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Abstract: The aim of this paper is to characterize and construct universally optimal

designs among the class of circular repeated-measurements designs when the pa-

rameters do not permit balance for carry-over effects. It is shown that some circular
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1. Introduction

The problem of universal optimality of repeated-measurements designs is

widely studied in the literature. Most of the designs considered have the same

number of periods as treatments; we also make this assumption.

For experiments without a pre-period, Hedayat and Afsarinejad (1978) and

Cheng and Wu (1980) proved the universal optimality, for the estimation of direct

as well as carry-over effects, of some balanced uniform repeated-measurements

designs over a restricted class of competing designs. If the number n of subjects

is at most twice the number t of treatments, Kunert (1984a) showed that, for

the estimation of direct effects, balanced uniform designs are universally optimal

over the class of all designs. Hedayat and Yang (2003) extended this by showing

universal optimality of balanced uniform designs if n ≤ t(t−1)/2. Kunert (1984a)

also proved that if n is sufficiently large then a balanced uniform design is no

longer optimal. Moreover, this design is not universally optimal for the estimation

of carry-over effects when certain other special designs exist. Stufken (1991)

constructed some universally optimal designs using orthogonal arrays of type I.

Jones, Kunert and Wynn (1992) proved universal optimality of some balanced

uniform designs under the model with random carry-over effects.
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Kunert (1983) considered repeated-measurements designs with or without a

pre-period. He proved the universal optimality of some special generalized latin

squares and generalized Youden designs over particular classes of designs.

A repeated-measurements design is called circular if there is a pre-period

and, for each subject, the treatment on the pre-period is the same as the treat-

ment on the last period. Magda (1980) proved the universal optimality of circular

strongly balanced uniform designs (uniform CSBDs) and circular balanced uni-

form designs (uniform CBDs) over appropriate subclasses of possible designs.

Kunert (1984b) strengthened these results by showing the universal optimality

of CBDs over all designs. Recent constructions of CSBDs and CBDs have been

given by Iqbal and Tahir (2009) using cyclic shifts and by Mandal, Parsad and

Gupta (2016) using integer programming.

Universal optimality of some CBDs is also studied assuming a model of re-

peated measurements designs in which period effects are negligible. This simpler

model, in which carry-over effects play the role of left-neighbour effects, is known

in the literature as an interference model. Druilhet (1999) considered optimality

of CBDs for the estimation of direct as well as carry-over effects, while Bailey

and Druilhet (2004) proved their optimality for the estimation of total effects.

Filipiak and Markiewicz (2012) showed universal optimality of circular weakly

balanced designs (CWBDs) for the estimation of direct effects only.

In this paper we consider circular repeated-measurements designs under the

full model and under two simpler models. We show universal optimality, for the

estimation of direct as well as carry-over effects, of CWBDs and we give meth-

ods of constructing some of them. For particular parameter sets, there exists a

CWBD using fewer subjects than uniform CBDs. The idea of the possible reduc-

tion of number of subjects is suggested by the results of Filipiak and Markiewicz

(2012).

2. Models and Designs

Let Dt,n,t be the set of circular designs with t treatments, n experimental

subjects, and t periods, each subject being given one treatment during each

period. By d(�, u), for 1 ≤ � ≤ t and 1 ≤ u ≤ n, we denote the treatment

assigned to the uth subject in the �th period. Magda (1980) proposed a model

associated with the design d in Dt,n,t:

yd�u = α� + βu + τd(�,u) + ρd(�−1,u) + ε�u, 1 ≤ � ≤ t, 1 ≤ u ≤ n, (2.1)

where yd�u is the response of the uth subject in the �th period, and α�, βu, τd(�,u),

and ρd(�−1,u) are, respectively, the �th period effect, the uth subject effect, the

direct effect of treatment d(�, u), and the carry-over effect of treatment d(�−1, u),
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where d(0, u) = d(t, u). The ε�u are uncorrelated random variables with common

variance and zero mean.

In vector notation model (2.1) can be rewritten as

y = Pα+Uβ +Tdτ + Fdρ+ ε. (2.2)

Here y is the transpose of the vector y′ = (yd11, yd21, . . . , ydtn). Also, α, β, τ , and

ρ are the vectors of period, experimental subject, direct, and carry-over effects,

respectively. Moreover, ε is the vector of random errors, with ε ∼ N(0nt, σ
2Int),

where σ2 is a positive constant, In denotes the identity matrix of order n, and

0n is the n-dimensional vector of zeros. The matrices Td and Fd are the design

matrices for direct and carry-over effects, respectively, while P = 1n ⊗ It and

U = In ⊗ 1t are the incidence matrices for period and experimental subject

effects, respectively, where 1n is the n-dimensional vector of ones and ⊗ denotes

the Kronecker product. Let Ht = (hij) be the circulant matrix of order t with

hij = 1 if j−i = 1 or i = 1, j = t, and hij = 0 otherwise. Then Fd = (In⊗Ht)Td.

