
Statistica Sinica 10(2000), 317-342

EVOLUTIONARY MONTE CARLO: APPLICATIONS TO Cp

MODEL SAMPLING AND CHANGE POINT PROBLEM

Faming Liang and Wing Hung Wong

The National University of Singapore and UCLA, 8118 Math Sciences

Abstract: Motivated by the success of genetic algorithms and simulated annealing

in hard optimization problems, the authors propose a new Markov chain Monte

Carlo (MCMC) algorithm called an evolutionary Monte Carlo algorithm. This

algorithm has incorporated several attractive features of genetic algorithms and

simulated annealing into the framework of MCMC. It works by simulating a pop-

ulation of Markov chains in parallel, where a different temperature is attached to

each chain. The population is updated by mutation (Metropolis update), crossover

(partial state swapping) and exchange operators (full state swapping). The algo-

rithm is illustrated through examples of Cp-based model selection and change-point

identification. The numerical results and the extensive comparisons show that evo-

lutionary Monte Carlo is a promising approach for simulation and optimization.

Key words and phrases: Change-point identification, crossover, exchange, genetic

algorithm, Markov chain Monte Carlo, metropolis algorithm, mutation, parallel

tempering, regression variable selection, simulated annealing.

1. Introduction

Simulated annealing (Kirkpatrick, Gelatt and Vecchi (1983)) and genetic
algorithms (Holland (1975)) have been increasingly recognized by scientists as
powerful tools for difficult computational problems. They have been applied suc-
cessfully to combinatorial optimization (Randelman and Grest (1986), Chatter-
jee, Carrera and Lynch (1996), VLSI design (Wong, Leong and Liu (1988), Lienig
(1997), Cohoon, Hedge, Martin and Richards (1991)), protein folding (Patton,
Punch and Goodman (1995), Unger and Moult (1993)) and machine learning
(Aarts and Korst (1989), Goldberg (1989)).

Simulated annealing mimics an annealing process in which the temperature
of a system is first raised to a high value, then decreased slowly to a low one. At
each temperature level, the Metropolis-Hastings algorithm (Metropolis, Rosen-
bluth, Rosenbluth, Teller and Teller (1953), Hastings (1970)) is run long enough
for the system to reach equilibrium (Geman and Geman (1984)). The simulation
at high temperatures provides more opportunities for the system to escape from
local minima. The merit of the increasing temperature idea has been adopted by

318 FAMING LIANG AND WING HUNG WONG

the recently developed MCMC algorithms, e.g., simulated tempering (Marinari
and Parisi (1992)), parallel tempering (Geyer (1991), Hukushima and Nemoto
(1996) and dynamic weighting (Wong and Liang (1997)).

The genetic algorithm (Holland (1975)) mimics the process of natural evo-
lution. This algorithm differs from simulated annealing in two respects. First,
rather than making changes to a single solution, a population of solutions are
evolved, and the results obtained in the earlier stage of a run can be used as
a guideline for the later steps. In other words, the genetic algorithm has an
ability to learn from its previous results. Second, in addition to making lo-
cal changes to the solutions (via mutation), the solutions also undergo nonlocal
operations–crossover operations. The crossover operation is the key to the power
of the genetic algorithm. However, it also makes the system highly nonlinear and
strongly interacting, and the behavior of the algorithm is very difficult to analyse
theoretically. Nix and Vose (1991) have applied a Markov chain analysis to this
problem, but the analysis is not based on a realistic genetic algorithm, and it is
also difficult to apply in practice. Other attempts include Walsh function anal-
ysis (Goldberg (1990)) and the schemata theory (Goldberg (1989)). But these
analyses only focus on characterizing the fitness function and miss the effect of
the dynamic feature of the genetic algorithm and consequently some predictions
of them are wrong (Grefenstette (1992)).

In this paper, we propose a new algorithm—evolutionary Monte Carlo
(EMC). This algorithm has incorporated many attractive features of simulated
annealing and genetic algorithms into a framework of Markov chain Monte Carlo
(MCMC). It works by simulating a population of Markov chains in parallel, where
a different temperature is attached to each chain. The population is updated
by mutation (Metropolis update in one single chain), crossover (partial states
swapping between different chains), and exchange operators(full state swapping
between different chains). The numerical results show that EMC offers a signifi-
cant improvement over the traditional MCMC algorithms in both simulation and
optimization.

Before the description of EMC, we have to mention that a similar idea, trying
to use the population information to improve the efficiency of MCMC, was also
pursued by Gilks, Roberts and George (1994). In their snooker algorithm, the
Markov chain state is augmented to include a population of states, and each state
is updated by a Gibbs sampler taken along a direction determined by some or
all of the other states of the population. Quite recently, Liu, Liang and Wong
(1998) suggested the sampling direction be determined by a local optimization
procedure.

This paper is organized as follows. In Section 2 the genetic algorithm is
briefly reviewed. Section 3 describes how the genetic algorithm is modified to

EVOLUTIONARY MONTE CARLO 319

give a MCMC sampler. Section 4 presents some of the computational results,
including the comparison with parallel tempering and the Gibbs sampler. Section
5 concludes the paper with a brief discussion.

2. Genetic Algorithm

In the natural evolutionary process, individuals in a population compete
and mate with each other in order to produce increasingly stronger individuals.
The genetic algorithm (Holland (1975)) mimics such a process and works as a
general optimization technique in which the potential solutions to an optimization
problem also undergo some genetic-styled operations in order to produce some
that solutions minimize the objective function. Successful applications in many
problems (Goldberg (1989)) show the usefulness of the algorithm.

For a clear description, let us first define some terms which here may have
different meanings from their original biology connotations. Suppose we have
an optimization problem, minimizing a cost function H(x), where x may be
a vector. In the terminology of genetic algorithms, H(x) is called a “fitness”
function, a possible solution x to the problem is referred to as an individual,
and is represented by a vector x = (β1, . . . , βd) called a chromosome. A set of
individuals is a population and the number of individuals in the population is
the population size. A position, say i, on a chromosome is called a locus, βi is
called a gene, and the value of βi is called a genotype. In most applications of
genetic algorithms, the chromosome is coded as a binary vector with βi ∈ {0, 1}.
The population is updated by three genetic-styled operators: selection, crossover
and mutation.

In the selection operator, some individuals are chosen from the current pop-
ulation according to a selection procedure to form a sub-population, called a
mating population. The selection procedure most often used is the “roulette
wheel” selection, in which each individual is assigned a weight, and is then se-
lected with a probability proportional to weight. There are many methods for
assigning weights, for example, each individual is assigned a weight proportional
to its “Boltzmann probability”,

p(xi) =
exp(−H(xi)/t)

Z
, Z =

N∑
i=1

exp(−H(xi)/t). (1)

Other selection procedures include random selection and truncation selection. In
random selection, each individual is selected at random (the fitness values are
not considered). In truncation selection, only the top p individuals (in fitness
values) are selected.

In the crossover operator, different offspring are produced by a recombination
of parental chromosomes randomly selected from the mating population. For

320 FAMING LIANG AND WING HUNG WONG

example, xa and xb are selected as the parental chromosomes and two “offspring”
x′

a and x′
b are generated as follows. First an integer crossover point i is drawn

uniformly on {1, . . . , d}, then x′
a and x′

b are constructed by swapping the genes of
the two parental chromosomes to the right of the crossover point. The following
diagram shows the 1-point crossover operator.

(βa
1 , . . . , βa

d) (βa
1 , . . . , βa

i , βb
i+1, . . . , β

b
d)

=⇒
(βb

1, . . . , β
b
d) (βb

1, . . . , β
b
i , β

a
i+1, . . . , β

a
d).

If there are k (k > 1) crossover points, it is called a k-point crossover. One ex-
treme case is the uniform crossover, in which the value of each position (i.e., the
genotype of the position) of x′

a is randomly chosen from the two parental geno-
types and the corresponding genotype of x′

b is assigned to the parental genotype
not chosen by x′

a. The crossover operation is the key to genetic algorithms. With
it, beneficial genes of parental chromosomes can combine together and possibly
produce high quality individuals.

