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Abstract: In this article, we investigate the problem of monitoring independent

large-scale data streams where an undesired event may occur at some unknown

time and affect only a few unknown data streams. Motivated by parallel and dis-

tributed computing, we propose to develop scalable global monitoring schemes by

parallel running local detection procedures and by using the sum of the shrinkage

transformation of local detection statistics as a global statistic to make a decision.

The usefulness of our proposed SUM-Shrinkage approach is illustrated in an exam-

ple of monitoring large-scale independent normally distributed data streams when

the local post-change mean shifts are unknown and can be positive or negative.
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1. Introduction

In the modern information age, one often faces the need to online monitor

large-scale data streams with the aim of offering the potential for early detection

of a “trigger” event. Ideally, one would like to develop a global monitoring scheme

that can detect the occurring event as quickly as possible while controlling the

system-wise global false alarm rate. From the statistical point of view, this is a

sequential change-point detection or quickest change detection problem, which

has a variety of applications such as industrial quality control, signal detection

and biosurveillance. The classical version of this problem, where one monitors

independent and identically distributed (iid) univariate or low-dimensional mul-

tivariate observations from a single data stream, is a well-developed area, and

many classical procedures have been developed such as the Shewhart’s chart (She-

whart (1931)), moving average control charts, Page’s CUSUM procedure (Page

(1954)), Shiryaev-Roberts procedure (Shiryaev (1963), Roberts (1966)), window-

limited procedures (Lai (1995)) and scan statistics (Glaz, Naus and Wallenstein

(2001)). These procedures not only hold attractive theoretical properties, but
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also are computationally simple. See, for example, Lorden (1971), Pollak (1985,

1987), Moustakides (1986), Lai (1995, 2001), Kulldorff (2001). For a review, see

the books such as Basseville and Nikiforov (1993), Poor and Hadjiliadis (2009),

and Tartakovsky, Nikiforov and Basseville (2015).

Research has been limited in the context of monitoring large-scale data

streams, especially when the occurring event might affect some, but not all,

local data streams. Existing methods include the MAX-scheme (which uses the

maximum of local CUSUM statistics as the global statistic, see Tartakovsky et al.

(2006)), the SUM-scheme (which uses the sum of local CUSUM statistics as the

global statistic, see Mei (2010)), the mixture-schemes proposed in Xie and Sieg-

mund (2013), and the simultaneous-estimation-based schemes in Wang and Mei

(2015). While the first two of these schemes are computationally efficient but are

generally statistically inefficient unless the number of affected data streams is ei-

ther very small or very large, the last two schemes enjoy nice statistical properties

under general settings, but are computationally infeasible for online monitoring

large-scale data streams over a long time period. Our research intends to bal-

ance the tradeoff between statistical efficiency and computational efficiency when

monitoring large-scale data streams.

In this article, we present a general and flexible approach that can provide

efficient scalable global schemes when monitoring large-scale data streams. Our

research is motivated by censoring sensor networks in engineering, introduced by

Rago, Willett and Bar-Shalom (1996) and later by Appadwedula, Veeravalli and

Jones (2005) and Tay, Tsitsiklis and Win (2007). Figure 1 illustrates the general

setting of a widely used configuration of censoring sensor networks, in which the

data streams Xk,n’s are observed at the remote, distributed sensors, but the final

decision is made at a central location, called the fusion center. The key feature

of such a network is that while taking observations at the local sensors is gen-

erally cheap and affordable, communication between remote sensors and fusion

center is expensive in terms of both energy and limited bandwidth. The question

then becomes how the fusion center can monitor the system effectively under the

networks resource constraints in the computing power, memory and communi-

cations. An example is the National Syndromic Surveillance Program BioSense

Platform at the Centers for Disease Control and Prevention (CDC), where the

computing power and memory of any centralized server would be limited as com-

pared to daily summary data from all state and local health departments as well

as many hospitals, and thus the CDC’s BioSense Platform is designed to be a

distributed computing system that can detect a global level disease outbreak.
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Figure 1. A configuration of censoring sensor networks.

We propose to develop scalable schemes for monitoring large-scale data

streams by taking advantage of parallel and distributed computing and the fact

that many efficient and computationally simple local procedures are available to

detect changes in local data streams. To be specific, suppose we are monitoring

a large number K of data streams and, for each local data stream, an efficient

local detection procedure is available based upon some local detection statistics

that can be computed recursively over time n, e.g., involving O(1) computations

and O(1) memory requirements at each time. Our proposed methodology is to

run these K local detection procedures in parallel before combining them into a

global monitoring scheme. Thus the computation and memory requirements of

our proposed scheme do not increase over time n, and are fixed as a function of

K at each time step n when new observations are taken, thereby yielding a scal-

able global monitoring scheme. While the parallel local monitoring approach is

interesting, a charge often made is that one loses much information at the global

level by combining local detection procedures, not raw observation themselves,

to make a global decision. There are two methods that combine local detection

procedures together: the MAX and SUM schemes that use the maximum or sum

of local CUSUM to raise a global alarm; these methods are known to be ineffi-

cient when the number of affected data streams is moderate, see Mei (2010) and

Xie and Siegmund (2013).

