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MAXIMUM LIKELIHOOD ESTIMATION FOR NONGAUSSIAN
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Abstract: We consider an approximate maximum likelihood procedure for estimat-

ing parameters of possibly noncausal and noninvertible autoregressive moving average

processes driven by independent identically distributed nonGaussian noise. It is shown

that the normalized approximate likelihood has a global maximum at true parameter

values in the nonGaussian case. Under appropriate conditions, estimates of parame-

ters that are solutions of likelihood equations exist, are consistent and asymptotically

normal. An asymptotic covariance matrix is given. The procedure is illustrated with

simulation examples of ARMA(1; 1) processes.
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1. Introduction

We consider, in this paper, approximate maximum likelihood estimation for

an autoregressive moving average (ARMA) process

xt � ~�1xt�1 � � � � � ~�pxt�p = zt � ~�1zt�1 � � � � � ~�p0zt�p0 ; (1:1)

where the ~�j 's and ~�k's are real weights and the z� 's are real independent, identi-

cally distributed random variables with mean 0, variance �2 and �nite fourth mo-

ment. Assume that the polynomials �(z) = 1�
Pp

j=1
~�jz

j
; �(z) = 1�

Pp0

k=1
~�kz

k

have no zeros in common. There is then a stationary solution (which is uniquely

determined) if and only if �(z) has no zeros of absolute value one. The spectral

density of the process xt is then given by S(�) = (�2=2�) j�(e�i�)=�(e�i�)j2:
Quadratic statistics can be used to estimate the second order spectral density

but not usually to estimate �(e�i�), �(e�i�) since there are many distinct func-

tion pairs �(e�i�), �(e�i�) that are possible corresponding to the same spectral

density S(�). If the process fxtg is Gaussian, the polynomials �(z), �(z) are not

identi�able unless one makes, for example, the assumption that they are mini-

mum phase, that is, their zeros all have modulus greater than one. In the case

of a nonGaussian sequence fxtg the polynomials �(z), �(z) are identi�able. The

process fxtg is causal if the polynomial �(z) is minimum phase. The process
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is invertible if polynomial �(z) is minimum phase. Interest in nonGaussian pro-

cesses without minimum phase assumptions on the polynomials �(z), �(z) does

arise in a number of applications. In one of these applications a deconvolution

problem of the type that arises in seismic investigations is at issue. A discussion

of this type of problem is given in Wiggins (1978, 1985) and Donoho (1981).

There is an extensive literature concerned with stationary Gaussian autore-

gressive moving average sequences that has been generated over an appreciable

period of time. The interest in nonGaussian ARMA sequences is of fairly recent

vintage, especially that concerned with an improvement in performance of param-

eter estimates beyond that provided by a \quasiGaussian" likelihood function,

namely, that provided by estimates computed as if the sequence had a Gaussian

likelihood (Rosenblatt (1985, Chapter 4)).

The stationary solution of (1.1) is causal, that is, has a representation of the

form xt =
P
1

j=0 ajzt�j if and only if �(z) has no zeros inside the unit disc in the

complex plane. Thus, all moving average models xt = zt � ~�1zt�1 � � � � � ~�p0zt�p0

are obviously causal whether they are minimum phase or not. The following four

moving average models all have the same spectral density xt = zt�(19=12)zt�1+

(15=24)zt�2 with �
2 = 1; xt = zt�(38=15)zt�1+(8=5)zt�2 with �

2 = (5=8)2; xt =

zt� (39=20)zt�1+(9=10)zt�2 with �
2 = (5=6)2; xt = zt� (13=6)zt�1+(20=18)zt�2

with �
2 = (3=4)2. They are di�erent processes if zt is nonGaussian. Only the

�rst process is minimum phase. Yet it is clear that one would want to be able to

distinguish between these viable causal models in the nonGaussian context.

It is clear that autoregressive models satisfying xt� ~�1xt�1�� � �� ~�pxt�p = zt

that are nonminimum phase are noncausal. Consider a one-dimensional random

�eld or a transect of a random �eld as would be natural in the case of areal

population surveys of trees or animal populations. If in one direction the model

were causal, then in the other (opposite) direction it would be noncausal. We

are dealing here with models in which t is not a time parameter but rather the

scale along a transect. It would be equally natural in the case of a photographic

�lm or the transect along a photographic plate. Thus, it is quite natural and

of interest to deal with noncausal nonGaussian autoregressive schemes in such

contexts.

Notice that since �j�(e�i�)=�(e�i�)j = (2�S(�))1=2, additional information

required in estimating �(e�i�) and �(e�i�) certainly involves the phase informa-

tion arg f�(e�i�)g, arg f�(e�i�)g. This information is not available (or meaning-

ful) in the Gaussian case but is available in the nonGaussian context. Though

such information cannot be obtained by quadratic or second order spectral meth-

ods, it can be resolved by using third or higher order cumulant spectral esti-

mates. An earlier paper using such methods is Lii and Rosenblatt (1982). There

has been much interest in the engineering literature in such problems (Mendel
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(1991)). Another area of application is to be found in what is called \speckle

masking" in astronomy. Here related methods are used to overcome the degra-

dation of telescopic images caused by atmospheric turbulence. Discussions of

this application can be found in the papers of Lohmann, Weigelt, and Wirnitzer

(1983) and Bartelt, Lohmann and Wirnitzer (1984). In Kay and Sengupta (1991)

the improvement in spectral estimation for linear nonGaussian minimum phase

processes is studied, when the distribution of the independent random variables

generating the process is known. Of course, corresponding questions for sec-

ond and higher order spectra are clearly of interest when the process studied is

nonminimum phase. A recent survey of other applications of the models con-

sidered here is Mendel (1991) and references therein. Methods of estimation of

parameters considered in these references are based upon higher order moments.

Methods based on higher (than second) order moments or cumulant spectra

are not e�cient in estimating parameters of �nite parameter schemes. Kreiss

(1987) has determined the behavior of asymptotically e�cient parameter esti-

mates when the functions �( � ) and �( � ) satisfy the minimum phase assumption.

These estimates improve upon the standard estimates based on a Gaussian like-

lihood by the Fisher information of the density function. Breidt, Davis, Lii and

Rosenblatt (1991, which will be abbreviated as BDLR) have studied the behavior

of asymptotically e�cient parameter estimates for possibly nonminimum phase

autoregressive sequences. Corresponding results were obtained by a di�erent

procedure for the case of possibly nonminimum phase moving average sequences

by Lii and Rosenblatt (1992, which will be abbreviated as LR). An appropri-

ate modi�cation of the procedure employed in this last paper is used to get the

appropriate results for general stationary nonGaussian ARMA sequences.