In the mutation operator, the individual chromosome is modified by means
of point mutation. For example, if the chromosome is represented by a binary
bit string, mutation can take place on a bit, either by reversing (i.e., change 0
to 1 and vice versa) or by throwing a coin for choosing 0 or 1 independently of
the original value. Note that the bit is also chosen randomly. Often mutation
operators are 1-point or 2-point mutations, i.e., one or two bits are chosen to
mutate.

With the terms defined above, the genetic algorithm is summarized as fol-
lows.
1. Initialization. Set t = 0, start from the initial population P (t) consisting of n

individuals.
2. Selection. Set t ← t + 1. Some individuals are selected from the current

population according to a selection procedure.
3. Crossover. Offspring are produced by a recombination of the chromosomes in

the mating population. The offspring are denoted by M(t) and new population
P (t) is formed by a selection from the mixed population of P (t−1) and M(t).
Here the selection procedure may or may not be the same as in step 2.

4. Mutation. Choose offspring with a fixed and small probability pm for further
modifications, where pm is called a mutation rate.

5. Termination checking. If the termination criterion is satisfied, stop; otherwise
go back to step 2.
This algorithm has three free parameters: population size, mating population

size and mutation rate. Population size may vary with problems from several tens

EVOLUTIONARY MONTE CARLO 321

to several thousands; the mating population size is often chosen as 0.4 to 0.6 of
the population; the mutation rate is usually quite small, e.g., 0.001 or 0.005.
Refer to Davis (1991) for a detailed discussion of the choice of free parameters.

3. Evolutionary Monte Carlo

The genetic algorithm makes efficient use of information distributed across
states of a population via a crossover operator, success in many hard optimization
problems establishing usefulness. It is natural then to investigate whether the
crossover operator can be used to improve the efficiency of a simulation. However,
the genetic algorithm is an optimization technique and some modifications are
needed to incorporate it into the framework of MCMC.

Let x = {x1, . . . , xN} denote a population of samples, where xi = (βi
1, . . . , β

i
d)

is a d-dimensional vector called an individual or a chromosome in EMC, and N

is the population size. In Bayesian statistics, xi is often a vector of parameters
while the fitness function H(xi) is the negative of the log-posterior of xi. In EMC,
a different temperature ti is attached to each individual xi, and the temperatures
form a ladder with the ordering t1 > · · · > tN . For convenience, t = (t1, . . . , tN).
Then a Boltzmann distribution for each individual xi can be defined as

fi(xi) =
1

Zi(ti)
exp{−H(xi)/ti}, (2)

where Zi(ti) is the normalizing constant, Zi(ti) =
∑

{xi} exp{−H(xi)/ti}.
In EMC, the Markov chain state is augmented as the population x instead

of a single sample xi, and the Boltzmann distribution of the population is

f(x) =
n∏

i=1

fi(xi) =
1

Z(t)
exp{−

N∑
i=1

H(xi)/ti}, (3)

where Z(t) =
∏N

i=1 Zi(ti).
In equation (3), a mutual independence is assumed for each individual. The

choice for the distribution is partly motivated by parallel tempering (Geyer
(1991), Hukushima and Nemoto (1996)), where such a distribution on an en-
semble of states at various temperatures is used to facilitate a faster mixing. We
now discuss how many aspects of the genetic algorithm can be incorporated into
the framework of MCMC.

3.1. Mutation

In the mutation operator, a chromosome, say xk, is randomly selected from
the current population x = {x1, . . . , xk, . . . , xN}, then mutated to a new chro-
mosome yk by reversing the values of some bits which are also chosen randomly.

322 FAMING LIANG AND WING HUNG WONG

A new population is proposed as y = {x1, . . . , yk, . . . , xN}, and it is accepted
with probability min(1, rm) according to the Metropolis rule, where rm is the
Metropolis-Hastings ratio,

rm =
f(y)
f(x)

T (x|y)
T (y|x)

= exp{−(H(yk)−H(xk))/tk}T (x|y)
T (y|x)

, (4)

and T (·|·) denotes the transition probability between populations. If the proposal
is accepted, the current population x is replaced by y, otherwise the population
x is unchanged.

In addition to 1-point and 2-point mutations, we also use a uniform mutation
in which each bit of xk has a nonzero probability of mutating. Note that all these
operators are symmetric, i.e., the transition probability from x to y is the same
as that from y to x.

3.2. Crossover

One chromosome pair, say xi and xj (i �= j), is selected from the current
population x according to some selection procedure, e.g., a roulette wheel selec-
tion or a random selection. Without loss of generality we assume H(xi) ≥ H(xj).
Two “offspring” are generated according to some crossover operator (discussed
below), the offspring with a smaller fitness value is denoted yj and the other is yi.
A new population is proposed as y = {x1, . . . , yi, . . . , yj, . . . , xN}. According to
the Metropolis rule, the new population is accepted with probability min(1,rc),

rc =
f(y)
f(x)

T (x|y)
T (y|x)

= exp{−(H(yi)−H(xi))/ti−(H(yj)−H(xj))/tj}T (x|y)
T (y|x)

, (5)

where T (y|x) = P ((xi, xj)|x)P ((yi, yj)|(xi, xj)). P ((xi, xj)|x) denotes the selec-
tion probability of (xi, xj) from the population x, P ((yi, yj)|(xi, xj)) denotes the
generating probability of (yi, yj) from the parental chromosomes (xi, xj).

Throughout this paper, the parental chromosomes are chosen as follows. The
first chromosome xi (xj) is chosen according to a roulette wheel procedure with
Boltzmann weights, i.e., xi (xj) is chosen with probability defined in (1). The
second chromosome xj (xi) is chosen randomly from the rest of the population.
The selection probability of (xi, xj) is then

P ((xi, xj)|x) =
1

(N − 1)Z(x)
[exp{−H(xi)/t}+ exp{−H(xj)/t}], (6)

where Z(x) =
∑N

i=1 exp{−H(xi)/t}. P ((yi, yj)|y) can be calculated similarly.
The crossover operators used in the genetic algorithm, e.g., 1-point crossover,

2-point crossover and uniform crossover, are also applicable here. Note that these

EVOLUTIONARY MONTE CARLO 323

operators are all symmetric, i.e., P ((yi, yj)|(xi, xj))=P ((xi, xj)|(yi, yj)), the ratio
of transition probabilities in (5) is reduced to the ratio of selection probabilities.

We also introduce a new crossover operator, which we refer to as an adaptive
crossover. Here two offspring are generated as follows. For each locus, if xi and
xj have the same value, yi and yj copy the value, and independently reverse it
with probability p0; if xi and xj have different values, yi copies the value of xi

and reverses it with probability p2, yj copies the value of xj and reverses it with
probability p1. Usually we set 0 < p0 ≤ p1 ≤ p2 < 1. Obviously, the adaptive
crossover tends to preserve the good genotypes of a population, and learning is
enhanced. Table 1 gives the single locus generating probabilities of new offspring
(yi, yj). The generating probability of the new offspring can be written as

P ((yi, yj)|(xi, xj)) = pn11
11 pn12

12 pn21
21 pn22

22 , (7)

where pab and nab (a, b = 1, 2) denote respectively the probability and frequency
of the cell (a, b) of Table 1. Note that n11 + n12 + n21 + n22 = d.

