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Abstract: Donoho and Johnstone (1998) studied a setting where data were obtained

in the continuum white noise model and showed that scalar nonlinearities applied

to wavelet coefficients gave estimators which were asymptotically minimax over

Besov balls. They claimed that this implied similar asymptotic minimaxity results

in the sampled-data model. In this paper we carefully develop and fully prove this

implication.

Our results are based on a careful definition of an empirical wavelet transform

and precise bounds on the discrepancy between empirical wavelet coefficients and

the theoretical wavelet coefficients.

Key words and phrases: Besov spaces, bounded operators between Besov spaces,

Minimax estimation, thresholding, wavelet transforms of sampled data, wavelets,

white noise equivalence.

1. Introduction

Suppose we have noisy sampled data

ỹi = f(ti) + σz̃i i = 0, . . . , n, (1.1)

where: ti = i/n are equispaced sampling points; f(t), t ∈ [0, 1], is a smooth
function we would like to recover; and z̃i

i.i.d.∼ N(0, 1) is a Gaussian noise term.
The unknown f belongs to a known class F of smooth functions, and we wish to
construct an estimator achieving the minimax mean-squared-error

M̃(n,F) = inf
f̂

sup
f∈F

E‖f̂ − f‖2
L2[0,1]. (1.2)

In earlier work Donoho and Johnstone ((1990) and (1998)) studied this problem
in the case where F is a ball in a Besov or Triebel space (this assumption in-
cludes the more familiar Sobolev and Hölder classes) and concluded that certain
wavelet-domain estimators, based on applying scalar nonlinearities to the empir-
ical wavelet coefficients of the data (yi)ni=0, would be asymptotically minimax for
certain F . In that work, use was made of a result we intend to prove fully in this
article.
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In fact Donoho and Johnstone ((1990) and (1998)) did not study the problem
(1.1)-(1.2) directly . Their attention was directed to observations from the so-
called “white-noise model”

Yε(dt) = f(t)dt + εW (dt) t ∈ [0, 1], (1.3)

where now ε > 0 is a small parameter, f is an unknown smooth function which
we would like to recover, and W (t) is a standard Wiener process, so that W (dt)
is white noise. Donoho and Johnstone ((1990) and (1998)) studied the minimax
mean-squared-error in the white noise model,

M(ε,F) = inf
f̂

sup
f∈F

E‖f̂ − f‖2
L2[0,1], (1.4)

where the infimum is taken over measurable procedures F̂ yielding estimates
f̂ = F̂ (Yε). They studied the asymptotic behavior of the minimax risk as ε→ 0,
where again F is a ball of certain Triebel or Besov spaces, and found that, for
a significant range of such spaces, appropriate estimators built from nonlinear
functions of the wavelet coefficients were asymptotically minimax over F . Such
estimators take the form

f̂ =
∑
I

ηI(〈ψI , Yε〉)ψI , (1.5)

where (ψI) is a nice wavelet orthonormal basis of [0, 1] and (ηI) is a collection
of scalar nonlinearities, depending on ε and F . Hence, in the white noise model,
scalar nonlinearities applied to wavelet coefficients yield asymptotically minimax
estimates over certain Besov and Triebel balls. Donoho and Johnstone ((1990)
and (1998)) then argued that the results in the white noise model (1.3)-(1.4)
implied similar phenomena for the sampled data model (1.1)-(1.2).

It is well established that one may prove results in the sampled-data model
(1.1)-(1.2) by first proving them in the white noise model (1.3)-(1.4) and then
arguing that this implies parallel results for sampled data. Examples where
this has been done in detail include Donoho and Nussbaum (1990) and Donoho
(1994). The general equivalence result of Brown and Low (1996) shows that for
bounded loss function �(.) and for collections F which are bounded subsets of
Hölder classes C1/2+δ, δ > 0, we have, under the calibration ε = σ/

√
n,

inf
f̂

sup
f∈F

EYε�
(
‖f̂ − f‖2

L2[0,1]

)
� inf

f̂
sup
f∈F

Eyn
�
(
‖f̂ − f‖2

L2[0,1]

)
, (1.6)

the expectation on the left-hand side being with respect to white noise obser-
vations Yε and on the right hand-side being with respect to yn = (ỹ0, . . . , ỹn).
Hence there is considerable tradition to support the approach of Donoho and
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Johnstone ((1990) and (1998)). Our goal in this paper is to establish, as ex-
plicitly as possible, for as wide a scale of F as possible, for the unbounded loss
function ‖f̂ − f‖2

L2[0,1], that results of Donoho and Johnstone (1998) for the white
noise model imply corresponding results for the sampled-data model.

In the article to follow we establish two main types of results. First, we
establish lower bounds showing that the sampled-data problem is not easier than
the white noise problem. Second, we establish upper bounds showing that the
sampled-data problem is not harder than the white-noise problem.

1.1. Lower bounds

Theorem 1.1. Let α > 1/p and 1 ≤ p, q ≤ ∞, or α = p = q = 1. Let F be
either a Triebel space Fα

p,q[0, 1] or a Besov space Bα
p,q[0, 1], normed in the way we

describe in Section 2 below. For C > 0, define the ball

F = {f : ‖f‖F ≤ C}. (1.7)

Then, with εn = σ/
√
n we have

M̃(n,F) ≥M(εn,F)(1 + o(1)), n→ ∞. (1.8)

In words, there is no measurable estimator giving a worst-case performance
in the sampled-data-problem (1.2) which is substantially better than what we
can get for the worst-case performance of measurable procedures in the white-
noise-problem (1.4).

Remark. Although Donoho and Johnstone (1998) gives more detailed informa-
tion, we recall here that

M(εn,F) � C2(1−r)σ2rn−r, n→ ∞, r = 2α/(2α + 1). (1.9)

1.2. Upper bounds

We will specialize to estimators derived by applying certain coordinatewise
mappings to the noisy wavelet coefficients.

For the white-noise model, this means the estimate is of the form (1.5) where
each function ηI(y) either belongs to one of three specific families – Linear, Soft
Thresholding, or Hard Thresholding – or else is a general scalar function of a
scalar argument. The families are described in the following table:

Family Description Form of ηI(y)
EL Diagonal linear procedures ηL

I (y) = cI · y
in the wavelet domain

ES Soft thresholding of wavelet coefficients ηS
I (y) = (|y| − λI)+sgn(y)

EH Hard thresholding of wavelet coefficients ηH
I (y) = y1{|y|≥λI}

EN Scalar nonlinearities Arbitrary ηN
I (y)

of wavelet coefficients
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For the sampled-data problem, this means that the estimate is of the form

f̂ =
∑
I

ηI(y
(n)
I )ψI , (1.10)

where y(n)
I is an empirical wavelet coefficient based on the sampled data (ỹi)

defined in Section 4.2 below, and the ηI belong to one of the families E . Then
define the E-minimax risks in the two problems:

ME (ε,F) = inf
f̂∈E

sup
f∈F

EYε‖f̂ − f‖2
L2[0,1] (1.11)

and
M̃E(n,F) = inf

f̂∈E
sup
f∈F

Eyn‖f̂ − f‖2
L2[0,1]. (1.12)

We write ML for the linear minimax risk MEL
etc.

This definition is really four definitions – one for each choice of E . To avoid
confusion, we spell this out in a particular case. Let ηS

λ (y) = (|y| − λ)+sgn(y)
denote the soft thresholding nonlinearity. Let

MS(ε,F) = inf
(λI)

sup
F
E‖f̂ − f‖2

L2[0,1], (1.13)

where the infimum is over choice of thresholds (λI), and the estimator f̂ takes
the form

f̂ =
∑
I

ηS
λI

(〈ψI , Yε〉)ψI . (1.14)

With this notation established, we have

Theorem 1.2. Let α > 1/p and 1 ≤ p, q ≤ ∞ or α = p = q = 1. For each of
the four classes E of coordinatewise estimators,

M̃E(n,F) ≤ME(εn,F)(1 + o(1)), n→ ∞. (1.15)

Our approach is to make an explicit construction transforming a sampled-
data problem into a quasi-white-noise problem in which estimates from the white-
noise model can be employed. We then show that these estimates on the quasi-
white-noise-model data behave nearly as well as on the truly-white-noise-model
data. The construction is described in detail in Section 3 and its properties are
established in Section 4.

1.3. Implications

Several conclusions follow immediately from these bounds.
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First, asymptotic minimaxity of scalar nonlinearities. Donoho and Johnstone
(1998) show that for Besov balls F with p ≤ q and normed as described in Section
2 below,

MN (ε,F) ∼M(ε,F) as ε→ 0 (1.16)

This is, appropriate scalar nonlinearities of the wavelet coefficients are asymp-
totically minimax among all measurable procedures.