In this article, we demonstrate that the problem is not on the parallel local

monitoring approach itself, but on how to combine the local detection procedures

suitably when the number of affected data streams is moderate. Our idea is to

generalize the SUM scheme in Mei (2010) by introducing the shrinkage function
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to local detection statistics in the hope of filtering out those unchanging local

data streams. We acknowledge that there might be inherent loss of statistical

efficiency in the parallel local monitoring approach as compared to the (non-

recursive) global monitoring approach that uses all raw observations, e.g., see

Section 4 for the comparison of our proposed schemes with those in Xie and

Siegmund (2013). The parallel local monitoring approach does allow us to develop

scalable schemes, and the loss of statistical efficiency is the price we pay for

the computational efficiency. A common view in the standard off-line statistical

inference literature is the necessity of shrinkage for high-dimensional data in order

to improve power or efficiency. Thus, from the methodology point of view, our

proposed methodologies are analogous to those off-line statistical methods such

as (adaptive) truncation, and soft- and hard- thresholding, see Neyman (1937),

Donoho and Johnstone (1994), Fan and Lin (1998), Candès (2006), and the

references there. Our motivation is different and our application to distributed

quickest change detection is new.

The remainder of this article is organized as follows. In Section 2, we present

some preliminaries and background information of quickest change detection or

sequential change-point detection, and discuss two existing methodologies for

parallel local monitoring. In Section 3, we propose our “SUM-shrinkage” method-

ology under a general setting of monitoring large-scale independent data streams,

and provide general theoretical results. We exemplify our methodology in Sec-

tion 4 for the scenario of monitoring large-scale independent normally distributed

data when the post-change means of local data streams are unknown.

2. Preliminaries and Background

For a general setting, assume there are K independent data streams in a

system.

Data Stream 1 : X1,1, X1,2, . . . , (2.1)

Data Stream 2 : X2,1, X2,2, . . . ,

. . . . . .

Data Stream K : XK,1, XK,2, . . . .

Initially, the system is “in control”, but at some unknown time ν, an undesired

event may occur and affect a few unknown local data streams in the sense of

changing the local distributions of the Xk,n’s.

Here we assume that the online monitoring is conducted under the unstruc-

tured environment in the sense that we do not make any assumptions to relate
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the occurring event to the local data streams, see Tartakovsky et al. (2006), Mei

(2010), and Xie and Siegmund (2013). Also see Lévy-Leduc and Roueff (2009)

for an application of the unstructured problem to anomaly detection in computer

networks. In particular, we focus on the scenario in which the occurring event

changes the local distributions of affected local data streams, and we do not aim

to detect changes on the correlation between different data streams. Hence, the

data Xk,n’s are assumed to be independent across different data streams, but can

be flexible otherwise. For instance, the Xk,n’s may or may not be identically dis-

tributed across different local data streams, can be dependent over time within

each local data stream, and can be univariate or low-dimensional multivariate.

In addition, in many practical applications, the assumption of the independence

across different data streams is not as restrictive as one might think, see Xie,

Huang and Willett (2013), and Liu, Mei and Shi (2015), who monitor the inde-

pendent residuals from some spatio-temporal models instead of dependent raw

data, in applications to solar flare and hot forming processes.

For the purpose of generalization, we do not specify the kind of local changes

these K data streams might have. Instead we assume that there is a local detec-

tion statistic Wk,n (in the log-likelihood scale) for the k-th local data stream at

each time step n that summarizes the evidence regarding a possible local change

based on the first n local observations (Xk,1, . . . , Xk,n) for each k = 1, . . . ,K. For

instance, Wk,n can be the well-known CUSUM or Shiryeav-Robert statistics (in

the log-likelihood scale) when the local data are independent over time, or can be

the recursive quasi-generalized-likelihood-ratio test in Fuh and Mei (2015) when

the local data are dependent from hidden Markov models. The requirements for

these Wk,n’s are that they not only should be able to detect local changes quickly,

but also can be computed efficiently for our proposed scheme to be scalable. It

can be highly non-trivial to construct such Wk,n’s in practice, see an example in

Section 4.

We review the definition of a global monitoring scheme and the criteria

to evaluate it under the minimax setting. A global monitoring scheme can be

defined as a stopping time T with respect to the K-dimensional vector data

{(X1,n, . . . , XK,n)}n≥1. In particular, when T = t, one raises an alarm at time

t to indicate that a change has occurred somewhere in the first t time steps.

When monitoring K independent data streams in (2.1), even if each local false

alarm rate is well controlled, the global false alarm rate can be significant when

the number K of data streams is large. In the literature of sequential change-

point detection, for a global monitoring scheme that raise an alarm at time T ,
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its global false alarm rate is often evaluated by 1/E(∞)(T ), where E(∞)(T ) is

the expectation of T when the system is “in control,” the Average Run Length

(ARL) to false alarm. The definition of detection delay of the global monitoring

scheme is more complicated. Assume that the event occurs at the unknown time

ν, and the global monitoring scheme raises an alarm at time T ≥ ν. Then the

detection delay is T − ν + 1, but we must take into account of the randomness

of T and the uncertainty of ν. One definition of the detection delay of T is the

“worst case” delay given in Lorden (1971),

E(T ) = sup
ν≥1

ess supE(ν)
{

(T − ν + 1)+
∣∣∣Fν−1

}
. (2.2)

Here “ess sup” is over all possible scenarios of global pre-change information

Fν−1 = (X1,[1,ν−1], . . . , XK,[1,ν−1]), Xk,[1,ν−1] = (Xk,1, . . . , Xk,ν−1) is local pre-

change information up to time ν, and P(ν) and E(ν) denote the probability mea-

sure and expectation when the event occurs at time ν.

