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Abstract: The EM algorithm is one of the most commonly used methods of maximum

likelihood estimation. In many practical applications, it converges at a frustratingly

slow linear rate. The current paper considers an acceleration of the EM algorithm

based on classical quasi-Newton optimization techniques. This acceleration seeks to

steer the EM algorithm gradually toward the Newton-Raphson algorithm, which has

a quadratic rate of convergence. The fundamental di�erence between the current al-

gorithm and a naive quasi-Newton algorithm is that the early stages of the current

algorithm resemble the EM algorithm rather than steepest ascent. Numerical exam-

ples involving the Dirichlet distribution, a mixture of Poisson distributions, and a

repeated measures model illustrate the potential of the current algorithm.
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sures model, secant approximation.

1. Introduction

The EM algorithm (Dempster et al. (1977)) is one of the pillars of modern

computational statistics. Numerical stability and computational simplicity alike

recommend it. Unfortunately, the EM algorithm can su�er from extremely slow

convergence in problems with sizable amounts of missing data. This defect has

prompted a number of suggestions for accelerating the algorithm. For instance,

Louis (1982) advocates classical Aitken acceleration. This tactic is useful for

problems with a moderate number of parameters, but the required matrix in-

versions render it less e�ective for problems with a large number of parameters.

Furthermore, Aitken acceleration can only improve the linear rate of convergence

of the underlying EM algorithm. One should aim for superlinear convergence.

Accordingly, Jamshidian and Jennrich (1993) have recently recommended a con-

jugate gradient version of the EM algorithm. This hybrid algorithm shows great

promise. It operates by using the EM algorithm steps as generalized gradients

in a conjugate gradient search.

The present paper takes a di�erent tack. In modern optimization theory,

quasi-Newton methods are the principal competitors with conjugate gradient
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methods. Quasi-Newton methods are predicated on the philosophy that all fast

algorithms should attempt to approximate the Newton-Raphson algorithm. At

the same time they should avoid the faults of Newton-Raphson. These faults in-

clude explicit evaluation of the Hessian of the objective function and the tendency

to head toward saddle points and local minima as often as toward local maxima.

Quasi-Newton algorithms circumvent the �rst fault by gradually constructing an

approximate Hessian from the gradient of the objective function evaluated at

the successive points encountered by the algorithm. They circumvent the second

fault by forcing the approximate Hessian to always be negative de�nite.

Even with these safeguards, quasi-Newton algorithms are less than ideal

in many statistical applications. One of their least desirable features is that

they typically start by approximating the Hessian by the identity matrix. This

initial approximation may be poorly scaled to the problem at hand. Hence, the

algorithms can wildly overshoot or undershoot the maximum of the objective

function along the direction of the current step. It can take many iterations

before a decently scaled approximation is built up.

For this reason other algorithms such as Fisher scoring and the Gauss-Newton

algorithm of nonlinear least squares remain popular in statistics. The experience

of numerical analysts in addressing the defects of the Gauss-Newton algorithm

are particularly instructive. In nonlinear least squares one minimizes

f(�) =
1

2

nX
i=1

[yi � �i(�)]
2

over the parameter vector �. The Gauss-Newton algorithm approximates the

Hessian

d2f(�) =
nX
i=1

d�i(�)d�i(�)
t
�

nX
i=1

[yi � �i(�)]d
2�i(�) (1)

by retaining the �rst sum; namely,

d2f(�) �
nX
i=1

d�i(�)d�i(�)
t: (2)

On problems with small residuals yi � �i(�), Gauss-Newton is very close to

Newton-Raphson. On large residual problems, the divergence between the two

algorithms is greater. In any case the approximate Hessian (2) is positive de�-

nite, and Gauss-Newton leads to a well-behaved descent algorithm. In seeking

to improve the Gauss-Newton algorithm, one can retain the �rst sum exactly

as given in (1) and attempt to approximate the second sum. This successful

strategy is described in the survey article by Nazareth (1980).
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The current paper carries out an analogous strategy for the EM algorithm by

decomposing the observed information matrix into an EM part and a remainder.