Corollary 1.3. Let α > 1/p and 1 ≤ p ≤ q ≤ ∞. For F a ball (1.7) in the Besov
scale,

M̃N (n,F) ∼ M̃(n,F), n→ ∞. (1.17)

Second, near-asymptotic minimaxity of hard/soft thresholding.
Donoho and Johnstone (1998) show that for Besov and Triebel balls,

MS(ε,F) ≤ ΛS(p, q)M(ε,F)(1 + o(1)) ε→ 0, (1.18)

MH(εF) ≤ ΛH(p, q)M(ε,F)(1 + o(1)) ε→ 0, (1.19)

where ΛS and ΛH are constants depending on p and q only, and can be bounded
explicitly; e.g., ΛS ≤ 2.2, ∀ 1 ≤ p, q ≤ ∞.

Corollary 1.4. Let α > 1/p and 1 ≤ p, q ≤ ∞ or let α = p = q = 1. Then

M̃S(n,F) ≤ ΛS(p, q)M̃ (n,F)(1 + o(1)) n→ ∞, (1.20)

M̃H(n,F) ≤ ΛH(p, q)M̃ (n,F)(1 + o(1)) n→ ∞. (1.21)

Third, near-asymptotic minimaxity of linear estimates. Donoho, Liu and
MacGibbon (1990) and Donoho and Johnstone (1998) show that for Besov bodies
and p, q ≥ 2,

ML(ε,F) ≤ 1.25 ·M(ε,F)(1 + o(1)), ε→ 0. (1.22)

Corollary 1.5. Let α > 1/p and 2 ≤ p, q ≤ ∞. Then

M̃L(n,F) ≤ 1.25 · M̃(n,F)(1 + o(1)) n→ ∞.

1.4. Precision of the empirical wavelet transform

Our approach to the upper bounds is based on defining and studying a
certain empirical wavelet transform, a scheme for transforming finite sequences
into approximate wavelet coefficients

(f(ti))ni=0
Wn→ (θ̃I)I .

This transform is defined using Deslauriers-Dubuc Interpolation, which starts
from n+1 data f(ti), and produces a smooth interpolating function P̃nf(t). The
coefficients are obtained by setting θ̃I = 〈P̃nf, ψI〉.
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This transform is “accurate” in the sense that for each fixed I, the empirical
coefficient θ̃I = θ̃

(n)
I converges to the theoretical counterpart θI as n→ ∞. More

significantly, we can establish approximation in norm for the vector of coefficients
out to a certain cutoff scale. Suppose that (α, p, q) are fixed, and we set

γ =

{ 1
2α+1 p ≥ 2

1
2α+1

α
α+1/2−1/p p < 2

. (1.23)

Fix a small positive number η so that λ = γ + η < 1, and then define the cutoff
scale

j0 = j0(n;α, p, q, η) = λ log2(n)�. (1.24)

We will be interested only in the degree of approximation achieved by the em-
pirical wavelet coefficients at scales j ≤ j0. Our results can be stated in terms of
the partial reconstruction

f̃ =
∑

|I|≥2−j0

θ̃IψI ; (1.25)

we will establish, in Section 5 below, the following result.

Theorem 1.6. Let α > 1/p and 1 ≤ p, q ≤ ∞ or α = p = q = 1. Then for F a
Triebel or Besov space with the prescribed (α, p, q) and F the corresponding ball
(1.7),

sup
f∈F

‖f̃ − f‖F → 0. (1.26)

In short, the empirical wavelet coefficients are uniformly accurate over Besov
or Triebel balls in a certain range of values (α, p, q), in a strong norm. It is the
range of validity of this result that governs the range of validity of (α, p, q) in our
earlier theorems.

Of course, the issue of the accuracy of empirical wavelet coefficients is not
new. Strang has called the lack of attention to this issue one of the great “wavelet
crimes”.

Previous studies of sampling include Donoho (1992b), Donoho (1993) and
Delyon and Juditsky (1996). Those articles addressed a different program than
our current one. The results of Donoho (1992b) show that for the empirical
transform coefficients (θ̄(n)

I ) defined in that work, the object

f̄n =
∑

j≤log2(n)

θ̄
(n)
I ψI

satisfies bounds of the form

‖f̄n‖F ≤ A · ‖f‖F , (1.27)
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for an unknown constant A not necessarily close to 1. Such inequalities are useful
for establishing that the most natural definition of empirical wavelet transform
for sampled data and the most natural implementation of wavelet thresholding
achieve nearly- (but not precisely-) minimax behavior (compare Donoho, John-
stone, Kerkyacharian and Picard (1995), Donoho (1992a)). In the context of this
paper, (1.27) would lead easily to the conclusion

M̃(n,F) ≤ A ·M(εn,F) (1.28)

for a constant A which is unknown and not expected to be close to 1 – but not
to anything sharper. However, this conclusion is considerably weaker than what
we prove here, which might be viewed as of the same form as (1.28), only with
A = An → 1 as n → ∞. Inequalities like (1.28) with unknown A > 1 would not
yield the corollaries given Section 1.3.

Earlier work does not seem to us to be oriented towards developing uniform
bounds (1.26). In consequence, we do not see that that work gives information
at the level of precise constants – our goal here.

1.5. Contents

The article begins in Section 2 with some background on the wavelet bases
we are using and the Besov/Triebel scales they induce. Lower bounds on the
difficulty of the sampled-data problem are given in Section 3. Upper bounds on
the difficulty are given in Section 4, where a specific construction is provided.
Technical lemmas are proved in Section 5, and a key technical result implying
Theorem 1.6 is proven in Section 6.

2. Sequence Space

In the background, we are always assuming that we have fixed the choice
(α, p, q) and the choice of the Triebel or Besov scale, so that we will be interested
in a fixed Triebel space Fα

p,q[0, 1] or a Besov space Bα
p,q[0, 1]. Once these choices

have been made, we choose a wavelet basis (ψI)I compatible with this space.
In this paper, this will always be a nice orthonormal wavelet basis, consisting
of wavelets of compact support, with elements having R continuous derivatives
(ψI ∈ CR) and D + 1 vanishing moments (

∫
t�ψI(t)dt = 0, � = 0, . . . ,D). We

impose the vanishing moment condition only at sufficiently fine scales; see below.
The basis is chosen so that min(R,D) ≥ α. Then the wavelet basis will be an
unconditional basis of the corresponding space of interest, which is the essential
point for us. Compare Frazier, Jawerth and Weiss (1991), Meyer (1990).

A word about our indexing scheme. Wavelets are indexed by dyadic intervals
I = Ij,k = [k/2j , (k + 1)/2j), j ≥ 0 and 0 ≤ k < 2j . The indexing scheme
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reflects the fact that wavelet ψI is localized so that for an appropriate c > 0,
supp(ψI) ⊂ cI for every I, where cI denotes the interval with the same center as
I dilated by a factor c.

We include in our index set an extra interval I−1,0 = [0, 2) (which doesn’t
fit in [0, 1)). Hence our indexing set I = {I−1,0, I0,0, I1,0, I1,1, I2,0, . . .}. It will
be convenient at times to break this down into ‘resolution levels’ Ij = {Ij,k, 0 ≤
k < 2j} based on the length 2−j of the intervals. We occasionally write Ij

′ for
∪j′≤jIj′ .

For the standard Haar basis, the exceptional interval I−1,0 indexes the ‘fa-
ther’ wavelet ψ−1,0(t) = 1[0,1], which has integral 1, while the other intervals
index wavelets ψI(t) = |I|−1/2h(2jt − k), where h(t) = 1[1/2,1)(t) − 1[0,1/2)(t)
is the Haar function with integral 0. For modern wavelet bases, the single ex-
ceptional interval becomes an exceptional layer: for a certain counting number
m ≥ 0, we gather together I−1,0, I0,0, and the levels Ij for j < m into a set I ′

of cardinality 2m. These ‘first’ 2m wavelets ψI , I ∈ I ′ do not necessarily have
vanishing moments. At all ‘finer’ scales |I| ≤ 2−m the wavelets do have vanishing
moments.

Since the wavelet basis is required to live on the interval [0, 1], we assume
it has the following structure (for details, see Cohen, Daubechies, Jawerth and
Vial (1993)). Suppose that the wavelet ψ has support [−k0, k0 + 1]. For k0 ≤
k < 2j − k0, ψI(t) = ψ0

jk(t) = 2j/2ψ(2jt − k). In the boundary cases, ψjk are
obtained from translates of ψ0

jk by orthonormalization on [0, 1]. In particular,
there exist k0 × k0 matrices E� = (e�kk′), E� = (e�kk′), not depending on j, such
that for 0 ≤ k < k0:

ψjk(t) =
k0−1∑
k′=0

e�kk′ψ
0
jk′(t), ψj,2j−k(t) =

k0−1∑
k′=0

e�kk′ψ0
j,2j−k′(t). (2.1)

In particular, the ’boundary’ wavelets have the same smoothness properties as
the interior wavelets.

2.1. Balls in sequence space

Let f be a square-integrable function on [0, 1]. Then f has wavelet coefficients
θI = 〈f, ψI〉 and these coefficients obey a Parseval relation ‖θ‖�2 = ‖f‖L2 .