The standard minimax formulation is to find a global monitoring scheme

with a stopping time T that minimizes (2.2) subject to the global false alarm

constraint

E(∞)(T ) ≥ γ, (2.3)

where γ > 0 is a pre-specified constant.

3. Our Proposed SUM-Shrinkage Methodology

Now we turn to our proposed methodology. Assume, for a moment, that the

local detection statistics Wk,n’s (in the log-likelihood scale) have been constructed

for each local k-th data stream at time n. We suggest using the global monitoring

statistic of the general “SUM-shrinkage” form

Gn =

K∑
k=1

hk(Wk,n), (3.1)

where hk(·) ≥ 0 are some suitable shrinkage transformation functions. Our pro-

posed SUM-shrinkage scheme raises a global alarm at the time

NG(a) = inf{n ≥ 1 : Gn ≥ a}. (3.2)

Our proposed NG(a) in (3.2) has two key components in its global moni-

toring statistic Gn in (3.1): the local detection statistic Wk,n’s; the shrinkage

transformations hk(·)’s. Intuitively, the local detection statistics Wk,n’s should

be easily computed and able to detect local changes quickly. The shrinkage func-

tions hk’s in (3.1) play the role of dimension reduction by automatically filtering
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out non-changing local data streams and focusing on those local data streams

that appear to be affected by the occurring event.

Our proposed “SUM-shrinkage” methodology in (3.1)-(3.2) has a broad range

of applications. For instance, Mei (2011) applied the idea to develop an efficient

communication policy between sensors and fusion center in the context of censor-

ing sensor networks. Depending on which kind of local models or local changes

are of interest, local detection statistic Wk,n can be defined for such dependent

observations as those from the recursive schemes in Fuh and Mei (2015) for hidden

Markov models, or those from the non-parametric rank-based detection schemes

in Gordon and Pollak (1994). Little information seems to be lost if we do not

observe those local data streams with small values of the Wk,n since they make

limited contributions in the global monitoring statistic Gn in (3.1). This moti-

vated Liu, Mei and Shi (2015) to develop an efficient adaptive sensor relocation

policy when one only has ability to observe r out of K data streams at each time

step. This can occur in a manufacturing process with K possible stages but only

r sensors are available for monitoring. In such a problem, the order-thresholding

transformation at (3.5) can be combined with missing data techniques not only

to construct the global monitoring statistic Gn in (3.1) for quickest detection,

but also in a greedy manner to adaptively observe those r data streams with the

largest Wk,n’s values at each time step. Banerjee and Veeravalli (2015) essen-

tially tackle the similar problem of missing data, but using the hard-thresholding

transformation at (3.3).

Subsection 3.1 contains three choices of shrinkage functions hk at (3.1), and

Subsection 3.2 includes some general properties of NG(a) that are related to the

global false alarm constraint in (2.3). Subsection 3.3 discusses how to choose

the tuning parameters in the shrinkage functions hk in (3.1) when the local data

streams are homogeneous.

3.1. Shrinkage transformation

Evidently a suitable choice of the hk in the SUM-shrinkage monitoring statis-

tic Gn in (3.1) depends on the assumptions and contexts of applications. As an

illustration, we list three shrinkage transformations.

• Hard-thresholding: h(x) = x1{x ≥ b} for some constant b. (3.3)

• Soft-thresholding: h(x) = max{x− b, 0} for some constant b. (3.4)

• Order-thresholding: h(x) = x1{x ≥ w(r)}, where w(r) is

the r-th largest statistic of w1, . . . , wK . (3.5)
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There are many other shrinkage functions, such as h(x) = exp(bx). By semi-

Bayesian arguments, the transformation h(x) = log(1 − p0 + p0 exp(max(0, x)))

was proposed by Xie and Siegmund (2013) in a completely different context.

To better understand the shrinkage transformations in (3.3)-(3.5), we moti-

vate them from the communication efficiency viewpoint, first presented in Mei

(2011) in the context of the censoring sensor networks in Figure 1. To prolong the

reliability and lifetime of the network system, it is natural for the local sensors

to transmit only those local detection statistics Wk,n that are large. Specifically,

at time n, the message from the sensor to the fusion center is given by

Uk,n =

{
Wk,n, if Wk,n ≥ bk
NULL, if Wk,n < bk

, (3.6)

where bk ≥ 0 is the local censoring parameter at the k-th sensor (or data stream).

In practice, the message “NULL” could represent that the sensor is silent.

After receiving the local sensor messages Uk,n in (3.6), the fusion center

combines them suitably to make a global decision. There are many approaches

to doing so. Two schemes are based on the summation of all sensor messages

Uk,n, depending on how to interpret the “NULL” values. If we treat the “NULL”

values as the lower limit 0, then the fusion center raises a global alarm at time

Nhard(a) = inf

{
n ≥ 1 :

K∑
k=1

Uk,n ≥ a

}

= inf

{
n ≥ 1 :

K∑
k=1

Wk,n1{Wk,n ≥ bk} ≥ a

}
. (3.7)

This scheme is referred as the hard-thresholding, since it is a special case of the

global statistic in (3.1) when the shrinkage functions hk are the hard-thresholding

transformation in (3.3).