The remainder is approximated in typical quasi-Newton fashion using a sequence

of secant conditions. The early stages of the new algorithm resemble a close

approximation to the EM algorithm known as the EM gradient algorithm (Lange

(1994)). Later stages approximate Newton-Raphson, and intermediate stages

make a graceful transition between these two extremes. Thus, the new algorithm

appears to combine the stability and early rapid progress of EM with the later

superlinear convergence of Newton-Raphson. In the next section we motivate and

derive the algorithm. This general overview is followed by a concise summary of

the algorithm and then its application to several numerical examples. The paper

concludes with a discussion of the merits and extensions of the algorithm.

2. Derivation of the Algorithm

Let us begin by briey reviewing the EM algorithm (Dempster et al. (1977),

Little and Rubin (1987)). Underlying the observed data Y is the complete data

X; some function t(X) = Y relates the two. Although the statistician has control

over how the complete data are de�ned, the sensible procedure is to chose X

so that it is trivial to estimate by maximum likelihood the parameters � of a

model explaining X and hence Y . The complete data X is postulated to have

probability density f(X j �) with respect to some �xed measure. In the E step

of the EM algorithm, the conditional expectation

Q(� j �n) = E(ln[f(X j �)] j Y; �n)

is computed. Here �n is the current estimated value of �. (The superscript n will

always refer to iteration number in the sequel.) In the M step, the � maximizing

Q(� j �n) is found. This yields the new parameter estimate �n+1, and this two step

procedure is repeated until convergence occurs. The essence of the EM algorithm

is a maximization transfer principle; maximizing Q(� j �n) with respect to its left

entry � forces an increase in the loglikelihood L(�) of the observed data Y . This

property is a consequence of a well-known information theory inequality (Rao

(1973)).

Corresponding to the function Q(� j �n) is the slightly mysterious decompo-

sition

L(�) = Q(� j �n)�H(� j �n) (3)

of the loglikelihood L(�) (Dempster et al: (1977)). Equation (3) leads immedi-

ately to the further decomposition

�d2L(�) = �d20Q(� j �n) + d20H(� j �n) (4)
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of the observed information matrix. In Equation (4) the operator d20 takes second

partials with respect to the � variables of Q(� j �n) and H(� j �n). By analogy

with the Gauss-Newton approximation (2), the crude approximation

d2L(�) � d20Q(� j �n) (5)

gives rise to the EM gradient algorithm (Lange (1993))

�n+1 = �n � d20Q(�n j �n)�1dL(�n)

= �n � d20Q(�n j �n)�1d10Q(�n j �n): (6)

This algorithm substitutes one step of Newton-Raphson on Q(� j �n) for the M

step of the EM algorithm. Because L(�)�Q(� j �n) has it minimum at � = �n,

the score equality

dL(�) = d10Q(� j �) (7)

holds at � = �n whenever �n is an interior point of the parameter feasible region.

This accounts for the second line of (6).

The EM gradient algorithm (6) is interesting in its own right. It avoids

explicit solution of the M step of the EM algorithm while preserving the local

convergence properties of the EM algorithm (Lange (1993)). Because the EM

gradient algorithm so closely resembles the EM algorithm, it also tends to share

the desirable stability properties of the EM algorithm. Our goal, however, is to

improve the convergence rate of the EM algorithm. Thus, we need to amend the

EM gradient algorithm so that the missing piece d20H(�n j �n) of the observed

information matrix is approximated. In other words we need to perform approx-

imate Newton-Raphson for maximizing L(�) instead of exact Newton-Raphson

for maximizing Q(� j �n).

At one point our analogy with amendment of the Gauss-Newton algorithm

potentially breaks down. The matrix approximation (5) may not be negative

de�nite, and consequently the EM gradient algorithm may not be an ascent

algorithm. In practice, d20Q(�n j �n) is almost always negative de�nite or can be

rendered so by a change of variables. If the complete data X belong to a regular

exponential family, then �d20Q(�n j �n) can be identi�ed with the expected

information of the complete data. In this instance, the EM gradient algorithm

coincides with the earlier ascent algorithm of Titterington (1984). When the

complete data do not belong to a regular exponential family, often d20Q(�n j �n)

is diagonal, and negative de�niteness is simple to check. Our examples illustrate

these points, as well as the ease with which d20Q(�n j �n) can be evaluated.

