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Abstract: We discuss a number of resampling schemes in which m = o(n) observa-

tions are resampled. We review nonparametric bootstrap failure and give results

old and new on how the m out of n with replacement and without replacement

bootstraps work. We extend work of Bickel and Yahav (1988) to show that m

out of n bootstraps can be made second order correct, if the usual nonparametric

bootstrap is correct and study how these extrapolation techniques work when the

nonparametric bootstrap does not.
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1. Introduction

Over the last 10-15 years Efron’s nonparametric bootstrap has become a
general tool for setting confidence regions, prediction, estimating misclassification
probabilities, and other standard exercises of inference when the methodology is
complex. Its theoretical justification is based largely on asymptotic arguments
for its consistency or optimality. A number of examples have been addressed
over the years in which the bootstrap fails asymptotically. Practical anecdotal
experience seems to support theory in the sense that the bootstrap generally
gives reasonable answers but can bomb.

In a recent paper Politis and Romano (1994), following Wu (1990), and
independently Götze (1993) showed that what we call the m out of n without
replacement bootstrap with m = o(n) typically works to first order both in the
situations where the bootstrap works and where it does not.

The m out of n with replacement bootstrap with m = o(n) has been known
to work in all known realistic examples of bootstrap failure. In this paper,
• We show the large extent to which the Politis, Romano, Götze property is

shared by the m out of n with replacement bootstrap and show that the latter
has advantages.

• If the usual bootstrap works the m out of n bootstraps pay a price in efficiency.
We show how, by the use of extrapolation the price can be avoided.
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• We support some of our theory with simulations.
The structure of our paper is as follows. In Section 2 we review a series

of examples of success and failure to first order (consistency) of (Efron’s) non-
parametric bootstrap (nonparametric). We try to isolate at least heuristically
some causes of nonparametric bootstrap failure. Our framework here is some-
what novel. In Section 3 we formally introduce the m out of n with and without
replacement bootstrap as well as what we call “sample splitting”, and establish
their first order properties restating the Politis-Romano-Götze result. We relate
these approaches to smoothing methods. Section 4 establishes the deficiency of
the m out of n bootstrap to higher order if the nonparametric bootstrap works
to first order and Section 5 shows how to remedy this deficiency to second order
by extrapolation. In Section 6 we study how the improvements of Section 5 be-
have when the nonparametric bootstrap doesn’t work to first order. We present
simulations in Section 7 and proofs of our new results in Section 8. The critical
issue of choice of m and applications to testing will be addressed elsewhere.

2. Successes and Failure of the Bootstrap

We will limit our work to the i.i.d. case because the issues we discuss are
clearest in this context. Extension to the stationary mixing case, as done for the
m out of n without replacement bootstrap in Politis and Romano (1994), are
possible but the study of higher order properties as in Sections 4 and 5 of our
paper is more complicated.

We suppose throughout that we observe X1, . . . ,Xn taking values in X = Rp

(or more generally a separable metric space). i.i.d. according to F ∈ F0. We
stress that F0 need not be and usually isn’t the set of all possible distributions.
In hypothesis testing applications, F0 is the hypothesized set, in looking at the
distributions of extremes, F0 is the set of populations for which extremes have
limiting distributions. We are interested in the distribution of a symmetric func-
tion of X1, . . . ,Xn; Tn(X1, . . . ,Xn, F ) ≡ Tn(F̂n, F ) where F̂n is defined to be
the empirical distribution of the data. More specifically we wish to estimate a
parameter which we denote θn(F ), of the distribution of Tn(F̂n, F ), which we
denote by Ln(F ). We will usually think of θn as real valued, for instance, the
variance of

√
n median (X1, . . . ,Xn) or the 95% quantile of the distribution of√

n(X̄ − EF (X1)).
Suppose Tn(·, F ) and hence θn is defined naturally not just on F0 but on F

which is large enough to contain all discrete distributions. It is then natural to
estimate F by the nonparametric maximum likelihood estimate, (NPMLE), F̂n,
and hence θn(F ) by the plug in θn(F̂n). This is Efron’s (ideal) nonparametric
bootstrap. Since θn(F ) ≡ γ(Ln(F )) and, in the cases we consider, computation
of γ is straightforward the real issue is estimation of Ln(F ). Efron’s (ideal)



RESAMPLING FEWER THAN n OBSERVATIONS 3

bootstrap is to estimate Ln(F ) by the distribution of Tn(X∗
1 , . . . ,X

∗
n, F̂n) where,

given X1, . . . ,Xn the X∗
i are i.i.d. F̂n, i.e. the bootstrap distribution of Tn. In

practice, the bootstrap distribution is itself estimated by Monte Carlo or more
sophisticated resampling schemes, (see DeCiccio and Romano (1989) and Hikley
(1988)). We will not enter into this question further.

Theoretical analyses of the bootstrap and its properties necessarily rely on
asymptotic theory, as n → ∞ coupled with simulations. We restrict analysis to
Tn(F̂n, F ) which are asymptotically stable and nondegenerate on F0. That is,
for all F ∈ F0, at least weakly

Ln(F ) → L(F ) non degenerate

θn(F ) → θ(F ) (2.1)

as n→ ∞.
Using m out of n bootstraps or sample splitting implicitly changes our goal

from estimating features of Ln(F ) to features of Lm(F ). This is obviously non-
sensical without assuming that the laws converge.

Requiring non degeneracy of the limit law means that we have stabilized the
scale of Tn(F̂n, F ). Any functional of Ln(F ) is also a functional of the distribution
of σnTn(F̂n, F ) where σn → 0 which also converges in law to point mass at 0.
Yet this degenerate limit has no functional θ(F ) of interest.

Finally, requiring that stability need occur only on F0 is also critical since
failure to converge off F0 in a reasonable way is the first indicator of potential
bootstrap failure.

2.1. When does the nonparametric bootstrap fail?

If θn does not depend on n, the bootstrap works, (is consistent on F0), if θ is
continuous at all points of F0 with respect to weak convergence on F . Conversely,
the nonparametric bootstrap can fail if,
1. θ is not continuous on F0.

An example we explore later is θn(F ) = 1(F discrete) for which θn(F̂n) obvi-
ously fails if F is continuous.
Dependence on n introduces new phenomena. In particular, here are two
other reasons for failure we explore below.

2. θn is well defined on all of F but θ is defined on F0 only or exhibits wild
discontinuities when viewed as a function on F . This is the main point of
examples 3-6.

3. Tn(F̂n, F ) is not expressible as or approximable on F0 by a continuous function
of

√
n(F̂n − F ) viewed as an object weakly converging to a Gaussian limit in

a suitable function space. (See Giné and Zinn (1989).) Example 7 illustrate
this failure. Again this condition is a diagnostic and not necessary for failure
as Example 6 shows.
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We illustrate our framework and discuss prototypical examples of bootstrap
success and failure.

2.2. Examples of bootstrap success

Example 1. Confidence intervals: Suppose σ2(F ) ≡ Var F (X1) < ∞ for all
F ∈ F0.
(a) Let Tn(F̂n, F ) ≡ √

n(X̄ − EFX1). For the percentile bootstrap we are inter-
ested in θn(F ) ≡ PF [Tn(F̂n, F ) ≤ t]. Evidently θ(F ) = Φ( t

σ(F )). In fact, we want

to estimate the quantiles of the distribution of Tn(F̂n, F ). If θn(F ) is the 1 − α
quantile then θ(F ) = σ(F )z1−α where z is the Gaussian quantile.
(b) Let Tn(F̂n, F ) =

√
n(X̄ − EFX1)/s where s2 = 1

n−1

∑n
i=1(Xi − X̄)2. If

θn(F ) ≡ PF (Tn(F̂n, F ) ≤ t] then, θ(F ) = Φ(t), independent of F . It seems silly
to be estimating a parameter whose value is known but, of course, interest now
centers on θ′(F ) the next higher order term in θn(F ) = Φ(t) + θ′(F )√

n
+O(n−1).

Example 2. Estimation of variance: Suppose F has unique median m(F ),
continuous density f(m(F )) > 0, EF |X|δ < ∞, some δ > 0 for all F ∈ F0 and
θn(F ) = Var F (

√
n median (X1, . . . ,Xn)). Then θ(F ) = [4f2(m(F ))]−1 on F0.

Note that, whereas θn is defined for all empirical distributions F in both
examples the limit θ(F ) is 0 or ∞ for such distributions in the second. Never-
theless, it is well known (see Efron (1979)) that the nonparametric bootstrap is
consistent in both examples in the sense that θn(F̂n) P→θ(F ) for F ∈ F0.