If we treat the “NULL” values as the upper limit bk, then the fusion center

computes the global monitoring statistic

Gn =

K∑
k=1

Uk,n =

K∑
k=1

max{Wk,n, bk} =

K∑
k=1

max{Wk,n − bk, 0}+

K∑
k=1

bk,

which is closely related to the soft-thresholding transformation in (3.4). We can

call this a soft-thresholding scheme when it raises an alarm at time

Nsoft(a) = inf

{
n ≥ 1 :

K∑
k=1

max{Wk,n − bk, 0} ≥ a

}
. (3.8)
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Here we keep the threshold of Nsoft(a) as a instead of a −
∑K

k=1 bk, so that

Nsoft(a) is the special case of our proposed SUM-shrinkage scheme NG(a) in

(3.2) with the soft-thresholding transformation in (3.4).

A third approach occurs when the fusion center has prior knowledge that

(at most) r out of K data streams will be affected by the occurring event. Such

prior knowledge may be defined by the network fault-tolerant design to avoid

risking failure. In this case, it is reasonable for the fusion center to order all

sensor messages Uk,n’s as U(1),n ≥ · · · ≥ U(K),n, and raise an alarm if the sum of

the r largest Uk,n’s is too large. This is a combination of the hard-thresholding

transformation in (3.3) and the order-thresholding transformation in (3.5), and

it yields a global scheme for which the stopping time is

Ncomb,r(a) = inf

{
n ≥ 1 :

r∑
k=1

U(k),n ≥ a

}
. (3.9)

A special case of Ncomb,r(a) in (3.9) has the order-thresholding transforma-

tion in (3.5) applied directly to the local detection statistics Wk,n themselves.

Specifically, we order the K local CUSUM statistics W1,n, . . . ,WK,n as W(1),n ≥
W(2),n ≥ · · · ≥ W(K),n. Then the order-thresholding scheme is defined by the

stopping time

Norder,r(a) = inf

{
n ≥ 1 :

r∑
k=1

W(k),n ≥ a

}
, (3.10)

which corresponds to the order-thresholding transformation in (3.5).

Based on our experience, the soft-thresholding transformation, as a contin-

uous function, often yields smaller detection delays than the hard-thresholding

transformation, a discontinuous function, in finite-sample Monte Carlo simula-

tions. The soft- and order- thresholding transformations have comparable finite-

sample performances, but the soft-thresholding transformation is computation-

ally and theoretically simpler. We use the soft-thresholding transformation in

(3.4) as a concrete demonstration, when needed.

For the soft-thresholding scheme, Nsoft(a) in (3.8), statistical intuition is

a little more complicated; we provide a semi-Bayesian interpretation of why it

works. At a given time n, let Zk be the indicator of whether the distribution

of the k-th local data stream changes for k = 1, . . . ,K. Suppose each local

data stream has a prior probability πk of being affected by the event, and that

Z1, . . . , ZK are iid with probability mass function P(Zk = 1) = πk = 1−P(Zk =

0). Treat Zk’s as the hidden states, Wk,n representing the evidence of possible
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change (in logarithm scale) and applicable only when Zk = 1. Then when testing

H0 : Z1 = · · · = ZK = 0 (no change), the Log-Likelihood Ratio (LLR) statistic

of the hidden state Zk and the observed data Xk,n is

LLR(n) =

K∑
k=1

{Zk(log πk +Wk,n) + (1− Zk) log(1− πk)} −
K∑
k=1

log(1− πk)

=

K∑
k=1

Zk

{
Wk,n − log

(
1− πk
πk

)}
.

Since the Zk’s are unobservable, it is natural to maximize LLR(n) over Z1, . . . ,

ZK ∈ {0, 1}. Hence, the maximum likelihood estimator of the Zk is

Ẑk =

1, if Wk,n ≥ log

(
1− πk
πk

)
0, otherwise

, for k = 1, . . . ,K,

and the generalized log-likelihood ratio is

max
Z′

ks
LLR(n) =

K∑
k=1

max

{
Wk,n − log

(
1− πk
πk

)
, 0

}
,

exactly the form of the soft-thresholding scheme Nsoft(a) in (3.8), with bk =

log((1− πk)/πk).

3.2. Choice of threshold a to satisfy the false alarm constraint

Given the choices of the local detection statistics Wk,n and the shrinkage

transformation hk(·), an important question is how to determine the global

threshold a in (3.2) so that the proposed SUM-shrinkage scheme satisfies the

global false alarm constraint on γ in (2.3). This requires one to accurately char-

acterize the relationship between the threshold a and the ARL to the false alarm

E(∞){NG(a)}.
As the global monitoring statistic Gn in (3.1) is the sum of K (independent)

random variables, one would expect that the Central Limited Theorem (CLT)

would be useful when the shrinkage transformation keeps most non-zero values,

e.g., the hard-thresholding or soft-thresholding transformations in (3.3) or (3.4)

when the censoring parameters b’s are not large, whereas the compound Poisson

process would be needed when the shrinkage transformation keeps only few non-

zero values, e.g., the order-thresholding transformation in (3.5) with a not so

large r value. Rigorous proofs are beyond our scope and will be investigated

elsewhere.
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Below we will use Chebyshev’s inequalities to provide a crude relationship

between the threshold a and the ARL to the false alarm E(∞){NG(a)}. Assume

that under the pre-change hypothesis P(∞), for each k, the shrinkage transforma-

tion of local detection statistics, hk(Wk,n), converge to their limit H∗k as n→∞.

We further assume that, for each k = 1, . . . ,K, the limit H∗k is stochastically

larger than any finite-time version hk(Wk,n), and has a well-defined log-moment

generating function

ψk(θ) = logE(∞) exp(θH∗k) (3.11)

for some θ ≥ 0.

