efficient estimation of means from
i.i.d. to stationary AR(1) models, while Fakhre-Zakeri and Lee (1992) further
generalized that to linear processes. Lai (1996) subsequently provided a general
theory of asymptotically risk-efficient estimation of the parameters of stochastic
systems satisfying certain conditions. Professor Martinsek’s discussion describes
recent interesting applications of fixed width confidence intervals in random coef-
ficient autoregressive models to monitoring underground pipelines for corrosion.
It appears that powerful tools for dependent data are now in place that allow
sequential analysis to interact more closely with time series analysis.

4. Quality Control, Fault Detection and Diagnosis

Professor Pollak’s comment that sub-optimal procedures are often used in
practice in lieu of better statistical methods applies not only to industrial quality
control, but also to data analysis and study design by practitioners in industry
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and business. What they seem to lack in statistical sophistication is often coun-
terbalanced by experience and practical insights. There are also many other fac-
tors in their choice of methods, such as ease of interpretation and implementation
within the company’s structure, and whether the methods used can already meet
the company’s needs. In the case of the Shewhart or EWMA chart versus the
CUSUM or Shiryaev-Roberts chart, the Shewhart chart may already be adequate
for monitoring departures of mean level or variability from the state of statistical
control if sampling inspection is scheduled periodically with a sufficiently large
sample size at each inspection. Moreover, industrial engineers and plant workers
are familiar with the Shewhart chart. Moving averages are intuitively appealing
for monitoring potential changes. Besides quality control, moving average charts
are widely used in the so-called “technical analysis” of financial markets; see e.g.,
Neftci (1991). In fact, Page (1954, page 100) might have first tried to use moving
averages to improve the Shewhart charts, but because “the consequences of rules
based on moving averages are difficult to evaluate”, finally came up with the
CUSUM chart for which he could use the theory of Wald’s SPRT to evaluate
the ARL. Page’s comment on the analytic difficulty motivated me to develop
tools to analyze the ARL of moving average charts in Lai (1974). Thinking that
such moving average rules would be sub-optimal in comparison with the CUSUM
rule, for which Lorden (1971) had already established an asymptotic optimality
property, I did not pursue the theory of moving average charts further. Nearly
twenty years later, in my attempts to address some open problems concerning
the Willsky-Jones (1976) rule, I was pleased to find that, by a suitable choice of
the window size, the moving average rule can be asymptotically as efficient as
the CUSUM rule; see Lai (1995).

Although the Shewhart and EWMA rules are adequate for simple manu-
facturing systems, they are simplistic and perform poorly for monitoring more
complicated engineering systems, for which high-dimensional and serially cor-
related observations (from many sensors and actuators) arrive sequentially and
fault detection has to be carried out in real time. This is the setting considered
by Willsky and Jones (1976) when they developed the window-limited GLR rule
(3.11) for the state-space model (3.10a,b). I expect that many of the ideas in
the fault detection literature will be adopted in the next generation of control
chart schemes. In his critique of EWMA charts, Hunter (1990) says, “Current
literature on statistical-process-control schemes seems to be captured by the She-
whart paradigm of constant mean and independent errors. The problems faced
by Shewhart concerned the quality of product manufactured for the bits-and-
pieces industries. In those early days, it was common to produce a batch of
items and then randomly to sample the batch ... But that condition occurs
much less frequently today. In today’s bits-and-pieces industries, one often finds
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each sequentially produced item measured and recorded ... Certainly, many of
today’s industrial environments violate the independence assumption employed
by Shewhart.” Moreover, because of advances in instrumentation and computer
technology, the quality characteristics recorded in modern production plants are
typically multidimensional, so there has been growing interest in multivariate
control charts during the past decade. It appears that many of these issues have
already been considered in the fault detection literature, where a comprehensive
methodology is currently available.

Because of the multivariate nature of the measurements and of the system
states, an important problem of fault detection is diagnosis of the fault that has
occurred (e.g., whether it is a sensor or actuator failure and, in the former case,
which of the sensors failed). This problem is called fault isolation and is closely
related to multiple testing discussed earlier in the rejoinder. Nikiforov (1995),
Lai (2000), and the references therein give important advances in the theory and
applications of the sequential fault detection-isolation (FDI) in the last fifteen
years.