In this paper we also consider simpler models – model (2.2) without period

effects,

y = Uβ +Tdτ + Fdρ+ ε, (2.3)

and model (2.2) without experimental subject effects,

y = Pα+Tdτ + Fdρ+ ε. (2.4)

In the context of experiments in agriculture and forestry, as discussed by Azäıs,

Bailey and Monod (1993), periods correspond to rows, subjects correspond to

columns, and the carry-over effect corresponds to the neighbour effect of the

treatment to the North. The roles of rows and columns are frequently inter-

changed in such literature, and so model (2.3) is known as the interference model

with left-neighbour effects; cf., Druilhet (1999), Filipiak and Markiewicz (2012).

Following Magda (1980), we say that a design d in Dt,n,t is:

(i) uniform on periods if all treatments occur equally often in each period;

(ii) uniform on subjects if each treatment occurs exactly once on each subject;

(iii)uniform if it is uniform on both periods and subjects;

(iv) circular strongly balanced (CSBD) if the collection of ordered pairs

(d(� − 1, u), d(�, u)), for 1 ≤ � ≤ t and 1 ≤ u ≤ n, contains each ordered

pair of treatments (distinct or not) λ0 times, where λ0 = n/t;

(v) circular balanced (CBD) if the collection of ordered pairs (d(�−1, u), d(�, u)),

for 1 ≤ � ≤ t and 1 ≤ u ≤ n, contains each ordered pair of distinct treatments

λ1 times, where λ1 = n/(t − 1), and does not contain any pair of equal

treatments.
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We additionally define circular weakly balanced designs. Let Sd = T′
dFd =

(sdij)1≤i,j≤t. The entry sdij is the number of appearances of treatment i preceded

by treatment j in the design d. Thus the rows and columns of Sd sum to the

vector of treatment replications. Filipiak et al. (2008) called the matrix Sd the

left-neighbouring matrix. When the number of treatments is equal to the number

of periods, Filipiak and Markiewicz (2012) called a design d in Dt,n,t

(vi)circular weakly balanced (CWBD) if the collection of ordered pairs

(d(� − 1, u), d(�, u)), for 1 ≤ � ≤ t and 1 ≤ u ≤ n, contains each ordered

pair of distinct treatments λ or λ− 1 times, where λ = �n/(t− 1)�, and

(a) Sd1t = S′
d1t = n1t, so that each treatment has replication n;

(b) SdS
′
d is completely symmetric (all diagonal entries are equal and all off-

diagonal entries are equal).

In this definition �x� is the smallest integer greater than or equal to x.

Wilkinson et al. (1983) defined partially neighbour balanced designs as de-

signs with sdij ∈ {0, 1} if i �= j; however, their designs are not circular, and they

consider neighbours in more than one direction. Some methods of construct-

ing circular partially neighbour-balanced designs are given by Azäıs, Bailey and

Monod (1993).

If d is a CSBD then Sd = λ0Jt, where Jt = 1t1
′
t; if d is a CBD then

Sd = λ1(Jt − It). If d is a CWBD but not a CBD then Sd is not completely

symmetric but SdS
′
d is.

3. Existence Conditions

A necessary condition for the existence of a CBD with t periods is that (t−1)

divides n: see e.g., Druilhet (1999), while for the existence of a CWBD the expres-

sion n(n−2λ+1) must be divisible by t−1; cf., Filipiak and Markiewicz (2012).

Parameters satisfying the necessary condition for the existence of a CWBD with

t ≤ 19 and n < 3(t− 1) are listed in Table 1 of Filipiak and Markiewicz (2012).

Let d be a CWBD in Dt,n,t which is not a CBD. Then λ = �n/(t− 1)�. Put

k = n− (λ− 1)(t− 1). (3.1)

Since d is not a CBD, 1 ≤ k ≤ t−2. Using this notation, the necessary condition

for a CWBD given by Filipiak and Markiewicz (2012) is

t− 1 divides k(k − 2λ+ 1). (3.2)

Filipiak and Różański (2009) showed that if n = 1, or if t is even and n = 2,

then all designs are disconnected in the sense that it is not possible to estimate

all contrasts between direct effects and all contrasts between carry-over effects

CIRCULAR WEAKLY BALANCED DESIGNS 5

without bias. If d is disconnected then it cannot be considered to be universally

optimal; in fact, the proof of Theorem 3.1 of Filipiak and Markiewicz (2012)

breaks down in this case. If n = 2 then (3.1) and (3.2) show that the only

CWBD is a CBD for t = 3. From now on, we assume that n ≥ 3 and d is

connected.

Let Ad = S′
d − (λ − 1)(Jt − It). Then Ad is a t × t matrix whose diagonal

entries are all zero and whose other entries are all in {0, 1}. Moreover, each row

and column of Ad has k non-zero entries. Hence AdJt = JtAd = kJt. Therefore

SdS
′
d =

[
(λ− 1)(Jt − It) +A′

d

]
[(λ− 1)(Jt − It) +Ad]

= (λ− 1)2 [(t− 2)Jt + It] + 2(λ− 1)kJt +A′
dAd − (λ− 1)(Ad +A′

d).