The system of equations (1.1) can be rewritten as �(B)xt = �(B)zt in terms

of the backward shift operator B. Let

�(z) = �
+(z)��(z) = (1� �1z � � � � � �rz

r)(1 � �r+1z � � � � � �pz
s);

�(z) = �
+(z)��(z) = (1� �1z � � � � � �r0z

r0)(1 � �r0+1z � � � � � �p0z
s0);

(1:2)

where �+ and �
+ have no roots on the closed unit disc and �

� and �
� have all

their roots in the interior of the unit disc. Also

�
+(z)�1 =

1X
j=0

�jz
j
; �

�(z)�1 =
1X
j=s

�jz
�j

;

�
+(z)�1 =

1X
j=0

�
0

jz
j
; �

�(z)�1 =
1X
j=s0

�
0

jz
�j

:

(1:3)

The random variables zt are assumed to have density function f�(z) =
1

�
f( z

�
).
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Let

C1 = E

�
f
0

�

f�
(z)

�2

�
2
; C2 = E

�
z
f
0

�

f�
(z)

�2

: (1:4)

The object is to estimate the parameters � = (�u; u = 1; : : : ; p + p
0 + 1) where

�u = �u, u = 1; : : : ; p; �u = �u�p, u = p+ 1; : : : ; p+ p
0; �p+p0+1 = �.

The approximate likelihood function is derived in Section 2. The fact that

the limit of the normalized likelihood has a global maximum at the true param-

eter value is established in Section 3. The limiting covariance properties of the

logarithm of a quasi-likelihood (de�ned in terms of the zt's rather than the actual

observations) are derived in Section 4 and are shown to be given by covariance

(1.5) and Table 1. The approximate likelihood equations in terms of x1; : : : ; xn
alone are given in Section 5. Given that r, s, r0, s0 have been determined, it is

shown that there is a sequence of solutions �n of the likelihood equations that

are consistent and such that n1=2(�n � �) is asymptotically normal with limiting

covariance matrix ��1 as given by (1.5). Here � is, of course, the true parameter

vector. A number of simulations are described in Section 6. In the rest of this

section we set down some further notation and conditions for the paper. Consider

the positive de�nite matrix

� = (�u;v ; u; v = 1; : : : ; p+ p
0 + 1) (1:5)

with �u;v given in Table 1.

We shall show that under appropriate conditions approximate maximum

likelihood estimates �̂ of the unknown parameters � are such that
p
n (�̂� �) is

asymptotically normally distributed with mean 0 and covariance matrix ��1.

As in BDLR (1991) and LR (1992) we make the following assumptions on

the density f of the i.i.d. random variable zt which we call Assumption A.

A1. f(x) > 0 for all x

A2. f 2 C
2

A3. f 0 2 L1 with

Z
f
0(x) dx = f(x)

���1
�1

= 0

A4.

Z
x f

0(x) dx = x f(x)
���1
�1

�
Z

f(x) dx = �1

A5.

Z
f
00(x) dx = f

0(x)
���1
�1

= 0

A6.

Z
x f

00(x) dx = x f
0(x)

���1
�1

�
Z

f
0(x) dx = 0

A7.

Z
x
2
f
00(x) dx = x

2
f
0(x)

���1
�1

� 2

Z
x f

0(x) dx = 2

A8.

Z
(1 + x

2)(f 0(x))2=f(x) dx <1 :

We also assume
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B. ju(z + h)� u(z)j � A((1 + jzjk)jhj+ jhj`) for all z; h with k; `; A �xed positive

constants and u( � ) = f
0
=f ; (f 0=f)0.

Table 1. �u;v in (1.5)

�u;v =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C1
1P
j=0

�j�j+ju�vj; if u; v = 1; : : : ; r;

C1
1P
j=s

�j�j+ju�vj; if u; v = r + 1; : : : ; p;

(u; v) 6= (p; p);

�
2
s (C2� 1) + C1

1P
j=s

�
2
j+1; if u = v = p;P

j

�j�u�j+v�r ; if u=1; : : : ; r; v=r+1; : : : ; p;

C1
1P
j=0

�
0

j�
0

j+jv�uj
; if u; v = p+ 1; : : : ; p+ r

0
;

C1
1P
j=s0

�
0

j�
0

j+jv�uj
; if u; v = p+ r

0 + 1; : : : ; p+ p
0
;

(u; v) 6= (p+ p
0
; p+ p

0);

�
02
s0 (C2� 1) + C1

1P
j=s0

�
02
j+1; if u = v = p+ p

0
;P

j

�
0

j�u�
0

j+v�r0 ; if u = p+ 1; : : : ; p+ r
0
;

v = p+ r
0 + 1; : : : ; p+ p

0
;

�C1
P
j

�j�
0

j+u�v+p; if u = 1; : : : ; r;

v = p+ 1; : : : ; p+ r
0
;

�C1
P
j

�j�
0

j+r�u�r0+v�p; if u = r + 1; : : : ; p;

v = p+ r
0 + 1; : : : ; p+ p

0
;

(u; v) 6= (p; p+ p
0);

��s�
0

s0(C2� 1)� C1
1P
j=1

�s+j�
0

s0+j ; if (u; v) = (p; p+ p
0);

�
P
j

�j�u�
0

j+v�p�r0 ; if u = 1; : : : ; r;

v = p+ r
0 + 1; : : : ; p+ p

0
;

�
P
j

�
0

j�v+p�j+u�r; if u = r + 1; : : : ; p;

v = p+ 1; : : : ; p+ r
0
;

�
�1

�s(C2� 1); if u = p; v = p+ p
0 + 1;

���1�0s0(C2� 1); if v = p+ p
0
; v = p+ p

0 + 1;

�
�2(C2� 1); if u = v = p+ p

0 + 1;

0; otherwise:

:
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2. The Likelihood Function

In this section we derive an approximation to the likelihood function of x =

(x1; : : : ; xn). The basic idea is to augment the data vector x by a vector w of