2.3. Examples of bootstrap failure

Example 3. Confidence bounds for an extremum: This is a variation on
Bickel Freedman (1981). Suppose that all F ∈ F0 have a density f continuous
and positive at F−1(0) > −∞. It is natural to base confidence bounds for F−1(0)
on the bootstrap distribution of

Tn(F̂n, F ) = n(min
i
Xi − F−1(0)).

Let
θn(F ) = PF [Tn(F̂n, F ) > t] = (1 − F (

t

n
+ F−1(0))n.

Evidently θn(F ) → θ(F ) = exp(−f(F−1(0))t) on F0.
The nonparametric bootstrap fails. Let

N∗
n(t) =

n∑
i=1

1(X∗
i ≤ t

n
+X(1)), t > 0,

where X(1) ≡miniXi and 1(A) is the indicator of A. Given X(1), nF̂n( t
n +X(1))

is distributed as 1+ binomial (n − 1, F ( t
n

+X(1))−F (X(1))

(1−F (X(1)))
) which converges weakly
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to a Poisson (f(F−1(0))t) variable. More generally, nF̂n( .
n + X(1)) converges

weakly conditionally to 1 + N(·), where N is a homogeneous Poisson process
with parameter f(F−1(0)). It follows that N∗

n(·) converges weakly (marginally)
to a process M(1 +N(·)) where M is a standard Poisson process independent of
N(·). Thus if, in Efron’s notation, we use P ∗ to denote conditional probability
given F̂n and let F̂ ∗

n , be the empirical d.f. of X∗
1 , . . . ,X

∗
n then P ∗[Tn(F̂ ∗

n) > t] =
P ∗[N∗

n(t) = 0] converges weakly to the random variable P [M(1+N(t)) = 0|N ] =
e−(N(t)+1) rather than to the desired θ(F ).

Example 4. Extrema for unbounded distributions: (Athreya and Fukuchi
(1994), Deheuvels, Mason, Shorack (1993))

Suppose F ∈ F0 are in the domain of attraction of an extreme value distri-
bution. That is: for some constants An(F ), Bn(F ),

n(1 − F )(An(F ) +Bn(F )x) → H(x, F ),

where H is necessarily one of the classical three types (David (1981), p.259):
e−βx1(βx ≥ 0), αx−β1(x ≥ 0), α(−x)β1(x ≤ 0), for α, β �= 0. Let,

θn(F ) ≡ P [(max(X1, . . . ,Xn) −An(F ))/Bn(F ) ≤ t] → e−H(t,F ) ≡ θ(F ). (2.2)

Particular choices of An(F ), for example, F−1(1 − 1
n) and Bn(F ) are of interest

in inference. However, the bootstrap does not work. It is easy to see that

n(1 − F̂n(An(F ) + tBn(F ))) w→N(t), (2.3)

where N is an inhomogeneous Poisson process with parameter H(t, F ) and w→ de-
notes weak convergence. Hence if Tn(F̂n, F )=(max(X1, . . . ,Xn)−An(F ))/Bn(F )
then

P ∗[Tn(F̂ ∗
n , F ) ≤ t] w⇒e−N(t). (2.4)

It follows that the nonparametric bootstrap is inconsistent for this choice of
An, Bn. If it were consistent, then

P ∗[Tn(F̂ ∗
n , F̂n) ≤ t] P→e−H(t,F ) (2.5)

for all t and (2.5) would imply that it is possible to find random A real and B �= 0
such that N(Bt + A) = H(t, F ) with probability 1. But H(t, F ) is continuous
except at 1 point. So (2.4) and (2.5) contradict each other. Again, θ(F ) is well
defined for F ∈ F0 but not otherwise. Furthermore, small perturbations in F

can lead to drastic changes in the nature of H, so that θ is not continuous if F0

is as large as possible.
Essentially the same bootstrap failure arises when we consider estimating

the mean of distributions in the domain of attraction of stable laws of index
1 < α ≤ 2. (See Athreya (1987))
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Example 5. Testing and improperly centered U and V statistics: (Bre-
tagnolle (1983))

Let F0 = {F : F [−c, c] = 1, EFX1 = 0} and let Tn(F̂n) =nX̄2 =n
∫
xydF̂n(x)

dF̂n(y). This is a natural test statistic for H : F ∈ F0. Can one use the non-
parametric bootstrap to find the critical value for this test statistic? Intuitively,
F̂n �∈ F0 and this procedure is rightly suspect. Nevertheless, in more compli-
cated contexts, it is a mistake made in practice. David Freedman pointed us to
Freedman et al. (1994) where the Bureau of the Census appears to have fallen
into such a trap. (see Hall and Wilson (1991) for other examples.) The nonpara-
metric bootstrap may, in general, not be used for testing as will be shown in a
forthcoming paper.

In this example, due to Bretagnolle (1983), we focus on F0 for which a general
U or V statistic T is degenerate and show that the nonparametric bootstrap
doesn’t work. More generally, suppose ψ : R2 → R is bounded and symmetric
and let F0 = {F :

∫
ψ(x, y)dF (x) = 0 for all y}.

Then, it is easy to see that

Tn(F̂n) =
∫
ψ(x, y)dW 0

n (x)dW 0
n(y), (2.6)

where W 0
n(x) ≡ √

n(F̂n(x) − F (x)) and well known that

θn(F ) ≡ PF [Tn(F̂n) ≤ t] → P
[ ∫

ψ(xy)dW 0(F (x))dW 0(F (y)) ≤ t
]
≡ θ(F ),

where W 0 is a Brownian Bridge. On the other hand it is clear that,

Tn(F̂ ∗
n) = n

∫
ψ(x, y)dF̂ ∗

n (x)dF̂n(y)

=
∫
ψ(x, y)dW ∗

n (x)dW 0∗
n (y) + 2

∫
ψ(x, y)dW 0

n (x)dW 0∗
n (y)

+
∫
ψ(x, y)dW 0

n (x)dW 0
n(y), (2.7)

where W 0∗
n (x) ≡ √

n(F̂ ∗
n(x) − F̂n(x)). It readily follows that,

P ∗[Tn(F̂ ∗
n) ≤ t] w⇒ P

[ ∫
ψ(x, y)dW 0(F (x))dW 0(F (y))

+2
∫
ψ(x, y)dW 0(F (x))dW̃ 0(F (y))

+
∫
ψ(x, y)dW̃ 0(F (x))dW̃ 0(F (y)) ≤ t|W̃ 0

]
, (2.8)

where W̃ 0,W 0 are independent Brownian Bridges.
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This is again an instance where θ(F ) is well defined for F ∈ F but θn(F )
does not converge for F �∈ F0

Example 6. Nondifferentiable functions of the empirical: (Beran and
Srivastava (1985) and Dümbgen (1993))

Let F0 = {F : EFX
2
1 <∞} and

Tn(F̂n, F ) =
√
n(h(X̄) − h(µ(F )))

when µ(F ) = EFX1. If h is differentiable the bootstrap distribution of Tn is, of
course, consistent. But take h(x) = |x|, differentiable everywhere except at 0. It
is easy to see then that if µ(F ) �= 0, Ln(F ) → N (0,Var F (X1)) but if µ(F ) = 0,
Ln(F ) → |N (0,Var F (X1))|.

The bootstrap is consistent if µ �= 0 but not if µ = 0. We can argue as follows.
Under µ = 0,

√
n(X̄∗ − X̄),

√
nX̄ are asymptotically independent N (0, σ2(F )).

Call these variables Z and Z ′. Then,
√
n(|X̄∗| − |X̄ |) w⇒|Z +Z ′| − |Z ′|, a variable

whose distribution is not the same as that of |Z|. The bootstrap distribution,
as usual, converges (weakly) to the (random) conditional distribution of |Z +
Z ′| − |Z ′| given Z ′. This phenomenon was first observed in a more realistic
context by Beran and Srivastava (1985). Dümbgen (1993) constructs similar
reasonable though more complicated examples where the bootstrap distribution
never converges. If we represent Tn(F̂n, F ) =

√
n(T (F̂n) − T (F )) in these cases

then there is no linear Ṫ (F ) such that
√
n(T (F̂n) − T (F )) ≈ √

nṪ (F )(F̂n − F )
which permits the argument of Bickel-Freedman (1981).

2.4. Possible remedies

Putter and van Zwet (1993) show that if θn(F ) is continuous for every n on
F and there is a consistent estimate F̃n of F then bootstrapping from F̃n will
work, i.e. θn(F̃n) will be consistent except possibly for F in a “thin” set.