Table 1. The single locus generating probabilities of new offspring.

parents: offspring: yi and yj

xi and xj same different
same p2

0 + (1− p0)2 2p0(1− p0)
different p1(1 − p2) + p2(1 − p1) p1p2 + (1 − p1)(1− p2)

3.3. Exchange

This operation is the same as that introduced in parallel tempering (Geyer
(1991)) and exchange Monte Carlo (Hukushima and Nemoto (1996)). Given the
current population x and the temperature ladder t, (x, t) = (x1, t1, . . . , xN , tN),
we try to make an exchange between xi and xj without changing the t’s, i.e.,
we try to change (x, t) = (x1, t1, . . . , xi, ti, . . ., xj, tj , . . . , xN , tN) to (x′, t) =
(x1, t1, . . . , xj , ti, . . . , xi, tj , . . . , xN , tN). The new population is accepted with
probability min(1,re) according to the Metropolis rule, where

re =
f(x′)
f(x)

T (x|x′)
T (x′|x)

= exp{(H(xi)−H(xj))(
1
ti
− 1

tj
)}T (x|x′)

T (x′|x)
, (8)

and T (·|·) denotes the transition probability between populations. Typically,
the exchange is only performed on states with neighboring temperature values,
i.e., |i − j| = 1. Let p(xi) denote the probability that xi is chosen to exchange
with the other state, and w(xj |xi) denote the probability that xj is chosen to
exchange with xi for the given xi. Thus, we have the transition probability
T (x′|x) = p(xi)w(xj |xi) + p(xj)w(xi|xj), and T (x′|x) = T (x|x′).

324 FAMING LIANG AND WING HUNG WONG

3.4. Algorithm

Based on the operators introduced above, EMC is summarized as follows.
Given an initial population x = {x1, . . . , xN} (initialized at random) and a tem-
perature ladder t = {t1, . . . , tN}, one iteration of the Markov chain consists of
two steps.
1. Apply the mutation or the crossover operator to the population with proba-

bilities qm and 1− qm, respectively (qm is the mutation rate).
2. Try to exchange xi with xj for N pairs (i, j) with i being sampled uniformly

on {1, . . . , N} and j = i ± 1 with probability w(xj |xi), where w(xi+1|xi) =
w(xi−1|xi) = 0.5 and w(x2|x1) = w(xN−1|xN) = 1.
In the mutation operation, each chromosome of the population is mutated

independently. In the crossover operation, about 40% of chromosomes are cho-
sen to mate. Note that the parental chromosomes are chosen in an iterative way,
i.e., each time two parental chromosomes are chosen from the current population
which has been updated by the last crossover operation. This operation repeats
for [N/5] (the integer part of N/5) times. The algorithm has three free param-
eters, namely N , t and qm. The mutation rate qm can be chosen to achieve
a trade-off between the exploration and convergence of the algorithm (Spears
(1992)). For a small population size, qm is usually set to a large value to provide
the system more opportunities to explore the sample space. However for a large
population size, qm is usually set to a small value to force the system to converge
quickly. Typically, q is set to a value around 0.25 for a small or moderate pop-
ulation size (e.g, N ≤ 50). The temperature ladder t can be set as in simulated
tempering (Marinari and Parisi (1992)) and parallel tempering (Geyer (1991),
Hukushima and Nemoto (1996)). Roughly speaking, ti should be set such that

Var(H(xi))δ2 = O(1), (9)

where δ = 1/ti+1 − 1/ti; Var(H(xi)) denotes the variance of H(xi), estimated
through a preliminary run. This condition on δ is also equivalent to requiring
that the distributions on temperature level ti and ti+1 have a considerable over-
lap. Thus, we will have a reasonable acceptance probability for the exchange
operations.

3.5. Parallel tempering

One important special case of EMC is parallel tempering. Setting qm = 1,
EMC is reduced to parallel tempering (Geyer (1991), Hukushima and Nemoto
(1996)), of which each iteration consists of the following two steps.
• Update independently the N individuals using a standard MC method.
• Try to exchange xi and xj, the exchange being accepted with probability

min(1, re) calculated in (8).

EVOLUTIONARY MONTE CARLO 325

The first step can be accomplished by a mutation operator, the second step can
be accomplished by the exchange operator. Parallel tempering and the closely
related simulated tempering have been applied successfully in the simulation
of spin-glasses systems (Marinari and Parisi (1992), Hukushima and Nemoto
(1996)) and in Bayesian statistical inference (Geyer and Thompson (1995)). The
successes establish their state-of-the-art positions as simulation algorithms in
computational physics and statistics. The two algorithms have almost the same
performance, but simulated tempering is difficult to implement due to the esti-
mation of the pseudo-priors of the distributions on the temperature ladder.

4. Numerical Examples

4.1. Highway data

Weisberg (1985) used data to illustrate variable selection in a multiple re-
gression. These data relate automobile accident rate (in accidents per million
vehicle miles) to 13 potential independent variables, and including 39 sections
of large highways in the state of Minnesota in 1973. According to the analysis
of Weisberg (1985), variable 1 (the length of the segment in miles) should be
included in the regression. Variables 11,12 and 13 are dummy variables that
taken together indicate the type of highway, so one model should include either
all or none of them. Thus, we regard them as one variable. After simplification,
the problem has 10 independent variables, and the number of all possible subset
models is reduced to 1024, manageable even for an exhaustive search. We use
this example to test EMC as a simulation technique.

It is well known that Mallow’s Cp statistic (Mallows (1973)) is an important
measure in the regression variable selection. This is

Cp =
RSSp

σ̂2
+ 2p − n, (10)

where p is the number of predictor variables included in the regression, RSSp is
the residual sum of squares from the subset model and σ̂2 is the estimated error
variance calculated from the full model. Under the true model E(Cp) = p, so
Mallows (1973) suggested that a good model have Cp

∼= p. Since an exhaustive
computation of Cp for all subset models is impossible for a problem with a large
number of predictor variables, some methods have been proposed for the search
of the minimum Cp, e.g., branch and bound (LaMotte and Hocking (1970)). Mal-
lows himself has warned, however, that minimizing Cp may lead to the selection
of a model that has a much larger MSEP (mean squared error of prediction) than
the full model.

To illustrate EMC as a simulation approach, we apply it with a Boltzmann
distribution defined on the space of all 1024 models. The Boltzmann distribution

326 FAMING LIANG AND WING HUNG WONG

is defined as

fi(m) =
1

Z(ti)
exp{−Cp(m)/ti}, (11)

where m denotes a model, ti denotes a temperature, Cp(m) denotes the Cp value
of model m, and Z(ti) =

∑
m exp{−Cp(m)/ti}. The interest in this distribution

comes from the connection between Bayesian and non-Bayesian methods for vari-
able selection in a linear regression. Liang and Wong (1999c) show that, with
an appropriate prior setting, sampling from the posterior distribution of a linear
regression model is approximately equivalent to sampling from the Boltzmann
distribution defined in (11) with ti = 2.

In this example, the chromosome is coded as a 10-dimensional binary vector;
each component indicates whether the corresponding variable is included in the
model or not. The highest temperature was set to 5, the lowest temperature
was set to 1, the intermediate temperatures were equally spaced between the two
limits. A 1-point mutation and a uniform crossover were used in the simulation,
and the mutation rate was 0.25.

First, f(m) was calculated for all 1024 models at temperature 1.0. Figure
2(a) shows this distribution (in terms of Cp) in the range Cp < 10, which covers
99.9% of the probability. In the first run, we chose a population size N = 5, the
algorithm was run for 15000 iterations, and the CPU time was 105s (Here and
in the next section, computations done on an Ultra Sparc2). The overall accep-
tance rates of mutation, crossover and exchange operations were 0.59, 0.60, and
0.76, respectively. These acceptance rates are quite high because the problem is
very simple. During the run, 457 different Cp values were sampled at the lowest
temperature 1.0. These included the smallest 331 Cp values and covered 99.9%
probability of the target distribution. The histogram of the samples is shown in
Figure 2(b). The figure shows that the Boltzmann distribution of Cp has been
estimated accurately by the EMC samples. In another run the population size
was set to 20, other parameters remaining the same. The algorithm was run
for 10000 iteration with CPU 179s. The overall acceptance rates of mutation,
crossover and exchange operations were 0.62, 0.51 and 0.95, respectively. The
results are summarized in Figure 2. The convergence of EMC can be diagnosed
using the Gelman-Rubin statistic R̂ (Gelman and Rubin (1992)) based on mul-
tiple independent runs. Figure 1 shows R̂ values computed from 10 independent
runs. In this example, EMC converges quickly, usually within the first several
tens of iterations (R̂ < 1.1). Here and elsewhere, we made a long run beyond
convergence to get enough samples for inference tasks.