5. Nonlinear Filtering and Estimation of Time-Varying Parameters

Barnard (1959) was led to the GLR rule (3.9) in the case of independent nor-
mal Xt by an estimation problem, namely, estimating possibly changing means
µt when the variance remains constant and known. Chernoff and Zacks (1964)
considered the same estimation problem and gave an expression for the Bayes
estimate. Specifically, assuming the sequence of change-points of {µt} to form a
discrete renewal process with geometric interarrival times with parameter p and
the jumps of {µt} to be i.i.d. normal, their expression for the Bayes estimate
µ̂n = E(µn|X1, . . . ,Xn) requires O(2n) operations to compute. Yao (1984) later
found another representation of µ̂n that requires only O(n2) operations. Thus,
even in this simple example, the memory required and the number of operations
needed to compute the Bayes estimate grow to ∞ with n. Although in practice
mean shifts typically occur very infrequently (i.e., p is very small), the unknown
times of their occurrence leads to the great complexity of the Bayes estimate
µ̂n. By extending the “window limiting” idea in the detection problem, Lai and
Liu (2000) have developed an alternative estimate µ̃n which involves no more
than a fixed number (depending on p) of parallel recursions such that the Bayes
risk Σn

t=1E(µ̃t − µt)2 is asymptotically equivalent to that with µ̂t in place of µ̃t,
as p → 0 and np → ∞. This alternative estimator approximates µ̂t by using
a bounded-complexity mixture (BCMIX). The BCMIX estimator µ̃t is close in
spirit to Yao’s method for computing the exact Bayes procedure µ̂t but keeps only
a fixed number of linear filters at every stage. The BCMIX procedure can also
be readily extended to the smoothing problem of estimating µt from X1, . . . ,Xn
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for 1 ≤ t ≤ n. Yao (1984) developed an algorithm involving O(n3) operations
to compute the Bayes estimator E(µt|X1, . . . ,Xn) by combining E(µt|X1, . . . Xt)
with the (backward) Bayes estimate E(µt|Xt, . . . ,Xn) that can be evaluated by
time reversal. For the BCMIX approximation to E(µt|X1, . . . ,Xn), m forward
linear filters are combined with m backward (time-reversed) linear filters in a way
similar to that of Yao (1984). By choosing m suitably, Lai and Liu (2000) showed
that the BCMIX estimates µ∗t of µt have a cumulative Bayes risk Σn

t=1(µ
∗
t − µt)2

that is asymptotically equivalent to Σn
t=1{E(µt|X1, . . . ,Xn)− µt}2 as p→ 0 and

np → ∞. They also extended the BCMIX approach to more general situations
in which the unknown parameters may undergo occasional changes, and to em-
pirical Bayes models in which the hyperparameters of the Bayesian model (p and
the variance of a jump in µt) are not specified a priori and have to be estimated
from the data.

When one analyzes data that arrive sequentially over time, it is important to
detect secular changes in the underlying model which can then be adjusted ac-
cordingly. Estimation of time-varying parameters in stochastic systems is, there-
fore, of fundamental interest in sequential analysis. Furthermore, it arises in
many engineering, econometric and biomedical applications and has an extensive
literature widely scattered in these fields. Lai and Liu (2000) have given a review
of some recent literature and applied the BCMIX procedure to estimate the com-
positional variations of a genome sequence, yielding a procedure with much lower
computational complexity than those in the literature but with similar statistical
properties. Clark (1991) has considered the problem of estimating occasionally
changing means in the framework of continuous-time Wiener process and casts
it in the framework of nonlinear filtering theory. Since optimal nonlinear filters
are typically infinite-dimensional, a major thrust in the literature is to develop
implementable finite-dimensional approximations. Understanding how this can
be done efficiently in the special case of estimating time-varying parameters that
are treated as states (undergoing Bayesian dynamics) will provide new insights
and advances in nonlinear filtering.

6. Computational Issues

Branching out from simple i.i.d. models in traditional sequential analysis to
multivariate time series models whose parameters may undergo secular changes
raises many new computational issues. The real-time computational requirement
for on-line implementation of sequential procedures in engineering applications
poses additional challenges. As Professors Lorden and Turnbull point out, the
vast improvements in computing power, algorithms and information technology
have well equipped sequential analysis to take on these challenges.
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Professor Ghosh comments that “practically all useful results in sequential
analysis since 1970 are asymptotic by nature” and that today’s computing power
can be used to check their adequacy and perhaps also to alter the reliance on
asymptotic approximations. Such accuracy checks have in fact been carried out
for many of these approximations although they have not been extensively docu-
mented because of journal space limitations. To those not working in the field, a
puzzling question may be the following: since numerical or simulation procedures
are purportedly available to provide accurate answers so that they can be used
as benchmarks to check the asymptotic approximations, why should one worry
about approximations in the first place? This question can be answered from
three viewpoints.