�xed size where (w; x) can be mapped linearly in a 1� 1 manner onto a vector

(y; z) and y is a vector of �xed size independent of z = (zk; : : : ; zn+j). Here j

and k are �xed. The density of (w; x) can be written as h(y)
Qn+j

t=k f�(zt) � Dn

with h the density of y and Dn the Jacobian of the transformation from (y; z)

to (w; x). The approximate likelihood is obtained by ignoring the term h(y) and

replacing zt (as a function of the x's) by an approximation zt(q) that depends on

the xt's only for q < t � n� q and not on w with q = q(n)!1 as n!1 and

q(n) = o(n). The contribution of zt for t < q, t > n� q is also ignored. Details

are given in the following discussion. Let

ut = �
�(B)xt; �t = �

�(B)zt;

vt = �
+(B)xt; �t = �

+(B)zt:
(2:1)

We consider transformations

(x1�p; : : : ; xn+p)! (u1�r; : : : ; un+p; vn+p+1�s; : : : ; vn+p); (2:2)

(�1�r0 ; : : : ; �0; u1�r; : : : ; un+p)! (u1�r; : : : ; u0; �1�r0 ; : : : ; �n+p); (2:3)

(�1�r0 ; : : : ; �n+p; �n+p+1�s0 ; : : : ; �n+p)! (z1�p0 ; : : : ; zn+p): (2:4)

The transformation (2.2) is the linear mapping

2
666666666664

��p ��p�1 � � � ��r+1 1 0 0 � � � 0

0 ��p � � � ��r+1 1 0 � � � 0

. . .
. . .

. . . 1

��r ��r�1 � � � 1 0 � � � 0

. . .
. . .

. . .
. . .

��r ��r�1 � � � 1

3
777777777775

2
666666666664

x1�p

...

xn+r

xn+r+1
...

xn+p

3
777777777775
=

2
666666666664

u1�r

...

un+p

vn+p+1�s
...

vn+p

3
777777777775
;

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ..........

.

.

...

.

.

...

..

..

..

.

...

.

.

..

.

..

...

.

.

..

...

.

.

.

..

.

.

..

...

...

..

..

.

..

..

.

where the lower right rectangular submatrix of the transformation matrix indi-

cated is s�(r+s). The Jacobian of the transformation is seen to be j�pjn+ph1(�1;
: : : ; �p) for a function h1. The linear transformation (2.3) is based on the mini-

mum phase system �
+(B)ut = �

+(B)�t and so has a unit Jacobian. The trans-

formation (2.4) is the transformation of (2.2) in the inverse direction using (2.1).

The transformation (2.4) has Jacobian j�p0 j�n�ph�12 (�1; : : : ; �p0). Let us consider
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the following sequence of transformations obtained by augmenting the variables

in transformations (2.2) to (2.4)

(�1�r0 ; : : : ; �0; x1�p; : : : ; xn+p; �n+p+1�s0 ; : : : ; �n+p)

! (�1�r0 ; : : : ; �0; u1�r; : : : ; un+p; vn+p+1�s; : : : ; vn+p; �n+p+1�s0 ; : : : ; �n+p)

! (u1�r; : : : ; u0; �1�r0 ; : : : ; �n+p; vn+p+1�s; : : : ; vn+p; �n+p+1�s0 ; : : : ; �n+p)

! (u1�r; : : : ; u0; z1�p0 ; : : : ; zn+p; vn+p+1�s; : : : ; vn+p): (2:5)

Note that ut = �
�(B)xt = �

+(B)�1�(B)zt =
P
1

j=0 �jfzt�j � ~�1zt�j�1 � � � �
~�p0zt�j�p0g is independent of fzt+1; zt+2; : : :g and that vt = �

+(B)xt = �
�(B)�1

�(B)zt is independent of fzt+s�p0�1; zt+s�p0�2; : : :g. The joint probability density
of the variables in the parentheses on the extreme right of (2.5) can be written

g1(u1�r; : : : ; u0; z1�p0 ; : : : ; z0)

n+p�p0Y
j=1

f�(zj)g2(zn+p�p0+1; : : : ; zn+p; vn+p+1�s; : : : ; vn+p)

with g1; g2 joint probability densities of the arguments listed. Thus the joint

probability density of (�1�r0 ; : : : ; �0; x1�p; : : : ; xn+p; �n+p+1�s0 ; : : : ; �n+p) is

`(�) � g1

n+p�p0Y
j=1

f�(zj)g2 � j�p=�p0 j
n
c(�1; : : : ; �p; �1; : : : ; �p0); (2:6)

where g1; g2, and c(�1; : : : ; �p; �1; : : : ; �p0) do not depend on n and so in later

arguments can be ignored for large n.

The expressions obtained suggest that one can approximate 1=n times the

log of the likelihood (2.6) by

1

n� 2q

n�qX
t=q

log f�(zt) + log j�pj � log j�p0 j; (2:7)

where zt is unobserved (but expressible in terms of �, x, �) and q = q(n) ! 1
as n!1 with q(n) = o(n). A further approximation to (2.7) is given by

1

n� 2q

n�qX
t=q+1

log f�(zt(q)) + log j�pj � log j�p0 j (2:8)

with

zt(q) = [�(B)�1�(B)]qxt; (2:9)

where [�(z)�1�(z)]q is the truncated Laurent expansion of �(z)�1�(z) extended

over powers z
k with jkj � q. This is plausible since the coe�cients of zk in
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the expansion decay exponentially fast to zero as jkj ! 1. Note that zt(q)

is completely expressible in terms of the observations fx1; : : : ; xng for t = q +

1; : : : ; n� q and is computable given a set of parameters �.

In Section 4 we proceed initially with our derivations using (2.7) as if the

true zt's can be computed. This would be the case if the in�nite sequence fxtg
were available. Likelihood equations will be derived in terms of (2.7) for quasi-

estimates �̂ of �. The asymptotic behavior of a sequence of such quasi-estimates

will be examined as n ! 1. Then, in Section 5, we show that the solutions of

corresponding set of likelihood equations derived from the approximation (2.8)

have the same statistical properties asymptotically.

3. Extremum of the Limiting Normalized Approximate Likelihood

The actual approximate loglikelihood that we consider has the form

Lq(�) =

n�qX
t=q

log f�(zt(q)) + (n� 2q)[ log j�pj � log j�p0 j];

where q = q(n) ! 1 as n ! 1 but q(n) = o(n). Here zt(q) is given in (2.9).

With distinct real zeros of �(z), �(z) and no zeros reciprocal of other zeros, there

are 2p+p
0

di�erent likelihoods corresponding to root location inside or outside the

unit circle in the complex plane.