Thus SdS
′
d is completely symmetric if and only if

A′
dAd − (λ− 1)(Ad +A′

d) is completely symmetric. (3.3)

If it satisfies (3.3), we shall say that design d has

Type I if Ad +A′
d is completely symmetric;

Type II if Ad +A′
d is not completely symmetric and λ = 1;

Type III if Ad +A′
d is not completely symmetric and λ > 1.

If d has Type I or II thenA′
dAd is completely symmetric. The off-diagonal entries

in each row of A′
dAd sum to k(k−1), so in this case k(k−1) is divisible by t−1.

If d has Type I then k = (t − 1)/2 and Ad +A′
d = Jt − It. Then t − 1 divides

(t−1)(t−3)/4, and so t ≡ 3 mod 4. If k = 1 then A′
dAd = It: thus d cannot have

Type III, and (3.1) shows that if d has Type II then n = 1, which we exclude.

Theorem 1. Suppose that d is a CWBD in Dt,n,t and d′ is a CBD in Dt,m,t,

for some values of n and m. Then the design d′′ in Dt,n+m,t which juxtaposes d

and d′ is a CWBD if and only if d has Type I.

Proof. If d′ is a CBD then m is a multiple of t − 1 and Sd′ is completely

symmetric. Hence Sd′′ = Sd + Sd′ and so Ad′′ = Ad. Put λ′ = m/(t − 1).

Condition (3.3) for design d′′ says that

A′
dAd − (λ′ + λ− 1)(Ad +A′

d) is completely symmetric. (3.4)

If d has Type I then A′
dAd and Ad + A′

d are both completely symmetric, and

so condition (3.4) is satisfied and d′′ is a CWBD. Conversely, if d′′ is a CWBD

then conditions (3.3) and (3.4) are both satisfied. Hence Ad +A′
d is completely

symmetric and so d has Type I.
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Lemma 1. Suppose that d is a CWBD in Dt,n,t which has Type III.

(a) If k = (t− 1)/2 then λ ≤ k/2.

(b) If k < (t− 1)/2 then λ ≤ k.

(c) If k > (t− 1)/2 then λ ≤ t− k − 1.

Proof. Putm0 = max{0, 2k−t}. If i �= j thenm0 ≤ (A′
dAd)ij ≤ k−(Ad+A′

d)ij .

Let m1 and m2 be the smallest and largest off-diagonal entries in Ad +A′
d. The

entries in the corresponding positions of A′
dAd − (λ − 1)(Ad + A′

d) lie in the

intervals [m0 −m1(λ− 1), k −m1λ] and [m0 −m2(λ− 1), k −m2λ] respectively.

If the latter entries are equal then k −m2λ ≥ m0 −m1(λ− 1).

(a) If k = (t − 1)/2 but Ad + A′
d is not completely symmetric then m0 = 0,

m1 = 0 and m2 = 2. Hence k − 2λ ≥ 0.

(b) If k < (t− 1)/2 then m0 = 0, m1 = 0 and m2 ≥ 1. Hence k − λ ≥ 0.

(c) If k > (t− 1)/2 then k ≥ t/2 and so m0 = 2k − t. Also, m2 = 2 and m1 ≤ 1.

Hence k − 2λ ≥ 2k − t− (λ− 1).

Theorem 2. If d is a CWBD in Dt,n,t and d has Type II or III then d is not

uniform on the periods.

Proof. If d is uniform on the periods then t divides n. If d has Type II then

n = k ≤ t − 2, and so this is not possible. If t divides n then equation (3.1)

shows that t divides k − λ + 1. Lemma 1 shows that if d has Type III then

0 < λ ≤ k < t− 1 and so 0 < k − λ+ 1 < t, thus t cannot divide k − λ+ 1.

4. Optimality

4.1. Preliminaries

Kunert (1984b) showed that any CBD which is uniform on subjects is univer-

sally optimal for the estimation of direct as well as carry-over effects under model

(2.3) over the class Dt,n,t. Druilhet (1999) extended this to designs where the

number of periods is any multiple of t. Filipiak and Markiewicz (2012) defined

circular weakly neighbour balanced designs to be CWBDs for t periods which are

uniform on subjects; they showed their universal optimality for the estimation of

direct effects under model (2.3) over the class Dt,n,t with n ≤ t− 1, and over the

class of equireplicated designs without self-neighbours if n > t − 1. One aim of

this paper is to prove universal optimality for the estimation of direct as well as

carry-over effects of uniform CWBDs, CWBDs uniform on subjects, and CWBDs

uniform on periods under models (2.2), (2.3) and (2.4), respectively.

We are interested in determining designs with minimal (in some sense) vari-

ance of the best linear unbiased estimator of the vector of parameters. Kiefer

CIRCULAR WEAKLY BALANCED DESIGNS 7

(1975) formulated the universal optimality criterion in terms of the information

matrix, which is the inverse of the variance-covariance matrix; cf., Pukelsheim

(1993). Therefore, following Proposition 1 of Kiefer (1975), we suppose that a

class C = {Cd : d ∈ Dt,n,t} of non-negative definite information matrices with

zero row and column sums contains a matrix Cd∗ which is completely symmetric

and has maximal trace over Dt,n,t. Then the design d∗ is universally optimal in

Kiefer’s sense in the class Dt,n,t.