Certainly, d20Q(�n j �n) is typically much easier to evaluate than d2L(�n).
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Returning to our main concern, let Bn be the current approximation to the

Hessian d20H(�n j �n). The natural replacement for the EM gradient algorithm

(6) is

�n+1 = �n � [d20Q(�n j �n)�Bn]�1d10Q(�n j �n): (8)

Three important questions now arise. First, what initial value should B1 assume?

A good choice is the zero matrix B1 = 0. Indeed with this choice, the �rst step

of the algorithm (8) is an EM gradient step.

Second, how can we update Bn to produce a better approximation to

d20H(�n j �n)? Experience with standard quasi-Newton methods suggests the

importance of the secant condition

d10H(�n�1 j �n)� d10H(�n j �n) � d20H(�n j �n)(�n�1 � �n):

The secant condition (9) is a �rst order Taylor's expansion that can be incor-

porated into the overall approximation process by requiring that Bn be a small

rank perturbation of Bn�1 satisfying

Bnsn = gn;

sn = �n�1 � �n; (9)

gn =d10H(�n�1 j �n)� d10H(�n j �n):

Davidon's (1959) symmetric, rank-one update is de�ned by

Bn = Bn�1 + cnvn(vn)t; (10)

with constant cn and vector vn speci�ed as

cn =
1

(gn �Bn�1sn)tsn
; (11)

vn = gn �Bn�1sn:

It is straightforward to check that Davidon's update is the unique symmetric,

rank-one update satisfying Condition (9).

This simple rank-one update is more parsimonious than standard rank-

two updates. Empirical evidence also suggests that it provides an approximate

Hessian superior to the Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-

Goldfarb-Shanno (BFGS) symmetric rank-two updates (Conn et al: (1991)). At

�rst glance it appears desirable that Bn be kept negative de�nite since H(� j �n)

attains its maximum at � = �n. This requirement cannot be maintained by

Davidon's update but is possible with the DFP and BFGS updates. How-

ever, for the algorithm de�ned by (8) to be an ascent algorithm, it is far more
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important that the di�erence d20Q(�n j �n) � Bn be kept negative de�nite.

Another concern is that the constant cn is unde�ned when the inner product

(gn � Bn�1sn)tsn = 0. In such situations or when (gn � Bn�1sn)tsn is small

compared to kgn �Bn�1snk � ksnk, we simply take Bn = Bn�1.

As noted above, one can anticipate problems with the algorithm (8) when

the matrix d20Q(�n j �n)�Bn fails to be negative de�nite. If this is the case, we

replace (8) by

�n+1 = �n � [d20Q(�n j �n)� (
1

2
)mBn]�1d10Q(�n j �n); (12)

where m is the smallest positive integer making d20Q(�n j �n) � (1=2)mBn neg-

ative de�nite. This tactic tends to preserve as much of the approximate infor-

mation contained in Bn as is consistent with the algorithm (12) being an ascent

algorithm. The particular form of the factor (1=2)m is merely a convenient one.

Observe that it is straightforward to check the negative de�niteness of the matrix

d20Q(�n j �n)� (1=2)mBn in the process of inverting it. If this matrix is inverted

by sweeping, then each diagonal pivot encountered must be negative just prior

to being swept (Little and Rubin (1987), Thisted (1988)).

It is noteworthy that almost all relevant quantities for the above algorithm

can be computed in terms of Q(� j �n) and its derivatives. In particular, the

di�erence of gradients in (9) can be rewritten as

gn = d10H(�n�1 j �n)� d10H(�n j �n)

= d10Q(�n�1 j �n)� d10Q(�n�1 j �n�1) (13)

using the fact d10H(�n j �n) = 0 and the identity (7) at � = �n�1.

The only relevant quantity not expressible in terms of Q(� j �n) or its deriva-

tives is the loglikelihood L(�), which is useful in monitoring the progress of the

algorithm. If the algorithm de�ned by (8) and (12) overshoots at any given iter-

ation, then some form of step-decrementing will guarantee an increase in L(�).

In practice, we follow Powell's (1978) suggestion and �t a quadratic to the func-

tion r ! L(�n + r[�n+1 � �n]) through the values L(�n+1) and L(�n) with slope

dL(�n)t(�n+1 � �n) at r = 0. If the maximum of the quadratic occurs at rmax,

then we step back to r = maxfrmax; 0:1g. If this procedure still does not yield an

increase in L(�), then it can be repeated. In practice, one or two step decrements

invariably give the desired increase in L(�).