If we review our examples of bootstrap failure, we can see that constructing
suitable F̃n ∈ F0 and consistent is often a remedy that works for all F ∈ F0

not simply the complement of a set of the second category. Thus in Example 3
taking F̃n to be F̂n kernel smoothed with bandwidth hn → 0 if nh2

n → 0 works.
In the first and simplest case of Example 4 it is easy to see, Freedman (1981),
that taking F̃n as the empirical distribution of Xi−X̄, 1 ≤ i ≤ n which has mean
0 and thus belongs to F0 will work. The appropriate choice of F̃n in the other
examples of bootstrap failure is less clear. For instance, Example 4 calls for F̃n

with estimated tails of the right order but how to achieve this is not immediate.
A general approach which we believe is worth investigating is to approximate

F0 by a nested sequence of parametric models, (a sieve), {F0,m}, and use the
M.L.E. F̃m(n) for F0,m(n), for a suitable sequence m(n) → ∞. See Shen and
Wong (1994) for example.
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The alternative approach we study is to change θn itself as well as possibly
its argument. The changes we consider are the m out of n with replacement
bootstrap, the (n − m) out of n jackknife or

(n
m

)
bootstrap discussed by Wu

(1990) and Politis and Romano (1994), and what we call sample splitting.

3. The m Out of n Bootstraps

Let h be a bounded real valued function defined on the range of Tn, for
instance, t→ 1(t ≤ t0).

We view as our goal estimation of θn(F ) ≡ EF (h(Tn(F̂n, F ))). More com-
plicated functionals such as quantiles are governed by the same heuristics and
results as those we detail below. Here are the procedures we discuss.
(i) The n/n bootstrap (The nonparametric bootstrap)

Let,

Bn(F ) = E∗h(Tn(F̂ ∗
n , F )) = n−n

∑
(i1,...,in)

h(Tn(Xi1 , . . . ,Xin , F )).

Then, Bn ≡ Bn(F̂n) = θn(F̂ ) is the n/n bootstrap.
(ii) The m/n bootstrap

Let
Bm,n(F ) ≡ n−m

∑
(i1,...,im)

h(Tm(Xi1 , . . . ,Xim , F )).

Then, Bm,n ≡ Bm,n(F̂n) = θm(F̂n) is the m/n bootstrap.
(iii) The

(n
m

)
bootstrap

Let

Jm,n(F ) =

(
n

m

)−1 ∑
i1<···<im

h(Tm(Xi1 , . . . ,Xim , F )).

Then, Jm,n ≡ Jm,n(F̂n) is the
(n
m

)
bootstrap.

(iv) Sample splitting
Suppose n = mk. Define,

Nm,n(F ) ≡ k−1
k−1∑
j=0

h(Tm(Xjm+1, . . . ,X(j+1)m, F ))

and Nm,n ≡ Nm,n(F̂n) as the sample splitting estimates. For safety in practice
one should start with a random permutation of the Xi.

The motivation behind Bm(n),n for m(n) → ∞ is clear. Since, by (2.1),
θm(n)(F ) → θ(F ), θm(n)(F̂n) has as good a rationale as θn(F̂n). To justify Jm,n

note that we can write θm(F ) = θm(F × · · · × F︸ ︷︷ ︸
m

) since it is a parameter of the
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law of Tm(X1, . . . ,Xm, F ). We now approximate F × · · · × F not by the m
dimensional product measure F̂n × · · · × F̂n︸ ︷︷ ︸

m

but by sampling without replace-

ment. Thus sample splitting is just k fold cross validation and represents a crude
approximation to F × · · · × F︸ ︷︷ ︸

m

.

The sample splitting method requires the least computation of any of the
lot. Its obvious disadvantages are that it relies on an arbitrary partition of the
sample and that since both m and k should be reasonably large, n has to be really
substantial. This method and compromises between it and the

(n
m

)
bootstrap are

studied in Blom (1976) for instance. The
(n
m

)
bootstrap differs from the m/n by

oP (1) if m = o(n1/2). Its advantage is that it never presents us with the ties
which make resampling not look like sampling. As a consequence, as we note in
Theorem 1, it is consistent under really minimal conditions. On the other hand
it is somewhat harder to implement by simulation. We shall study both of these
methods further, below, in terms of their accuracy.

A simple and remarkable result on Jm(n),n has been obtained by Politis and
Romano (1994), generalizing Wu (1990). This result was also independently
noted and generalized by Götze (1993). Here is a version of the Götze result and
its easy proof. Write Jm for Jm,n, Bm for Bm,n, Nm for Nm,n.

Theorem 1. Suppose m
n → 0, m→ ∞.

Then,
Jm(F ) = θm(F ) +OP ((

m

n
)

1
2 ). (3.1)

If h is continuous and

Tm(X1, . . . ,Xm, F ) = Tm(X1, . . . ,Xm, F̂n) + op(1) (3.2)

then
Jm = θm(F ) + op(1). (3.3)

Proof. Suppose Tm does not depend on F . Then, Jm is a U statistic with kernel
h(Tm(x1, . . . , xm)) and EFJm = θm(F ) and (3.1) follows immediately. For (3.2)
note that

EF |Jm −
(
n

m

)−1 ∑
i1<···<im

h(Tm(Xi1 , . . . ,Xim , F ))|

≤ EF |h(Tm(X1, . . . ,Xm, F̂n)) − h(Tm(X1, . . . ,Xm, F ))| (3.4)

and (3.2) follows by bounded convergence. These results follows in the same
way and even more easily for Nm. Note that if Tm does not depend on F ,
EFNm = θm(F ) and,

Var F (Nm) =
m

n
Var F (h(Tm(X1, . . . ,Xm))) > Var F (Jm). (3.5)
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Note. It may be shown, more generally under (3.2), that, for example, dis-
tances between the

(n
m

)
bootstrap distributions of Tm(F̂m, F ) and Lm(F ) are

also OP (m/n)1/2.
Let X(i)

j = (Xj , . . . ,Xj)1×i

hi1,...,ir(X1, . . . ,Xr) =
1
r!

∑
1≤j1 �=···�=jr≤r

h(Tm(X(i1)
j1

, . . . ,X
(ir)
jr

, F )), (3.6)

for vectors i = (i1, . . . , ir) in the index set

Λr,m = {(i1, . . . , ir) : 1 ≤ i1 ≤ · · · ≤ ir ≤ m, i1 + · · · + ir = m}.
Then

Bm,n(F ) =
m∑

r=1

∑
i∈Λr,m

ωm,n(i)
1(n
r

) ∑
1≤j1≤···≤jr≤m

hi(Xj1 , . . . ,Xjr , F ), (3.7)

where

ωm,n(i) =

(
n

r

)(
m

i1, . . . , ir

)
/nm.

Let

θm,n(F ) = EFBm,n(F ) =
m∑

r=1

∑
i∈Λr,m

ωm,n(i)EFhi(X1, . . . ,Xr). (3.8)

Finally, let

δm(
r

m
) ≡ max{|EFhi(X1, . . . ,Xr) − θm(F )| : i ∈ Λr,m} (3.9)

and define δm(x) by extrapolation on [0, 1]. Note that δm(1) = 0.

Theorem 2. Under the conditions of Theorem 1

Bm,n(F ) = θm,n(F ) +OP (
m

n
)

1
2 . (3.10)

If further,
δm(1 − xm−1/2) → 0 (3.11)

uniformly for 0 ≤ x ≤M , all M <∞, and m = o(n), then

θm,n(F ) = θm(F ) + o(1). (3.12)

Finally if,

Tm(X(in)
1 , . . . ,X(ir)

r , F ) = Tm(X(i1)
1 , . . . ,X(ir)

r , F̂n) + oP (1) (3.13)
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whenever i ∈ Λr,m,m→ ∞ and max{i1, . . . , ir} = O(m1/2) then, if m→ ∞,m =
o(n),

Bm = θm(F ) + op(1). (3.14)

The proof of Theorem 2 will be given in the Appendix. There too we will
show briefly that, in the examples we have discussed and some others, Jm(n),
Bm(n), Nm(n) are consistent for m(n) → ∞, m

n → 0.
According to Theorem 2, if Tn does not depend om F the m/n bootstrap

works as well as the
(n
m

)
bootstrap if the value of Tm is not greatly affected by

a number on the order of
√
m ties in its argument. Some condition is needed.

Consider Tn(X1, . . . ,Xn) = 1(Xi = Xj for some i �= j) and suppose F is contin-
uous. The

(n
m

)
bootstrap gives Tm = 0 as it should. If m �= o(

√
n) so that the(n

m

)
and m/n bootstraps do not coincide asymptotically the m/n bootstrap gives

Tm = 1 with positive probability. Finally, (3.13) is the natural extension of (3.2)
and is as easy to verify in all our examples.