For a κ1 × κ2 matrix K define ω⊥(K) = Iκ1 −K(K ′K)−K = Iκ1 − ω(K)

as the orthogonal projector onto the orthocomplement of the column space of K,

where (K ′K)− is a generalized inverse of K ′K. Then the information matrix

for the least squares estimate of τ under model (2.g), g = 2, 3, 4, is given by

C
(g)
d = T ′

dω
⊥(Z(g))Td

with zero row and column sums, where Z(g) is a block matrix containing the

design matrices of nuisance parameters, Z(2) = (P : U : Fd), Z
(3) = (U : Fd),

and Z(4) = (P : Fd); cf., e.g., Kunert (1983, 1984a,b). Since ω((A : B)) =

ω(A) + ω(ω⊥(A)B), we may rewrite the matrix C
(g)
d as

C
(g)
d = T ′

dω
⊥(Fd)Td − T ′

dω(ω
⊥(Fd)W

(g))Td,

with W (2) = (P : U), W (3) = U , and W (4) = P .

Similarly, Kunert (1984b) showed that the information matrix for the least

squares estimate of ρ under model (2.g), g = 2, 3, 4, is

C̃
(g)
d = F ′

dω
⊥(Z̃(g))Fd = F ′

dω
⊥(Td)Fd − F ′

dω(ω
⊥(Td)W

(g))Fd,

with Z̃(2) = (P : U : Td), Z̃
(3) = (U : Td), and Z̃(4) = (P : Td).

4.2. Optimality results

Filipiak and Markiewicz (2012) showed that for a CWBD, SdS
′
d = φIt + ξJt

with φ = n(2λ−1)−λ(λ−1)t−n(n−2λ+1)/(t−1) and ξ = λ(λ−1)+n(n−2λ+

1)/(t − 1). Since Sd is nonsingular and commutes with Jt, pre-multiplying by

S′
d and post-multiplying by (S′

d)
−1 we get SdS

′
d = S′

dSd; cf., Raghavarao (1971,

Theorem 5.2.1), Filipiak and Markiewicz (2016). Moreover, since for a CWBD

T ′
dω

⊥(Fd)Td = nIt − n−1SdS
′
d = F ′

dω
⊥(Td)Fd, the following holds.

Proposition 1. Assume d is a CWBD. Under models (2.2), (2.3) or (2.4),

if d is uniform, uniform on subjects, or uniform on periods, respectively, then

d is universally optimal for the estimation of direct effects if and only if d is

universally optimal for the estimation of carry-over effects.

6



6 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ
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Let Λt,n,t be the class of designs in Dt,n,t with no treatment preceded by itself.

Using the above proposition we can extend Theorem 3.1 and Theorem 3.2 of

Filipiak and Markiewicz (2012), in which optimality of CWBDs for the estimation

of direct effects was shown, as follows.

Theorem 3. If there exists a CWBD in Dt,n,t which is uniform on subjects,

then it is universally optimal for the estimation of carry-over effects under model

(2.3) over the collection of designs in Dt,n,t if n ≤ t− 1, and over the collection

of equireplicated designs in Λt,n,t otherwise.

If a design is uniform on periods then t divides n and so n > t − 1. The

following theorem can be proved in the same way as Theorem 3.2 of Filipiak and

Markiewicz (2012) using additionally Proposition 1 of this paper.

Theorem 4. Assume that t > 2 and n > t− 1. If there exists a CWBD in Λt,n,t

which is uniform on periods, then it is universally optimal for the estimation

of direct as well as carry-over effects under model (2.4) over the collection of

equireplicated designs in Λt,n,t.

For the two models with subject effects, we now show optimality over a

broader class of designs than in Theorem 4. Theorem 1 shows that if d is a

CWBD which is not a CBD, then we can make larger CWBDs by juxtaposing

d with one or more CBDs only if d has Type I. Therefore, we restrict attention

to the case that k = (t − 1)/2, where t ≡ 3 mod 4, and n is an odd multiple of

(t− 1)/2. It follows from Theorem 2 that a uniform CWBD which is not a CBD

can only exist if, additionally, n is an odd multiple of t(t− 1)/2. For such design

parameters, λ = n/(t− 1) + 1/2.

We denote by ndiu the number of times that treatment i appears in the uth

subject (T ′
dU = F ′

dU = (ndiu)), and by rdi the number of times that treatment i

appears in the design. As shown by e.g., Kunert (1984b), if g = 2 or g = 3 then

trC
(g)
d ≤

t∑
i=1

rdi −
1

t

t∑
i=1

n∑
u=1

n2
diu −

t∑
i=1

t∑
j=1

(sdij − (1/t)
∑n

u=1 ndiundju)
2

rdj
. (4.1)

We begin with a technical lemma, and omit the straightforward proof.

Lemma 2. If x1, x2, . . . , xb satisfy
∑b

i=1 xi = c then
∑b

i=1 x
2
i ≥ c2/b.