We have a similar relation for our Besov/Triebel norm. By our assumption
that the wavelet basis has been constructed to be an unconditional basis for Bα

p,q

or Fα
p,q of interest, we can use it to define the corresponding Besov/Triebel norm.

Define
‖θ‖bα

p,q
=

( ∑
j

2jaq
( ∑

I∈Ij

|θI |p
)q/p

dt
)1/q

, (2.2)
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with a = α+ 1/2 − 1/p and, for χI(t) = 1I(t),

‖θ‖fα
p,q

=
( ∫ 1

0
(
∑
I

|θI |q2jaqχI(t))p/qdt
)1/p

,

where now a = α + 1/2. Then we may use the correspondence f ↔ θ to define
norms for Besov and Triebel classes;

‖f‖Bα
p,q

= ‖θ‖bα
p,q

(2.3)

‖f‖Fα
p,q

= ‖θ‖fα
p,q
, (2.4)

norms for Besov/Triebel space equivalent to the usual ones. For example the
Hölder space Λα = Bα∞,∞[0, 1], 0 < α < 1, has traditionally used the norm

‖f‖Λα = ‖f‖L∞ + sup
t,s∈[0,1]

|f(s) − f(t)|
|t− s|α ,

but we use instead the equivalent norm

‖f‖Bα∞,∞ = sup
I

|I|α+1/2|θI |.

These Besov and Triebel norms agree when p = q: ‖θ‖fα
p,p

= ‖θ‖bα
p,p

. Other-
wise, norms from the Triebel scale are bracketed by norms from the Besov scale
with the same σ and p, but different q:

a0‖θ‖bα
p,p∨q

≤ ‖θ‖fα
p,q

≤ a1‖θ‖bα
p,p∧q

, (2.5)

with ai = ai(α, p, q) (see, e.g., Peetre (1975), p. 261 or Triebel (1992), p. 96).
Below, by a Besov or Triebel Ball F with parameters (α, p, q) we mean that

F is of the form
F = {f : ‖f‖F ≤ C},

where F = Fα
p,q or F = Bα

p,q. Ultimately, this amounts to saying that F = {f :
‖θ‖f ≤ C} where f = fα

p,q or bα
p,q. In that sense F is just the image under an

(�2, L2) isometry of the ball of coefficients Θ(C) = {θ : |θ‖f ≤ C}.
We will frequently need two facts. The first is implicitly used throughout.

It is well known and we give it without proof.

Lemma 2.1. Point evaluation f �→ f(t0) is a continuous linear functional on
spaces Fα

p,q or Bα
p,q where α > 1/p, 1 ≤ p, q ≤ ∞, or α = p = q = 1 (and not for

α < 1/p, or α = 1/p, q > 1).

This may provide the reader with an early understanding of the reason that
the condition “α > 1/p, 1 ≤ p, q ≤ ∞ or α = p = q = 1” occurs throughout:
the sampling model (1.1) makes sense over this scale and no larger one.
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A second point is that in the range of (α, p, q) we are considering, the wavelet
coefficients decay at increasingly fine scales.

Lemma 2.2. Let Pjf =
∑

Ij
′ θIψI where Ij

′ is the collection of all I with scale
parameter j or less,

sup
f∈F

‖f − Pjf‖L2 = O(2−jα′
),

where

α′ =

{
α p ≥ 2
α+ 1/2 − 1/p p < 2

. (2.6)

Beginning with this lemma, we collect the proofs in Section 5 below.

2.2. Estimation in sequence space

Donoho and Johnstone (1998) studied a sequence space estimation problem
of the following form: we suppose observations

ȳI = θI + εz̄I , I ∈ I, (2.7)

where z̄I
i.i.d∼ N(0, 1) and θ is an unknown vector which we would like to recover

with small squared-error loss. They suppose θ ∈ Θ, a fixed set, and consider the
minimax risk

M(ε,Θ) = inf
θ̂

sup
θ∈Θ

E‖θ̂ − θ‖2
�2. (2.8)

This sequence space problem is closely connected with the white-noise prob-
lem (1.4). Let Yε(t) be the white-noise model data of (1.3); the expression
ȳI = 〈Yε, ψI〉 makes sense. We can use either stochastic integration theory, or,
more prosaically, integration by parts to sensibly interpret it:∫

ψI(t)Yε(dt) =
∫
ψI(t)f(t)dt + ε

∫
ψI(t)W (dt) = 〈ψI , f〉 − ε · 〈(ψI)′,W 〉.

The resulting data obey
ȳI = θI + εz̄I , ∀I,

where the θI are precisely the wavelet coefficients of f and z̄I
i.i.d.∼ N(0, 1).

Under the correspondence f =
∑
θIψI , with F = {f : f =

∑
θIψI , θ ∈ Θ},

the sequence problem is in isometric correspondence with the original white noise
problem, and the minimax risk (1.4) from observations (1.3) obeys

M(ε,Θ) = M(ε,F), ∀ε > 0. (2.9)

Similarly, if attention is restricted to co-ordinatewise estimators of class E , then
ME(ε,Θ) = ME(ε,F). Given an estimator class E and ball Θ = Θ(α, p, q, C), we
denote by

θ̂I = δI(ȳI ; E ,Θ, ε), I ∈ I,
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the minimax co-ordinatewise estimator corresponding to noise level ε:

sup
θ∈Θ

E||θ̂ − θ||2�2 = ME(ε,Θ).

We will need to study what happens in cases where Θ and ε are inflated slightly:
for this purpose we use

Lemma 2.3. If ε1 ≥ ε0 and C1 ≥ C0, then

ME(ε1, C1) ≤ (ε1/ε0)2(C1/C0)2ME(ε0, C0).

3. Sampling Does not Make Things Easier

Donoho and Johnstone (1998) derived information about the structure of
least-favorable priors for the sequence-space problem (2.8) when Θ is a Besov
ball or a Triebel ball. Let µ be a prior distribution on Θ, and let

B(µ, ε) = E‖E{θ|y} − θ‖2
�2 (3.1)

denote the Bayes Risk, where the expectations are taken with respect to the
joint distribution θ ∼ µ, ȳ = θ + εz̄, z̄ ⊥ θ. They studied an asymptotically
least-favorable prior µ(ε), obeying

B(µ(ε), ε) = sup{B(µ, ε) : supp(µ) ⊂ Θ}(1 + o(1)) ε→ 0; (3.2)

for this prior, the minimax theorem says that

B(µ(ε), ε) = M(ε,Θ)(1 + o(1)), ε→ 0. (3.3)

Our proof of Theorem 1 begins with the assertion it is not necessary to consider
coefficients at scales finer than our cutoff scale j0(n) defined by (1.24) in order
to achieve an asymptotically least favorable prior.

Lemma 3.1. Let 1 ≤ p, q ≤ ∞ and α ≥ 1/p or α = p = q = 1. Let θ(ε) be
distributed according to the (asymptotically) least favorable prior µ(ε). Let θ[n] be
a random sequence with

θ
[n]
I =

{
θ
(εn)
I 0 ≤ j ≤ j0(n), k = 0, . . . , 2j − 1,

0 otherwise.

Let µ[n] be the distribution of θ[n]. Then
(a) supp(µ[n]) ⊂ Θ,
(b) B(µ[n], εn) ∼ B(µ(εn), εn), n→ ∞.
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The implication is that there is a prior distribution µ[n] using a limited range
of scales and yet achieving

B(µ[n], εn) ∼M(εn,Θ), n→ ∞. (3.4)

The proof is in the appendix: here we explain only why j0(n) has the form (1.23)
- (1.24). Since θ(εn) ∈ Θ always and |θ[n]

I | ≤ |θ(εn)
I | for all I, orthosymmetry of Θ

implies that θ[n] ∈ Θ always. Hence, by Lemma 2.2,

‖θ[n] − θ(εn)‖2 ≤ sup
Θ

‖Pj0f − f‖2

= O(2−2j0α′
) = O(n−r′), (3.5)

where (compare (1.23) and (2.6)): r′ = 2λα′ > 2γα′ = 2α/(2α + 1) = r, so that
the error in ignoring terms beyond j0 is of smaller order than the minimax risk
(compare (1.9)).

We will focus attention on the prior µ[n] and show that its Bayes risk for
estimation from sampled data is asymptotically at least as bad as the Bayes risk
for estimation from sequence data.