EVOLUTIONARY MONTE CARLO 327

iteration number

R

0 500 1000 1500 2000

1
.0

0
1
.0

5
1
.1

0
1
.1

5

population size N = 20

population size N = 5

Figure 1. Gelman-Rubin convergence criterion R̂. The R̂ values are computed
with 10 independent runs of EMC.

For comparison, parallel tempering was applied to the same example. A 1-
point mutation was used as the local updating proposal function. We have also
tried other proposal functions, e.g., 2-point mutation, and uniform mutation with
similar results. In one run, the population size was set to 5 and 10000 iterations
were produced within 105s. The overall acceptance rates of local updating and
exchange operations were 0.59 and 0.77, respectively. Parallel tempering took
more time per iteration, because in each iteration every chain (individual) was
updated by one Metropolis-Hastings step. However, in the crossover step of EMC,
only some (40%) of chromosomes were updated (chosen to produce offspring). In
another run, the population size was 20, and 5000 iterations were produced within
193s. The overall acceptance rates of the local updating and exchange operations
were 0.62 and 0.94, respectively. The results are summarized in Figure 2.

Figure 2(c) and 2(d) compare the convergence rates of parallel tempering and
EMC for the population size 5 and 20 respectively, where “distance” is defined
as the L2 distance between the estimated mass vector and the true distribution

328 FAMING LIANG AND WING HUNG WONG

of Cp. In these figures, EMC and parallel tempering have been adjusted to have
the same time scale. For example, in Figure 2(c), one point was plotted every
30 iterations for EMC, and one point was plotted every 20 iterations for parallel
tempering to reflect computational time. The figures show that the EMC sampler
has a faster convergence rate than parallel tempering. We also extended the run
of parallel tempering to convergence, i.e., until the distance was lower than a
threshold value. We found that the the computational time to convergence of
parallel tempering was 3 times longer than EMC with N = 5 and with N = 20.
In summary, EMC has sampled the Boltzmann distribution correctly and is more
efficient than parallel tempering in this example.

00

00

1000 20002000

22 44 66 88 1010

0
.0

0
.0

0
.0

0
.0

0
.2

0
.2

0
.4

0
.4

0
.6

0
.6

0
.8

0
.8

CpCp

iteration timeiteration time

d
is

ta
n
c
e

d
is

ta
n
c
e

40004000 3000 50006000 8000 10000

0
.0

5

0
.0

5

0
.1

0

0
.1

0

0
.1

5

0
.1

5

Parallel temperingParallel tempering
EMC samplingEMC sampling

Figure 2. A comparison of EMC and parallel tempering for the highway
example. (a) A bar graph of the Boltzmann distribution specified by Cp.
The interval [0,10] was divided equally into 50 sub-intervals, each bar (the
area of the bar) shows the mass value of the distribution in the sub-interval.
(b) The histogram of Cp estimated by the samples from one run of EMC.
(c) A comparison of the convergence rates of EMC and parallel tempering
with the population size N = 5 and the same computational time. (d) A
comparison of the convergence rates of EMC and parallel tempering with the
population size N = 20 and the same computational time.

4.2. A hard model selection example

The minimum Cp for a problem with fewer than 30 predictor variables could
be computed with the command leaps(·) in S-PLUS. This provides us a conve-
nient way to test the ability of EMC in optimization. Note that the same type of

EVOLUTIONARY MONTE CARLO 329

computational tasks also arise in Bayesian model selection (George and McCul-
loch (1993, 1995) Phillips and Smith (1995)). We use Cp values mainly because
of our wish to compare the sampled smallest Cp value to the exact minimum.

We modified an example of George and McCulloch (1993) to generate the
data for which the exact minimum Cp was computable in S-PLUS. In this ex-
ample, 30 variables, Y1, . . . , Y30, (each with length n = 50) were generated inde-
pendently from the process Yi = Y ∗

i + 2 ∗R, where Y ∗
1 , . . . , Y ∗

30 i.i.d. ∼ N50(0, 1)
independent of R ∼ N50(0, 1). This induced a pairwise correlation of (about)
0.67 among all independent variables. The dependent variable was generated ac-
cording to the model Z = (Y1, . . . , Y30)β + ε, where ε ∼ N50(0, σ2I) with σ = 2,
and the coefficients β = (β1, . . . , β30)′ were chosen as (β1, . . . , β10) = (0, . . . , 0),
(β11, . . . , β20) = (1, . . . , 1), (β21, . . . , β30) = (2, . . . , 2). The number of total sub-
set models is 230, thus it a hard example.

Here the chromosome was coded as a binary vector as in last example. The
temperatures were equally spaced between 10 and 0.5. (We used a low tempera-
ture of 0.5, because we wanted to test whether the minimum Cp model could be
sampled by EMC). The 1-point mutation and the adaptive crossover were used
in the simulation with pm = 0.2, p0 = 0.01, p1 = 0.08 and p2 = 0.1. In the
first run, the population size was N = 5, EMC was run for 1500 iterations and
the CPU time was 60s. The overall acceptance rates of mutation, crossover and
exchange operations were 0.38, 0.26, and 0.41, respectively. In the second run,
the parameters had the same setting, but the population size was increased to
10. The algorithm was run for 750 iterations and the CPU time was 60s. The
overall acceptance rates of mutation, crossover and exchange operations were 0.4,
0.27, and 0.64, respectively,

For comparison, parallel tempering was also applied to the example. With
the same computational time, 800 and 400 iterations were produced in two runs
with the population size N = 5 and N = 10, respectively. In both runs, the
temperature setting was the same as EMC, uniform mutation was used as the
proposal function, and each element was mutated with probability 0.09. In the
run with N = 5, the overall acceptance probabilities of local updating and ex-
change were 0.21 and 0.42 respectively. In the run with N = 10, the overall
acceptance probabilities of local updating and exchange were 0.23 and 0.65 re-
spectively. The moderate acceptance rates of local updating suggest that parallel
tempering has been implemented efficiently.

Table 2 summarizes the computational results of EMC and parallel temper-
ing for 50 independent data sets. For each of them, the exact minimum Cp was
computed by S-PLUS. The comparison shows that EMC offers a significant im-
provement over parallel tempering in locating the minimum Cp. For the failed
cases in Table 2, EMC sampled minimum Cp’s in other runs.

330 FAMING LIANG AND WING HUNG WONG

Table 2. A comparison of the results obtained by EMC and parallel tempering
for 50 independent data sets, where “Error” denotes the number of data sets
in which the minimum Cp was not sampled in the simulation.

EMC Parallel tempering
N = 5 N = 10 N = 5 N = 10

Error 1 2 14 27
Error rate 0.02 0.04 0.28 0.54

For one data set the EMC simulation was extended to 5500 iterations. The
first 500 iterations were discarded for the burn-in process, and the remaining
5000 samples are shown in Figure 3. Figure 3(a) is the histogram of Cp sampled
by EMC at the lowest temperature t = 0.5. The left most bar corresponds to the
sampled minimum Cp, which is also the minimum Cp for the data set. Figure
3(b) is a bar graph of the frequencies with which each variable is included in
the models sampled by EMC. This plot shows that the most frequently sampled
variables include variables 11–14 and 16–30, and the sampling frequencies are
higher than 0.6. A least squares regression of z on the variables 11–30 shows
that variable 15 has the largest p-value 0.52 and the second largest p-value is
only 0.09. This is again consistent with our simulation results.

10

0
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.0

Cp

16 18 2020 22

0
.5

1
.5

2
.0

(a)

1 5 15 25 30

variable

(b)

Figure 3. The results obtained by EMC in the Cp-based regression variable
selection problem. (a) A histogram of Cp samples at the temperature 0.5;
(b) A bar graph of the sampling frequencies of each variable.