Proposition 2. If j is a treatment in design d in Λt,n,t then

t∑
i=1

(
sdij −

1

t

n∑
u=1

ndiundju

)2
≥

r2dj
t(t− 1)

.
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Proof. For all competing designs all sdjj = 0. Therefore,
t∑

i=1

(sdij −
1

t

n∑
u=1

ndiundju) = −1

t

n∑
u=1

n2
dju +

∑
i �=j

(sdij −
1

t

n∑
u=1

ndiundju).

It follows that ∑
i �=j

(sdij −
1

t

n∑
u=1

ndiundju) =
1

t

n∑
u=1

n2
dju.

Applying Lemma 2, we conclude that
t∑

i=1

(sdij −
1

t

n∑
u=1

ndiundju)
2 =

1

t2

( n∑
u=1

n2
dju

)2
+

∑
i �=j

(sdij −
1

t

n∑
u=1

ndiundju)
2

≥ 1

t2

( n∑
u=1

n2
dju

)2
+

1

t− 1

1

t2

( n∑
u=1

n2
dju

)2

=
1

t(t− 1)

( n∑
u=1

n2
dju

)2
≥

r2dj
t(t− 1)

.

Proposition 3. For a design d ∈ Λt,n,t define ad =
∑t

i=1

∑n
u=1max{ndiu−1, 0}.

Then t∑
i=1

n∑
u=1

n2
diu ≥ nt+ 2ad.

Proof. For 1 ≤ i ≤ t and 1 ≤ u ≤ n, define ediu = ndiu − 1. Then all ediu
are integers and, therefore, e2diu ≥ |ediu|. Since

∑t
i=1

∑n
u=1 ndiu = nt, we have∑∑

ediu = 0 and, since the sum of all positive ediu equals ad, we conclude that∑∑
|ediu| = 2ad.

In all, we get
t∑

i=1

n∑
u=1

n2
diu =

t∑
i=1

n∑
u=1

(ediu + 1)2

= nt+ 2

t∑
i=1

n∑
u=1

ediu +

t∑
i=1

n∑
u=1

e2diu ≥ nt+ 2ad.

We immediately get a first bound for the trace of the information matrix

which depends on ad.

Proposition 4. For any design d ∈ Λt,n,t and g = 2, 3 we have

trC
(g)
d ≤ n(t− 1− 1

t− 1
)− 2ad

t
.

Proof. The bound is well-known; it was used by Kunert (1984a,b).

If ad is small, we get a sharper bound, derived in the next proposition.
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9



10 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ

Proposition 5. If t ≥ 5 and design d has ad < (t− 1)/2 then, for g = 2, 3,

trC
(g)
d ≤ n

(
t− 1− 1

t− 1

)
− 2ad

t
− (t− 2ad)

(
t− 1

4n
− 2ad

nt

)
.

Proof. There are at most 2ad of the ndiu not equal to 1. Since ad < (t − 1)/2,

we conclude that there must be at least t− 2ad treatments j such that ndju = 1

for 1 ≤ u ≤ n. Define J ∗
d as the set of all such treatments.

Assume without loss of generality that treatment t is in J ∗
d . Then rdt = n.

Since we consider the circular neighbour structure,
∑t

i=1 sdit = rdt = n. Without

loss of generality we can assume that the treatments are labelled in such a way

that sd1t ≥ sd2t ≥ · · · ≥ sd,t−1,t.

Recall that 2k = t − 1 and λ = n/(t − 1) + 1/2. If sdkt ≤ λ − 1 then∑t−1
i=k+1 sdit ≤ ksdkt = k(λ − 1) = (n − k)/2. Since

∑t−1
i=1 sdit = n, this implies

that
∑k

i=1 sdit ≥ (n+k)/2. Otherwise, sdkt ≥ λ and so
∑k

i=1 sdit ≥ kλ = (n+k)/2

again.

Now put c =
∑k

i=1(sdit−rdi/t). The definition of ad gives
∑k

i=1 rdi ≤ kn+ad.

Hence

c =

k∑
i=1

sdit −
1

t

k∑
i=1

rdi ≥
n+ k

2
− 1

t

(
(t− 1)n

2
+ ad

)
=

n

2t
+

k

2
− ad

t
. (4.2)

It follows that c > n/(2t) because ad < k and t > 2. Furthermore,

0 =

t∑
i=1

(
sdit −

rdi
t

)
= c+

t−1∑
i=k+1

(
sdit −

rdi
t

)
+sdtt−

rdt
t

= c+

t−1∑
i=k+1

(
sdit −

rdi
t

)
−n

t

and therefore
∑t−1

i=k+1(sdit − rdi/t) = n/t− c. Then Lemma 2 gives

t∑
i=1

(
sdit −

rdi
t

)2
≥ n2

t2
+

1

k

[
c2 +

(n
t
− c

)2
]
.

Since c > n/(2t), this bound is increasing in c. Therefore (4.2) gives
t∑

i=1

(
sdit −

rdi
t

)2
≥ n2

t2
+

2

k

(
n2

4t2
+

k2

4
− kad

t
+

a2d
t2

)
≥ n2

t(t− 1)
+

k

2
− 2ad

t
.