Theorem 1. Assume the ψk(θ) are well-defined for all θ ∈ Θ, a sub-interval of

[0,∞), for all k = 1, . . . ,K. Then,

E(∞){NG(a)} ≥ 1

4
exp

(
θa−

K∑
k=1

ψk(θ)

)
(3.12)

for all θ ∈ Θ, and a choice of threshold

a = inf
θ∈Θ

[
1

θ

{
log(4γ) +

K∑
k=1

ψk(θ)

}]
(3.13)

guarantees that NG(a) in (3.2) satisfies the global false alarm constraint γ in

(2.3).

Proof: Relation (3.13) follows directly from (3.12), and it suffices to show

that (3.12) holds for any θ ∈ Θ. By the definition of NG(a) in (3.2) and the use

of Chebyshev’s inequality twice, once to NG(a) ≥ 0 and the second to
∑K

k=1H
∗
k ,

for any x > 0

E(∞)(NG(a)) ≥ xP(∞){NG(a) ≥ x}
= x[1−P(∞){NG(a) < x}]

= x

[
1−P(∞)

{
K∑
k=1

hk(Wk,n) ≥ a for some 1 ≤ n ≤ x

}]

≥ x

{
1− xP(∞)

(
K∑
k=1

H∗k ≥ a

)}

≥ x

{
1− xe−θaE(∞) exp

(
θ

K∑
k=1

H∗k

)}

= x

{
1− xe−θa exp

(
K∑
k=1

ψk(θ)

)}
.
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Here the second inequality follows from the assumption that H∗k is stochastically

larger than hk(Wk,n), and the last equation uses the assumption that these K

data streams are independent across different data streams. For any u > 0, the

function x(1− xu) is maximized at x = 1/(2u) with the maximum value 1/(4u).

This completes the proof of (3.12).

The results in Theorem 1 are non-asymptotic, and hold for any K and γ.

To demonstrate their usefulness, consider a concrete homogeneous case when the

Wk,ns are identically distributed over k under the pre-change hypothesis, and

all local data streams use the same soft-thresholding transformation (3.4). We

suppress the script k and derive the log-moment generating function ψ(θ) in

(3.11) for the soft-thresholding transformation h(Wn) = max(Wn− b, 0) for large

b. We further assume that, as n→∞, the local detection statistic Wn converges

to an asymptotically exponentially distributed variable W ∗ under the pre-change

hypothesis,

P(∞)(W ∗ > x) ≈ λe−x, (3.14)

for some constant λ > 0. A non-asymptotic result is often true for many local

detection statistic Wn such as CUSUM: for any x > 0,

P(∞)(W ∗ > x) ≤ e−x, (3.15)

see Appendix 2 of Siegmund (1985). Under (3.14), we have P(∞)(W ∗ ≤ b) =

1−λe−b for large b. Combining the definition of ψ(θ) in (3.11) with the fact that

H∗ = 0 whenever W ∗ ≤ b yields that

ψ(θ) = logE(∞) exp(θH∗) = log

{
P(∞)(W ∗ ≤ b) +

∫ ∞
b

eθ(x−b)λe−xdx

}
= log

(
1 +

θλe−b

1− θ

)
. (3.16)

Clearly, ψ(θ) is well-defined over θ ∈ Θ = [0, 1). If we further assume that b

is large, or equivalently, λe−b is small, using the approximation log(1 + x) ≈ x

yields that ψ(θ) ≈ θλe−b/(1− θ). Thus the term inside the infimum in (3.13) is

1

θ
{log(4γ) +Kψ(θ)} ≈ 1

θ
log(4γ) +

1

1− θ
(Kλe−b).

As A/θ + B/(1 − θ) has a minimum value (
√
A +

√
B)2 over 0 ≤ θ ≤ 1 for any

A,B > 0, (3.13) in Theorem 1 gives

a ≈
(√

log(4γ) +
√
Kλe−b

)2
. (3.17)

In(3.17) we see the challenges of monitoring large-scale data streams: the asymp-
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totic expression of a in (3.17) depends on the asymptotic relationship between

log(γ) and Kλe−b. When log(γ)� K, we have the classical result on the thresh-

old of a = {1 + o(1)} log(γ), see Lorden (1971). When Kλe−b � log(γ), we

have

a ≈ Kλe−b + 2
√
Kλe−b

√
log γ. (3.18)

This suggests that Kλe−b plays a dominant role to determine the threshold a

for NG(a) to satisfy the false alarm constraint γ in (2.3) when b is large and

Ke−b � log(γ).

3.3. The choice of censoring parameters

In this subsection, we discuss the optimal choice of the censoring parameters

bk in (3.6). For illustration and simplicity we consider the homogeneous case,

bk ≡ b, when local data streams are identically distributed for different k, e.g.,

relations (3.14), (3.15), and ψk(θ) ≡ ψ(θ) in (3.16) hold for all k = 1, . . . ,K. We

provide two optimal choices of the censoring parameter b for the soft-thresholding

scheme Nsoft(a) in (3.8): one from the communication efficiency aspect, and the

other from the statistical efficiency aspect. It turns out that they are closely

related.

Assume that the average fraction of transmitting sensors at any time step is

restricted to be at most η ∈ (0, 1) when no change occurs. In this case, when no

event occurs, the average fraction of transmitting sensors at any time step n is

1

K

K∑
k=1

P(∞)(Uk,n 6= NULL) =
1

K

K∑
k=1

P(∞)(Wk,n ≥ b)

≤ 1

K

K∑
k=1

exp(−b) ≤ exp(−b),

where the second-to-last inequality follows from (3.15). Thus a choice of

bopt,1 = log(η−1) (3.19)

will guarantee that on average, at most 100η% of K sensors transmit messages

at any given time when no event occurs. When η is small, one can use the refined

asymptotic approximation (3.14), instead of the non-asymptotic bound (3.15), in

the above arguments. Then the bopt,1 can be further improved as b∗opt,1 = log(λ/η)

under the communication constraint.