First, the numerical or simulation procedure may be very time-consuming
and difficult to program for the general user without access to the developer’s
software, whereas fast and simple approximations whose accuracy has been as-
certained are indeed very useful in practice. A case in point is American option
pricing described in Section 7 of the paper. The Cox-Ross-Rubinstein (1979) bi-
nomial tree method with 10, 000 (or more) time steps has been used in the finance
literature to price an American option accurately. However, implementation of
dynamic hedging strategies depends on fast computation of a large number of
option prices and hedge parameters (instead of the price of a single option), and
therefore fast and accurate approximations to option values are needed for prac-
tical management of option books. Anyway there is no exact solution to the
American option valuation problem. The binomial tree or other finite difference
methods with a large number of time steps are also numerical approximations
themselves.

Second, while the computer can be used to generate a numerical result for
each special case, it does not provide a general picture or pattern. Asymptotic
analysis is particularly useful in leading us to a general theory. A classic example
is Fisher’s theory of maximum likelihood, and sequential analysis needs asymp-
totic analysis even more because of its greater complexity. Asymptotic analysis
and numerical computations are complementary to each other, and both are
needed to develop a successful statistical procedure.

Third, asymptotic analysis often provides valuable clues in the development
of efficient computational procedures. For example, the change-of-measure ar-
gument that Wald (1945) used in his derivation of approximations (ignoring
overshoots) for the error probabilities of the SPRT has played a key role in
the development of importance sampling methods to evaluate boundary crossing
probabilities by Monte Carlo simulation, as pointed out by Professor Pollak. To
develop importance sampling algorithms for Monte Carlo computation of bound-
ary crossing probabilities in sequential change-point detection, Lai (1995b) and
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Lai and Shan (1999) independently arrived at the same tilting measure used
by Yakir and Pollak (1998) to derive their new characterization of the renewal-
theoretic constant that appears in large deviation approximations to first passage
probabilities. In multiparameter problems and Markov-dependent situations,
asymptotic approximations to boundary crossing probabilities are often difficult
to compute directly, since they involve multivariate integrals over complicated
regions and Markovian fluctuation theory, but their derivation illuminates how
the tilting measure for importance sampling in these complicated situations can
be constructed; see Chan and Lai (2000c, d). Making use of similar asymptotic
analysis, Chen (2001) has recently developed a systematic theory for sequential
importance sampling with resampling, introduced by Liu and Chen (1995, 1998)
to implement nonlinear filtering in state space models via Monte Carlo, and by
Kong, Liu and Wong (1994) to perform sequential imputations in missing data
problems.

Professor Gu has described a very interesting “hybrid” of stochastic approx-
imation and Markov Chain Monte Carlo (MCMC) and its applications to spatial
statistics; see also Gu and Kong (1998) for other applications to incomplete data
problems. Stochastic approximation has also provided powerful tools for the con-
vergence analysis of recursive simulation in neuro-dynamic programming, which
attempts to overcome the “curse of dimensionality” in dynamic programming by
combining function approximation, via neural networks and other basis functions,
with temporal-difference learning algorithms to simulate the cost-to-go function
of a policy in a controlled Markov chain; see Bertsekas and Tsitsiklis (1996).

7. Theoretical Issues

Professor Pollak points out that, whereas mixture likelihood ratios or the
adaptive likelihood ratio martingales introduced by Robbins and Siegmund
(1973) have second-order optimality properties for testing sequentially a simple
null hypothesis against a composite alternative in a one-parameter exponential
family, it is not known if the GLR also possesses such property. His comment
prompted Lai (2001) to prove the second-order optimality of sequential GLRs
with suitably chosen time-varying stopping boundaries in multiparameter expo-
nential families, where the null hypothesis is a q-dimensional submanifold of the
p-dimensional parameter space, q < p. The special case q = 0 reduces to the
simple null hypothesis considered by Pollak (1978). This second-order optimal-
ity theory of sequential GLRs is, therefore, applicable to a much wider class
of null hypotheses (including the presence of nuisance parameters) than those
considered for mixture likelihood ratios or adaptive likelihood ratio martingales.
Besides the obvious connections to the well developed theory of fixed sample size
tests explained earlier, the reason why I prefer GLR statistics is that they are
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“automatic” and there is no apparent loss of information. In contrast, mixture
likelihood ratio tests require suitable specification of the mixing distribution,
which depends on what kind of alternatives one wants to focus on. It is possible
to improve finite-sample performance by using an elaborate mixing distribution
that puts equal mass at close alternatives and at distant ones, as in Kao and Lai
(1980). However, this approach is quite limited in practice since one may not be
able to integrate the mixture likelihood ratio in closed form for general mixing dis-
tributions or for more general parametric families. The adaptive likelihood ratio
martingales that replace the unknown θ in fθ(Xi)/fθ0(Xi) by fθ̂i−1