A number of other results are available for m out of n bootstraps.
Giné and Zinn (1989) have shown quite generally that when

√
n(F̂n − F ) is

viewed as a member of a suitable Banach space F and,
(a) Tn(X1, . . . ,Xn, F ) = t(

√
n(F̂n − F )) for t continuous

(b) F is not too big
then Bn and Bm(n) are consistent.

Praestgaard and Wellner (1993) extended these results to Jm(n) with m =
o(n). Finally, under the Giné-Zinn conditions,

||√m(F̂n − F )|| = (
m

n
)||√n(F̂n − F )|| = OP (

m

n
)1/2 (3.15)

if m = o(n). Therefore,

t(
√
m(F̂m − F̂n)) = t(

√
m(F̂m − F )) + op(1) (3.16)

and consistency of Nm if m = o(n) follows from the original Giné-Zinn result.
We close with a theorem on the parametric version of the m/n bootstrap

which gives a stronger property than that of Theorem 1.
Let F0 = {Fθ : θ ∈ Θ ⊂ Rp} where Θ is open and the model is regular.

That is, θ is identifiable, the Fθ have densities fθ with respect to a σ finite µ
and the map θ → √

fθ is continuously Hellinger differentiable with nonsingular
derivative. By a result of LeCam (see Bickel, Klaassen, Ritov, Wellner (1993) for
instance), there exists an estimate θ̂n such that, for all θ,∫

(f1/2

θ̂n
(x) − f

1/2
θ (x))2dµ(x) = OPθ

(
1
n

). (3.17)



12 P. J. BICKEL, F. GÖTZE AND W. R. VAN ZWET

Theorem 3. Suppose F0 is as above. Let Fm
θ ≡ Fθ × · · · × Fθ︸ ︷︷ ︸

m

and ‖ · ‖ denote

the variational norm. Then

‖Fm
θ̂n

− Fm
θ ‖ = Op((

m

n
)1/2). (3.18)

Proof. This is consequence of the relations (LeCam (1986)).

‖Fm
θ0

− Fm
θ1

)‖ ≤ H(Fm
θ0
, Fm

θ1
)[(2 −H2(Fm

θ0
, Fm

θ1
)], (3.19)

where
H2(F,G) =

1
2

∫
(
√
dF −

√
dG)2 (3.20)

and

H2(Fm
θ0
, Fm

θ1
) = 1 − (

∫ √
fθ0fθ1dµ)m = 1 − (1 −H2(Fθ0 , F ))m. (3.21)

Substituting (3.21) into (3.20) and using (3.17) we obtain

‖Fm
θ̂n

− Fm
θ ‖ = OPθ

(1 − expOPθ
(
m

n
))

1
2 (1 + expOPθ

(
m

n
)

1
2 ) = OPθ

(
m

n
)

1
2 . (3.22)

This result is weaker than Theorem 1 since it refers only to the parametric
bootstrap. It is stronger since even for m = 1, when sampling with and without
replacement coincide, ‖F̂n − Fθ‖ = 1 for all n if Fθ is continous.

4. Performance of Bm, Jm, and Nm as Estimates of θn(F )

As we have noted, if we take m(n) = o(n) then in all examples considered
in which Bn is inconsistent, Jm(n), Bm(n), Nm(n) are consistent. Two obvious
questions are,
(1) How do we choose m(n)?
(2) Is there a price to be paid for using Jm(n), Bm(n), or Nm(n) when Bn is
consistent?

We shall turn to the first very difficult question in a forthcoming paper on
diagnostics. The answer to the second is, in general, yes. To make this precise
we take the point of view of Beran (1982) and assume that at least on F0,

θn(F ) = θ(F ) + θ′(F )n−1/2 +O(n−1), (4.1)

where θ(F ) and θ′(F ) are regularly estimable on F0 in the sense of Bickel,
Klaassen, Ritov and Wellner (1993) and O(n−1) is uniform on Hellinger com-
pacts. There are a number of general theorems which lead to such expansions.
See, for example, Bentkus, Götze and van Zwet (1994).
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Somewhat more generally than Beran, we exhibit conditions under which
Bn = θn(F̂n) is fully efficient as an estimate of θn(F ) and show that the m out
n bootstrap with m

n → 0 has typically relative efficiency 0.
We formally state a theorem which applies to fairly general parameters θn.

Suppose ρ is a metric on F0 such that

ρ(F̂n, F0) = OPF0
(n−1/2) for all F0 ∈ F0. (4.2)

Further suppose
A. θ(F ), θ′(F ) are ρ Fréchet differentiable in F at F0 ∈ F0. That is,

θ(F ) = θ(F0) +
∫
ψ(x, F0)dF (x) + o(ρ(F,F0)) (4.3)

for ψ ∈ L0
2(F0) ≡ {h :

∫
h2(x)dF0(x) < ∞,

∫
h(x)dF0(x) = 0} and θ′ obeys

a similar identity with ψ replaced by another function ψ′ ∈ L0
2(F0). Suppose

further
B. The tangent space of F0 at F0 as defined in Bickel et al. (1993) is L0

2(F0) so
that ψ and ψ′ are the efficient influence functions of θ, θ′. Essentially, we require
that in estimating F there is no advantage in knowing F ∈ F0.

Finally, we assume,
C. For all M <∞,

sup{|θm(F ) − θ(F )− θ′(F )m−1/2| : ρ(F,F0) ≤M−1/2
n , F ∈ F} = O(m−1) (4.4)

a strengthened form of (4.1). Then,

Theorem 4. Under regularity of θ, θ′ and A and C at F0,

θm(F̂n) ≡ θ(F0) + θ′(F0)m−1/2 +
1
n

n∑
i=1

(ψ(Xi, F0) + ψ′(Xi, F0)m−1/2)

+O(m−1) + op(n−1/2). (4.5)

If B also holds, θn(F̂n) is efficient. If in addition, θ′(F0) �= 0, and m
n → 0 the

efficiency of θm(F̂n) is 0.

Proof. The expansions of θ(F̂n)θ′(F̂n) are immediate by Fréchet differentiability
and (4.5) follows by plugging these into (4.1). Since θ, θ′ are assumed regular,
ψ and ψ′ are their efficient influence functions. Full efficiency of θn(F̂n) follows
by general theory as given in Beran (1983) for special cases or by extending
Theorem 2, p.63 of Bickel et al. (1993) in an obvious way. On the other hand, if
θ′(F0) �= 0,

√
n(θm(F̂n)−θn(F0)) has asymptotic bias (

√
n
m −1)θ′(F0)+O(

√
n

m ) =√
n
m(1 + o(1))θ′(F0) → ±∞ and inefficiency follows.
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Inefficiency results of the same type or worse may be proved about Jm

and Nm but require going back to Tm(X1, . . . ,Xm, F ) since Jm and Bn are
not related in a simple way. We pursue this only by way of Example 1. If
θn(F ) = Var F (

√
n(X̄ − µ(F )) = θ(F ), Bm = Bn but,

Jm = σ2(F̂n)(1 − m− 1
n− 1

). (4.6)

Thus, since θ′(F ) = 0 here, Bm is efficient but Jm has efficiency 0 if m√
n
→ ∞.

Nm evidently behaves in the same way.
It is true that the bootstrap is often used not for estimation but for setting

confidence bounds. This is clearly the case for Example (1b), the bootstrap of
t where θ(F ) is known in advance. For example, Efron’s percentile bootstrap
uses the (1 − α)th quantile of the bootstrap distribution of X̄ as a level (1 −
α) approximate upper confidence bound for µ. As is well known by now (see
Hall (1992)), for example, this estimate although, when suitably normalized,
efficiently estimating the (1−α)th quantile of the distribution of

√
n(X̄−µ) does

not improve to order n−1/2 over the coverage probability of the usual Gaussian
based X̄ + z1−α

s√
n
. However, the confidence bounds based on the bootstrap

distribution of the t statistic
√
n(X̄−µ(F ))/s get the coverage probability correct

to order n−1/2. Unfortunately, this advantage is lost if one were to use the 1−α

quantile of the bootstrap distribution of Tm(F̂m, F ) =
√
m(X̄m−µ(F ))/sm where

X̄m and s2m are the mean and usual estimate of variance bsed on a sample of size
m. The reason is that, in this case, the bootstrap distribution function is

Φ(t) −m−1/2c(F̂n)ϕ(t)H2(t) +OP (m−1) (4.7)

rather than the needed,

Φ(t) − n−1/2c(F̂n)ϕ(t)H2(t) +OP (n−1).

The error committed is of order m−1/2. More general formal results can be stated
but we do not pursue this.