First, note that Assumptions A and B imply that

E�
0

jlog f�(zt(q))� log f�(M(�; �)xt)j ! 0 (3:1)

as n!1, where M(�; �) = �(B)�1�(B) with � = (�1; : : : ; �p), � = (�1; : : : ; �p0)

and �0 is the true parameter vector. This follows directly on using Taylor's

formula with error term, Assumption B and the bounds on moments available.

Lemma 1. Assumptions A and B imply that

1

n
Lq(�)! E�

0

log f�(M(�; �)xt) + log j�pj � log j�p0 j (3:2)

in mean as n ! 1 where �0 is the true parameter vector. Further, the right

hand side of (3.2) takes on the maximal value at � = �0 in the nonGaussian

case when log(g1g2) is integrable for all admissible parameter values.

The limiting relation (3.2) follows directly from (3.1) and the ergodic theo-

rem. The expectation on the right side of (3.2) can be rewritten

E�
0

log f1(M(�; �)��1xt) + log j�pj � log j�p0 j � log �

= E�
0

log f1(M(�; �)��1M(�0; �0)
�1
�0�t) + log j�pj � log j�p0 j � log �; (3:3)
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where the �t's are independent with common density f1. The integrability of

log(g1g2) implies that

1

n
E�

0

j log `(�)� logLq(�)j ! 0

as n!1. Jensen's inequality implies that E�
0

[log `(�)] is uniquely maximized

by � = �0 for

E�
0

(logf
`(�)

`(�0)
g) < logE�

0

(
`(�)

`(�0)
) = 0 if � 6= �0;

and so E�
0

flog `(�)g < E�
0

flog `(�0)g if � 6= �0. In the limit as n ! 1 it is

clear that (3.2) is maximized at � = �0.

In computational practice the isolation of the proper surface of the 2p+p
0

surfaces can proceed by using a grid of points on the surfaces at which the

approximate likelihood would be evaluated and the maximum value computed.

Given the choice of the proper surface, one would then carry on the search there.

Of course, a number of alternate procedures could be used. For example, a

preliminary search for the proper surface could be made by using the cruder

nonparametric estimate given in Lii and Rosenblatt (1982). With such an initial

search one can determine r; s and r
0
; s

0. This is illustrated in the examples of

Section 6. We note that zt(q) is expressed in terms of observed fx1; : : : ; xng for
t = q + 1; : : : ; n� q and is computable given a set of parameters �.

In the next section we proceed with our derivations using (2.7) as if true

zt can actually be computed. They could be if the in�nite sequence of fxtg
were available. Likelihood equations will be derived in terms of (2.7) for quasi-

estimates �̂ of �. The asymptotic behavior of a sequence of such quasi-estimates

will be examined as n ! 1. Then we show, in Section 5, that the solutions of

a corresponding set of likelihood equations derived from the approximation by

(2.8) have the same statistical properties asymptotically.

4. Covariance Properties

Let

L(�) = L(�; �; �) =
n�aX
t=a+1

gt(�; �; �) =
n�aX
t=a+1

gt(�) (4:1)

with

gt(�) = log f�(�
+(B)��(B)�+(B)�1��(B)�1xt) + log j�pj � log j�p+p0 j : (4:2)

Then
@

@�j
gt(�) = �

f
0

�

f�
(zt) � Bj

�
�(B)�+(B)�1��(B)�1xt

= �
f
0

�

f�
(zt) � Bj

�
+(B)�1zt ; j = 1; : : : ; r;
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@

@�k
gt(�) =

f
0

�

f�
(zt) � Bk

�
+(B)�1zt; k = 1; : : : ; r0 ;

@

@�`
gt(�) = �

f
0

�

f�
(zt)B

`�r
�
�(B)�1zt + �p;`

1

�p
; ` = r + 1; : : : ; p ;

@

@�m
gt(�) =

f
0

�

f�
(zt)B

m�r0
�
�(B)�1zt � �p0;m

1

�p0
; m = r

0 + 1; : : : ; p0 ;

@

@�
gt(�) =

@

@�p+q+1
g(�) = �

1

�

�
zt
f
0

�(zt)

f�(zt)
+ 1

�
;

where f�(x) = (1=�)f(x=�) and f
0

�(x) = (1=�2)f 0(x=�). Using (1.3) and the

fact that �s = �(1=�p) and �s0 = �(1=�p0), together with Assumption A we can

readily verify that E((@=@�i) gt) = 0 for i = 1; : : : ; p+ p
0 + 1. From (1.3) we can

verify that

Cov

�
@gt

@�j
;
@g�

@�k

�
=

8<
:
0; if t 6= � ,

�E
�
f 0
�

f�
(zt)

�2
�
P
i

�i�
0

i+j�k�
2
; if t = � ,

for j = 1; : : : ; r; k = 1; : : : ; r0. It is understood that �` = �
0

` = 0 for ` < 0.

Similarly

Cov

�
@gt

@�`
;
@g�

@�m

�
=

8<
:
0; if t 6= � ,

�E
�

f 0
�

f�
(zt)

�2
�
P
j

�j�
0

j+r�`�r0+m�
2
; if t = � ,

for ` = r+1; : : : ; p, m = r
0+1; : : : ; p0, (`;m) 6= (p; p0) where it is understood that

�` = 0 if ` < s and �
0

` = 0 if ` < s
0. In a similar way we can verify the following

relations

Cov

�
@gt

@�j
;
@g�

@�m

�
=

�
0; if t � � ,

��t���j�
0

t��+m�r0 ; if t > � ,

for j = 1; : : : ; r; m = r
0 + 1; : : : ; p0,

Cov

�
@gt

@�`
;
@g�

@�k

�
=

�
0; if t � � ,

��0��t�k���t+`�r; if t < � ,

for ` = r + 1; : : : ; p; k = 1; : : : ; r0. Also

Cov

�
@gt

@�p
;
@g�

@�p0

�

= Cov

0
@�f

0

�

f�
(zt)B

s

1X
j=s

�jB
�j
zt +

1

�p
;
f
0

�

f�
(z� )B

s0
1X

k=s0

�
0

kB
�k
z� �

1

�p0

1
A

=

8<
:
0; if t 6= � ,

��s�0s0
�
E

�
zt

f 0
�

f�
(zt)

�2
� 1

�
�E

�
f 0
�

f�
(zt)