Figure 4 shows the Cp (Cp < 25) values sampled by EMC in one run. It
shows that the EMC simulation provides us a fruitful choice for model selection.
In addition to the minimum Cp model (Model 1 with Cp = 15.21), many other

EVOLUTIONARY MONTE CARLO 331

models with larger Cp values were also sampled: the true model (Model 2 with
variables 11–30 and Cp = 16.85), a model with fewer variables (Model 3 with
18 variables and Cp = 16.42), and models near the line Cp = p as suggested by
Mallows (1973).

To illustrate further the power of EMC in simulation and optimization, we
also compared the algorithm to the Gibbs sampler (Geman and Geman (1984))
and reversible jump MCMC (Green (1995)). The latter two algorithms are both
widely used in statistics. For a fair comparison and a demonstration of the effec-
tiveness of the crossover operator, the temperature ladder was set to a constant
value in the following example.

We generated 30 independent variables, Y1,. . . , Y15, e1, . . . , e15 (each of length
n = 50), where Yi i.i.d. ∼ N50(0, 1), ei iid ∼ N50(0, 0.04). Y16, . . . , Y30 were
constructed as Yi = Yi−15 + ei−15. The dependent variable was generated ac-
cording to the model Z = (Y1, . . . , Y30)β + ε, where ε ∼ N50(0, σ2I) with σ = 2,
and the coefficients β = (β1, . . . , β30)′ were chosen as (β1, . . . , β15) = (0, . . . , 0),
(β16, . . . , β30) = (1, . . . , 1).

• •
••
• •• ••• ••• ••• ••• ••• • •••• •••• •••• •• ••• •• •• • •• • •••• •• •••• • •• • •• •• • • •••• •• •• ••• •• ••• ••• •• • • •• •• • •••••• • •• ••• •••••• • •• •• •• •• • •• ••••• • ••• • • ••• •• ••• • •• ••• •• •• •• •••• • • •• •• • •• • ••• • •• ••• •• ••• •• •• ••• •• •• •• • ••• • ••• • •• •• ••• •••• •• •• • • ••• • •••• •• • ••• • •• ••••• • • •• ••• ••• ••• ••••• •• •• •••• •• •• ••• •• •• •• •• •• •• •• •• •• • ••• ••• ••• •• •• • •••• •• ••• • ••• •• ••• ••••• •• ••• ••• •• ••••• ••• •• •• •• •• • •• • ••• •• • • •• ••• • • •• •• •• ••••• •• • ••• •• •• ••• •• • •• • •• ••• ••• • ••• •••• • •• •••• •• •• •• • • ••• •• ••• •• ••• •••• • ••• ••• •• •• ••• •• •• •• • •• •• •• ••• • •• ••• ••• •• ••••• • •• •• • • ••• • •• •• ••• • • ••• •• •• • •• •• ••••• •• •• •• •• ••• ••• • •• •• ••• • •• • ••• •••• ••••• ••• •• •• •• ••• ••• •• ••• ••• • • ••• •• •• •• • •• •• •• • •• •• ••• ••• •• ••••• •••• ••• •• ••• • • ••• • •• •• •• ••• •• • ••• • • •• •• •• • •• •• ••• •• ••• • •••• • ••• • • •• ••• ••• •• •• • • •• •• ••• • ••••• • • •• •• • • ••• •• • • •• • •• • ••• •• •• •• •• ••• •• •• ••• • •• •• •• •••• ••• • •• •• •• ••••• •• •••• ••• • •••• •••• • •••• •• •• •• •• ••• •••• •• •••• •• •• • • ••• ••• • •• ••• •• •••• • ••• •• •• • • •• •• ••• ••• • •• •••• ••••• ••• ••• •• ••• •• •• •••• ••••• •• ••• • •••• •• • •••• • •• ••• ••• •• • ••• •• ••• • •• • •••• • •• • •• •• • • ••• •• • • ••• • • •• • ••• ••• • •• ••• • •• • •••• •• • •• • •• •• •• •• ••• • •• ••• •••• • ••• ••• •• • • •••• •• •• • ••• •• • ••••

+

+
+

2

C
p

1
6

16

1
8

18

2
0

20

2
2

22

1

the number of variables

2
4

24

3
Cp = p

Figure 4. The scatter plot of Cp vs the number of variables included in the
models sampled by EMC. Note that the points are horizontally jittered by
adding random uniform (-.2,.2) numbers to the x-coordinates so the points are
more readable. Point 1 denotes the model with minimum Cp (Cp = 15.21),
point 2 denotes the true model (Cp = 16.85), point 3 denotes a model with
18 variables (Cp = 16.42).

As a consequence of the high correlation between certain pairs of independent
variables, there are many local minima of Cp at a low temperature. The multi-

332 FAMING LIANG AND WING HUNG WONG

modality poses a real challenge. In the simulation of EMC, the temperature
was set to a constant value of 0.25 and the population size was 50. The 1-point
mutation and uniform crossover were used with pm = 0.2. (This may not be
the most effective setting.) For each data set, 500 iterations were simulated with
CPU 150s. The overall acceptance rates of mutation and crossover operations
were around 0.15 and 0.05, respectively. Within the same computational time and
at the same temperature, the Gibbs sampler was run for 600 iterations (at each
iteration, the components of each chromosome were scanned in a fixed order). In
the second run, the setting was the same for all parameters, but the CPU time
was extended to 1000 and 1200 iterations for EMC and Gibbs, respectively. The
computational results are presented in Table 3 and Figure 5 (a) and (b).

The implementation of reversible jump MCMC is quite simple for the ex-
ample, because it only involves jumps (i.e.,“birth/death” steps) in different di-
mensional spaces. Let Ω denote the set of all regression variables, i.e., Ω =
{Y1, . . . , Yd} and d = 30. Let Sk denote the current model which includes k vari-
ables. Given the current model Sk, with probability bk = 0.5 (k �= 1, d), b1 = 1
and bd = 0, we propose to add (“birth”) one variable to the regression, and with
probability 1 − bk we propose to delete (“death”) one variable from the current
regression. If we decide to add one variable to the regression, we pick one of the
d−k variables in Ω\Sk for addition with equal probability 1/(d−k). Say variable
Ym is chosen for addition, then we change k′ = k + 1 and set Sk′ = Sk + {Ym}.
The proposal is accepted with probability min(1,A(birth)), where

A(birth) = exp(−(Cp(Sk′)−Cp(Sk))/t)
1 − bk′

bk

d− k

k′ , (12)

t is the temperature and t = 0.25. If we decide to delete one variable from the
regression, we pick one of the k variables in Sk for deletion with equal probability
1/k. Say the variable Ym is chosen for deletion, then we change k′ = k − 1 and
set Sk′ = Sk−{Ym}. The proposal is accepted with probability min(1,A(death)),
where

A(death) = exp(−(Cp(Sk′)− Cp(Sk))/t)
b′k

1 − bk

k

d− k′ , (13)

with t = 0.25. Note that the Jacobian term which appears in Green’s (1995)
formula does not appear here since we are proposing directly in the new parameter
space. In the first run, the algorithm was run for 17500 iterations (one birth or
death step is called one iteration) with the same CPU time (150s) as EMC.
In the second run, with the same parameter setting, the algorithm was run for
35000 iterations. The results are presented in Table 3 and Figure 5 (c) and
(d). In Figure 5, all histograms are left-skewed with respect to 0, which shows
the superiority of EMC over the Gibbs sampler and RJMCMC in finding the

EVOLUTIONARY MONTE CARLO 333

minimum Cp’s in this example. EMC was also run with a temperature ladder for
this example; the results were similar.