The idea is as follows. Let θ[n] denote the random variable constructed in
Lemma 3.1. Consider the sampling operator

T (θ[n]) = (f [n](t0), . . . , f [n](tn))′, (3.6)

where f [n](t) =
∑

|I|≥2−j0 θ
[n]
I ψI(t). Thus T is a linear mapping from Rm into

Rn′
, where m = 2j0+1 and n′ = n + 1. Think of Rm as (an initial segment

of) sequence space with norm ‖θ‖2
�2m

=
∑m

1 θ2
i , whereas Rn′

corresponds to a
discretization of [0, 1], and so is naturally normed by ‖ξ‖2

n = (1/n)
∑n

0 ξ
2
i . If

we have sampled data (1.1) with f the random object f [n], we are equivalently
observing

ỹ = T (θ[n]) + σz̃, (3.7)

where ỹ, z̃ ∈ Rn′
, z̃i

i.i.d∼ N(0, 1). Now in comparison, the sequence data

yI = θ
[n]
I + εnz̄I , |I| ≥ 2−j0. (3.8)

Note the difference between the two: in one case, one observes θ[n] with noise; in
the other case, one observes a linear transform of θ[n] with noise. Now if T were
a partial isometry, mapping m-vectors θ into n′-vectors of equal norm, then the
Bayes risk from observations (3.7),

B̃(µ̃[n] , σ) = E‖E{T (θ[n])|ỹ} − T (θ[n])‖2
n,



ASYMPTOTIC MINIMAXITY OF WAVELET ESTIMATORS 13

(where µ̃[n] stands for the distribution of T (θ[n]) when θ[n] is distributed µ[n])
would obey

B̃(µ̃[n], σ) = B(µ[n], εn). (3.9)

Indeed, if T were a partial isometry, then T ∗ỹ =D y and Ty+σ(I −TT ∗)z =D ỹ

show that there are randomized mappings turning observations according to one
model into observations according to the other model. Consequently (y,Θ), (ỹ,Θ)
would be equivalent experiments in Le Cam’s sense, and (3.9) would follow.

Now T is not in general a partial isometry, but it is close.

Lemma 3.2. Let α > 1/p and 1 ≤ p, q ≤ ∞, or α = p = q = 1. Define T as
above.
(a) There exists a partial isometry I [n] from (Rm, ‖ · ‖�2m

) to (Rn′
, ‖ · ‖n) so that

δ2n := sup
θ∈Θ

‖(T − I [n])θ‖2
n = o(n−r), (3.10)

where r = 2α/(2α + 1).
(b) The largest singular value of T (n) = 1 + o(1); i.e.

λmax(T ∗T ) = ‖T ∗T‖ = 1 + o(1). (3.11)

With this degree of approximation of T by a partial isometry, everything
goes asymptotically as if T were itself a partial isometry.

Lemma 3.3. Let y and ỹ be as in (3.7) and (3.8) above. Let θ[n] be as in Lemma
3.1, so that θ[n] ∈ Θ w.p.1. Suppose

sup
θ∈Θ

‖(T − I [n])θ‖2
n ≤ δ2. (3.12)

Then √
B̃(µ̃, σ) ≥ [

√
B(µ, εn) − δ]/max(1, λmax(T ∗T )).

It follows from (3.10) and (3.11) and Lemma 3.3 that

B̃(µ̃[n], σ) ≥ B(µ[n], εn)(1 + o(1)). (3.13)

The final step is to relate the frequentist minimax MSE M̃(n,F) which uses
the L2[0, 1] norm to the Bayes risk B̃(µ̃[n], εn) which is based on the discretized
norm ‖ · ‖n on Rn′

.
First we write M̃(n,F) in sequence space terms using Parseval’s relation. In

what follows, ỹ denotes the vector of observations from model (1.1):

M̃(n,F) = inf
f̂(ỹ)

sup
f∈F

E‖f̂(ỹ) − f‖2
L2[0,1]
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= inf
θ̂(ỹ)

sup
θ∈Θ

E‖θ̂(ỹ) − θ‖2
�2

≥ inf
θ̂(ỹ)

sup
θ∈Θ

E‖θ̂(ỹ) − θ‖2
�2m

≥ Eµ[n]‖E(θ[n]|ỹ) − θ[n]‖2
�2m
, (3.14)

where Eµ[n] denotes expectation with respect to the joint distribution of (θ[n], ỹ),
in which θ[n] ∼ µ[n] and ỹ follows model (3.7).

Second, we use the definition of Bayes risk to write

B̃(µ̃[n], σ) = inf
ξ̂(ỹ)

Eµ[n]‖ξ̂(ỹ) − Tθ[n]‖2
n (3.15)

≤ inf
θ̂(ỹ)

Eµ[n]‖I [n]θ̂(ỹ) − Tθ[n]‖2
n, (3.16)

where I [n] is the partial isometry of Lemma 3.2.
To link these two quantities, we write

‖I [n]θ̂ − Tθ‖n = ‖I [n](θ̂ − θ) + (I [n] − T )(θ)‖n

≤ ‖θ̂ − θ‖�2m
+ δn,

where δ2n is defined as in (3.12). Consequently

(Eµ[n]‖I [n]θ̂ − Tθ[n]‖2
n)1/2 ≤ (Eµ[n]‖θ̂ − θ[n]‖2

�2m
)1/2 + δn. (3.17)

Picking θ̂ = E(θ[n]|ỹ) in (3.17) and exploiting (3.15) and (3.14) yields√
B̃(µ̃[n], σ) ≤

√
M̃(n,F) + δn.

In combination with (3.13) and Lemma 3.1,

(
√
M̃(n,F) + δn)2 ≥ B(µ[n], εn)(1 + o(1))

∼ B(µ(εn), εn)

∼M(εn,Θ)

=M(εn,F),

from which Theorem 1.1 finally follows.

4. Sampling Does not Make Things Harder

We now show how to use estimators in the white-noise model to construct
estimators with nearly equal worst-case performance in the sampled-data model.
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4.1. Deslauriers-Dubuc interpolation

Dubuc (1986) and Deslauriers and Dubuc ((1987) and (1989)) have proposed
a method of interpolating sampled data f(i/n), i = 0, . . . , n to produce a smooth
function P̃nf(t), t ∈ [0, 1]. The method is based on the use of local polynomial
interpolation applied in a recursive multiscale fashion. We will avoid discussion of
the details here, save only to say that the method defines a fundamental function
ϕ̃ satisfying the interpolation conditions

ϕ̃(i) = δi0,

and such that ∫
ϕ̃(t)dt = 1,

∫
tϕ̃(t)dt = 0,

and ϕ̃ has R̃ continuous derivatives. Actually, the Deslauriers-Dubuc algorithm is
a family of algorithms, indexed by a parameter D̃, the degree of local polynomial
interpolation; by choice of D̃ sufficiently large we may arrange to make R̃ > α.
We assume that D̃ has been chosen in this fashion.

The smooth interpolant P̃nf(t) is constructed as follows. The scaled funda-
mental functions ϕ̃i = ϕ̃(nt− i), i = 0, . . . , n satisfy

ϕ̃i(j/n) = 1{i=j}, 0 ≤ i, j ≤ n.

Let then

P̃nf(t) =
n∑

i=0

f(i/n)ϕ̃i(t)

be the resulting Deslauriers-Dubuc interpolant and define its wavelet coefficients

θ̃I = 〈ψI , P̃nf〉 I ∈ I.
How do these coefficients compare to the true wavelet coefficients of f? We

have

Lemma 4.1. Let α > 1/p and 1 ≤ p, q ≤ ∞. Then

sup
f∈F

||f − P̃nf ||2L2 = O(n−r′),

where

r′ =

{
2α p ≥ 2
2(α+ 1/2 − 1/p) p < 2

,

and so r′ > r = 2α
2α+1 .

It follows that the wavelet coefficients of P̃nf , taken as a whole, will give
an approximation to those of f in which the error is negligible compared to the
order O(n−r) of the minimax risk.
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This remains true if we cut off scales beyond j0(n). Define the wavelet
coefficients θ̃(n) by

θ̃
(n)
I =

{
〈ψI , P̃nf〉 j ≤ j0(n;α, p, q, η)
0 else

,

then
sup
θ∈Θ

||θ̃(n) − θ||2l2 = O(n−r′). (4.1)

Important for us will also be the fact that Deslauriers-Dubuc interpolation
is in some sense non-expansive for the (α, p, q) norm. To make this precise we
need to discuss the wavelet coefficients with a scale cut-off.

Lemma 4.2. Let α > 1/p, 1 ≤ p, q ≤ ∞, or α = p = q = 1. Then

||θ̃(n)||bα
p,q

≤ ||θ||bα
p,q

(1 + ∆n(α, p, q, η))

||θ̃(n)||fα
p,q

≤ ||θ||fα
p,q

(1 + ∆n(α, p, q, η)),

where
∆n → 0 as n→ ∞.

In particular if we set Θ = Θ(α, p, q, C) and

C(n) = sup
θ∈Θ

||θ̃(n)||f ,

where f = bα
p,q or fα

p,q, then C(n) → C as n→ ∞.
Our approach will use the observed noisy data ỹi from model (1.1) to create

the noisy interpolant

ỹ(n)(t) =
n∑

i=0

ỹiϕ̃i(t).

We shall need to relate the variance of the wavelet coefficients of ỹ(n) to the
benchmark ε2n = σ2n−1, so define positive scalars λIn by the relation

Var 〈ỹ(n), ψI〉 = λ2
In · ε2n.

Lemma 4.3. We have

λ(n) = sup
j≤j0

λIn ≤ 1 + o(1),

as n→ ∞.