The situation for Jm(n) and Nm(n) which function under minimal conditions,
is even worse as we discuss in the next section.

5. Remedying the Deficiencies of Bm(n) when Bn is Correct: Extrapo-
lation

In Bickel and Yahav (1988), motivated by considerations of computational
economy, situations were considered in which θn has an expansion of the form
(4.1) and it was proposed using Bm at m = n0 and m = n1, n0 < n1 << n to
produce estimates of θn which behave like Bn. We sketch the argument for a
special case.
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Suppose that, as can be shown for a wide range of situations, if m→ ∞,

Bm = θm(F̂n) = θ(F̂n) + θ′(F̂n)m−1/2 +OP (m−1). (5.1)

Then, if n1 > n0 → ∞
θ′(F̂n) = (Bn0 −Bn1)(n

−1/2
0 − n

−1/2
1 )−1 +OP (n−1/2

0 ) (5.2)

θ(F̂n) =
n
−1/2
0 Bn1 − n

−1/2
1 Bn0

n
−1/2
0 − n

−1/2
1

+OP (n−1
0 ) (5.3)

and hence a reasonable estimate of Bn is,

Bn0,n1 ≡ n
−1/2
0 Bn1 − n

−1/2
1 Bn0

n
−1/2
0 − n

−1/2
1

+
(Bn0 −Bn1)

n
−1/2
0 − n

−1/2
1

n−1/2.

More formally,

Proposition. Suppose {θm} obey C of Section 4 and n0n
−1/2 → ∞. Then,

Bn0,n1 = Bn + op(n−1/2). (5.4)

Hence, under the conditions of Theorem 3 Bn0,n1 is efficient for estimating θn(F ).

Proof. Under C, (5.4) holds. By construction,

Bn0,n1 = θ(F̂n) + θ′(F̂n)n−1/2 +OP (n−1
0 ) +OP (n−1/2

0 n−1/2)

= θn(F̂n) +OP (n−1
0 ) +OP (n−1/2

0 n−1/2) +OP (n−1)

= θn(F̂n) +OP (n−1
0 ) (5.5)

and (5.4) follows.

Assorted variations can be played on this theme depending on what we know
or assume about θn. If, as in the case where Tn is a t statistic, the leading term
θ(F ) in (4.1) is ≡ θ0 independent of F , estimation of θ(F ) is unnecessary and we
need only one value of m = n0. We are led to a simple form of estimate, since ψ
of Theorem 4 is 0,

θ̂n0 = (1 − (
n0

n
)1/2)θ0 + (

n0

n
)1/2Bn0 . (5.6)

This kind of interpolation is used to improve theoretically the behaviour of
Bm0 as an estimate of a parameter of a stable distribution by Hall and Jing
(1993) though we argue below that the improvement is somewhat illusory.

If we apply (5.4) to construct a bootstrap confidence bound we expect the
coverage probability to be correct to order n−1/2 but the error is OP ((n0n)−1/2)
rather than OP (n−1) as with Bn. We do not pursue a formal statement.
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5.1. Extrapolation of Jm and Nm

We discuss extrapolation for Jm and Nm only in the context of the simplest
Example 1, where the essential difficulties become apparent and we omit general
theorems.

In work in progress, Götze and coworkers are developing expansions for gen-
eral symmetric statistics under sampling from a finite population. These results
will permit general statements of the same qualitative nature as in our discussion
of Example 1. Consider θm(F ) = PF [

√
m(X̄m − µ(F )) ≤ t]. If EX4

1 < ∞ and
the Xi obey Cramér’s condition, then

θm(F ) = Φ(
t

σ(F )
) −K3(F )

ϕ

6
√
m

(
t

σ(F )
)H2(

t

σ(F )
) +O(m−1), (5.7)

where σ2(F ) and K3(F ) are the second and third cumulants of F and Hk(t) =
(−1)k

ϕ(t)
dϕk(t)

dtk
. By Singh (1981), Bm = θm(F̂n) has the same expansion with F

replaced by F̂n. However, by an easy extension of results of Robinson (1978) and
Babu and Singh (1985),

Jm = Φ(
t

K̂2m

) − ϕ(
t

K̂
1/2
2m

)
K̂3m

6m1/2
H2(

t

K̂
1/2
2m

) +OP (m−1), (5.8)

where

K̂2m = σ2(F̂n)(1 − m− 1
n− 1

) (5.9)

K̂3m =K3(F̂n)(1 − m− 1
n− 1

)(1 − 2(m− 1)
n− 2

). (5.10)

The essential character of expansion (5.8), if m/n = o(1), is

Jm = θ(F̂n) +m−1/2θ′(F̂n) +
m

n
γn +OP (m−1 + (

m

n
)2 +

m
1
2

n
), (5.11)

where γn is OP (1) and independent of m. The m/n terms essentially come from
the finite population correction to the variance and highter order cumulants of
means of samples from a finite population. They reflect the obvious fact that
if m/n → λ > 0, Jm is, in general, incorrect even to first order. For instance,
the variance of the

(n
m

)
bootstrap distribution corresponding to

√
m(X̄ − µ(F ))

is 1/n
∑

(Xi − X̄)2(1 − m−1
n−1 )) which converges to σ2(F )(1 − λ) if m/n→ λ > 0.

What this means is that if expansions (4.1), (5.1) and (5.11) are valid, then
using Jm(n) again gives efficiency 0 compared to Bn. Worse is that (5.2) with
Jn0 , Jn1 replacing Bn0, Bn1 will not work since the n1/n terms remain and make
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a contribution larger than n−1/2 if n1/n
1/2 → ∞. Essentially it is necessary to

estimate the coefficient of m/n and remove the contribution of this term at the
same time while keeping the three required values of m: n0 < n1 < n2 such that
the error O( 1

n0
+ (n2

n )2) is o(n−1/2). This essentially means that n0, n1, n2 have
order larger than n1/2 and smaller that n3/4.

This effect persists if we seek to use an extrapolation of Jm for the t statistic.
The coefficient ofm/n as well asm−1/2 needs to be estimated. An alternative here
and perhaps more generally is to modify the t statistic being bootstrapped and
extrapolated. Thus Tm(X1, . . . ,Xm, F ) ≡ √

m (X̄m−µ(F ))

σ̂(1−m−1
n−1

)1/2 leads to an expansion

for Jm of the form,

Jm = Φ(t) + θ′(F̂n)m−1/2 +OP (m−1 +m/n), (5.12)

and we again get correct coverage to order n−1/2 by fitting the m−1/2 term’s
coefficient, weighting it by n−1/2 −m−1/2 and adding it to Jm.

If we know, as we sometimes at least suspect in symmetric cases, that θ(F ) =
0, we should appropriately extrapolate linearly in m−1 rather than m−1/2.

The sample splitting situation is less satisfactory in the same example. Under
(5.1), the coefficient of 1/

√
m is asymptotically constant. Put another way,

the asymptotic correlation of Bm, Bλm as m,n → ∞ for fixed λ > 0 is 1.
This is also true for Jm under (5.11). However, consider Nm and N2m (say) if
Tm =

√
m(X̄m−µ(F )). Let h be continuously boundedly differentiable, n = 2km.

Then

Cov (Nm, N2m) =
1
k

Cov
(
h(m−1/2(

m∑
j=1

(Xj − X̄))), h((2m)−1/2
2m∑
j=1

(Xj − X̄))
)
.

(5.13)
Thus, by the central limit theorem,

Corr(Nm, N2m) → 1
2

Cov
Var (Z1)

(
h(Z1), h

(Z1 + Z2)√
2

)
, (5.14)

where Z1, Z2 are independent Gaussian N (0, σ2(F )) and σ2(F ) = Var F (X1).
More generally, viewed as a process in m for fixed n, Nm centered and normalized
is converging weakly to a non degenerate process. Thus, extrapolation does not
make sense for Nm.

Two questions naturally present themselves.
(a) How do these games play out in practice rather than theory?
(b) If the expansions (5.1) and (5.11) are invalid beyond the 0th order, the usual
situation when the nonparametric bootstrap is inconsistent, what price do we
pay theoretically for extrapolation?
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Simulations giving limited encouragement in response to question (a) are
given in Bickel and Yahav (1988). We give some further evidence in Section 7.
We now turn to question (b) in the next section.

6. Behaviour of the Smaller Resample Schemes When Bn is Inconsis-
tent, and Presentation of Alternatives

The class of situations in which Bn does not work is too poorly defined for
us to come to definitive conclusions. But consideration of the examples suggests
the following,
A. When, as in Example 6, θ(F ), θ′(F ) are well defined and regularly estimable

on F0 we should still be able to use extrapolation (suitably applied) to Bm

and possibly to Jm to produce better estimates of θn(F ).
B. When, as in all our other examples of inconsistency, θ(F ) is not regularly

estimable on F0 extrapolation should not improve over the behaviour of Bn0,
Bn1 .