�2
�
1P
j=1

�s+j�
0

s0+j�
2
; if t = � ;
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Cov

�
@gt

@�j
;
@g�

@�

�
=

8><
>:
0 ; j=1; : : : ; p�1; for all t; �;
0 ; j=p and t 6= � ,

�
�1
�sE

�
zt

f 0
�

f�
(zt)

�2
� �

�1
�s ; j=p and t = � ;

Cov

�
@gt

@�j
;
@g�

@�

�
=

8><
>:
0; j 6= p

0
; for all t; � ,

0; j = p
0
; t 6= � ,

���1�0s0E
�
zt

f 0
�

f�
(zt)

�2
+ �

�1
�
0

s0 ; j = p
0
; t = � ;

and

Cov

�
@gt

@�
;
@g�

@�

�
=

(
0; t 6= � ,

�
�2
E

�
zt

f 0
�

f�
(zt)

�2
� �

�2
; t = � :

It is clear that Cov (@gt=@�u; @g�=@�v) for u; v = 1; : : : ; p will be the same as

that given in BDLR (1991) and Cov (@gt=@�u; @g�=@�v) for u; v = 1; : : : ; p0 will

be the same as that given in LR (1992). We summarize these results in

Theorem 1. Under the Assumptions A, for a > 0 we have

Cov

 
n�aX
t=a+1

@gt

@�u
;

n�aX
�=a+1

@g�

@�v

!
�= (n� 2a)�u;v ; u; v = 1; : : : ; p+ p

0 + 1; (4:3)

where �u;v is given in Table 1. Later, we shall take a as a function of n with

a(n) = o(n).

Lemma 2. Given Assumptions A

(n� 2a)1=2
n�aX
t=a

@gt

@�

d�! N(0;�) (4:4)

as n!1 with � given by (1.5).

The partial derivatives @gt=@�u, u = 1; : : : ; p + p
0 + 1 are just as in BDLR

(1991) and LR (1992), except possibly for centering of the form
P

j(f
0

�=f�)(zt)

�
jzt�j with weights 
j that tend to zero exponentially fast as jjj ! 1. If

the expansions are truncated by neglecting terms indexed beyond a large jjj, the
corresponding approximations for the partial derivatives are �nite step dependent

and thus asymptotically jointly normal. The asymptotic covariance behavior of

the expressions on the left of (4.4) is given by �. A standard approximation

argument gives the conclusion of the lemma.

Lemma 3. Under Assumptions A,

E

�
@
2
gt

@�u@�v

�
= ��u;v ; u; v = 1; : : : ; p+ p

0 + 1 :
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It is clear that this identity is valid for u; v = 1; : : : ; p (see BDLR (1991))

and for u; v = p+1; : : : ; p+p
0 (see LR (1992)) as well as u = p, v = p+p

0+1 and

u = p+ p
0, v = p+ p

0 + 1. We shall just carry out the explicit computation for

u = 1; : : : ; r, v = p+ 1; : : : ; p+ r
0 since the other cases with u an autoregressive

variable and v a moving average variable are quite similar. If u = 1; : : : ; r, as

already noted, @gt=@�u = �(f 0�=f�) (zt)Bu
�
+(B)�1zt and so

@
2
gt

@�u@�v
=� �

�2
n
h
0(��1zt)

h 1X
j=0

�jB
j+u

zt

ih 1X
k=0

�
0

kB
k+v�p

zt

i

+ �
2 f

0

�

f�
(� � �)

1X
j=0

�jB
j+u

1X
k=0

�
0

kB
k+v�p

zt

o
;

u = 1; : : : ; r, v = p + 1; : : : ; p + r
0 with h(x) = f

0(x)=f(x). We can then easily

see that

E

�
@
2
gt

@�u@�v

�
=�C1

X
j

�j�
0

j+u�v+p=��u;v ; u=1; : : : ; r; v=p+ 1; : : : ; p+ r
0
:

5. Asymptotics

Our purpose is to show that there is a sequence of solutions �̂n to the ap-

proximate likelihood equations

@Lq(�)

@�u
= 0 ; u = 1; : : : ; p+ p

0 + 1 ; (5:1)

where

Lq(�) =

n�qX
t=q

log f�(zt(q)) + (n� 2q) [log j�pj � log j�p0 j ] ; (5:2)

q = q(n)!1 as n!1 but q(n) = o(n), that is consistent and asymptotically

e�cient in the sense that n1=2(�̂n��)
d�! N(0;��1) with � the Fisher informa-

tion matrix given by (1.5). The approximate likelihood function Lq(�) is actually

fully given in terms of the observations xt, t = 1; : : : ; n. As an intermediate step

we consider a likelihood like 0L(�) =
Pn�q

t=q gt(�) that requires more knowledge

than that given by just the observations xt, t = 1; : : : ; n (since in (4.2) we need

to know the in�nite past and future of the xt's).

Theorem 2. Let xt be a zero mean ARMA process of order p; p
0 having the

factorization (1:2) with fztg an independent, identically distributed sequence of

nonnormal random variables with mean zero, positive variance and probability
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density (1=�)f(z=�). The nonnormal density is assumed to satisfy Assumptions

A and B. Then there is a sequence of solutions �̂n of the approximate likelihood

equations (5:1) that is consistent.

The discussion of the existence of a sequence of consistent estimators that

satisfy @0L(�)=@�j = 0, j = 1; : : : ; p+p
0+1, will follow that given on page 430 of

Lehmann (1983). Initially, we assume s; s0 in (1.2) are �xed. Then the parameter

space corresponding to the model is

�s;s0 = f� 2 R
p+p0+1 : 1� �1z � � � � � �rz

r 6= 0 and

1� �1z � � � � � �r0z
r0 6= 0 for jzj � 1 ;

1� �r+1z � � � � � �pz
s 6= 0 and

1� �r0+1z � � � � � �p0z
s0 6= 0 for jzj � 1 ;

�r; �r0 ; �p; �p0 6= 0 ; �p+p0+1 = � > 0g :

Let �0 = (�0;1; : : : ; �0;p+p0+1) 2 �s;s0 be the true parameter value. Set Q� = f� 2
R
p+p0+1 : j�� �0j � �g, where j � j is the maximum norm on R

p+p0+1. Now �s;s0

is open, and given small � > 0 there is a d < 1 such that for all � 2 Q�,

�
+(z) = 1� �1z � � � � � �rz

r 6= 0 ;

�
+(z) = 1� �1z � � � � � �r0z

r0 6= 0 ; for jzj < d
�1

;