(Xi)/fθ0(Xi),

where θ̂i−1 is an estimate of θ based on X1, . . . ,Xi−1, are easier to use, but they
suffer from the loss of information due to ignoring Xi, . . . ,Xn that are also avail-
able at stage n. This loss of information is particularly serious in the multivariate
case, where simulation studies have shown that the method can perform poorly
in comparison with sequential GLR tests.

Professor Yakir’s discussion is also about second-order optimality but in the
context of sequential change-point detection where the pre- and post-change dis-
tributions of independent observations are completely specified. A subtle point
here is the criteria which one uses to assess detection rules. If one uses the tra-
ditional false alarm ARL constraint and the worst-case expected delay criterion
in (3.2), then the CUSUM rule is (exactly) optimal, as shown by Moustakides
(1986). Professor Yakir introduces a different constraint and considers a sharper
criterion for assessing detection delay to show that the Shiryaev-Roberts rule
is second-order optimal. Although his result is interesting and elegant, it does
not provide definitive arguments for choosing the Shiryaev-Roberts rule over
the CUSUM or moving average rules, contrary to what he asserts in his third
paragraph. His choice of performance criteria to demonstrate the second-order
superiority of the Shiryaev-Roberts rule may not be agreeable to those who have
used an alternative set of performance criteria to establish the optimality of
the CUSUM rule. Asymptotic theory and simulation studies have shown that
CUSUM, Shiryaev-Roberts and moving average rules (with suitably chosen win-
dow sizes) have similar performance according to various criteria in the simple
normal model of known means before and after a single change-point, and second-
order optimality according to one of several equally plausible performance criteria
does not seem to be a compelling reason for favoring the Shiryaev-Roberts rule
over its competitors.

Concerning multi-armed bandits, Professor Woodroofe comments that the
covariate bandit problem with non-parallel regression lines is qualitatively very
different from the traditional bandit problems reviewed in Section 6. The
dilemma between information and control disappears in these covariate bandits
and, under some regularity conditions, the myopic rule is second-order optimal.
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A unified theory incorporating both covariate bandits and traditional bandits is
provided by the asymptotic optimality theory of adaptive choice from a finite
set of stationary control laws in controlled Markov chains. In this more general
context, what is at stake is a certain set B(θ) of parameter values, called the
“bad set”, following the notation of Graves and Lai (1997). For covariate ban-
dits, if no two regression lines are parallel, then B(θ) is empty and the myopic
rule is asymptotically optimal. On the other hand, if some regression lines are
parallel, then B(θ) is non-empty and some “uncertainty adjustments” have to be
introduced into the myopic rule, as in traditional bandits.

8. Optimization Over Time and Its Role in Sequential Statistical Pro-
cedures

Professor Lorden says that “optimality theory has not been very influential
in the development of sequential analysis in the last forty years.” One reason
is that, except for some simple cases such as the Wald-Wolfowitz solution of
the optimal stopping problem that proves the optimality of the SPRT, optimal
stopping and other sequential optimization problems in sequential testing, de-
tection or estimation do not have closed-form solutions. Numerical solution of
the dynamic programming equation often does not provide much insight into
the general pattern since it requires precise specification of the loss function and
prior distribution, and the “curse of dimensionality” also makes it hard to carry
out for multivariate problems.

My experience, however, is that the ability to solve some related optimal
stopping/dynamic programming problem that is both more tractable and proto-
typical can provide important insights. In Lai (1987, 1988, 1997) and Lai, Levin,
Robbins and Siegmund (1980), solution of a tractable optimal stopping prob-
lem in some special case has shed light on easily interpretable approximations
in a general setting, and the performance of these approximations can then be
studied by asymptotic analysis and Monte Carlo simulations. Thus, one does
not have to solve an optimal stopping problem in each special (and potentially
difficult) case, but can make guesses on what nearly optimal procedures should
look like based on what one learns from a particular generic example together
with one’s statistical insights and intuition. Sometimes, as Professors Chernoff
and Yakir point out, one can bypass backward induction/dynamic programming
calculations altogether by asymptotic analysis and/or lower bound arguments.