C. If n0, n1 are comparable extrapolation should not do particularly worse either.
D. A closer analysis of Tn and the goals of the bootstrap may, in these “irregular”

cases, be used to obtain procedures which should do better than the m/n or(n
m

)
or extrapolation bootstraps.

The only one of these claims which can be made general is C.

Proposition 1. Suppose

Bn1 − θn(F )  Bn0 − θn(F ), (6.1)

where  indicates that the ratio tends to 1. Then, if n0/n1 �→ 1

Bn0,n1 − θn(F )  Bn0 − θn(F ). (6.2)

Proof. Evidently, Bn0+Bn1
2 = θn(F ) + Ω(εn) where Ω(εn) means that the exact

order of the remainder is εn. On the other hand,

Bn0 −Bn1

n
−1/2
0 − n

−1/2
1

( 1√
n
− 1

2
(

1√
n0

+
1√
n1

)
)

= Ω(εn)
(√n0

n
+ Ω(1)

)

and the proposition follows.

We illustrate the other three claims in going through the examples.

Example 3. Here, F−1(0) = 0,

θn(F ) = ef(0)t
(
1 + n−1f ′(0)

t2

2

)
+O(n−2) (6.3)
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which is of the form (5.1). But the functional θ(F ) is not regular and only
estimable at rate n−1/3 if one puts a first order Lipschitz condition on F ∈ F0.
On the other hand,

logBm =m log(1 − F̂n(
t

m
)) = m log(1 − (F̂n(

t

m
) − F̂n(0)))

= −m(F (
t

m
)−F (0))− m√

n

√
n(F̂n(

t

m
)−F (

t

m
))+OP (m(F̂n(

t

m
)−F (

t

m
))2)

= tf(0) + Ω(
1
m

) + ΩP (
√
m

n
) +OP (

1
n

), (6.4)

where as before Ω, Ωp indicate exact order. As Politis and Romano (1994) point
out, m = Ω(n1/3) yields the optimal rate n−1/3 (under f Lipschitz). Extrapo-
lation does not help because the

√
m
n term is not of the form γn

√
m
n where γn

is independent of m. On the contrary, as a process in m,
√
mn(F̂n( t

m) − F ( t
m))

behaves like the sample path of a stationary Gaussian process. So conclusion B

holds in this case.

Example 4. A major difficulty here is defining F0 narrowly enough so that it is
meaningful to talk about expansions of θn(F ), Bn(F ) etc. If F0 in these examples
is in the domain of attraction of stable laws or extreme value distributions it is
easy to see that θn(F ) can converge to θ(F ) arbitrarily slowly. This is even
true in Example 1 if we remove the Lipschitz condition on f . By putting on
conditions as in Example 1, it is possible to obtain rates. Hall and Jing (1993)
specify a possible family for the stable law attraction domain estimation of the
mean mentioned in Example 4 in which Bn = Ω(n−

1
α ) where α is the index of the

stable law and α and the scales of the (assumed symmetric) stable distribution
are not regularly estimable but for which rates such as n−2/5 or a little better are
possible. The expansions for θn(F ) are not in powers of n−1/2 and the expansion
for Bn is even more complex. It seems evident that extrapolation does not help.
Hall and Jing’s (1993) theoretical results and simulations show that Bm(n) though
consistent, if m(n)/n→ 0, is a very poor estimate of θn(F ). They obtain at least
theoretically superior results by using interpolation between Bm and the, “known
up to the value of the stable law index α”, value of θ(F ). However, the conditions
defining F0 which permit them to deduce the order of Bn are uncheckable so that
this improvement appears illusory.

Example 6. The discontinuity of θ(F ) at µ(F ) = 0 under any reasonable specifi-
cation of F0 makes it clear that extrapolation cannot succeed. The discontinuity
in θ(F ) persists even if we assume F0 = {N (µ, 1) : µ ∈ R} and use the para-
metric bootstrap. In the parametric case it is possible to obtain constant level
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confidence bounds by inverting the tests for H : |µ| = |µ0| vs K : |µ| > |µ0|
using the noncentral χ2

1 distribution of (
√
nX̄)2. Asymptotically conservative

confidence bounds can be constructed in the nonparametric case by forming a
bootstrap confidence interval for µ(F ) using X̄ and then taking the image of this
interval into µ→ |µ|. So this example illustrates points B and D.

We shall discuss claims A and D in the context of Example 5 or rather its
simplest case with Tn(F̂n, F ) = nX̄2. We begin with,

Proposition 2. Suppose EFX
4
1 < ∞, EFX1 = 0, and F satisfies Cramer’s

condition. Then,

Bm ≡ P ∗[|√mX̄∗|2 ≤ t2] = 2Φ(
t

σ̂
) − 1 − mX̄2

σ̂3
tϕ(

t

σ̂
) − K̂3X̄

3σ̂4
ϕH3(

t

σ̂
)

+OP (
m

n
)3/2 +OP (m−1). (6.5)

If m = Ω(n1/2) then

P ∗[|√mX̄∗|2 ≤ t2] = PF [nX̄2 ≤ t] +OP (n−1/4) (6.6)

and no better choice of {m(n)} is possible. If n0 < n1, n0n
−1/2 → ∞, n1 =

o(n3/4),

Bn0,n1 ≡ Bn0 − n0{(Bn1 −Bn0)/(n1 − n0)} = PF [nX̄2 ≤ t] +OP (n−1/2). (6.7)

Proof. We make a standard application of Singh (1981). If σ̂2 ≡ 1
n

∑
(Xi−X̄)2,

K̂3 ≡ 1
n

∑
(Xi − X̄)3 we get, after some algebra and Edgeworth expansion,

P ∗[
√
mX̄∗≤ t]=Φ

(t−√
mX̄

σ̂

)
− 1√

m
ϕ
( t−√

mX̄

σ̂

)K̂3

6
H2

( t−√
mX̄

σ̂

)
+Op(m−1).

After Taylor expansion in
√
m X̄

σ̂ we conclude,

P ∗[mX̄∗2
m ≤ t2]=2Φ(

t

σ̂
)−1+

ϕ′

2
(
t

σ̂
)mX̄2− K̂3

3σ̂4
[ϕH3](

t

σ̂
)X̄+OP (

m

n
)3/2+OP (m−1)

(6.8)
and (6.5) follows. Since mX̄2 = ΩP (m/n), (6.6) follows. Finally, from (6.5), if
n0n

−1/2, n1n
−1/2 → ∞

Bn0 − n0{(Bn1 −Bn0)/(n1 − n0)} = 2Φ(
t

σ̂
) − 1 − K3

6
ϕH2(

t

σ̂
)X̄ +OP (n−3/4)

+OP (n−1/2) +OP (n−1/2). (6.9)

Since X̄ = OP (n−1/2), (6.7) follows.
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Example 5. As we noted, the case Tn(F̂n, F ) = nX̄2 is the prototype of the
use of the m/n bootstrap for testing discussed in Bickel and Ren (1995). From
(6.7) of proposition 2 it is clear that extrapolation helps. However, it is not
true that Bn0,n1 is efficient since it has an unnecessary component of variance
(K̂3/6)[ϕH2]( t

σ̂ )X̄ which is negligible only if K3(F ) = 0. On the other hand
it is easy to see that efficient estimation can be achieved by resampling not
the Xi but the residuals Xi − X̄ , that is, a consistent estimate of F belong-
ing to F0. So this example illustrates both A and D. Or in the general U or
V statistic case, bootstrapping not Tm(F̂n, F ) ≡ n

∫
ψ(x, y)dF̂n(x)dF̂n(y) but

rather n
∫
ψ(x, y)d(F̂n − F )(x)d(F̂n − F )(y) is the right thing to do.

7. Simulations and Conclusions

The simulation algorithms were written and carried out by Adele Cutler and
Jiming Jiang. Two situations were simulated, one already studied in Bickel and
Yahav (1988) where the bootstrap is consistent (essentially Example 1) the other
(essentially Example 3) where the bootstrap is inconsistent.
Sample size: n = 50, 100, 400
Bootstrap sample size: B = 500
Simulation size: N = 2000
Distributions: Example 1: F = χ2

1; Example 3: F = χ3
2

Statistics:
Example 1(a) modified: T (a)

m =
√
m(
√
X̄m −√µ(F ))

Example 1(b): T (b)
m =

√
m (X̄−µ(F ))

sm
where s2m = 1

m−1

∑m
i=1(Xi − X̄m)2.