4.2. The construction

We are now in a position to obtain an estimator from sampled data. We
assume n, (α, p, q, C), γ, η, j0 are specified, and the existence of constants ∆(n),
λ(n), and (λIn)I associated with the interpolation scheme are all available. We
have the following steps.
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1. Preparation. Obtain εI = λInεn, ε(n) = λ(n)εn and C(n) = C(1 + ∆n).
2. Interpolation. Using the observed noisy data ỹi from model (1.1), i = 0, . . . , n,

interpolate:

ỹ(n)(t) =
n∑

i=0

ỹiϕ̃i(t)

where the ϕ̃i(t) are the Deslauriers-Dubuc fundamental functions.
3. Inflation. For all Ij,k satisfying j ≤ j0(n), set

y
(n)
I = 〈ψI , ỹ

(n)〉 +
√

(ε(n))2 − ε2I · z̃I ,
where the z̃I are i.i.d. N(0, 1) independent of the {yi}. This process of adding
noise ‘inflates’ the covariance matrix of the noise terms so that all diagonal
entries are equal to (ε(n))2, and we may write

y
(n)
I = θ̃I + ε(n)z

(n)
I j ≤ j0,

where z(n)
I are zero mean, unit variance, and jointly normally distributed, but

may possibly be correlated.
4. Estimation. We apply, to all I with j ≤ j0, the minimax-E family (δI(·; E ,Θn,
ε(n))I) where Θn = Θ(α, p, q, C(n)), getting

θ̂
[n]
I =

{
δI(y

(n)
I ) j ≤ j0

0 else
.

5. Reconstruction. We return to the original domain, getting

f̂(t) =
∑
j≤j0

θ̂
[n]
I ψI .

4.3. Risk properties of the estimator

Given the substantial effort we have made in setting things up, the proof of
Theorem 1.2 is easy. Let f̃ be the partial reconstruction defined in (1.25). We
begin by writing f̂ − f = (f̂ − f̃) + (f̃ − f) and then decomposing

(sup
f∈F

E||f̂ − f ||2L2[0,1])
1/2 ≤ (sup

f∈F
E||f̂ − f̃ ||2)1/2 + (sup

f∈F
||f̃ − f ||2)1/2. (4.2)

The first term on the RHS of (4.2) obeys

sup
f∈F

E||f̂ − f̃ ||2L2[0,1] = sup
θ∈Θ

E||θ̂[n] − θ̃(n)||2�2 (4.3)

≤ME(ε(n), C(n)) (4.4)
≤ (ε(n)/εn)2(C(n)/C)2ME(εn, C) (4.5)
∼ME(εn, C) (4.6)
=ME (εn,F(C)). (4.7)
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We explain the steps in more detail. Equality (4.3) is just the isometry property
of the wavelet transform. (4.3) ⇒ (4.4) makes use of the fact that {θ̃(n) : θ ∈
Θ(α, p, q, ;C)} ⊂ Θ(α, p, q, ;C(n)) and that all the estimators in question are
constructed coordinatewise. (4.4) ⇒ (4.5) uses Lemma 2.3. (4.5) ⇒ (4.6) uses
the crucial results of Lemmas 4.2 and Lemma 4.3. Finally (4.6) ⇒ (4.7) is just
the risk equivalence of white noise with sequence space.

The second term on the RHS of (4.2) can be handled by (4.1):

sup
f∈F

||f̃ − f ||2L2[0,1] = o(n−r),

where r = 2α/(2α + 1).
Comparing the sizes of the two terms on the RHS of (4.2), and noting that

ME(ε(n), C) ≥M(ε(n), C) ≥ c ·n−r we conclude that the second is asymptotically
negligible, and so

M̃E(n,F) ≤ sup
f∈F

E||f̂ − f ||2L2[0,1]

≤ (sup
f∈F

E||f̂ − f̃ ||2)(1 + o(1)) ≤ME(εn,F(C))(1 + o(1)).

This completes the proof of Theorem 1.2.

5. Proofs of Lemmas

We have completed the proof of all the announced results, modulo the lem-
mas they depend on. We now turn to those lemmas. It will turn out that all
but one of the lemmas involve routine estimates. Lemma 4.2 requires a further
development in a section of its own, and in some sense embodies the intellectual
issue at the heart of the paper.

A word on notation: constants depending only on α, p, q and the choice
of wavelet will be denoted by c, not necessarily the same at each occurrence.
Uppercase C is reserved for the size of the norm ball Θ(C).

5.1. Proof of Lemma 2.2

First note that whether F corresponds to a Besov or Triebel sequence ball
Θ(C),

‖θj·‖p := (
∑
I∈Ij

|θI |p)1/p ≤ cC2−ja, a = α+ 1/2 − 1/p. (5.1)

(In the Besov case, this follows from definition (2.2) and the fact that �q norms
decrease as q increases. The Triebel case follows from the Besov using (2.5).)
Secondly, for v ∈ Rm,

||v||l2 ≤ m(1/2−1/p)+ ||v||lp . (5.2)
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We conclude that, for α′ = a− (1/2 − 1/p)+ and K = (1 − 2−2α′
)−1,∑

j′>j

∑
k

|θj′,k|2 ≤ C2
∑
j′>j

2−2j′α′
= KC22−2jα′

.

5.2. Proof of Lemma 2.3

The invariance relation

ME(ε, C) = r2ME(ε/r, C/r)

holds for all ε, C, r > 0, as is easily seen by defining a new problem from (2.7)
via y′ = y/r, θ′ = θ/r, etc., and noting that θ̂(y) ∈ E iff r−1θ̂(ry) ∈ E . Taking
ε = ε1, C = C1 and r = (ε1/ε0)(C1/C0), one sees that it suffices to show that
ME(ε, C) is increasing in C (trivial) and ε.

Given a scalar estimator η(y) = ηI(y) ∈ E , we define

r(µ, η, ε) = E[η(µ+ εz) − µ]2, z ∼ N(0, 1).

Suppose that ε′ < ε : to show that ME(ε′, C) ≤ME(ε, C), it will suffice to exhibit,
for each η ∈ E , an estimator η′ ∈ E such that

r(µ, η′, ε′) ≤ r(µ, η, ε) for all µ. (5.3)

For EN , set y′ = µ + ε′z and let w ∼ N(0, ε2 − (ε′)2) be independent of z.
Define η′(y′) = E[η(y′ + w)|y′]: now (5.3) follows from Jensen’s inequality.

The estimators in the classes EL, ES , EH are all indexed by parameters λI , so
we write r(µ, λ, ε) for E[η(µ+ εz, λ)− µ]2. When ε = 1, we write simply r(µ, λ).
Now (5.3) will be satisfied if we exhibit a threshold modification λ′ = g(ρ)λ such
that

ρ �→ r(µ, g(ρ)λ, ρ) is increasing for all λ > 0, µ ∈ R. (5.4)

Indeed, simply use η′(y′, λ′) with λ′ = (g(ε′)/g(ε))λ.
For EL, r(µ, λ, ρ) = λ2ρ2 + (1 − λ)2θ2, so the trivial choice g(ρ) ≡ 1 suffices

for (5.4).
For ES , we take g(ρ) = ρ. From the invariance relation

r(µ, λ, ε) = ε2r(µ/ε, λ/ε), (5.5)

we obtain
(∂/∂ρ) r(µ, ρλ, ρ) = (2ρr − µrµ)(µ/ρ, λ),

where, using the risk formulas for soft thresholding in Donoho and Johnstone
((1994), eq. A2.8), rµ(µ, λ) = 2µPµ{|y| < λ}. Since ρ > 1, and

(2r − µrµ)(µ, λ) = 2E[η(y, λ) − µ]2I{|y| > λ} > 0,
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we obtain (5.4).
For EH , it seems least inconvenient to take g(ρ) = (ρ + 1)/2. Again using

(5.5),
(∂/∂ρ) r(µ, (1 + ρ)λ/2, ρ) = (2ρr − µrµ − (λ/2)rλ)(µ̄, λ̄),

where rµ, rλ denote the corresponding partial derivatives of r(µ, λ) and µ̄ =
µ/ρ, λ̄ = (1 + ρ)λ/2ρ. Using the expression for r(µ, λ) in Donoho and Johnstone
((1994), eq. A2.2), one obtains

rλ(λ, µ) = φ(λ− µ){µ2 − (λ− µ)2} + φ(λ+ µ){µ2 − (λ+ µ)2},
rµ(λ, µ) = φ(λ− µ){(λ− µ)2 − µ2} + φ(λ+ µ){µ2 − (λ+ µ)2}

+2µ{Φ(λ− µ) − Φ(−λ− µ)}.
After some algebra, and defining H(y) = Φ̃(y) + yφ(y) =

∫ −y
−∞ z2φ(z)dz > 0, we

obtain for ρ > 1 and all (λ, µ):

(2ρr − µrµ − (λ/2)rλ)(µ, λ)

= 2(ρ− 1)µ2{Φ(λ− µ) − Φ(−λ− µ)} + 2ρ{H(λ− µ) +H(λ+ µ)}
+φ(λ− µ)(λ− 2µ)2λ/2 + φ(λ+ µ)(λ+ 2µ)2λ/2 > 0.