Since ndtu = 1 for 1 ≤ i ≤ n, this shows that
t∑

i=1

(
sdit −

1

t

n∑
u=1

ndiundtu

)2

=
t∑

i=1

(
sdit −

rdi
t

)2
≥ n2

t(t− 1)
+

k

2
− 2ad

t
.

The same bound applies when treatment t is replaced by any treatment j in J ∗
d .

For all other treatments j, we use the bound in Proposition 2. Inserting these,

and the bound in Proposition 3, into (4.1), we get, for g = 2, 3,

CIRCULAR WEAKLY BALANCED DESIGNS 11

trC
(g)
d ≤ nt− 1

t
(nt+ 2ad)−

∑
j �∈J ∗

d

rdj
t(t− 1)

−
∑
j∈J ∗

d

(
n

t(t− 1)
+

t− 1

4n
− 2

ad
nt

)

= nt− 1

t
(nt+ 2ad)−

t∑
j=1

rdj
t(t− 1)

− |J ∗
d |

(
t− 1

4n
− 2

ad
nt

)
,

where we have used the fact that rdj = n for all j ∈ J ∗
d , and where |J ∗

d | is
the number of elements of J ∗

d . Due to the restrictions that ad < (t − 1)/2 and

t ≥ 5, we observe that (t− 1)/(4n)− 2ad/(nt) > (t− 1)(t− 4)/(4nt) > 0. Since

|J ∗
d | ≥ t− 2ad, it follows that, for g = 2, 3,

trC
(g)
d ≤ nt− 1

t
(nt+ 2ad)−

n

t− 1
− (t− 2ad)

(
t− 1

4n
− 2ad

nt

)
,

which implies the desired inequality.

Now we can prove our main optimality result.

Theorem 5. Assume that t ≥ 5 and that n ≥ t(t − 1)/2. Assume that t is odd

and that n is an odd multiple of (t − 1)/2. If d∗ is a uniform CWBD in Λt,n,t

then d∗ is universally optimal for the estimation of direct as well as carry-over

effects over the designs in Λt,n,t under model (2.2). If d∗ is a CWBD in Λt,n,t

which is uniform on subjects, then d∗ is universally optimal for the estimation of

direct as well as carry-over effects over the designs in Λt,n,t under model (2.3).

Proof. If the design d has ad = 0, we get from Proposition 5 that, for g = 2, 3,

trC
(g)
d ≤ n

(
t− 1− 1

t− 1

)
− t(t− 1)

4n
,

which is the trace of the information matrix of the CWBD d∗. Considering the

simple bound derived in Proposition 4, we see that any design d ∈ Λt,n,t can only

perform better than d∗ if
t(t− 1)

4n
≥ 2ad

t
.

Since we restrict to the case n ≥ t(t − 1)/2, the left-hand side is less than or

equal to 1/2. If, however, ad ≥ (t − 1)/2, then the right-hand side is at least

(t− 1)/t > 1/2.

Therefore, we only have to consider designs with ad < (t − 1)/2 and the

bound in Proposition 5 applies. Taking the derivative of

f(a) = n

(
t− 1− 1

t− 1

)
− 2a

t
− (t− 2a)

(
t− 1

4n
− 2a

nt

)
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Proposition 5. If t ≥ 5 and design d has ad < (t− 1)/2 then, for g = 2, 3,

trC
(g)
d ≤ n

(
t− 1− 1

t− 1

)
− 2ad

t
− (t− 2ad)

(
t− 1

4n
− 2ad

nt

)
.
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c =

k∑
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sdit −
1

t

k∑
i=1

rdi ≥
n+ k

2
− 1

t

(
(t− 1)n

2
+ ad

)
=

n

2t
+

k

2
− ad

t
. (4.2)
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i=1

(
sdit −

rdi
t

)
= c+
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(
sdit −

rdi
t

)
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rdt
t

= c+

t−1∑
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(
sdit −

rdi
t

)
−n

t
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∑t−1
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t∑
i=1

(
sdit −

rdi
t

)2
≥ n2

t2
+

1

k

[
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(n
t
− c

)2
]
.
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t∑
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(
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t

)2
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+

2

k

(
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+
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4
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t
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a2d
t2

)
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t(t− 1)
+

k

2
− 2ad

t
.
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(
sdit −

1

t

n∑
u=1

ndiundtu

)2

=
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(
sdit −

rdi
t

)2
≥ n2

t(t− 1)
+

k

2
− 2ad

t
.

The same bound applies when treatment t is replaced by any treatment j in J ∗
d .

For all other treatments j, we use the bound in Proposition 2. Inserting these,

and the bound in Proposition 3, into (4.1), we get, for g = 2, 3,
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which is the trace of the information matrix of the CWBD d∗. Considering the

simple bound derived in Proposition 4, we see that any design d ∈ Λt,n,t can only

perform better than d∗ if
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t
.

Since we restrict to the case n ≥ t(t − 1)/2, the left-hand side is less than or

equal to 1/2. If, however, ad ≥ (t − 1)/2, then the right-hand side is at least

(t− 1)/t > 1/2.