3. Recapitulation of the Algorithm

For the sake of clarity, let us now summarize how the algorithm is imple-

mented. The basic idea is to employ Equation (8) with appropriate safeguards
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designed to force an increase in the loglikelihood L(�). In the update (8), �n is

the current iterate and �n+1 is the next iterate. The function Q(� j �n) is the

standard function associated with the E step of the EM algorithm. The matrix

Bn approximates the second di�erential d20H(�n j �n) of the function H(�n j �n)

de�ned in Equation (3). If this approximation is good, then the update (8) is

close to the Newton-Raphson update for maximizing L(�). From the initial value

B1 = 0, the matrix Bn is updated via Equation (10) using the quantities de�ned

by equations (9), (11) and (13). If the inner product (gn � Bn�1sn)tsn is small

compared to kgn�Bn�1snk�ksnk, then the update (10) is omitted and Bn = Bn�1

is used instead.

The safeguards for the algorithm occur at two levels. To insure that the

next iterate extends in an uphill direction from the current iterate, the usual

update (8) is replaced by the modi�ed update (12) when the matrix di�erence

d20Q(�n j �n) � Bn fails to be negative de�nite. If d20Q(�n j �n) is negative

de�nite and the power m occurring in (12) is su�ciently large, then the modi�ed

matrix d20Q(�n j �n)� (1=2)mBn is certain to be negative de�nite as well. We

choose m to be the smallest nonnegative integer such that the modi�ed matrix

passes the negative de�niteness test. Determination of whether the matrix

d20Q(�n j �n) � (1=2)mBn is negative de�nite can be made in the process of

inverting it by sweeping.

The second level of safeguards involves checking whether the proposed step

(12) actually leads to an increase in L(�). If this is not the case, some form of step

decrementing must be instituted. Because the algorithm moves locally uphill,

step decrementing is bound to succeed. We have suggested �tting a quadratic to

the loglikelihood curve between �n and the proposed �n+1. Probably, a simple

step-halving strategy would be equally e�ective.

4. Examples

4.1. Dirichlet distribution

The Dirichlet distribution is useful for modeling data on proportions (King-

man (1993)). Let X1; : : : ;Xk be independent random variables such that

Xi has gamma density x�i�1
i

e�xi�(�i)
�1; xi > 0: A Dirichlet random vector

Y = (Y1; : : : ; Yk)
t is de�ned by setting its ith component equal to the proportion

Yi = Xi(
P

k

j=1
Xj)

�1: It can be shown that Y has regular exponential density

�(
P

k

i=1
�i)Q

k

i=1
�(�i)

kY
i=1

y�i�1
i

on the simplex fy = (y1; : : : ; yk)
t : y1 > 0; : : : ; yk > 0;

P
k

i=1
yi = 1g endowed with

the uniform measure. The random vector Y constitutes the observed data, and
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the underlying random vector X = (X1; : : : ;Xk)
t constitutes the complete data.

For an i.i.d. sample Y 1 = y1; : : : ; Y m = ym from the Dirichlet distribution,

it is tempting to estimate the parameter vector � = (�1; : : : ; �k)
t by the EM al-

gorithm. Let X1; : : : ;Xm be the corresponding complete data. It is immediately

evident that

Q(� j �n) =�m
kX

i=1

ln�(�i) +
kX

i=1

(�i � 1)
mX
j=1

E(ln[Xj

i
] j Y j = yj ; �n)

�

kX
i=1

mX
j=1

E(Xj

i
j Y j = yj ; �n): (14)

Owing to the presence of the terms ln�(�i) in (14), one cannot solve the M

step analytically. However, the EM gradient algorithm is trivial to implement

since the score vector is easily computed and the Hessian matrix d20Q(� j �n) is

diagonal with ith diagonal entry �m d
2

d�
2

i

ln�(�i), which is negative because ln�(r)

is strictly convex. The gradient d10Q(�n�1 j �n) is a little trickier to evaluate for

accelerated EM since the conditional expectations E(ln[Xj

i
] j Y j = yj ; �n) can no

longer be ignored. However, because the identity (7) holds at � = �n, Equation

(14) implies

mX
j=1

E(ln[Xj

i
] j Y j = yj ; �n) =

@

@�i
L(�n) +m

@

@�i
ln�(�n

i
)