�
�(z) = 1� �r+1z � � � � � �pz

s 6= 0 ;

�
�(z) = 1� �r0+1z � � � � � �p0z

s0 6= 0 ; for jzj > d;

and for d < jzj < d
�1

�(z) = �
+(z)��(z) = 1� ~�1z � � � � � ~�pz

p 6= 0 ;

�(z) = �
+(z)��(z) = 1� ~�1z � � � � � ~�p0z

p0 6= 0 :

There is then a C > 0 such that

sup
�2Q�

j�j � �0;j j < C� ; j = 1; : : : ; p;

sup
�2Q�

j�j � �0;j j < C� ; j = 1; : : : ; p0;

sup
�2Q�

j�0j j � Cd
jjj
; sup

�2Q�

j�0j j � Cd
jjj
; j = 0;�1; : : : ;

sup
�2Q�

j�0j � �
0

0;j j � C�d
jjj
; sup

�2Q�

j�0j � �
0

0;j j � C�d
jjj
; j = 0;�1; : : : ;

(5:3)

where, for example, f�0jg, f�0jg are the power series coe�cients in (1.3) with

parameter �, and f�00;jg, and f�
0

0;jg those with parameter �0 assuming that the
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roots of the polynomials �+(z), ��(z) are distinct. If the roots are of multiplicity

greater than one, the best one can do is

sup
�2Q�

j�0j � �
0

0;j j ; sup
�2Q�

j�0j � �
0

0;j j � C�
1

md
jjj
; j = 0;�1; : : : ;

with m = max (r0; s0).

Note that

1

n� 2q
(0L(�)� 0L(�0))

=
1

n� 2q

p+p0+1X
j=1

Aj(�0)(�j � �0;j)

+
1

2(n� 2q)

p+p0+1X
j;k=1

Bjk(�0)(�j � �0;j)(�k � �0;k)

+
1

2(n� 2q)

p+p0+1X
j;k=1

(Bjk(�
�)�Bjk(�0))(�j � �0;j)(�k � �0;k)

= S1 + S2 + S3;

where Aj(�) =
Pn�q

t=q (@gt=@�j)(�), Bjk(�) =
Pn�q

t=q (@
2
gt=@�j@�k)(�) and �

� is on

the line segment joining �0 and �. The ergodic theorem implies that

S1 =

p+p0+1X
j=1

1

n� 2q

n�qX
t=q

@gt(�0)

@�j
(�j � �0;j)!

p+p0+1X
j=1

E
@gt(�0)

@�j
(�j � �0;j) = 0

and

S2 =
1

2

p+p0+1X
j;k=1

1

n� 2q
Bjk(�0)(�j � �0;j)(�k � �0;k)! �

1

2
(�� �0)

0� (�� �0)

almost surely as n!1 where � > 0 is given by (1.5). By a standard elaboration

of the corresponding argument in LR (1992) one can show that

lim
n!1

sup
�2Q�

1

n� 2q
jBjk(�)�Bjk(�0)j ! 0

almost surely as � # 0 for j; k = 1; : : : ; p+p0+1. For this one requires Assumptions

A and B. It is now clear that, for � su�ciently small, sup (S1 + S2 + S3) < 0

almost surely as n ! 1 with the sup taken over all � on the boundary of Q�.

Consequently there exist a � = �(�) > 0 such that for n large enough

sup
�2B(Q�)

1

n
0L(�) <

1

n
0L(�0)� �(�)
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almost surely with B(Q�) the boundary of Q�. It follows that 0L(�) has a local

maximum in the interior of Q�.

What remains to be shown is that the replacement of zt by zt(q) (leading to

the replacement of gt by gt;q where gt;q(�) = log f�(zt(q)) + log j�pj � log j�p+p0 j is
valid asymptotically.

Consider now the approximate likelihood

1

n� 2q
Lq(�) =

1

(n� 2q)

n�qX
t=q

flog f�(zt(q)) + log j�pj � log j�p0 jg

=
1

n� 2q

n�qX
t=q

gt;q(�) :

From this point on a tilde over a random variable indicates the dependence of

the random variable on the parameter � while a tildeless random variable will

depend on the true model parameter � = �0. But

1

n� 2q
f0L(�)� Lq(�)g =

1

n� 2q

n�qX
t=q

flog f�(~zt)� log f�(~zt(q))g

=
1

n� 2q

n�qX
t=q

(~zt � ~zt(q))
f
0

�

f�
(~zt + �tf~zt(q)� ~ztg)

with 0 � �t � 1. Notice also that j~zt � ~zt(q)j �
P
jjj�q d

jjjjxt�j j and, by
Assumption B,

����f 0�
f�

(~zt + �tf~zt(q)� ~ztg)�
f
0

�

f�
(zt)

���� � A[1 + j~zt � zt + �tf~zt(q)� ztgj jztjk

+ j~zt � zt + �tf~zt(q)� ~ztgj`] :

The inequality (5.3) implies that

sup
�2Q�

j~zt � ztj � C �
1=m

X
jjj�q

d
jjj jxt�j j :

Thus

sup
�2Q�

1

n
j0L(�)� Lq(�)j ! 0

as n!1 with probability one and consequently (1=n) Lq(�) for n large enough

will almost surely have a local maximum in the interior of Q�. There is then with

probability one a consistent sequence of estimators �̂n satisfying the approximate

likelihood equations @Lq(�)=@�j = 0, j = 1; : : : ; p+ p
0 + 1 :
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Theorem 3. Under the assumptions of Theorem 2 the sequence of solutions �̂n

of the approximate likelihood equations referred to there is asymptotically normal

with mean �0 and covariance matrix n
�1��1 where � is given by (1.5).

Consider the equation

0 = n
�1=2@Lq(�̂n)

@�
= n

�1=2

n�qX
t=q

@gt;q(�0)

@�
+ n

�1=2
Bq(�

�)n1=2(�̂n � �0)

with Bq(�) the (p+ p
0 + 1)� (p+ p

0 + 1) matrix having entries

n�qX
t=q

@gt;q(�)

@�i@�j
; i; j = 1; : : : ; p+ p

0 + 1;

and �
� on the line segment joining �̂n and �0. One can show

n
�1=2

E

�����
n�qX
t=q

�
@gt;q(�0)

@�
�
@gt(�0)

@�

������ �! 0

as n ! 1 and n
�1=2

Pn�q

t=q @gt;q(�0)=@� is asymptotically N(0;�) as n ! 1.