Therefore, we only have to consider designs with ad < (t − 1)/2 and the
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with respect to a, we get

f ′(a) = −2

t
+ 2

(
t− 1

4n
− 2a

nt

)
− (t− 2a)

(
− 2

nt

)

= −2

t
+

2(t− 1)

4n
+

2t

nt
− 4a

nt
− 4a

nt

=
−8n+ 2t(t− 1) + 8t− 32a

4nt

≤ −4t(t− 1) + 2t(t− 1) + 8t

4nt
=

−(t− 1) + 4

2n
≤ 0.

This, however, implies that the bound from Proposition 5 is largest for ad = 0,

and for any design d ∈ Λt,n,t we have trC
(g)
d ≤ trC

(g)
d∗ , for g = 2, 3.

5. Constructions

In this section we suppose that d is a CWBD in Dt,n,t which is not a CBD.

For each type of CWBD, we give constructions for a suitable matrix A and then

search for a design d with Ad = A. By Theorem 2, only Section 5.1 includes

uniform CWBDs.

5.1. Designs of Type I

For a design of Type I, we have t ≡ 3 mod 4 and k = (t−1)/2. We need a t×t

matrix A which has zero entries on the diagonal, k entries equal to 1 in each row

and column, and all other entries zero; it must also satisfy (a) A+A′ = Jt − It
and (b) A′A = φIt + ξJt with φ = (t+ 1)/4 and ξ = (t− 3)/4.

The matrix A can be regarded as the adjacency matrix of a directed graph Γ

on t vertices: there is an arc from vertex i to vertex j if and only if Aij = 1. This

directed graph is called a doubly regular tournament precisely when the matrix A

satisfies the foregoing conditions, see Reid and Brown (1972). For a design which

is a CWBD, is uniform on subjects, and has λ = 1, we need a decomposition of

a doubly regular tournament Γ into Hamiltonian cycles.

One construction of doubly regular tournaments uses finite fields. If t is a

power of an odd prime then there is a finite field GF(t) of t elements. If t is prime

then GF(t) is the same as Zt, which is the ring of integers modulo t. Let S be the

set of non-zero squares in GF(t), and N the set of non-squares. If t ≡ 3 mod 4

then −1 ∈ N ; in this case, if we label the vertices of Γ by the elements of GF(t)

and define the adjacency matrix A by putting Aij = 1 if and only if j − i ∈ S,
then Γ is a doubly regular tournament, see Lidl and Niederreiter (1997). By

reversing all the edges of Γ, we obtain another doubly regular tournament, which

can be made directly by using N in place of S.
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If t is itself prime, then there is an obvious Hamiltonian decomposition of Γ:

the circular sequences have the form (0, s, 2s, . . . , (t− 1)s) for s in S.

Construction 1. Suppose that t ≡ 3 mod 4 and t is prime with t > 3. Put

n = (t − 1)/2. Label the t treatments and the t periods by the elements of Zt,

and the n subjects by the elements of S. Define the design d by d(�, u) = �u for

� in Zt and u in S. Then d is a CWBD which is uniform on the subjects with

λ = 1.

Example 1. When t = 7 we have S = {1, 2, 4}. We obtain the design in

Figure 1(a), where the entries are integers modulo 7. (In every figure, the rows

denote periods and the columns denote subjects.)

Example 2. When t = 11 we have S = {1, 3, 4, 5, 9}. This gives the design in

Figure 1(b), where the entries are integers modulo 11.

For n > 1, Construction 1 deals with t = 7, 11, 19, 23 and 31 for t < 35.

Suitable matrices A also exist for many other values of t. Reid and Brown

(1972) showed that the (t+ 1)× (t+ 1) matrix

[
1 1′t
1t Jt − 2A

]

is a skew-Hadamard matrix if and only if A is the adjacency matrix of a doubly

regular tournament. Skew-Hadamard matrices of order t+ 1 are conjectured to

exist whenever t + 1 is divisible by 4. This has been verified for t < 187: see

Craigen (1996).

Reid and Brown (1972) give the following doubling construction. If A1 is

the adjacency matrix of a doubly regular tournament Γ1 on t vertices and

A2 =




A′
1 0t A1 + It

1′t 0 0′t
A1 1t A1


 , (5.1)

then A2 is the adjacency matrix of a doubly regular tournament Γ2 on 2t + 1

vertices.

Example 3. Let t = 15. Take Γ1 to be the doubly regular tournament used in

Example 1. The doubling construction (5.1) gives the adjacency matrix A2 of a

doubly regular tournament Γ2 on 15 vertices. Label the vertices, in order, 0, 1,

2, 3, 4, 5, 6, ∞, 0′, 1′, 2′, 3′, 4′, 5′ and 6′. For x in GF(7), there is an arc from

∞ to x and an arc from x′ to ∞. For x and y in GF(7), there is an arc from x

to y if y − x ∈ N ; an arc from x to y′ if x = y or y − x ∈ S; an arc from x′ to y′

if y − x ∈ S; and an arc from x′ to y if y − x ∈ S.