Clearly EMC provides a significant improvement over the Gibbs sampler and
RJMCMC here. However, to show EMC has a better mixing rate is very difficult.
A simple argument for the efficiency of EMC is given in the context of the Cp

based model selection example.
Suppose we have one variable that should always be in the model. In the

EMC algorithm, once this variable has been included in the model for one in-
dividual, it will not only stay there with high probability, it will tend to be
included in the models of more and more individuals as the offspring of the origi-
nal individual (in whom this variable appeared for the first time) multiply in the
population. In contrast, the parallel Gibbs sampler, which gives equal chance
for any variable to be included, must wait a much longer time for this variable
to be present in most individuals. With regard to RJMCMC, here it reduces to
a stepwise procedure consisting of “birth” and “death” steps. However, often
it is desirable to have a proposal that incorporates both simultaneously, i.e., to
exchange one variable in the current model by another outside the current model,
especially one that has been found to improve Cp values. In order to achieve this,
RJMCMC must proceed through a long series of single birth and death steps. In
contrast, such an “exchange” operation can be achieved more efficiently in EMC
through adaptive crossover. Finally, it is worth pointing out that, although EMC
is still a Markov sampler, it is already endowed with certain learning capability.
The reason is that the population can be viewed as a kind of memory that allows
us to construct better proposals based on past observations, and the adaptive
crossover operation is an effective means to exploit this memory.

Table 3. A comparison of the results obtained by the Gibbs sampler,
reversible jump MCMC (RJMCMC) and EMC for 50 data sets, where
#{minimumCp} denotes the number of cases of which the exact minimum
was sampled; “excess percentage” denotes the average excess of the sampled
minimal Cp over the exact minimum, expressed as a percentage of the exact
minimum.

run 1 run 2
Algorithm #{minimumCp} excess #{minimumCp} excess

out of 50 percentage out of 50 percentage
EMC 27 1.63 40 0.63
Gibbs 17 4.61 24 2.47

RJMCMC 7 9.99 13 3.89

334 FAMING LIANG AND WING HUNG WONG

0
2

4
6

0
.0

0.0

0
.0

0.0

0.0

0
.0

0.0

0
.4

0
.8

1
.0

1.0

1
.0

0
.5

0.50.5

0
.5

0.5

1
.5

1
.5

(a)

1
5

(b)

3

-1.0-1.0

-1.0-1.0

-0.5-0.5

-0.5-0.5

Cp(EMC) − Cp(Gibbs)Cp(EMC) − Cp(Gibbs)

(c) (d)

Cp(EMC) − Cp(RJMCMC)Cp(EMC) − Cp(RJMCMC)

1
.2

Figure 5. A comparison of results obtained by the Gibbs sampler, reversible
jump MCMC (RJMCMC) and EMC for 50 data sets. Figures (a) and (b)
show the histograms of the differences of the minimal Cp values sampled by
EMC and Gibbs: (a) the first run; (b) the second run. Figure (c) and (d)
show the histograms of the differences of the minimal Cp values sampled by
EMC and RJMCMC: (c) the first run; (d) the second run.

4.3. Change-point identification

The problem is to identify the positions of an unknown number of change-
points in a univariate time-series. Recently two posterior simulation-based meth-
ods, jump diffusion (Grenander and Miller (1994), Phillips and Smith (1995))
and reversible jump (Green (1995)), have been proposed for the problem. In
this paper, we propose a different treatment. In our method, a latent vector
is introduced to indicate the change-point positions, and the other parameters
are integrated out with an appropriate choice of prior distributions. For simplic-
ity, we assume that between change-points the observations are independently
drawn from a Gaussian distribution N(µ, σ2) with unknown µ and σ. After a
change-point, the Gaussian distribution may shift in both mean and variance.

EVOLUTIONARY MONTE CARLO 335

Let Z = (z1, . . . , zn) denote the observation sequence, in which we assume
that there are no more than d change-points, e.g., d = [n/2]. A d-dimensional
binary vector β = (β1, . . . , βd) is introduced as a latent vector and it works as a
chromosome in EMC. A value 1 of βi indicates that a change-point is identified at
the ith position, otherwise no change-point is identified there. Let β(k) correspond
to a model with k change points, with unknown positions of the change-points
be denoted by c1, . . . , ck, c1 < c2 < · · · < ck. For convenience, we let c0 = 1
and ck+1 = n. Let µi and σ2

i denote the mean and variance of the Gaussian
distribution between change-points ci−1 and ci for i = 1, . . . , k + 1. Then the set
of free parameters of model β(k) is θ(k) = (β1, . . . , βd, µ1, σ

−2
1 , . . . , µk+1, σ

−2
k+1) =

(β(k), µ1, σ
−2
1 , . . . , µk+1, σ

−2
k+1) and the total number of parameters is n(k) = d +

2k + 2. Let Mk denote the model space with k change-points with β(k) ∈ Mk,
with Ω = ∪d

k=0Mk.
The log-likelihood function of model β(k) is then

L(Z|θ(k)) = −
k+1∑
i=1

{(ci − ci−1) log σi +
1

2σ2
i

ci∑
j=ci−1+1

(zj − µi)2}. (14)

The prior distributions are specified as follows. First, the prior probability
of the model space Mk is specified by a truncated Poisson distribution with
unknown parameter λ, and each of the d!/[k!(d − k)!] models in Mk is a priori
equally likely. Hence,

p(β(k)) =
λk

∑d
j=0

λj

j!

(d− k)!
d!

, k = 0, 1, . . . , d. (15)

The parameters µi and σ−2
i are assumed to be independent a priori, and an

improper uniform prior is put on each µi, a Gamma(γ, δ) prior is put on each
σ−2

i with known γ and δ. Then the log-prior of (µ1, σ
−2
1 , . . . , µk+1, σ

−2
k+1) is

log p(µ1, σ
−2
1 , . . . , µk+1, σ

−2
k+1) = ak −

k+1∑
i=1

{(γ − 1) log σ2
i +

δ

σ2
i

}, (16)

where ak = (k + 1)(γ log δ − log Γ(γ)). The log-posterior of θ can be obtained
(up to an additive constant) by adding equations (14), (15) and (16).

Our aim is to sample from the marginal posterior p(β|Z). Under the prior
setting, it can be obtained by integrating out µ1, σ

−2
1 , . . . , µk+1, σ

−2
k+1 explicitly

from the full posterior p(θ|Z), i.e.,

p(β(k)|Z) =
∫
· · ·

∫
p(β(k), µ1, σ

−2
1 , . . . , µk+1, σ

−2
k+1|Z)dµ1dσ−2

1 · · · dµk+1dσ−2
k+1.

(17)

336 FAMING LIANG AND WING HUNG WONG

The resulting marginal posterior (in logarithm) of β is (up to an additive con-
stant),

L(β(k)|Z) = bk −
k+1∑
i=1

{1
2

log(ci − ci−1)− log Γ(
ci − ci−1 − 1

2
+ γ)

+(
ci − ci−1 − 1

2
+ γ) log[δ +

1
2

ci∑
j=ci−1+1

z2
j −

(
∑ci

j=ci−1+1 zj)2

2(ci − ci−1)
]
}
, (18)

where bk = ak + ((k + 1)/2) log 2π + log(d− k)!+ k log λ. The prior provides us a
very simple marginal posterior for β, and the resulting posterior simulation can
be done only in the model space.

In this example, the observation data consists of 200 observations with
z1, . . . , z50 i.i.d. ∼ N(−0.5, 1.0); z51, . . . , z90 i.i.d. ∼ N(0.5, 0.16); z91, . . . , z140

i.i.d. ∼ N(0, 1); and z141, . . . , z200 i.i.d. ∼ N(0.75, 1.0). The time plot is shown
in Figure 6.

0

0

2
1

3

time

o
b
se

rv
a
ti

o
n

50 100 150 200

-2
-1

Figure 6. A time series plot of the observation data of the change-point
identification example.