Example 3. T (c)
m = m(min(X1, . . . ,Xm) − F−1(0))

Parameters of resampling distributions: G−1
m (.1), G−1

m (.9) where Gm is the dis-
tribution of Tm under the appropriate resampling scheme. We use B, J,N to
distinguish the schemes m/n,

(n
m

)
and sample splitting respectively.

In Example 1 the G−1
m parameters were used to form upper and lower “90%”

confidence bounds for θ ≡ √
µ(F ). Thus, from T

(a)
m ,

θ̄mB =
√
X̄n − 1√

n
G−1

mB(.1)) (7.1)

for the “90%” upper confidence bound based on the m/n bootstrap and, from
T

(b)
m ,

θ̄mB = ((X̄n − sn√
n
G−1

mB(.1))+)1/2, (7.2)

where GmB now corresponds to the t statistic. θmB , is defined similarly. The θ̄mJ

bounds are defined with GmJ replacing GmB . The θ̄mN bounds are considered
only for the unambiguous case m divides n and α an integer multiple of m/n.
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Thus if m = n/10, G−1
mN (.1) is simply the smallest of the 10 possible values

{Tm(Xjm+1, . . . ,X(j+1)m, F̂n), 0 ≤ j ≤ 9}.
We also specify 2 subsample sizes n0 < n1 for the extrapolation bounds,

θn0,n1
θ̄n0,n1 . These are defined for T (a)

m , for example, by.

θ̄n0,n1 =
√
X̄n − 1√

n

{(G−1
n0B(.1) +G−1

n1B(.1))
2

+(n−1/2− 1
2
(n−1/2

0 +n−1/2
1 ))(G−1

n0B(.1)−G−1
n1B(.1))/(n−1/2

0 −n−1/2
1 )

}
. (7.3)

We consider roughly, n0 = 2
√
n, n1 = 4

√
n and specifically, the triples (n, n0, n1):

(50, 15, 30), (100, 20, 40) and (400, 40, 80).
In Example 3, we similarly study the lower confidence bound on θ = F−1(0)

given by,

θ̄m = max(X1, . . . ,Xn) − 1
n
G−1

mB(.9). (7.4)

and the extrapolation lower confidence bound

θn0,n1
= min(X1, . . . ,Xn) − 1

n

(G−1
n0B(.9) +G−1

n1B(.9))
2

+(n−1 − (n−1
0 + n−1

1 )
2

)(G−1
n0B(.9) −G−1

n1B(.9))(n−1
0 − n−1

1 ). (7.5)

Note that we are using 1/m rather than 1/
√
m for extrapolation.

Measures of performance:
CP ≡ Coverage probability, the actual probability under the situation sim-

ulated that the region prescribed by the confidence bound covers the true value
of the parameter being estimated.

RMSE =
√
E(Bound−Actual quantile bound)2 .

Here the actual quantile bound refers to what we would use if we knew the dis-
tribution of Tn(X1, . . . ,Xn, F ). For example for T (a)

m we would replace G−1
mB(.1)

in (7.1) for F = χ2
1 by the .1 quantile of the distribution of

√
n(
√

Sm
m − 1) where

Sm has a χ2
m distribution, call it G∗−1

m (.1). Thus, here,

MSE =
1
n
E(G−1

mB(.1) −G∗−1
m (.1))2.

We give in Table 1 results for the Bn1, Bn and Bn0,n1 bounds, based on T (b)
m .

The T (a)
m bootstrap, as in Bickel and Yahav (1988), has CP and RMSE for
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Bn, Bn0,n1 and Bn1 agreeing to the accuracy of the Monte Carlo and we omit
these tables.

We give the corresponding results for lower confidence bounds based on T (c)
m

in Table 2. Table 3 presents results for sample splitting for T (a)
m . Table 4 presents

T
(a)
m results for the

(n
m

)
bootstrap.

Table 1. The t bootstrap: Example 1(b) at 90% nominal level

Coverage probabilities (CP ) RMSE

n B B1 BR B B1 BR
50

UB .88 .90 .88 .19 .21 .19
LB .90 .90 .90 .15 .15 .15

100
UB .90 .93 .89 .13 .14 .12
LB .91 .90 .91 .11 .10 .11

400
UB .91 .94 .90 .06 .07 .06
LB .91 .90 .91 .05 .05 .05

Notes: (a) B1 corresponds to (6.2) or its LCB analogue for m=n1(n)=30,
40, 80. Similarly B corresponds to m = n.

(b) BR corresponds to (6.3) or its LCB analogue with (n0, n1) =
(15, 30), (20, 40), (40, 80).

Table 2. The min statistic bootstrap: Example 3 at the nominal 90% level

n CP RMSE n CP RMSE
50 100

B .75 .01 B .75 .04
B1 .78 .07 B1 .82 .03
BR .70 .07 BR .76 .04
B1S .82 .07 B1S .87 .03
BRS .80 .07 BRS .86 .03

400
B .75 .09

B1 .86 .01
BR .83 .01

Notes: (a) B corresponds to (6.4) with m = n, B1 with m=n1 =30, 40, 80,
B1S with m=n1 =16.

(b) BR corresponds to (6.5) with (n0, n1)=(15, 30), (20, 40), (40, 80),
BRS with (n0, n1)=(4, 16).
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Table 3. Sample splitting in Example 1(a)

CP RMSE

n N Bm(n) N Bm(n)

50
UB .82 .86 .32 .18
LB .86 .91 .28 .16

100
UB .86 .89 .30 .14
LB .84 .90 .26 .12

400
UB .85 .89 .28 .08
LB .86 .91 .27 .09

Note: N here refers to m = .1n and α = .1.

Table 4. The
(

n
m

)
bootstrap and the m/n bootstrap in Example 1(a)

CP E(Length)
n m J B J B

50 16 .82 .88 .07 .09
100 16 .86 .88 .04 .05
400 40 .88 .90 .01 .01

Note: These figures are for simulation sizes of N = 500 and for 90% con-
fidence intervals. Thus, the end points of the intervals are given by (7.1)
and its UCB counterpart for B and J but with .1 replaced by .05. Similarly,
[E(Bound−Actual quantile bound)2]1/2 is replaced by the expected length of
the confidence interval.

Conclusions. The conclusions we draw are limited by the range of our simula-
tions. We opted for realistic sample sizes, of 50, 100 and a less realistic 400. For
n = 50, 100 the subsample sizes n1 = 30 (for n = 50) and 40 (for n = 100) are
of the order n/2 rather than o(n). For all sample sizes n0 = 2

√
n is not really

“of larger order than
√
n”. The simulations in fact show the asymptotics as very

good when the bootstrap works even for relatively small sample sizes. The story
when the bootstrap doesn’t work is less clear.

When the bootstrap works (Example 1)
• BR and B are very close both in terms of CP , and RMSE even for n = 50

from Table 1.
• B1’s CP though sometimes better than B’s consistently differs more from B’s

and its RMSE follows suit In particular, for UB in Table 1, the RMSE of
B1 is generally larger. LB exhibits less differences but this reflects that UB is
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governed by the behaviour of χ2
1 at 0. In simulations we do not present we get

similar sharper differences for LB when F is a heavy tailed distribution such
as Pareto with EX5 = ∞

• The effects, however, are much smaller than we expected. This reflects that
these are corrections to the coefficient of the n−1/2 term in the expansion.
Perhaps the most surprising aspect of these tables is how well B1 performs.

• From Table 3 we see that because the m we are forced to by the level con-
sidered is small, CP for the sample splitting bounds differs from the nominal
level. If n → ∞, m/n → .1 the coverage probability doesn’t tend to .1 since
the estimated quantile doesn’t tend to the actual quantile and both CP and
RMSE behave badly compared to Bm. This naive method can be fixed up
(see Blom (1976) for instance). However, its simplicity is lost and the

(n
m

)
or

m/n bootstrap seem preferable.
• The

(n
m

)
bounds are inferior as Table 4 shows. This reflects the presence of the

finite population correction m/n, even though these bounds were considered
for the more favorable sample size m = 16 for n = 50, 100 rather than m =
30, 40. Corrections such as those of Bertail (1994) or simply applying the
finite population correction to s would probably bring performance up to that
of Bn1. But the added complication doesn’t seem worthwhile.

When the bootstrap doesn’t work (Example 3)
• From Table 2, as expected, the CP of the n/n bootstrap for the lower con-

fidence bound was poor for all n. For n0 = 2
√
n, n1 = 4

√
n, CP for B1 was

constantly better than B for all n. BR is worse than B1 but improves with n
and was nearly as good as B1 for n = 400. For small n0, n1 both B1 and BR
do much better. However, it is clear that the smaller m of B1S is better than
all other choices.