=m
@

@�i
ln�(

kX
l=1

�n
l
) +

mX
j=1

ln yj
i
:

Scoring is an attractive alternative to the EM gradient algorithm in this

particular example (Narayanan (1991)). The data of Mosimann (1962) on the

relative frequencies of k = 3 serum proteins in m = 23 young, white Pekin duck-

lings furnish an interesting test case for comparing the EM gradient algorithm,

our accelerated EM algorithm, and scoring. Starting from �1 = (1:; 1:; 1:)t , all

three algorithms converge smoothly to the maximum point (3:22; 20:38; 21:69)t ,

with the loglikelihood showing a steady increase to its maximum value of 73.1250

along the way. The EM gradient algorithm takes 287 iterations for the loglikeli-

hood to achieve this �nal value, while the accelerated EM algorithm and scoring

take 8 and 9 iterations, respectively.
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Table 1. Performance of accelerated EM on the Dirichlet distribution data of Mosimann

(1962).

Extra

Iteration Steps Exponent L(�) �1 �2 �3

1 0 0 15.9424 1.000 1.000 1.000

2 0 0 24.7300 .2113 1.418 1.457

3 0 0 41.3402 .3897 2.650 2.760

4 0 1 49.1425 .6143 3.271 3.445

5 0 1 53.3627 .8222 3.827 4.045

6 0 0 73.0122 3.368 22.19 23.59

7 0 2 73.0524 3.445 22.05 23.47

8 0 0 73.1250 3.217 20.40 21.70

9 0 0 73.1250 3.217 20.39 21.69

10 0 0 73.1250 3.215 20.38 21.69

Table 1 records the behavior of the accelerated EM algorithm on this prob-

lem. The `exponent' column of Table 1 refers to the minimum nonnegative integer

m required to make d20Q(�n j �n)�(1=2)mBn negative de�nite. The `extra steps'

column refers to the number of step decrements taken in order to produce an in-

crease in L(�) at a given iteration. In this problem step decrementing was never

necessary. All computations were done using a special version of the author's

Fortran optimization program SEARCH (Lange (1994)).

4.2. Mixture of Poissons

Hasselblad (1969) and Titterington et al. (1985) consider mortality data from

the London Times newspaper during the three years 1910-1912. The observed

data consist of the number of days Yi = yi on which there were i death notices

for women aged 80 years and over, i = 0; : : : ; 9. A single Poisson distribution �ts

these data poorly, but a mixture of two Poisson distributions gives an acceptable

�t. In the mixture model the complete data can be viewed as (Yi; Zi), where Zi

is the number of days out of the Yi days belonging to population 1. Evidently,

the complete data likelihood is proportional to
Y
i

�
�(�1)

ie��1
�Zi �

(1 � �)(�2)
ie��2

�Yi�Zi
:

Here �1 and �2 are the means for populations 1 and 2, respectively, and � is the

admixture proportion for population 1.

The usual application of Bayes' theorem implies

Q(� j �n) =
X
i

wi(ln� + i ln�1 � �1) +
X
i

(yi � wi)[ln(1� �) + i ln�2 � �2];
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where � = (�1; �2; �)
t and where

wi = E(Zi j Yi = yi; �
n) = yi

�n(�n
1
)ie��

n

1

�n(�n
1
)ie��

n

1 + (1� �n)(�n
2
)ie��

n

2

:

Clearly in this example the Hessian d20Q(� j �n) is diagonal and negative de�nite.

Starting from the moment estimates (�1
1
; �1

2
; �1) = (1:101; 2:582; :2870) (Has-

selblad (1969)), the EM gradient algorithm takes an excruciating 535 iterations

for the loglikelihood to attain its maximum of �1989:946. Even worse it takes

1749 iterations for the parameters to reach the maximum likelihood estimates

(�̂1; �̂2; �̂) = (1:256; 2:663; :3599). The sizable di�erence in convergence rates

to the maximum loglikelihood and the maximum likelihood estimates indicates

that the likelihood surface is quite at. In contrast, the accelerated EM algorithm

converges to the maximum loglikelihood in 11 iterations and to the maximum

likelihood estimates in 16 iterations. Table 2 charts the progress of the accel-

erated EM algorithm on this problem. Titterington et al: (1985) report that

Newton-Raphson typically takes 8 to 11 iterations to converge when it converges

for these data. For about a third of their initial points, Newton-Raphson fails.