We assume that there are no more than 99 change-points in the observation
sequence, and the change-points only occur after even observations, i.e., d = 99,
and ci ∈ {2, 4, . . . , 198}. In the simulation, we set λ = 3, γ = 0.05 and δ = 0.05,
which corresponds to a vague prior on σ−2

i . The population size was 20 and the
temperature levels were equally spaced between 5 and 1. A three-point mutation
and an adaptive crossover were used with pm = 0.2, p0 = 0.01, p1 = 0.02 and p2 =
0.04. EMC was run for 6000 iterations (the first 1000 iterations were discarded for
the burn-in process), the CPU time was 127s on a workstation Alpha-500. The

EVOLUTIONARY MONTE CARLO 337

overall acceptance probabilities of mutations, crossover and exchange operations
were 0.38, 0.21 and 0.75, respectively. Table 4 lists the 15 models with the largest
log-posterior values found by EMC. Note that the true change-point model was
ranked 14 in log-posterior values among all sampled models. Other results of the
run are shown in Figure 7.

••• ••• •••• • •••• •• •••• •••• •• •••••• •• •••• •••• •• • • •••• • ••• •••• •• • •• ••• ••• ••• ••••• ••• •• •• ••• •• •• •• ••• ••• ••• ••• •• •• •• •• •• •• ••• •• ••• • •• ••• ••• •••• •• • •• •• •• •• • ••••• •••• •••• •• •• • •••••• •• ••••• •••• ••••• •• • ••• ••• ••• ••••••••••• • ••• ••• •••••• ••• ••••• •••• •• ••• • •••• • ••• ••••• •• •••••• •••••• •••• ••••• • •• •• • •• ••••••• •••• • •••••• ••••• ••• ••• •••• ••••• ••• •• •• ••••• •••• •• ••• ••••• ••• ••• ••• •• •••• •• •••• ••• •••• •• •• ••• ••• •••• •••••• ••••••••••• ••• •••• •••• •• ••••••••• ••• •••••• •• •••• • •••••• • ••• •••• • ••••• •• •• •••• ••• •• •• •• •• •• •• ••• ••• ••• ••• •••• • ••• ••• ••• • • •• ••• • •••• • ••• •••• • •• ••• •• • ••• • •• •• • ••• •• • •• •• ••••• •• •• • •• •• •••• •• ••• ••• • ••• •••• •••• ••• •• ••••• ••• • ••• ••••• •• •••• • •• • •••• •• •• •• • • ••••••• ••• •• •• •• ••••• •• •• •• ••••• ••• •• ••• •••• •• •• •• •• ••• •• •• •••••••• ••••••• ••• •••••• ••••• ••••• ••• ••• • ••••• • ••••• •• •• •• •••• •••• •• •• ••••• ••••• ••••• •• • •• •••• •••••• • •• ••• ••••••• •• ••••••• • •• ••••• •• ••• •• •• •••• • •• •••••••• •••• ••••• •• •• • ••• •••• •• •• ••••••• •••• •• •••••• ••• ••• •••• •• ••• • ••••••• • ••• •••• ••• •••• •••• • •• • ••• • ••• • •• •••• •• •••• • •• ••• •• •• ••• •• ••• •• ••• •• •• •• •• ••• •• • ••• •• • • ••• ••••• ••• ••••••• •• •• •••• •• •• • •••• • ••••• •••• • •• • ••• ••• •••••• ••• •• ••• •• •• •••• • •••• ••• •• •• •• •••••• • ••• •••• •••••••• ••• •••• • ••••••• ••
•••

0

00

0

0

2

2 4 6 8

0
.0

0
.0

(a)

1

(b)

3

(c) (d)

time

o
b
se

rv
a
ti

o
n

5050

50

100100

100

150150

150

200200

200

-2
-1

the number of change-points

d
if
fe

re
n
ce

o
f
lo

g
-p

o
st

er
io

r
fr

o
m

th
e

tr
u
e

m
o
d
el

-2
5

-1
5

-5

change-point position

change-point position

0
.0

2

0
.0

2

0
.0

4

0
.0

4

0
.0

6

Figure 7. The simulation results of EMC for the change-point example: (a)
The scatter plot of the difference of the log-posterior values from the true
model vs the number of change-points. The points are horizontally jittered
by adding random uniform (-.2,.2) numbers to the x-coordinates; (b) The
posterior histogram of change-point positions sampled by EMC; (c) The pos-
terior histogram of change-point positions conditional on the model spaceM3

sampled by EMC; (d) A comparison of the MAP estimate of the change-point
positions and the true change-point positions (the vertical (dotted) lines indi-
cated the change-point positions identified by the MAP model, the horizontal
(dashed) lines indicate the change-point positions of the true model).

Figure 7(a) shows that the MAP (maximum a posteriori) model was sampled
in M3. In addition, many models were sampled for which the log-posterior
values were very close. Figure 7(b) is the posterior histogram of the identified
change-point positions. It shows that most of the models with high posterior
probabilities have 3 change-points. Figure 7(c) is the posterior histogram of
change-point positions conditional on the modelM3. This figure shows that the

338 FAMING LIANG AND WING HUNG WONG

three most likely change points are around 50, 100 and 140. Note that there
is much uncertainty around the third cluster of the histogram bars in Figure
7(c). This is consistent with the results shown in Table 4: the models with the
first two change points at 50 and 98, and the third change point being around
140 (134–146) have very close log-posterior values. Figure 7(d) shows the MAP
estimate of the change patterns of the data. The MAP estimate of the change-
points is (50,98,140), which differs from the true values (50, 90, 140) at the
second change-point. This result is strongly supported by the data: a detailed
data exploration shows that the observations 91-98 have a sample mean that
is larger than expected. Also, the data have a great deal of noise, and it is
very difficult to decide if an observation comes from one or the other of the two
neighboring distributions. The EMC simulation seems to work well in identifying
some plausible models according to the posterior likelihood.

Table 4. The 15 models with the largest log-posterior values sampled by
EMC. The underlined model is true and is ranked 14 in log-posterior values
among all models sampled by EMC. The second column shows the differences
of the log-posterior values of the models from the true model.

No. log-posterior∗ number of change-points change patterns
1 2.18 3 (50, 98, 140)
2 2.02 3 (50, 98, 138)
3 1.80 2 (50, 98)
4 1.60 3 (50, 98, 144)
5 1.34 3 (50, 98, 142)
6 0.98 3 (50, 98, 136)
7 0.87 3 (50, 96, 140)
8 0.85 3 (50, 98, 146)
9 0.34 2 (50, 102)

10 0.33 3 (50, 96, 144)
11 0.29 3 (50, 98, 134)
12 0.04 3 (50, 96, 142)
13 0.01 2 (50, 96)
14 0.00 3 (50, 90, 140)
15 −0.02 2 (50, 100)

5. Discussion

This paper introduces an evolutionary Monte Carlo algorithm. The algo-
rithm works by simulating a population of Markov chains in parallel, where a
different temperature is attached to each chain. The population is updated by
mutation, crossover and exchange operators, and the updates are accepted or
rejected according to the Metropolis rule.

EVOLUTIONARY MONTE CARLO 339

The effectiveness of the algorithm is due to two things. First, the algorithm
has incorporated the learning ability of the genetic algorithm by evolving with
crossover operators. The “learning” or adaptive nature of the algorithm plays
an important role in the simulation of EMC, especially in the early stage of the
simulation. EMC works on a population of Markov chains. By chance, some
sample (individual or chromosome) obtained in one chain is better than the
others in fitness value. In subsequent crossover steps, according to the selection
procedure employed by EMC, the individual with a higher fitness value will have
a larger probability to be chosen as a parental chromosome to mate with the
other parental chromosome to produce offspring by exchanging parts of their
genomes. For example, xa and xb are chosen as parental chromosomes and xa

has a higher fitness value, with resulting offspring x′
a and x′

b. We can hope that
x′

b will be more alike in genes to xa than one obtained by some random changes
on xb, and there will also be a large probability for x′

b to have a higher fitness
value than xb. In this sense, x′

b has learned from xa. The good samples obtained
in some chains will guide the search in the further steps. In other words, the
crossover operator allows us to construct better proposal distributions based on
the information learned in the EMC process and stored in the population. This is
also consistent with the argument of Gilks, Richardson and Spiegelhalter (1995),
which points out that the rate of (Markov chain) convergence to the stationary
distribution depends crucially on the relationship between the proposal function
and the target distribution.