5.3. Completion of Proof of Lemma 3.1

We saw that ||θ[n] − θ(εn)||2l2 ≤ cC2 · n−r′ where r′ > r. Jensen’s inequality
gives

||E{θ[n]|y} − E{θ(εn)|y}||2 ≤ E{||θ[n] − θ(εn)||2l2 |y} ≤ cC2n−r′ ,

and so

E||E{θ[n]|y} − θ[n]||2 ≤ ((E||E{θ(εn)|y} − θ(εn)||2l2)1/2 + cCn−r′/2)2

Symmetrically,

E||E{θ(εn)|y} − θ(εn)||2 ≤ ((E||E{θ[n]|y} − θ[n]||2l2)1/2 + cCn−r′/2)2,

as B(µ(εn), εn) ≤ C2(1−r)n−r, where r < r′. The lemma follows.

5.4. Proof of Lemma 3.2

Part a. As at (3.7), for θ ∈ Rm, let f =
∑

|I|≥2−j0 θIψI and Tθ = (f(tk))n0 . The
partial isometry I(n) is given by projection onto an orthonormal basis {φnk}n

k=0

for L2[0, 1]: I(n)θ = (
√
n〈f, φnk〉)n0 . To construct this basis, let φ(t) be a C ᾱ

scaling function supported on [0, k0] such that {φ(t−k), k ∈ Z} is an orthonormal
set in L2(R) and

∫
tkφ(t)dt = δk0 for 0 ≤ k ≤ �ᾱ�. Then set φnk(t) =

√
nφ(nt−
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k). For 0 ≤ k < k0 and n− k0 < k ≤ n, the φnk are not orthonormal in L2[0, 1],
but can be made so by Gram-Schmidt orthogonalization while retaining support
in [0, 1] in the intervals [0, c ·k0/n] and [1− c ·k0/n, 1] respectively, for a constant
c not depending on n.

For those φnk supported entirely in (0, 1), a standard argument using ᾱ−
Hölder smoothness of f and �ᾱ� vanishing moments of φ gives

|f(tk) −
√
n〈f, φnk〉| ≤ c‖f‖Ċᾱn

−ᾱ (5.6)

where c depends on φ only. Using supremum norm bounds for the boundary φjk,

‖(T − I(n))θ‖2
n = n−1

n∑
0

[f(tk) −
√
n〈f, φnk〉]2

≤ 2c2‖f‖2
∞k0n

−1 + c2‖f‖2
Ċᾱn

−2ᾱ. (5.7)

Now (5.1) shows that θ ∈ Θ implies |θjk| ≤ ‖θj·‖p ≤ cC2−aj , and hence

‖f‖Cᾱ ≤ c sup
j≤j0,k

2(ᾱ+1/2)|θjk|

≤ cC sup
j≤j0

2(ᾱ+1/2−a)j ≤ cCn[ᾱ−(α−1/p)]λ,

since a− 1/2 = α− 1/p, so long as ᾱ > (α− 1/p). Also

|f(t)| ≤
∑

|θI ||ψI(t)| ≤ cC
∑
j≤j0

2−aj2j/2,

and hence

‖f‖∞ ≤
{
cC if α > 1/p
cC log n if α = 1/p.

Substituting these embedding bounds into (5.7) yields

δ2n ≤ cC2n2[ᾱ−(α−1/p)]λ−2ᾱ +O(n−1 log2 n).

It is now easy to verify that δ2n = o(n−2α/(2α+1)) so long as ᾱ > 1/2 (if p ≥ 2)
and if ᾱ > α (if p < 2).

Note: Were we concerned only with the case α > 1/p, a much shorter proof could
be based on building I(n) from the singular value decomposition of T and the
inequalities

δ2n ≤ c‖T − I(n)‖2
2 ≤ c‖T ∗T − I‖2

2 ≤ c(2j0/n)2,

where the last bound is proved below. However, when α = p = 1, negligibility of
this bound relative to n−r is incompatible with the corresponding negligibility in
(3.5).
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Part b. We show that

λmax(T ∗T ) = ‖T ∗T‖2 ≤ 1 +O(2j0/n). (5.8)

The matrix (tII′ : I, I ′ ∈ I≤j0) representation of T ∗T in the basis (ψI , I ∈ I≤j0)
is given by

tII′ = 〈ψI , ψI′〉n = (1/n)
∑

i

ψI(ti)ψI′(ti).

The weighted form of Schur’s lemma (e.g. Meyer (1990), Vol. 2, Sec 8.4) states,
in the case of a symmetric matrix M = (mII′), that if there exist positive weights
wI such that for all indices I ∑

I′
|mII′ |wI′ ≤ AwI

then ‖M‖2 ≤ A. Thus (5.8) will follow if we show that∑
I′

|tII′ |2−j′/2 ≤ 2−j/2(1 + c2j0/n) ∀I ∈ Ij0. (5.9)

The next lemma gives elementwise bounds on the distance of T ∗T from the
identity matrix.

Lemma 5.1. Let χ(I, I ′) = 1 if supp ψI ∩ supp ψI′ �= ∅ and 0 otherwise. If ψ is
Lipschitz and has compact support, then

|〈ψI , ψI′〉n − δII′ | ≤ c2(j+j′)/2/n · χ(I, I ′). (5.10)

Assuming the truth of the lemma for a moment, we have from (5.10),∑
I′

|tII′ |2−j′/2 ≤ 2−j/2(1 + c2j/n) + (c/n)SI ,

where SI =
∑

I′ �=I 2j/2χ(I, I ′). Since
∑

I′∈Ij′ χ(I, I ′) ≤ c22(j′−j)+ ,

SI ≤ 2j/2
∑

j′≤j0

c22(j′−j)+ ≤ c32j02−j/2,

which establishes (5.9).
Finally we pass to the proof of the Lemma. Since ψ is Lipschitz,

|ψI(s) − ψI(t)| ≤ c · 2j/22j |s− t|, (5.11)

(whether ψI is a boundary or an interior wavelet) and so

|ψIψI′(s) − ψIψI′(t)| ≤ |ψI(s) − ψI(t)|‖ψI′‖∞ + ‖ψI‖∞|ψI′(s) − ψI′(t)|
≤ c2(j+j′)/22j∨j′ |s− t|.
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Now if Ii = [ti, ti+1), and ‖f‖L denotes the Lipschitz constant of f ,then

|n−1f(ti) −
∫

Ii

f | ≤
∫

Ii

‖f‖L(t− ti)dt = (1/2)n−2‖f‖L,

which implies that

|n−1
∑

i

ψIψI′(ti)−
∫
ψIψI′ | ≤ (1/2)cn−2 · 2(j+j′)/2 · 2j∨j′ · #{i ∈ supp ψI ∩ ψI′}

= cn−12(j+j′)/2. (5.12)

5.5. Proof of Lemma 3.3

We first show how to pass from model (3.8), using randomization, to a version
of model (3.7) with a slightly modified variance. Apply the sampling operator
to (3.8) to obtain T ȳ = Tθ + εnT z̄. The variance of each component (εnT z̄)i is
bounded by

sup
‖ξ‖

�2n
=1

Var (εnξtT z̄) = σ2 sup
ξ

Var 〈ξ, T z̄〉n/〈ξ, ξ〉n

= σ2 sup
ξ

‖T ∗ξ‖2
�2m
/‖ξ‖2

n = σ‖T ∗‖2

= σ2λmax(TT ∗) = σ2λmax(T ∗T ) = σ2λ2, say,

where 〈·, ·〉n is the inner product corresponding to ‖ ·‖n and, again, T is regarded
as an operator from (Rm, ‖·‖�2m

) to (Rn′
, ‖·‖n). Hence, we may choose a Gaussian

vector w̃ in Rn′
, independent of z̄, so that

εnT z̄ + w̃ ∼ N(0, σ2λ2In′).

Thus T ȳ + w̃ = Tθ + εnT z̄ + w̃
D= Tθ + λσz̃.

Consider now observations ỹ = ξ + λσz̃, and for a prior distribution µ̃(dξ)
on ξ, let ξ̂µ̃,λσ denote the corresponding Bayes estimator. In particular, let µ̃
correspond to Tθ[n], where θ[n] is the random variable constructed in Lemma 3.1.
Define a randomized estimator for θ in model (3.8) at noise level εn by

θ̂(ȳ, w̃) = I [n]∗ξ̂µ̃,λσ(T ȳ + w̃).