Table 2. Performance of accelerated EM on the Poisson mixture data of Hasselblad

(1969).

Extra

Iteration Steps Exponent L(�) �1 �2 �

1 0 0 �1990:038 1.101 2.582 .2870

2 0 0 �1990:033 1.105 2.580 .2870

3 0 0 �1990:024 1.119 2.576 .2876

4 0 0 �1990:018 1.127 2.579 .2905

5 0 1 �1990:016 1.127 2.580 .2913

6 0 0 �1989:971 1.297 2.677 .3723

7 0 1 �1989:951 1.286 2.676 .3734

8 0 1 �1989:949 1.283 2.678 .3735

9 0 1 �1989:949 1.282 2.679 .3734

10 0 1 �1989:948 1.280 2.679 .3734

12 0 0 �1989:946 1.250 2.659 .3562

14 1 0 �1989:946 1.256 2.664 .3600

16 0 0 �1989:946 1.256 2.663 .3599

4.3. Repeated measures models

The classical random e�ects, repeated measures model postulates r-variate

observations Y of the form

Y = A� +BU + V; (15)
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where A and B are known constant matrices, � is a parameter vector of �xed

e�ects, U is an s-variate vector of random e�ects, and V is an r-variate vector of

random errors. The random vectors U and V are assumed to be independent and

normally distributed with 0 means and covariance matrices � and �2I, respec-

tively. Although many applications dictate additional structure on � (Jennrich

and Schluchter (1986)), for our purposes it is more interesting to suppose that �

is unstructured. Collectively, �, �2, and the lower triangular entries of � consti-

tute the parameters � of the model. These parameters are also appropriate for

a random sample Y 1 = y1; : : : ; Y m = ym, in which the number of components ri

and the constant matrices Ai and Bi vary from case to case.

Jamshidian and Jennrich (1993) specify the EM algorithm for this repeated

measures model and compare it to the modi�ed EM algorithm of Laird and Ware

(1982). In performing the E step of the algorithm, it is convenient to identify

the complete data for case i as the pair U i and W i = Ai� + V i. Under this

identi�cation,

Q(� j �n) =
mX
i=1

Qi(� j �
n)

=�

m

2
ln j�j �

ln�2

2

mX
i=1

ri

�

1

2

mX
i=1

E([U i]t��1U i
j Y i = yi; �n)

�

1

2�2

mX
i=1

E([W i
�Ai�]t[W i

�Ai�] j Y i = yi; �n): (16)

To evaluate the conditional expectations in (16), recall that for a random

vector Z with mean � and covariance �, the quadratic form ZtFZ has expecta-

tion

E(ZtFZ) = tr(F�) + �tF� = tr(F [� + ��t]):

It follows that

Q(� j �n) =�

m

2
ln j�j �

ln�2

2

mX
i=1

ri �
1

2
tr(��1C)�

1

2�2
tr(D)

�

1

2�2

mX
i=1

(ei �Ai�)t(ei �Ai�);
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where

C =

mX
i=1

Var(U i
j Y i = yi; �n) +

mX
i=1

E(U i
j Y i = yi; �n)E(U i

j Y i = yi; �n)t;

D =

mX
i=1

Var(W i
j Y i = yi; �n);

ei = E(W i
j Y i = yi; �n):

The above conditional expectations and covariances are well known (Rao (1973)).

One can make Q(� j �n) concave by reparameterizing. Following Burridge

(1981) and Pratt (1981), de�ne � = �=� and ! = ��1. The obvious completion

of this partial reparameterization is to let � be the lower triangular Cholesky

decomposition of ��1 (Horn and Johnson (1985)). Since ��t = ��1, these

substitutions yield

Q(� j �n) =m
sX

k=1

ln�kk + ln!
mX
i=1

ri �
1

2
tr(�tC�)�

!2

2
tr(D)

�

1

2

mX
i=1

(!ei �Ai�)t(!ei �Ai�); (17)

where �kk > 0 is the kth diagonal element of �.