Next, we choose the censoring parameter b based on the statistical efficiency

considerations in the scenario when w0 out of K local data streams are affected.
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Intuitively, when the global threshold value a is given, our proposed scheme

Nsoft(a) in (3.8) is increasing as a function of the censoring parameter bk ≡ b,

and a larger value of b implies both larger ARL to false alarm and larger detection

delays. Hence, subject to the false alarm constraint γ in (2.3), different global

threshold values a are needed for these schemes with different b, and thus it is

natural to find the censoring parameter b that yields the smallest detection delay

E(T ) in (2.2).

We assume that those affected local streams have the same post-change

statistical properties in the sense that the detection delay of a local scheme

Nk(c) = inf{n ≥ 1 : Wk,n ≥ c} is {1 + o(1)}c/I for some constant I > 0 as

c→∞. This assumption is general and holds for many local detection statistics

including CUSUM, see Lorden (1971). Then the detection delay of the soft-

thresholding scheme Nsoft(a) in (3.8) is bounded above by

{1 + o(1)}1

I

(
b+

a

w0

)
. (3.20)

To see this, at time step n, if wk,n ≥ b + a/w0 for all of those w0 affected local

data streams, then Nsoft(a) ≤ n since
∑K

k=1 max(wk,n − b, 0) ≥ w0(a/w0) = a.

Relation (3.20) follows at once from the detection delays of Nk(c) with c =

b+a/w0 for those w0 affected data streams, and similar ideas have been applied in

the proof of Theorem 3 in Mei (2005) when the Wk,n are local CUSUM statistics.

If we keep only on the first-order major term of a in (3.18), plugging it into

(3.20) yields that the detection delay of the soft-thresholding scheme Nsoft(a) in

(3.8) (up to the first-order) is

1

I

(
b+

Kλe−b

w0

)
.

Taking derivatives with respect to b, and setting it to 0, the detection delay

bound is minimized when Kλe−b = w0, so the optimal b value (up to first-order)

is given by

bopt,2 = log
λK

w0
, (3.21)

where λ > 0 is the constant in (3.14) that only depends on the asymptotic

properties of the Wk,n.

When we have prior knowledge that w0 local data streams are affected but

we do not know which ones, it is reasonable to assume that each local data

stream has the same probability π = w0/K of being affected. By the semi-

Bayesian interpretation of the soft-thresholding transformation in Subsection 3.1,
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the local censoring parameters bk’s should be chosen as bk = log((1 − π)/π) =

log((K−w0)/w0), which is asymptotically equivalent to (3.21) when the fraction

of affected data stream w0/K → 0.

A direct comparison of (3.19) and (3.21) suggests that the two optimal b

values are asymptotically equivalent if we set η = w0/K. Moreover, by (3.6) and

(3.14), when there are no changes, the average fraction of transmitting sensors

at any time step n is

1

K

K∑
k=1

P(∞)(Uk,n 6= NULL) = P(∞)(Uk,n 6= NULL) = P(∞)(Wk,n ≥ bopt,2)

= λe−bopt,2 =
w0

K
. (3.22)

This demonstrates a simple but useful equivalence relationship between commu-

nication efficiency and statistical efficiency: if we want to optimize the detection

delay performance (up to first-order) when w0 data streams are affected, then

it is best to design the schemes that on average allow w0 out of K local data

streams to transmit local detection statistics to the fusion center when no change

event occurs (and possibly more than w0 data streams when a change occurs).

Due to this equivalence, in our simulations, the censoring parameter b is chosen

based on (3.19), which is non-asymptotic and easier to compute.

4. An Example: Unknown Post-Change Normal Means

Suppose that we are monitoring K independent normally distributed data

streams Xk,n in (2.1). Initially, the data Xk,n are iid N(0, 1). At some unknown

time ν, the distribution of the k-th local data stream might change to N(µk, 1)

if affected. We do not know which subset of local data streams are affected, and

here another new challenge is that we do not know the values of the post-change

means µk’s when affected. We want to develop a system-wise online monitoring

scheme that can detect the change as soon as possible, subject to the global false

alarm constraint γ in (2.3).

Xie and Siegmund (2013) investigated this problem under the assumption

that the post-change mean µk > 0 for all k. By assuming that the fraction p0 of

affected data stream is known, the scheme they proposed was motivated from a

semi-Bayesian approach; it is defined by

TXS(a, p0) = inf

(
n ≥ 1 : max

0≤i<n

K∑
k=1

log

[
1− p0 + p0 exp

{(
U+
k,n,i

)2
2

}]
≥ a

)
,

(4.1)
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where U+
k,n,i = max

(
0,
∑n

j=i+1Xk,j

)
/
√
n− i for all 0 ≤ i < n and 1 ≤ k ≤

K. One can also simplify the memory requirement by keeping a large win-

dow of the most recent observations. Wang and Mei (2015) proposed a global

Shiryaev-Robert procedure by simultaneously estimating all K unknown post-

change means µk via shrinkage estimation. These schemes are not scalable, and

not suitable in the context of censoring sensor networks in Figure 1. The imple-

mentation of their schemes requires the fusion center to have full access to all

data streams at each time step.