Then using the partial isometry property of I [n],

B(µ[n], εn) ≤ Eµ[n]‖θ̂(ȳ, w̃) − θ[n]‖2
�2m

≤ Eµ[n]‖ξ̂µ̃,λσ(Tθ + λσz̃) − Tθ[n] + (T − I [n])θ[n]‖2
n

≤ (
√
B̃(µ̃[n], λσ) + δ)2.
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We now use some standard properties of Bayes rules: set ν = µ̃[n]. Then

B̃(ν, λσ) ≤ B̃(ν, σ) if λ ≤ 1, (5.13)

B̃(ν, λσ) = λ2B̃(νλ−1 , σ) ≤ λ2B̃(ν, σ), if λ ≥ 1, (5.14)

where νa(dξ) denotes the scaled prior ν(dξ/a) and the final inequality follows
from properties of Fisher information. Combining (5.13) and (5.14) yields

B̃(µ̃[n], λσ) ≤ (λ2 ∨ 1)B̃(µ̃[n], σ),

and hence the conclusion of Lemma 3.3.

5.6. Proof of Lemma 4.1

It will be convenient to work in L2(R) so as to use results on interpolating
wavelet transforms on R from Donoho (1992b). We extend f =

∑
θIψI ∈ F (de-

fined on [0, 1]) to R using (2.1): f =
∑
θ′Iψ

0
I where θ′I = θI unless suppψI ∪ [0, 1]c

is non-empty. Hence f ∈ Bα
p,q[0, 1] implies f ∈ Bα

p,q(R) (and the embedding has
bounded norm). Let en(F) = supθ∈Θ ‖f − P̃nf‖L2(R): simple scaling arguments
show that if 2J ≤ n < 2J+1, then en(F) ≤ ce2J (F), so that it suffices to take
n = 2J . Donoho (1992b) constructs an interpolating multiresolution with detail
spaces Wj , wavelets ψ̃jk and associated (non-orthogonal) projections Q̃j. Thus
f − P̃nf =

∑
j≥J Q̃jf , with Q̃jf =

∑
k θ̃jkψ̃jk. Donoho ((1995), Theorem 2.7)

shows that f ∈ Bα
p,q (resp. Fα

p,q) iff θ̃ ∈ bα
p,q (resp fα

p,q)and his Lemma 7.3 shows
that ‖Q̃jf‖L2 ≤ c‖θ̃j·‖�2 . Putting all this together with (5.2) and (5.1),

en(F) ≤ sup
F

∑
j≥J

‖Q̃jf‖L2 ≤ c sup
Θ

∑
j≥J

‖θ̃j·‖2

≤ cC
∑
j≥J

2j(1/2−1/p)+2−ja ≤ cC2−Jα′
= cCn−α′

,

where α′ = a − (1/2 − 1/p)+ = α if p ≥ 2 and α′ = α + 1/2 − 1/p if p ≤ 2.
In either case α′ > α/(2α + 1) so that on setting r′ = 2α′, we have e2n(F) =
O(n−r′) = o(n−r).

We note that the cited norm equivalence result Theorem 2.7 is proved only
for α > 1/p, but remarks on the critical case α = 1/p in Section 6 in that paper
show that the argument above in fact extends – with additional bookkeeping –
to cover the Bump Algebra b1

1,1.

5.7. Proof of Lemma 4.3

We have, on setting ξi =
√
nϕ̃i,

Var 〈ỹ(n), ψI〉 = σ2
∑

i

〈ϕ̃i, ψI〉2 = ε2n
∑

i

〈ξi, ψI〉2. (5.15)
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Since
∫
ξi(t)dt = 1/

√
n, and ‖ψI‖L ≤ c23j/2, we have from (5.6), since j1 =

log2(n),
|〈ψI , ξi〉 − ψI(i/n)/

√
n| ≤ c 23/2(j−j1).

As a result,

λIn =
( n∑

i=0

〈ψI , ξi〉2
)1/2 ≤

(
n−1

n∑
i=0

ψ2
I (i/n)

)1/2
+

(
c2

n∑
i=0

23(j−j1)1SI
(i)

)1/2
,

(5.16)
where SI = {i : suppψI ∪ suppξi �= ∅}. Evidently, for 0 ≤ j ≤ j0,

n∑
i=0

23(j−j1)1SI
(i) ≤ c22(j−j1) ≤ c22(j0−j1).

From (5.12), n−1 ∑
ψ2

I (i/n) ≤ 1 + cn−12j ≤ 1 + c2j0−j1. Hence, since j0 = λj1
and 2j1 = n,

sup
j≤j0

λIn ≤ 1 + c2j0−j1 = 1 + o(1).

6. Precision of Empirical Wavelet Coefficients

Let again θ̃(n) denote the sequence of empirical wavelet coefficients θ̃(n)
I =

〈ψI , P̃nf〉1{|I|≥2−j0}. As f =
∑
θJψJ , we may write

θ̃
(n)
I =

∑
J

θJ〈ψI , P̃nψJ〉 :=
∑
J

T
(n)
I,J θJ ,

here T (n)
I,J = 〈ψI , P̃nψJ〉 1{|I|≥2−j0}. Thinking of T (n) = (T (n)

I,J : I, J ∈ I) as a
linear operator on sequences (θJ : J ∈ I) we have

θ̃(n) = T (n)θ.

Define the partial identity operator

I
(n)
I,J =

{
1{I=J} |I| ≥ 2−j0

0 |I| < 2−j0
.

Our principal result on the accuracy of θ̃(n) can be stated as follows:
Theorem 6.1. Let α > 1/p and 1 ≤ p, q ≤ ∞, or let α = p = q = 1. Let
D̃ ≥ R̃ > R > α. Then T (n) is a bounded operator on f = bα

p,q or fα
p,q and

∆n = ∆n(α, p, q) = ‖T (n) − I(n)‖(f ,f) → 0,

as n→ ∞.
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Corollary 6.2. Let α > 1/p and 1 ≤ p, q ≤ ∞, or let α = p = q = 1. Then

‖θ̃(n)‖f ≤ ‖θ‖f · (1 + ∆n),

where ∆n → 0 as n→ ∞.

Lemma 4.2 follows immediately.
Our method of proof for Theorem 6.1 is based on interpolation from various

bounding cases. Details for the outline below follow in succeeding subsections.

1◦. Let U (n) = T (n) − I(n): crucially, U (n) is non-trivial on at most log2 n

resolution levels:

(U (n)θ)I = 0 for |I| < 2−j0(α,p,q,n). (6.17)

In the case α > 1/p, a crude bound then suffices to reduce to the case q = ∞:

max(‖U (n)‖bα
p,q
, ‖U (n)‖fα

p,q
) ≤ c(log n)1/q‖U‖bα

p,∞ . (6.18)

When α = p = q = 1, we give a separate bound for ‖U‖b1
1,1

(= ‖U‖f11,1
).

2◦. We recall for the reader’s convenience that

‖U (n)‖bα
p,q

= sup ‖U (n)θ‖bα
p,q
/ ‖θ‖bα

p,q

= sup ‖Ũ ξ‖�q(�p)/‖ξ‖�q(�p) := Npq(Ũ).

Here ŨIJ = 2a(i−j)U
(n)
IJ and �q(�p) denotes the besov space b0p,q; equivalently

‖θ‖�q(�p) = (
∑
j

(
2j−1∑
k=0

|θj,k|p)q/p)1/q

(with the usual modification if p = ∞ or q = ∞).
We emphasize that Ũ = Ũ (n)(a, λ) depends on (α, p) through a = α+ 1/2−

1/p and λ = λ(α, p) defined at (1.23).
3◦. We show that Ũ is bounded on �∞(�p) by interpolation from the endpoints
p = 1 and ∞:

Np∞(Ũ) ≤ max{N1∞(Ũ), N∞∞(Ũ)}. (6.19)

For the extreme cases (p̄, q̄) = (1, 1), (1,∞) and (∞,∞), we establish bounds

Np̄q̄(Ũ (n)(a, λ)) ≤ cn−∆p̄q̄(a,λ), (6.20)

where the values of ∆p̄q̄ are summarized in the table below. Using a = α+1/2−
1/p, we have also shown in the table sufficient conditions for positivity of ∆p̄q̄.

Note that the values of a = a(α, p) and λ = λ(α, p) remain fixed in computation
of ∆p̄q̄(a, λ) over the boundary values of (p̄, q̄).
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Quantity Lower Bound Validity
∆α

1,1 (1 − λ)a α ≥ 1
p

∆α
1,∞ (1 − λ)a α > 1

p

∆α∞,∞ (1 − λ)(a− 1
2) α > 1

p

4◦. Assembling the results of steps 1◦ through 3◦, we obtain, if α > 1/p,

‖U (n)‖f ≤ c(log n)1/qn−(1−λ)(α−1/p) → 0, as n→ ∞,

while if α = p = q = 1,

‖U (n)‖b ≤ cn−(1−λ)a → 0.

This completes the outline for the proof of Theorem 6.1. Note, however, that
nothing is said about α = p = 1, q > 1. On other grounds we know that N1

1,q does
not converge to 0 if q > 1. In this sense our results are complete and maximal.

6.1. Norm Bounds

Proof of (6.18). Indeed, if θI = 0 for |I| < 2−j0, then

‖θ‖q
bα

p,q
≤

∑
j≤j0(n)

(2aj‖θj·‖p)q (a = α+ 1/2 − 1/p)

≤ j0(n)[max
j

2aj‖θj·‖p]q ≤ (log n)‖θ‖bα
p,∞ .