It is easy to check that all terms of Q(� j �n) in (13) are concave except

possibly for � 1

2
tr(�tC�). To verify concavity for this term, note that tr(GtCH)

de�nes an inner product on s � s matrices G and H. Here it is crucial that C

be positive de�nite. Because the function x2 is convex, the corresponding matrix

norm k � kC satis�es

k��1 + (1� �)�2k
2

C
� (�k�1kC + (1� �)k�2kC)

2

��k�1k
2

C
+ (1� �)k�2k

2

C
(18)

for all 0 � � � 1. Equality holds in the �rst inequality of (18) if and only if �1
is a constant multiple of �2. Equality then holds in the second inequality of (18)

only if the constant multiplier is 1. Hence, strict inequality holds unless �1 = �2.

Calculation of the gradient and Hessian of Q(� j �n) is straightforward. Par-

tial derivatives with respect to the entries of � can be simpli�ed by employing

the identities
tr(Et

jk
G) =Gjk;

tr(GEjk) =Gkj ;

tr(Et

jk
GEmn) =Gjm�kn;

where the matrix Ejk has all entries 0 except for a 1 in row j and column k, and

where �kn is Kronecker's delta.
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The classical growth curve data of Pottho� and Roy (1964) furnish an in-

teresting test case for the accelerated EM algorithm. These data record the

distances measured from the center of the pituitary to the pterygomaxillary �s-

sure on 11 girls and 16 boys at ages 8, 10, 12, and 14. A simple model ignoring

the obvious sex di�erences in the data can be constructed by taking the same

design matrices Ai and Bi in (15)

Ai = Bi =

0
BB@

1 8

1 10

1 12

1 14

1
CCA

for all 27 cases.

Because of the symmetry of this model, the initial values suggested by Cooke

(Laird et al. (1987)) coincide with the maximum likelihood estimates of 12:79,

:5039, and :7633 for �1, �2, and !, respectively. Starting with these values

and the identity matrix for �, the accelerated EM algorithm converges to the

maximum loglikelihood of �120:3604 in 17 iterations. The algorithm takes 19

iterations to converge to the maximum likelihood estimate of � given in Table 3.

In contrast, the EM gradient algorithm takes 144 iterations to attain the maxi-

mum loglikelihood and 213 iterations to reach the maximum likelihood estimate

of �.

Table 3. Performance of accelerated EM on the growth curve data of Pottho� and Roy

(1964).

Extra

Iteration Steps Exponent L(�) �11 �21 �22

1 0 0 �152:5679 1.000 0.000 1.000

2 0 0 �136:1852 .9893 .1384 1.921

3 0 0 �125:2459 .9748 .2489 3.339

4 0 0 �121:4986 .9548 .3303 4.696

5 0 0 �121:0150 .9302 .3326 5.322

6 0 0 �120:8511 .8853 .2573 5.570

7 1 0 �120:7068 .8269 .1598 5.741

8 1 0 �120:6306 .7626 .0817 6.030

9 0 1 �120:5940 .7429 .1235 6.248

11 0 0 �120:5446 .6533 .1233 6.497

13 0 0 �120:3783 .4857 .3082 5.894

15 0 0 �120:3615 .4653 .3237 5.722

17 0 0 �120:3604 .4559 .3255 5.719

19 0 0 �120:3604 .4558 .3258 5.719
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5. Discussion

Two problems beset the EM algorithm. First, either the E step or the M

step may not be explicitly computable. For instance, with a structured covari-

ance matrix � in the repeated measures model, it is often impossible to solve

the M step exactly. The EM gradient algorithm circumvents di�culties in car-

rying out the M step. Second, the common rate of convergence of the EM and

EM gradient algorithms can be painfully low. Our three examples illustrate the

striking improvements in computational speed possible with quasi-Newton ac-

celeration of the EM gradient algorithm. However, it should be borne in mind

that on many problems the EM algorithm converges quickly, and no acceleration

technique will produce orders of magnitude improvement. It is also likely that no

accelerated version of the EM algorithm can match the stability and simplicity

of the unadorned EM algorithm. Despite these reservations, acceleration is an

attractive adjunct to current implementations of the EM algorithm.