It has been an open problem to develop a scalable global monitoring scheme

that is able to detect both positive and negative local mean shifts for affected local

data streams. Part of the reason is that for the K local data streams, there are

2K potential different combinations of positive or negative local shifts, and not

feasible for large K. Here we illustrate how to tackle this problem based on our

proposed SUM-shrinkage statistics in (3.1). We need a suitable local detection

statistic Wk,n that can be easily computed and has the ability to detect both

positive and negative local mean shifts. If the local detection statistics Wk,ns are

defined, we can use any shrinkage transformation to develop a global monitoring

scheme.

In this section, we consider the soft-thresholding scheme Nsoft(a) in (3.8).

For simplicity, we assume that all censoring parameters bk in (3.8) are the same,

bk ≡ b1 for some constant b1 > 0. Our focus is how to construct the local

detection statistics Wk,n’s suitably.

Subsection 4.1 provides an overview of our proposed soft-thresholding scheme

in (3.8) that only uses a fixed number of 6K registers to store all past information

and involves O(K) computations at each given time step n. Simulation results

are summarized in Subsection 4.2.

4.1. Our proposed local detection statistics Wk,n

We are interested in detecting both positive and negative local mean shifts

for affected data streams, we propose to extend the detection statistic Wn of

Lorden and Pollak (2008) from one-sided to two-sided. As detecting negative

local mean shift of the Xk,n is equivalent to detecting positive local mean shift

of the −Xk,n, we propose the local detection statistic for each local data stream

at time n,

Wk,n = max (W
(1)
k,n,W

(2)
k,n). (4.2)

Here W
(1)
k,n and W

(2)
k,n are the local detection statistics of Lorden and Pollak (2008)
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for detecting positive and negative mean shifts, respectively:

W
(1)
k,n = max

{
W

(1)
k,n−1 + µ̂

(1)
k,nXk,n −

1

2
(µ̂

(1)
k,n)2, 0

}
,

W
(2)
k,n = max

{
W

(2)
k,n−1 + µ̂

(2)
k,nXk,n −

1

2
(µ̂

(2)
k,n)2, 0

}
, (4.3)

where

µ̂
(1)
k,n = max

(
ρ,
s+ S

(1)
k,n

t+ T
(1)
k,n

)
> 0, µ̂

(2)
k,n = min

(
− ρ,

−s+ S
(2)
k,n

t+ T
(2)
k,n

)
< 0, (4.4)

and for j = 1, 2, the sequences (S
(j)
k,n, T

(j)
k,n) are defined over n recursively as

S
(j)
k,n

T
(j)
k,n

 =



S
(j)
k,n−1 +Xk,n−1

T
(j)
k,n−1 + 1

 if W
(j)
k,n−1 > 0(

0

0

)
if W

(j)
k,n−1 = 0

(4.5)

Here the µ̂
(1)
k,n and µ̂

(2)
k,n in (4.4) are the estimates of the post-change mean

when restricted to the positive and negative values, respectively, under the as-

sumption that |µ| ≥ ρ. The two-sided local detection statistic Wk,n in (4.2) is

always nonnegative for any k at any time step n, and it is large when there is a

local mean shift no matter whether such mean shift is positive or negative.

The proposed soft-thresholding scheme Nsoft(a) in (3.8) can be easily im-

plemented in the censoring sensor network context by parallel computing the

K local detection statistics Wk,n’s recursively through (4.2)-(4.5) at the local

sensor levels. We can use 6K registers to adaptively store all past information

at each time step after observing new data: (S
(j)
k , T

(j)
k ,W

(j)
k ) for j = 1, 2 and

k = 1, 2, . . . ,K. At any given time step n, we can first update the 4K registers

in (S
(j)
k , T

(j)
k ) using the past data and compute the 2K estimates µ̂

(j)
k of the post-

change means µk’s. Then after we observe new observations, (X1,n, . . . , XK,n),

we only need update the 2K registers W
(j)
k ’s and compute the values of K local

detection statistics Wk’s, which allows us to easily compute the global moni-

toring statistic G. Including the 3K intermediate variables (µ̂
(j)
k ,Wk) and the

global monitoring statistic G, the proposed scheme only needs 9K+1 registers to

adaptively store all relevant information and involves O(K) computations at any

given time step n. Our scheme can be implemented in censoring sensor networks

where most computations are done at the remote sensors. Hence, our proposed

scheme is scalable and can be easily implemented to online monitor large-scale
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data streams over a long time period.

4.2. Simulation results

In this subsection, we report the numerical simulation results of the soft-

thresholding scheme Nsoft(a) in (3.8) when the local detection statistics Wk,n’s

are defined recursively through (4.2)-(4.5), and the censoring parameters bk ≡ b1
for all k. For the purpose of comparison, we follow Xie and Siegmund (2013)

to assume that there are K = 100 independent normal data streams. For each

k = 1, . . . ,K, the data Xk,n’s of the k-th data stream are iid N(0, 1) before the

change, but are iid N(1, 1) after the k-th data stream is affected by the occurring

event.

In our simulations, we considered six schemes: the Xie and Siegmund schemes

TXS(a, p0) in (4.1) with p0 = 1 and 0.1, and four schemes employed our pro-

posed soft-thresholding schemes Nsoft(a) in (3.8) with censoring parameters:

b1 = 0, 0.5, log(10), log(100). The three non-zero b1 values imply that on average

at most exp(−b1) ≈ 60.7%, 10% and 1% out of 100 local data streams produce

significant Wk,n values to the global monitoring statistic Gn when there are no

changes. When computing the local detection statistics Wk,n in (4.2), we set

ρ = 0.25, t = 4 and s = 1 as in Lorden and Pollak (2008).