Since �q norms decrease as q increases, (2.5) implies that

‖U (n)θ‖fα
p,q
/‖θ‖fα

p,q
≤ (a1/a0)‖U (n)θ‖bα

p,p∧q
/‖θ‖bα

p,p∨q

≤ (a1/a0)(log n)1/q‖U (n)θ‖bα
p,∞/‖θ‖bα

p,∞ .

The argument for f = bα
p,q is similar, but simpler.

Proof of (6.19). This result can be obtained by mechanical application of
interpolation theory - see, e.g., DeVore and Lorentz ((1993), Chapter 7) (DL
below) for details and definitions. The tool is a version of the Riesz-Thorin
theorem (DL Theorem 7.1): If U is a bounded operator on Banach spaces Xi, i =
0, 1, with norm Mi, then U is also bounded on the interpolation space Xθ,q =
(X0,X1)θ,q with norm ≤ M1−θ

0 Mθ
1 ≤ max(M0,M1). In our case, since �p =

(�1, �∞)1−1/p,p , �∞(�p) is also an interpolation space and DL’s equation(7.21)
gives

�∞(�p) = (�∞(�1), �∞(�∞))1−1/p,p,

and hence Np∞ ≤ max{N1∞, N∞∞}.
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6.2. Proof of (6.20)

Our development of these bounds will use various notational conventions.
Both I and J will denote dyadic intervals; we use i as a scale parameter for
interval I in the same way we used j before, � as a location parameter in the
same way we used k before; we use j and k as scale and location parameters
associated with intervals labelled J . Sums over I will now typically run over
scales i ≤ j0 only; while sums over J will typically run over all scales j. Let
j1 = log2(n); j1 is not necessarily integral; we let j̃1 = �j1�, which is integral.

We note also the basic facts

N11 = ‖Ũ‖�1(�1) = sup
J

∑
I

|ŨIJ | (6.21)

N∞∞ = ‖Ũ‖�∞(�∞) = sup
I

∑
J

|ŨIJ | (6.22)

N1∞ = ‖Ũ‖�∞(�1) ≤ sup
i

∑
j

sup
k

∑
�

|ŨI,J | (6.23)

In establishing our bounds, we use four key inequalities, proved in this section.

Lemma 6.3. For j ≤ j1,

|〈ψI , ψJ − P̃nψJ〉| ≤ c · 2(j−j1)R. (6.24)

For j > j1,

|〈ψI , P̃nψJ〉| ≤ c · 2−j1 · 2(i+j)/2 1{cJ∩Z/2j1 �=∅}.1{cJ∩cI �=∅}. (6.25)

Lemma 6.4. Let wJ = ψJ − P̃nψJ . Then if j ≤ j1,∑
I∈Ii

|〈ψI , wJ 〉| ≤ c2(j−j1)R · 2(i−j)+/2. (6.26)

∑
J∈Ij

|〈ψI , wJ 〉| ≤ c2(j−j1)R · 2(j−i)+/2. (6.27)

Proof of (6.24). By the Cauchy-Schwartz inequality, it suffices to bound ‖(I −
P̃n)ψJ‖2. Although ‖ · ‖2 here refers to the norm on L2([0, 1]), it is of course
bounded by the norm of L2(R). Donoho ((1992b), Lemma 7.2) studied the
norms of I − P̃n on L2(R) under restriction to V̄j = span{ψ0

jk, k ∈ Z}, obtaining

‖I − P̃n‖V̄j
≤ c2(j−j1)min(D̃,R).

In particular, since D̃ > R, and using relations (2.1) for the boundary wavelets,
we obtain

‖(I − P̃n)ψJ‖2 ≤ c2(j−j1)R. (6.28)
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Proof of (6.25). Now

〈ψI , P̃nψJ〉 =
∑
u

ψJ(u/n)〈ψI , φ̃u〉,

and for such u that u/n ∈ cI,

〈ψI , φ̃u〉 ≤ ‖ψI‖∞‖φ̃u‖1 ≤ c2i/2−j1 .

Since ψJ(u/n) ≤ c2j/2 if u/n ∈ cJ , we obtain

|〈ψI , P̃nψJ〉| ≤ c2(i+j)/22−j1
n∑

u=0

1{u/n∈cJ∩cI}.

Proof of (6.26). Now

|〈ψI , wJ〉| ≤ ‖ψI‖L2(cI)‖wJ‖L2(cI)

and ‖ψI‖L2(cI) = 1, and since #{� : cI ∩ suppwJ �= ∅} = O(2(i−j)+), we have
∑
I∈Ii

|〈ψI , wJ〉| ≤
∑
I∈Ii

‖wJ‖L2(cI)

≤ c2(i−j)/2 (
∑

‖wJ‖2
L2(cI))

1/2

= c‖wJ‖L2(R) 2(i−j)/2.

From (6.28) we get ‖wJ‖L2 ≤ c2(j−j1)R.

Proof of (6.27). The argument is essentially the same as for (6.26):∑
J

|〈ψI , wJ〉| ≤
∑
J

‖ψI‖L2(cJ) · c2(j−j1)R

≤ c2(j−j1)R [ 2(j−i)+
∑
J

‖ψI‖2
L2(cJ) ]1/2

= c2(j−j1)R 2(j−i)+/2.

We may summarize the consequences of Lemmas 6.3 and 6.4 as follows.
(i) Uniformly in k = 1, . . . , 2j ,

∑
l

|〈ψI , wJ〉| ≤
{
c2(j−j1)R2(i−j)+/2 j ≤ j1
c2−j12(i+j)/2 j > j1

. (6.29)

(ii) Uniformly in l = 1, . . . , 2i,∑
k

|〈ψI , wJ 〉| ≤ c2(j1−j)+R2(j−i)+/2. (6.30)
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6.2.1. Estimates for (1, 1)

We are assuming that R̃ > R > 1 + α. Now

N11 ≤ sup
j
Sj, Sj = sup

k∈Ij

∑
i≤j0

2a(i−j)
∑

l

|〈ψI , wJ 〉|.

If j ≤ j1, from (6.29),

Sj ≤ c
∑
i≤j0

2a(i−j)2(j−j1)R2(i−j)+/2

≤ c2a(j−j0)+(j−j1)R+(j0−j)+/2 = c2�(j), say.

If j > j1, then from (6.29) and noting that a ≥ 1/2,

Sj ≤ c2−j1−j(a−1/2)
∑
i≤j0

2(a+1/2)i

≤ c2−j1−j1(a−1/2)+j0(a+1/2) = c2−j1(1−λ)(a+1/2)

after noting that j0 = λj1. Finally, since � is a piecewise linear function of j,

max
0≤j≤j1

�(j) = max{�(0), �(j0), �(j1)}
= max{(a+ 1/2)j0 − j1R, (j0 − j1)R, a(j0 − j1)}.

Thus N11 ≤ cn−∆11 , where since R > 1 + α,

∆11 = min{R− λ(a+ 1/2), (1 − λ)R, (1 − λ)a} = (1 − λ)a.

6.2.2. Estimates for (1,∞)

We have

N1∞ ≤ sup
i≤j0

∑
j

2a(i−j)η̃(i, j),

η̃(i, j) = sup
k

∑
l

|〈ψI , wJ 〉|,

and we again use (6.29) to bound η̃(i, j). Hence, on noting that the coefficients
of i in the exponents are positive and that R > a+ 1/2,

sup
i≤j0

∑
j≤j1

2a(i−j)η̃(i, j) ≤ c
∑
j≤j1

2a(j0−j)+(j−j1)R+(j0−j)+/2

≤ c2a(j0−j1) = c2−j1(1−λ)a.
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Similarly, now noting that a > 1/2,

sup
i≤j0

∑
j>j1

2a(i−j)η̃(i, j) ≤ c2−j1
∑
j>j1

2a(j0−j)+(j0+j)/2

≤ c2−j1+a(j0−j1)+(j0+j1)/2

= c2−j1(1−λ)(a+1/2).

Thus N1∞ ≤ cn−∆1∞ where ∆1∞ = (1 − λ)a.

6.2.3. Estimates for (∞,∞).

Immediately applying (6.30), we have

N∞∞ ≤ sup
I

∑
j

2a(i−j)
∑
k

|〈ψI , wJ〉|

≤ c sup
i≤j0

∑
j

2a(i−j)−(j1−j)+R+(j−i)+/2

≤ c
∑

j

2a(j0−j)−(j1−j)+R+(j−j0)+/2

≤ c
∑

j

2m(j) ≤ c2supj m(j),

since the slope of m(j) is never zero. Since a > 1/2,

sup
j
m(j) = max{m(0),m(j0),m(j1)}

= max{aj0 − j1R,−(j1 − j0)R,−(j1 − j0)(a− 1/2)},
so that N∞∞ ≤ cn−∆∞∞ with (since R > a+ 1/2)

∆∞∞ = min{R− λa, (1 − λ)R, (1 − λ)(a− 1/2)} = (1 − λ)(a− 1/2).
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