Set B(�) = fBjk(�) ; j; k = 1; : : : ; p + p
0 + 1g. Then n

�1
Bq(�

�) = n
�1
B(�0) +

n
�1fB(��) � B(�0)g + n

�1fBq(�
�) � B(��)g. The desired conclusion follows

from the fact that n
�1fB(��) � B(�0)g �! 0, n�1fBq(�

�) � B(��)g �! 0,

n
�1
B(�0) �! �� in probability as n!1.

Theorems 2 and 3 demonstrate the existence of a sequence of consistent and

asymptotically normal solutions of the approximate likelihood equations (5.1).

Theorem 2 is still valid if the approximate likelihood Lq(�) depends on s; s
0, the

numbers of zeros lying inside the unit disc in the complex plane. If more than

one solution to these equations exists with s; s
0 known or unknown, the theorem

does not tell us which solution to take as the estimator. The plausible candidate

to take is clearly the ~s; ~s0; ~�n obtained by maximizing Lq(�) with respect to s; s0

and �. Given appropriate conditions, ~s; ~s1; ~�n will be consistent and this will

imply the asymptotic normality of ~�n. An argument for this follows.

Restrict the parameter space


 = f� 2 R
p+p0+1 : �p�p0 6= 0; �(z)�(z) 6= 0; for jzj = 1; � > 0g

to any compact subset 
c that contains the true parameter point �0. Using the

same type of argument as that given in Theorem 2 for consistency, one can show

that, with probability one,

1

n� 2q
Lq(�)! E�

0

log[f�(M(�; �)xt)j�p=�p0 j]
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uniformly on 
c. If the limit has a unique point where the global maximum

is assumed, then by a usual compactness argument, any global maximum of

(1=(n� 2q))Lq(�) must converge to the global maximum of the limit and so the

mle is consistent. Once the consistency is established the asymptotic normality

is shown following the usual argument.

We remark that the asymptotics for the approximate maximum likelihood

estimates of f~�ig
p
i=1 and f~�ig

p0

i=1 and � can be obtained from the theorems by

standard techniques. In particular, let ~� = (~�1; : : : ; ~�p; ~�p+1; : : : ; ~�p+p0 ; ~�p+p0+1) =

(~�1; : : : ; ~�p; ~�1; : : : ; ~�p; �) in (1.1), then n
1=2(~�n � ~�)

d! N(0; R��1R0) where � is

given in (1.5) and R = [@~�i=@�j ] for i; j = 1 : : : ; p + p
0 + 1 which is computed

from

~�j =

8>>><
>>>:
�j �

jP
i=1

�j�i�r+i; j = 1; : : : ; r,

�
jP

i=j�r

�j�i�r+i; j = r + 1; : : : ; p,

~�p+j =

8>>><
>>>:
�j �

jP
i=1

�j�i�r0+i; j = 1; : : : ; r0,

�
jP

i=j�r0
�j�i�r0+i; j = r

0 + 1; : : : ; p0,

~�p+p0+1 = �p+p0+1 = �:

We make a few remarks on a possible reparametrization of the model

�(B)xt = �(B)zt. Introduce �
��(z) = �

�(z)=�p; �
��(z) = �

�(z)=�p0 ; �p�p0 6=
0 with the random variables z�t = zt�p0=�p. Model (1.1) can then be written

�
+(B)���(B)xt = �

+(B)���(B)z�t with parameters

�
� = (��1 ; : : : ; �

�

p+p0 ; �
�

p+p0+1)

= (�1; : : : ; �r; �
�

r+1; : : : ; �
�

p; �1; : : : ; �r0 ; �
�

r0+1; : : : ; �
�

p0 ; �
�);

where

�
�

i =

8>>>>>>>>>><
>>>>>>>>>>:

�i; 1 � i � r,

�p+r�i=�p = �
�

i ; r + 1 � i < p,

�
�1
p = �

�

p; i = p,

�i�p; p+ 1 � i � p+ r
0,

�p+p0+r0�i=�p0 = �
�

i�p; p+ r
0 + 1 � i < p+ p

0,

�
�1
p0 = �

�

p0 ; i = p+ p
0,

�j�p0=�pj; i = p+ p
0 + 1.

If �� and �� are replaced by ��� and ��� respectively in (2.1), the transformations

that correspond to (2.2) and (2.4) have unit Jacobian. The approximation to
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the loglikelihood that corresponds to (2.7) is 1=(n � 2q)
Pn�q

t=q+1 log f��(z�t ) with

�
+(B)���(B)xt = �

+(B)���(B)z�t . Derivations similar to those of Sections 3, 4

and 5 can be carried out. The relationship between �
� and the ~�'s, ~�'s and � is

more complicated for this than for our initial parameterization.

6. Simulation Methods and Results

For a general possibly noncausal ARMA process �(B)xt = �(B)zt as given

by (1.1) we have xt = (�(B)=(�+(B)��(B))) zt = �(B)[(�+
0

(B)=�+(B))+(��
0

(B)

=�
�(B))]zt = �(B)

hP
1

j=0 �jB
j +

P
1

j=1 �jB
�j
i
zt =

P
1

j=�1 
jzt�j for some 
j 's

where �+
0

(B) and �
�
0

(B) are determined by a partial fraction expansion and

�
+0

(B)

�+(B)
= �

+0

(B)
1X
j=0

�jB
j =

1X
j=0

�jB
j
;

�
�
0

(B)

��(B)
= �

�
0

(B)
1X
j=s

�jB
�j =

1X
j=1

�jB
�j

:

Alternatively, one can consider
P
1

j=�1 
jBt�j as the Laurent series expansion of

�(B)=�(B). We note that 
j ! 0 exponentially as jjj ! 1. We approximate

xt by a truncation
PM

j=�M 
jzt�j for large M . Given �(B) and �(B) to obtain

x1; : : : ; xn satisfying (1.1) we generate independent identically distributed zt for

t = �M , �M + 1; : : : ; n+M and then use xt =
PM

j=�M 
jzt�j for t = 1; : : : ; n.