For the sake of brevity, the present paper does not attempt an empirical

comparison of the quasi-Newton acceleration of the EM algorithm with the con-

jugate gradient acceleration (Jamshidian and Jennrich (1993)). Such a compar-

ison would be valuable. In the absence of empirical evidence, some advantages

and disadvantages of the two algorithms are nonetheless obvious. Since it en-

tails neither storage nor inversion of an approximate observed information ma-

trix, the conjugate gradient acceleration will be particularly useful in problems

with large numbers of parameters. Thus, EM image reconstruction algorithms

are prime candidates for acceleration by conjugate gradients (Shepp and Vardi

(1982), Lange and Carson (1984)). In this regard it is noteworthy that vec-

tor extrapolation techniques involving no large matrix inversions (Smith et al.

(1987)) have already shown impressive gains in computational speed with no loss

in image clarity (Rajeevan et al. (1992)).

In some instances, the quasi-Newton acceleration also does not require ex-

plicit storage or inversion of the approximate observed information matrix. Sup-

pose A = d20Q(�1 j �1) is diagonal. Then A�1 is diagonal as well, and the inverse

of a small-rank perturbation

A+

nX
i=1

ui(vi)t = A+ UV t;

U = (u1; : : : ; un);

V = (v1; : : : ; vn)

can be computed easily via Woodbury's version of the Sherman-Morrison formula

(Press et al. (1987)). Even more useful is the slight adaptation

(A+ UV t)�1w = A�1w �A�1U(I + V tA�1U)�1V tA�1w (19)
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of the Woodbury formula applied to a vector w. The matrix I + V tA�1U ap-

pearing in (19) is just n� n and therefore easy to invert for n small.

The conjugate gradient acceleration does not adapt easily to problems with

parameter bounds and constraints. In contrast, our scheme for approximating

the observed information matrix combines gracefully with the method of recur-

sive quadratic programming (Luenberger (1984), which does take into account

parameter bounds and constraints. The quasi-Newton acceleration relies on the

identity (7) for interior points �. When � is a boundary point or constraints elim-

inate the interior of the parameter domain, the identity may still hold. In such

cases one should inquire whether the domain can be enlarged in violation of the

bounds or in violation of the constraints but in such an manner that the given

� becomes an interior point. This enlargement must be compatible with L(�)

remaining a loglikelihood. If enlargement of the parameter domain is possible,

then the identity (7) is still valid.

Negative de�niteness of d20Q(� j �) is an essential feature of the quasi-Newton

algorithm, but obviously not of the EM algorithm itself. When the complete

data X come from a regular exponential family, then negative de�niteness is

automatic. In this instance, the complete data loglikelihood can be written as

ln[f(X j �)] =
X
j

aj(�)Sj(X) + b(�)

with the aj(�) linear and the Sj(X) su�cient statistics. It turns out that

�d20Q(� j �) = �d2b(�) can be identi�ed with the expected information matrix

of the complete data (Jennrich and Moore (1975)). Let us stress that regular

exponential families are not the only distributional families having the negative

de�niteness property. The repeated measures model is a case in point.

A Bayesian version of the quasi-Newton acceleration is certainly possible.

Any log prior R(�) is left untouched by the E step of the algorithm and

added to Q(� j �n). Since R(�) is typically chosen negative de�nite, the sum

Q(� j �n)+R(�) is even more negative de�nite than Q(� j �n) itself. Thus, �nding

posterior modes �ts well into the present scheme.

Parameter asymptotic standard errors are in principle available by inverting

the �nal approximate observed information matrix �d20Q(�n j �n) + Bn. Expe-

rience with classical quasi-Newton methods suggests caution however (Thisted

(1988)). Convergence may well occur before a su�ciently good approximation

to d2L(�n) is constructed. Numerical di�erentiation of the identity (7) at the

optimum point �1 is probably the safer course (Meilijson (1989)). Alternatively,

one can harness the EM algorithm directly to perform the necessary numerical

di�erentiations (Meng and Rubin (1991)).

By now it should be evident that quasi-Newton acceleration of the EM al-

gorithm raises more questions than a single paper can hope to answer. Our
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examples hardly exhaust the applications of the algorithm. Further theoretical

development of the algorithm is also bound to be challenging, if for no other

reason than that important foundational issues for classical quasi-Newton algo-

rithms are still unresolved after more than two decades of intensive work (Nocedal

(1992)). These barriers to understanding should not be allowed to detract from

the potential of the quasi-Newton acceleration. The missing data paradigm is

ubiquitous in statistical applications, and the EM algorithm enjoys ever wider

use. Any measure that improves the EM algorithm can only bene�t consumers

of statistics.
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