Irrespective of its impact on the development of efficient sequential statis-
tical procedures, optimal stopping and other sequential optimization techniques
(see e.g., Whittle (1982, 1983)) are important topics that should be included
in courses on sequential analysis. Optimization over time has become an ac-
tive area of research in several other fields, such as nonlinear partial differential
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equations, control engineering, operations research, economics and finance, and
a well designed course on sequential analysis that incorporates both sequential
optimization techniques and sequential statistical methods, and which strikes a
good balance between theory and applications, should appeal to graduate stu-
dents in statistics and other disciplines.

9. Reinvigoration and Adaptation to Changing Times and Trends

Even though Professor Simons doubts that sequential analysis can thrive in
the contemporary “culture that seriously undervalues mathematical analysis in
favor of computational facility,” I remain optimistic. Perhaps at this point in the
development of sequential analysis, putting more emphasis on “computation”
(and implementation) than on “mathematical analysis” (targeted towards con-
ceptual innovations of the kind mentioned in Professor Simons’ discussion) may
actually promote (rather than inhibit) its growth. As pointed out in Sections 2, 3,
5 and 6 of this rejoinder, what is needed for sequential analysis to be more widely
applicable and to broaden its appeal is implementation (and extension to more
complex models) of its conceptual innovations by making use of current computer
power and other advanced technology. Now is the time for sequential analysis
to reinvigorate itself by taking advantage of (instead of being depressed by) the
strengths (instead of the weaknesses) of the current environment. With many
powerful analytic tools and fundamental concepts already in place, sequential
analysis can now take a bold step forward and change its traditional outlook so
that it can relate more effectively to new trends in the world of science, technol-
ogy and socio-economic activities. In a broad sense, sequential analysis is about
adaptation – how statistical modeling and decisions can be efficiently adapted to
new information and to changes in the underlying system. It should, therefore,
practice what it preaches and be able to “adapt to, without being consumed by”
the changing culture that Professor Simons alludes to.

10. New Challenges and Emerging Opportunities

Professors Siegmund and Turnbull have described a number of exciting appli-
cations of sequential analysis and related boundary crossing problems to genetic
analysis and clinical biostatistics. They have also indicated that what was re-
garded as impractical in biomedical applications of sequential methods is now
gaining wide acceptance. Even the adoption of adaptive treatment allocation
rules in clinical trials, whose difficulty I briefly summarized in the last paragraph
of Section 6 of the paper, has been gaining ground. Incidentally, I only cited Ar-
mitage (1985) and the discussants of his paper who painted what Professor Turn-
bull calls a “bleak” outlook for the application of outcome-dependent allocation
rules in clinical trials, but did not “purport” such outlook myself. However there
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are still many practical difficulties to be resolved, as pointed out by Armitage
and other discussants in their discussion of the ECMO trials in Ware (1989).
Of course, some of these difficulties will disappear when Professor Woodroofe’s
vision of a “centralized” multi-center trial, supported by data communication
networks, materializes.

There are also emerging opportunities for sequential analysis to make im-
portant contributions in other fields. An example is the adaptive control of en-
gineering systems in Professor Wei’s discussion. Making use of the convergence
properties of recursive least squares estimates in stochastic regression models in
Lai and Wei (1982), Lai (1986), Wei (1987b), together with an ingenious analysis
of the dynamics of the associated certainty equivalence control rule, Guo (1995)
established a logarithmic rate for the regret (similar to (5.12)) of the least squares
certainty equivalence rule in his IFAC (International Federation of Automatic
Control) award winning paper. Another fast growing field that offers new oppor-
tunities and challenges to sequential analysis is cognitive science, encompassing
a broad spectrum of areas like neuropsychology, learning and memory, artificial
intelligence and machine learning. An application area associated with learning
and memory is educational testing. Computerized adaptive testing, which is an
active area of research in psychometrics and education, is clearly sequential in
nature. The irreversible correlated multi-armed bandit problem with Markovian
rewards described by Professors Fuh and Hu was motivated by applications to
computerized adaptive testing. Lai and Yakowitz (1995) and Kaebling, Littman
and Moore (1996) have reviewed several applications of multi-armed bandits to
machine learning. Finally, the last paragraph of Professor Turnbull’s discussion
describes many other emerging opportunities and new challenges for sequential
analysis in this “information age” and “new economy”.
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