In our examples we choose M = 50 and the model ARMA (1; 1)

xt � �xt�1 = zt � �zt�1 : (6:1)

The distributions used for the input zt are the Laplace (double exponential)

distribution and the Student's t distribution with four degrees of freedom. The

input scale factor � is set equal to 1.0. The computation of the approximate log

likelihood is given by (5.2) where Lq(�; �; �) depends on s and s
0, the number of

zeros of �(B) and �(B) inside the unit circle respectively. The maximization of

Lq(�; �; �) is carried out by a searching procedure. We used two di�erent sample

sizes n = 50 and 100 in the simulation for fxtgnt=1. When the function of zt is

the Laplace density

f�(x) =
1

�
f

�
x

�

�
=

1

2�
e
�jxj=�

; (6:2)

the maximum likelihood estimate of � can be expressed in the closed form as a

function of fxtg and the parameters in �(z) and �(z). This procedure is used in

the computations when we assume that the input density function is known to

be Laplacian. This is also used in the surface perspective and contour plot of

Figures 1 and 2 which show the function Lq(�; �; �) with n = 100 and q = 10 in
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:/a6n1/a920743.ps

� �

Figure 1. Approximate log-likelihood surface plot. The grid mesh size is

0:05 with �=0:9, �=�1:1. The range is rescaled to 1.0 for plotting.

2

10-1-2 2

1

0

-1

-2

�

�

Figure 2. Approximate log-likelihood contour plot. The maximum is at

�̂ = 0:8745, �̂ = �1:125 with the value �129:89.
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the model (6.1) with � = 0:9 and � = �1:1 and fztg independent identically

distributed with density (6.2) and � = 1:0. We then get (ŝ; ŝ0) = (0; 1), �̂1 =

0:8745, �̂1 = �1:125 and �̂ = 0:846. The likelihood surface is plotted with a

grid size 0:05 and �; � 2 (�1:975; 1:975). There are four local maxima in a

neighborhood of (1;�1).
For each of the following models, we applied the method just described to

each of 200 independently generated time series of length n and recorded the

number of times n1 among the 200 independent repetitions that the procedure

identi�ed the correct s and s
0. Sample means (�; �; �) and standard deviations

(SD) of these n1 estimates (�̂; �̂; �̂) were computed to assess the accuracy and

were compared with the asymptotic standard deviations (ASD). Results of these

simulations are given in Tables 2 and 3 where f indicates the density function

used in Equation (5.2) for the calculation while the actual density function of fztg
used in the simulation of fxtg is indicated in the second row of the tables. Sample

size of fxtg is indicated by n. The correct number of times (s; s0) is correctly

identi�ed in 200 independent runs is given by n1. These estimates are used to

compute the sample mean (�; �; �) and sample standard deviations (indicated

by SD). Asymptotic standard deviations (ASD) are computed from (1.5). The

truncation is q = 10. For a sample size n = 50, the e�ective length in (5.2)

is n � 2q = 30. From these tables it is seen that the identi�cation of (s; s0) is

moderately good even for n = 50 and as the sample size increases the accuracy

increases also. Estimates of parameters are quite accurate when compared with

the corresponding standard deviation. Estimated standard deviations are in

close agreement with the asymptotics also. When the roots are moved farther

away from the unit circle the general accuracy is further improved as expected.

Other cases with parameter combinations of (��1; �), (�; ��1) and (��1; ��1) were

carried out also. They all exhibit qualitatively the same features as indicated in

Tables 2 and 3. When the true density function of the input zt is unknown, one

could use least absolute deviation (which we will be formally led to by assuming

the Laplace density function which strictly speaking does not satisfy all conditions

in A). Results using Laplace density when the input has a t-distribution are given

in the tables also. They are comparable to the results obtained when the true

density is known.

We make a few additional remarks on computation. An approximation of

zt for the range t = q; : : : ; n � q can be computed recursively as follows. Since

�t = �
�(B)zt we have

zt = ���1p0 (�p0�1zt+1 + � � �+ �r0+1zt+s0�1 � zt+s0 + �t+s0) : (6:3)

Since �
�(B) is minimum phase this recursion backward in time is stable and

initial values will be washed out in time. For n � t � 1 we can approximate
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zt using (6.3) and setting initial values fzn+s0 ; : : : ; zn+1g equal to zero if �t's are

available for n + s
0 � t � s

0. We obtain �t's by the following recursion. From

�
+(B)�t = �(B)xt we have

�t = �1�t�1 + � � �+ �r0�t�r0 + xt � �xt�1 � � � � � �pxt�p :

This can be computed for n � t � 1 with initial values ��r = � � � = �0 = 0 =

x0 = � � � = x�p and the recursion is stable since �+(B) is minimum phase. This

may save some numerical computation.

Table 2. � = 0:9, � = �1:1, � = 1:0

f � Laplace f � t(4)

zt � i.i.d. Laplace zt � i.i.d. t(4) zt � i.i.d. t(4)

n 50 100 50 100 50 100

n1 100 139 81 112 92 111

�� 0.8525 0.8779 0.8040 0.8616 0.8288 0.8662

SD 0.0807 0.0459 0.1068 0.0153 0.1071 0.0456

ASD 0.0799 0.0489 0.0951 0.0582 0.0951 0.0582

�� �1.2250 �1.1753 �1.2275 �1.1625 �1.2005 �1.1545

SD 0.1215 0.0645 0.1312 0.0673 0.1049 0.0617

ASD 0.0925 0.0566 0.1099 0.0673 0.1099 0.0673

�� 0.9071 0.9049 0.8863 0.9726 0.9652 0.9775

SD 0.1531 0.0998 0.1556 0.1056 0.1515 0.1037

ASD 0.2010 0.1231 0.1979 0.1212 0.1979 0.1212

Table 3. � = 0:8, � = �1:2, � = 1:0

f � Laplace f � t(4)

zt � Laplace zt � t(4) zt � t(4)

n 50 100 50 100 50 100

n1 135 153 95 127 115 145

�� 0.7617 0.7773 0.7182 0.7715 0.7426 0.7689

SD 0.1011 0.0567 0.1171 0.0646 0.1274 0.0616

ASD 0.1118 0.0685 0.1349 0.0826 0.1349 0.0826

�� �1.2485 �1.2372 �1.2584 �1.2170 �1.2357 �1.2069

SD 0.1647 0.0722 0.1710 0.0905 0.1411 0.0760

ASD 0.1483 0.0908 0.1790 0.1096 0.1790 0.1096

�� 0.9587 0.9659 0.9397 0.9951 0.9861 1.0097

SD 0.1849 0.1050 0.1783 0.1178 0.1537 0.1218

ASD 0.2205 0.1350 0.2268 0.1389 0.2268 0.1389
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