We did not give results for the upper confidence bound because the granularity of
the bootstrap distribution of miniXi for these values of m and n made CP = 1
in all cases.

Evidently, n0, n1 play a critical role here. What apparently is happening is
that for n0, n1 not sufficiently small compared with n extrapolation picks up the
wrong slope and moves the not so good B1 bound even further towards the poor
B bound.

A message of these simulations to us is that extrapolation of the Bm plot
may carry risks not fully revealed by the asymptotics. On the other hand, if
n0 and n1 are chosen in a reasonable fashion extrapolation on the

√
n scale

works well when the bootstrap does. Two notes, based on simulations we do
not present, should be added to the optimism of Bickel, Yahav (1988) however.
There may be risk if n0 is really small compared to

√
n. We obtained poor
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results for BR for the t statistics for n0 = 4 and 2. Thus n0 = 4, n1 = 16 gave
the wrong slope to the extrapolation which tended to overshoot badly. Also,
taking n1 and n0 close to each other, as the theory of the 1988 paper suggests is
appropriate for statistics possessing high order expansions when the expansion
coefficients are deterministic, gives poor results. It can also be seen theoretically
that the sampling variability of the bootstrap for m of the order

√
n makes this

prescription unreasonable.
The principal message we draw is that it is necessary to develop data driven

methods of selection of m which lead to reasonable results over situations where
both the bootstrap works and where it doesn’t. Such methods are being pursued.

Acknowledgement

We are grateful to Jiming Jiang and Adele Cutler for essential programming,
to John Rice for editorial comments, and to Kjell Doksum for the Blom reference.
This research was supported by NATO Grant CRG 920650, Sonderforschungs-
bereich 343 Diskrete Strukturen der Mathematik, Bielefeld and NSA Grant MDA
904-94-H-2020.

Appendix

Proof of Theorem 2. For i=(i1, . . . , ir) ∈ Λr,m let U(i) = 1

(n
r)
∑{hi(Xj1 , . . .,

Xjr , F ) : 1 ≤ j1 < · · · < jr ≤ n}. Then, since hi as defined is symmetric in its
arguments it is a U statistic and ‖h‖∞ is an upper bound to its kernel. Hence

(a) Var FU(i) ≤ ‖h‖2
∞
r

n
. On the other hand,

(b) EU(i) = EFhi(X1, . . . ,Xr, F ) and

(c) Bm,n(F ) =
m∑

r=1

∑
{wm,n(i)U(i) : i ∈ Λr,m} by (3.7). Thus, by (c),

(d) Var 1/2
F Bm,n(F ) ≤

m∑
r=1

∑
{wm,n(i)Var 1/2

F U(i) : i ∈ Λr,m}

≤ maxVar 1/2
F U(i) ≤ ‖h‖∞(

m

n
)1/2

by (a). This completes the proof of (3.10).
The proof of (3.11) is more involved. By (3.8)

(e) |θm,n(F ) − θ(F )| ≤
m∑

r=1

∑
{|EFhi(X1, . . . ,Xr) − θm(F )|wm,n(i) : i ∈ Λr,m}.
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Let,

(f) Pm,n[Rm = r] =
∑

{wm,n(i) : i ∈ Λr,m}.
Expression (f) is easily recognized as the probability of getting n− r empty

cells when throwing n balls independently into m boxes without restrictions (see
Feller (1968), p.19). Then it is well known or easily seen that

(g) Em,n(Rm) = n(1 − (1 − 1
n

)m)

(h) Var m,n(Rm) = n{(1 − 1
n

)m − (1 − 2
n

)m} + n2{(1 − 2
n

)m − (1 − 1
n

)2m}.

It is easy to check that, if m = o(n)

(i) Em,n(Rm) = m(1 +O(
m

n
))

(j) Var m,n(Rm) = O(m)

so that,

(k)
Rm

m
= 1 +OP (m−1/2).

From (e),

(l) |θm,n(F ) − θ(F )| ≤
m∑

r=1

δm(
r

m
)Pm,n[Rm = r].

By (k), (l) and the dominated convergence theorem (3.12) follows from (3.11)
and (k).

Finally, as in Theorem 1, we bound, as in (3.4),

(m) |Bm,n(F ) −Bm(F )| ≤
m∑

r=1

∑
{EF |hi(X1, . . . ,Xr) − hi(X1, . . . ,Xr, F̂n)| :

i ∈ Λr,m}wm,n(i),

where

(n) hi(X1, . . . ,Xr, F̂n) =
1
r!

∑
1≤j1 �=···�=jr≤r

h(Tm(X(i1)
j1

, . . . ,X
(ir)
jr

, F̂n)).



28 P. J. BICKEL, F. GÖTZE AND W. R. VAN ZWET

Let Rm be distributed according to (f) and given Rm = r, let (I1, . . . , Ir) be
uniformly distributed on the set of partitions of m into r ordered integers, I1 ≤
I2 ≤ · · · ≤ Ir. Then, from (m) we can write

(o) |Bm,n(F ) −Bm(F )| ≤ E∆(I1, . . . , IRm),

where ‖∆‖∞ ≤ ‖h‖∞. Further, by the continuity of h and (3.13), since I1 ≤
· · · ≤ IRm ,

(p) ∆(I1, . . . , IRm)1(IRm ≤ εmm) P→0

whenever εm = O(m−1/2). Now, IRm > εmm,

(q) m =
Rm∑
j=1

Ij

and Ij ≥ 1 imply that,

(r) m(1 − εm) ≥
Rm−1∑
j=1

Ij ≥ (Rm − 1).

Thus,

(s) Pm,n(IRm > εmm) ≤ Pm,n(
Rm

m
− 1 ≤ −εm +O(m−1)) → 0

if εmm1/2 → ∞. Combining (s), (k) and (p) we conclude that

(t) E∆(I1, . . . , IRm) → 0

and hence (o) implies (3.14).

The corollary follows from (e) and (f).

Note that this implies that the m/n bootstrap works if about
√
m ties do

not affect the value of Tm much.

Checking that Jm, Bm, Nm m = o(n) works
The arguments we give for Bm also work for Jm only more easily since

Theorem 1 can be verified. It is easier to directly verify that, in all our examples,
the m/n bootstrap distribution of Tn(F̂n, F ) converges weakly (in probability)
to its limit L(F ) and conclude that Theorem 2 holds for all h continuous and
bounded than to check the conditions of Theorem 2. Such verifications can be
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found in the papers we cite. We sketch in what follows how the conditions of
Theorem 1 and 2 can be applied.

Example 1. (a) We sketch heuristically how one would argue for function-
als considered in Section 2 rather than quantiles. For Jm we need only check
that (2.6) holds since

√
m(X̄ − µ(F )) = op(1). For Bm note that the distribu-

tion of m−1/2(i1X1 + · · · + irXr) differs from that of m−1/2(X1 + · · · +Xm) by

O(
∑r

j=1

(i2j−1)

m ). If we maximize
∑r

j=1(i
2
j − 1) subject to

∑r
j=1 ij = m, ij ≥ 1 we

obtain 2(m−r)
m + (m−r)2

m . Thus for suitable h, δm(x) = 2(1− x) + 1√
m

(1− x)2 and
the hypotheses of Theorem 2 hold.
(b) Note that,

P
[√
n

(X̄ − µ(F ))
s

≤ t
]

= P [
√
n(X̄ − µ(F )) − st ≤ 0]

and apply the previous arguments to Tn(F̂n, F ) ≡ √
n(X̄ − µ(F )) − st.

Example 2. In Example 2 the variance corresponds to h(x) = x2 if Tm(F̂m, F ) =
m1/2(med(X1, . . . ,Xm)−F−1(1

2)). An argument parallel to that in Efron (1979)
works. Here is a direct argument for h bounded.

(a) P [med(X(i1)
1 , . . . ,X(ir)

r ) �= med(X(i1)
1 , . . . ,X(ir−1)

r ,Xr+1)] ≤ 1
r + 1

.

Thus,

(b) P [med(X(i1)
1 , . . . ,X(ir)

r ) �= med(X1, . . . ,Xm)] ≤
m∑

j=r+1

1
j
≤ log(

m

r
).

Hence for h bounded,

δm(x) ≤ ‖h‖∞ log(
1
x

)

and we can apply Theorem 2.

Example 3. Follows by checking (3.2) in Theorem 1 and that Theorem 2 applies
for Jm by arguing as above for Bm. Alternatively, argue as in Athreya and
Fukushi (1994).

Arguments similar to those given so far can be applied to the other examples.
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