For each of these schemes, we first numerically searched the threshold a

to satisfy the global false alarm constraint γ in (2.3). Two values of γ were

considered: γ = 5,000, so that we can compare with those results from Xie

and Siegmund (2013); γ = 5 × 104 to see the effect of false alarm constraint γ

on the detection delays of our schemes. We are unable to numerically find the

global threshold a of the Xie and Siegmund scheme for the case γ = 5 × 104 in

a reasonable time, and there we only report the performance of our proposed

schemes. For the detection delays, we considered various post-change hypotheses

and, for each post-change hypothesis, we simulated the E{T (a)} when the event

occurs at time ν = 1, and used this as an estimate of the detection delay D{T (a)}.
All simulated values were based on 2,500 Monte Carlo runs.

Table 1 summarizes detection delays when the change is instantaneous if a

local data stream is affected. For the Xie and Siegmund scheme TXS(a, p0) in

(4.1), our simulated detection delay results are slightly different from their re-

ported results in their paper, possibly because our simulation was based on 2,500

runs instead of the 500 runs in their paper. The Xie and Siegmund schemes

TXS(a, p0) in (4.1) involve expensive computations, and require the fusion center

to have full access to all raw data. Thus it is not surprising that their schemes
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Table 1. A comparison of detection delays when the change is instantaneous and the
post-change mean µk = 1 if affected. The smallest and largest standard errors of the
schemes are reported under each post-change hypothesis based on 2,500 repetitions in
Monte Carlo simulations.

γ # local data streams affected
1 3 5 8 10 20 30 50 100

Smallest standard error 0.19 0.08 0.06 0.04 0.03 0.02 0.01 0.01 0.00
Largest standard error 0.40 0.14 0.08 0.05 0.04 0.03 0.02 0.02 0.01

Xie and Siegmund’s schemes TXS(a, p0) in (4.1)
TXS(a = 53.5, p0 = 1) 52.4 18.3 11.1 7.1 5.7 2.9 2.0 1.2 1.0
TXS(a = 19.5, p0 = 0.1) 31.1 13.4 9.2 6.7 5.7 3.5 2.5 1.8 1.0

5,000 Soft-thresholding Schemes Nsoft(a) in (3.8)
Nsoft(a = 127.86, b1 = 0) 75.0 35.4 25.2 18.5 16.0 10.3 8.1 6.1 4.1
Nsoft(a = 84.91, b1 = 0.5) 72.1 33.9 24.1 17.7 15.3 10.0 7.9 6.0 4.2

Nsoft(a = 24.01, b1 = log(10)) 45.8 22.0 16.4 12.8 11.5 8.5 7.3 6.1 5.0
Nsoft(a = 7.88, b1 = log(100)) 29.0 17.2 14.2 12.0 11.2 9.2 8.3 7.3 6.4

Soft-thresholding Schemes Nsoft(a) in (3.8)
Nsoft(a = 136.07, b1 = 0) 89.0 39.9 27.9 20.2 17.4 11.1 8.7 6.5 4.4
Nsoft(a = 92.79, b1 = 0.5) 85.7 38.2 26.8 19.4 16.7 10.7 8.4 6.3 4.4

5× 104 Nsoft(a = 29.05, b1 = log(10)) 55.1 25.3 18.4 14.1 12.6 9.1 7.8 6.5 5.2
Nsoft(a = 11.11, b1 = log(100)) 35.5 19.7 16.0 13.4 12.4 10.0 8.9 7.9 6.8

have smaller detection delays than our schemes. The Xie and Siegmund schemes

are not scalable and cannot be implemented in the context of distributed mon-

itoring in censoring sensor networks. Our proposed schemes can be easily im-

plemented by parallel computing in a recursive manner at the local sensors level

and thus are scalable.

All simulations were done on a Windows 8 Laptop with Intel i7-4700MQ

CPU 2.40GHz using MATLAB R2013b. For each row of Table 1, the most time

consuming part was to search for the global threshold a so that E(∞){T (a)} ≈ γ.

When γ = 5,000, it took about 8 minutes to find such a from a range of values for

our proposed schemes based on 2,500 Monte Carlo runs (the time is shorter if our

initial guess range of a is closer). For the Xie and Siegmund scheme, for the given

global threshold a around 53.5 provided in their paper, it took about one and a

half hours on average to finish one Monte Carlo simulation run. If we did not

know a ≈ 53.5 and wanted to try 10 different values of a’s by bisection method

based on 2,500 Monte Carlo runs for each a, it would have taken about 10× 1.5

× 2,500 = 37,500 computer hours for the case of γ = 5,000. When γ = 5×104, it

took us about one hour to find the global threshold a for our proposed schemes,

but we are unable to numerically implement the Xie and Siegmund schemes. Once

the global threshold a is found, it is straightforward to simulate the detection

delays in Table 1. When γ = 5,000, our proposed schemes are at least 10 times



20 LIU, ZHANG AND MEI

faster than those of Xie and Siegmund. For instance, when exactly one data

stream is affected, it took 4.94 seconds to simulate the detection delay of our

proposed schemes, and 41.02 seconds to simulate theirs. The computational

advantage of our proposed schemes is evident.
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