Second, the algorithm has incorporated the attractive feature of simulated
annealing by sampling along a temperature ladder. The simulation at high tem-
perature can help the system escape from local minima, and this substantially
accelerates the mixing of the system. It is known that selection is an essen-
tial ingredient in all evolutionary processes. In this connection, we note that the
exchange operation (swapping of temperature) can be viewed as a selection mech-
anism. An individual with poor fitness will, through the exchange operations, be
forced to climb up the temperature ladder. At high temperature levels, random
mutations are easily accepted and thus the gene of this poor-fitness individual
will be eliminated from the population.

Although the algorithm was developed for sampling from a space of binary
sequences, it is already applicable in many areas. In addition to the statistical
model selection problem (George and McCulloch (1993), Brown and Vannucci
(1998)) and the change-point identification problem, the algorithm can also find
applications in physics and technology. Examples include the simulation of the
Ising model (Swedsen and Wang (1987), Liang and Wong (1999a)), combinatorial
optimization (Aarts and Korst (1989)), protein folding on lattices, and VLSI
design. In all these problems, chromosomes can be encoded by binary vectors.

340 FAMING LIANG AND WING HUNG WONG

The generalization to problems with a sample space of finite alphabet se-
quences is also immediate. One simple method is to code the finite alphabet
sequence by a finite binary sequence. Another method modifies the mutation
and crossover operators such that each locus of the chromosomes can take values
in the entire alphabet set. The algorithm has also been generalized to real param-
eter problems in Liang and Wong (1999b), in which each chromosome is coded
by a real parameter vector. All computational results show the effectiveness of
the crossover operator. Further work on the theory of EMC is of interest.

References

Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machine. John Wiley,

New York.

Brown, P. J. and Vannucci, M. (1998). Multivariate Bayesian variable selection and prediction.

J. Roy. Statist. Soc. Ser. B 60, 627-641.

Chatterjee, S., Carrera, C. and Lynch, L. A. (1996). Genetic algorithms and traveling salesman

problems. European J. Operational Research 93, 490-510.

Cohoon, J. P., Hedge, S. U., Martin, W. N. and Richards, D. (1991). Distributed genetic

algorithms for the floorplan design problem. IEEE Trans. on CAD 10, 484-492.

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple se-

quences (with discussion). Statist. Sci. 7, 457-472.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE Trans. Pattern Anal. and Machine Intelligence 6, 721-741.

George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. J. Amer.

Statist. Assoc. 88, 881-889.

George, E. I. and MiCulloch, R. E. (1995). Stochastic search variable selection. Markov Chain

Monte Carlo in Practice (Edited by W. R. Gilks, S. Richardson and D. J. Spiegelhalter),

203-214. Chapman & Hall, London.

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In Computing Science

and Statistics: Proceedings of the 23rd Symposium on the Interface (Edited by E. M.

Keramigas), 156-163. Interface Foundations, Fairfax.

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with applica-

tions to pedigree analysis. J. Amer. Statist. Assoc. 90, 909-920.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1995). Introducing Markov chain Monte

Carlo. In Markov Chain Monte Carlo in Practice (Edited by W. R. Gilks, S. Richardson

and D. J. Spiegelhalter), 1-19. Chapman & Hall, London.

Gilks, W. R., Roberts, G. O. and George, E. I. (1994). Adaptive direction sampling. Statistician

43, 179-189.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison Wesley.

Goldberg, D. E. (1990). Genetic algorithms and Walsh functions: part I, a gentle introduction.

Complex Systems 3, 129-152.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika 82, 711-732.

Grefenstette, J. J. (1992). Deception considered harmful. In Foundations of Genetic Algorithms

2 (Edited by L. Darrel Whitley). Morgan Kaufmann, San Mateo.

EVOLUTIONARY MONTE CARLO 341

Grenander, U. and Miller, M. I. (1994). Representations of knowledge in complex systems. J.

Roy. Statist. Soc. Ser. B 56, 549-603.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their appli-

cations. Biometrika 57, 97-109.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan

Press, Ann Arbor.

Hukushima, K. and Nemoto, K. (1996). Exchange Monte Carlo method and application to spin

glass simulations. J. Phys. Soc. Jpn. 65, 1604-1608.

Kirkpatrick, S., Gelatt, Jr., C. D. and Vecchi, M. P. (1983). Optimization by simulated anneal-

ing. Science 220, 671-680.

LaMotte, L. R. and Hocking, R. R. (1970). Computational efficiency in the selection of regres-

sion variables. Technometrics 12, 83-93.

Liang, F. and Wong, W. H. (1999a). Dynamic weighting in simulations of spin systems. Phys.

Lett. A 252, 257-262.

Liang, F. and Wong, W. H. (1999b). Real parameter evolutionary Monte Carlo with applications

in Bayesian neural networks. Technical Report, Department of Statistics and Applied

Probability, NUS.

Liang, F. and Wong, W. H. (1999c). Automatic Bayesian variable selection in linear selection

and the related non-Bayesian methods. Technical Report, Department of Statistics and

Applied Probability, NUS.

Lienig, L. (1997). A parallel genetic algorithm for performance-driven VLSI routing. IEEE

Trans. on Evolutionary Comp. 1, 29-39.

Liu, J. S., Liang, F. and Wong, W. H. (1998). The use of multi-try method and local optimiza-

tion in Metropolis sampling. J. Amer. Statist. Assoc., (in press).

Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661-676.

Marinari, E. and Parisi, G. (1992). Simulated tempering: a new Monte Carlo scheme. Europhys.

Lett. 19, 451-458.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953).

Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087-

1091.

Nix, A. and Vose, M. D. (1991). Modeling genetic algorithms with Markov chains. Ann. Math.

Artificial Intelligence 5, 79-88.

Patton, A. L., Punch III, W. F. and Goodman, E. D. (1995). A standard GA approach to

native protein conformation prediction. Proceedings of the Sixth International Conference

on Genetic Algorithms, 574-581.

Phillips, D. B. and Smith, A. F. M. (1995). Bayesian model comparison via jump diffusions.

In Markov Chain Monte Carlo in Practice (Edited W. R. Gilks, S. Richardson and D. J.

Spiegelhalter), 215-239. Chapman & Hall, London.

Randelman, R. E. and Grest, G. S. (1986). N-city traveling salesman problem: optimization by

simulated annealing. J. Statist. Phys. 45, 885-890.

Spears, W. M. (1992). Crossover or mutation? In Foundations of Genetic Algorithms 2 (Edited

by L. D. Whitley). Morgan Kaufmann, San Mateo.

Swedsen, R. H. and Wang, J. S. (1987). Nonuniversal critical dynamics in Monte Carlo simu-

lations. Phys. Rev. Lett. 58, 86-88.

Unger, R. and Moult, J. (1993). Genetic algorithms for protein folding simulations. J. Molecular

Biology 231, 75-81.

Weisberg, S. (1985). Applied Linear Regression. John Wiley, New York.

Wong, D. F., Leong, H. W. and Liu, C. L. (1988). Simulated Annealing for VLSI design.

Kluwer, Boston.

342 FAMING LIANG AND WING HUNG WONG

Wong, W. H. and Liang, F. (1997). Dynamic weighting in Monte Carlo and optimization. Proc.

Natl. Acad. Sci. USA 94, 14220-14224.

Wright, A. H. (1991). Genetic algorithms for real parameter optimization. In Foundations of

Genetic Algorithms (Edited by G. J. E. Rawlins), 205-218. Morgan Kaufmann, San Mateo.

Department of Statistics and Applied Probability, National University of Singapore, 3 Science

Drive 2, Singapore 117543.

E-mail: stalfm@nus.edu.sg

Department of Statistics, UCLA, 8118 Math Sciences, 405 Hilgard Ave., Los Angeles, CA 90095,

U.S.A.

E-mail: whwong@stat.ucla.edu

(Received May 1999; accepted December 1999)