12
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with respect to a, we get
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(g)
d ≤ trC

(g)
d∗ , for g = 2, 3.
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For each type of CWBD, we give constructions for a suitable matrix A and then

search for a design d with Ad = A. By Theorem 2, only Section 5.1 includes

uniform CWBDs.
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For a design of Type I, we have t ≡ 3 mod 4 and k = (t−1)/2. We need a t×t

matrix A which has zero entries on the diagonal, k entries equal to 1 in each row

and column, and all other entries zero; it must also satisfy (a) A+A′ = Jt − It
and (b) A′A = φIt + ξJt with φ = (t+ 1)/4 and ξ = (t− 3)/4.

The matrix A can be regarded as the adjacency matrix of a directed graph Γ

on t vertices: there is an arc from vertex i to vertex j if and only if Aij = 1. This

directed graph is called a doubly regular tournament precisely when the matrix A

satisfies the foregoing conditions, see Reid and Brown (1972). For a design which

is a CWBD, is uniform on subjects, and has λ = 1, we need a decomposition of

a doubly regular tournament Γ into Hamiltonian cycles.

One construction of doubly regular tournaments uses finite fields. If t is a

power of an odd prime then there is a finite field GF(t) of t elements. If t is prime

then GF(t) is the same as Zt, which is the ring of integers modulo t. Let S be the

set of non-zero squares in GF(t), and N the set of non-squares. If t ≡ 3 mod 4

then −1 ∈ N ; in this case, if we label the vertices of Γ by the elements of GF(t)

and define the adjacency matrix A by putting Aij = 1 if and only if j − i ∈ S,
then Γ is a doubly regular tournament, see Lidl and Niederreiter (1997). By

reversing all the edges of Γ, we obtain another doubly regular tournament, which

can be made directly by using N in place of S.
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If t is itself prime, then there is an obvious Hamiltonian decomposition of Γ:

the circular sequences have the form (0, s, 2s, . . . , (t− 1)s) for s in S.

Construction 1. Suppose that t ≡ 3 mod 4 and t is prime with t > 3. Put

n = (t − 1)/2. Label the t treatments and the t periods by the elements of Zt,

and the n subjects by the elements of S. Define the design d by d(�, u) = �u for

� in Zt and u in S. Then d is a CWBD which is uniform on the subjects with

λ = 1.

Example 1. When t = 7 we have S = {1, 2, 4}. We obtain the design in

Figure 1(a), where the entries are integers modulo 7. (In every figure, the rows

denote periods and the columns denote subjects.)

Example 2. When t = 11 we have S = {1, 3, 4, 5, 9}. This gives the design in

Figure 1(b), where the entries are integers modulo 11.

For n > 1, Construction 1 deals with t = 7, 11, 19, 23 and 31 for t < 35.

Suitable matrices A also exist for many other values of t. Reid and Brown

(1972) showed that the (t+ 1)× (t+ 1) matrix

[
1 1′t
1t Jt − 2A

]

is a skew-Hadamard matrix if and only if A is the adjacency matrix of a doubly

regular tournament. Skew-Hadamard matrices of order t+ 1 are conjectured to

exist whenever t + 1 is divisible by 4. This has been verified for t < 187: see

Craigen (1996).

Reid and Brown (1972) give the following doubling construction. If A1 is

the adjacency matrix of a doubly regular tournament Γ1 on t vertices and

A2 =




A′
1 0t A1 + It

1′t 0 0′t
A1 1t A1


 , (5.1)

then A2 is the adjacency matrix of a doubly regular tournament Γ2 on 2t + 1

vertices.

Example 3. Let t = 15. Take Γ1 to be the doubly regular tournament used in

Example 1. The doubling construction (5.1) gives the adjacency matrix A2 of a

doubly regular tournament Γ2 on 15 vertices. Label the vertices, in order, 0, 1,

2, 3, 4, 5, 6, ∞, 0′, 1′, 2′, 3′, 4′, 5′ and 6′. For x in GF(7), there is an arc from

∞ to x and an arc from x′ to ∞. For x and y in GF(7), there is an arc from x

to y if y − x ∈ N ; an arc from x to y′ if x = y or y − x ∈ S; an arc from x′ to y′

if y − x ∈ S; and an arc from x′ to y if y − x ∈ S.

13



14 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ

0 0 0
1 2 4
2 4 1
3 6 5
4 1 2
5 3 6
6 5 3

0 0 0 0 0
1 3 4 5 9
2 6 8 10 7
3 9 1 4 5
4 1 5 9 3
5 4 9 3 1
6 7 2 8 10
7 10 6 2 8
8 2 10 7 6
9 5 3 1 4
10 8 7 6 2

∞ ∞ ∞ ∞ ∞ ∞ ∞
0 1 2 3 4 5 6
2′ 3′ 4′ 5′ 6′ 0′ 1′

3 4 5 6 0 1 2
1 2 3 4 5 6 0
5′ 6′ 0′ 1′ 2′ 3′ 4′

6′ 0′ 1′ 2′ 3′ 4′ 5′

1′ 2′ 3′ 4′ 5′ 6′ 0′

5 6 0 1 2 3 4
4 5 6 0 1 2 3
4′ 5′ 6′ 0′ 1′ 2′ 3′

6 0 1 2 3 4 5
2 3 4 5 6 0 1
3′ 4′ 5′ 6′ 0′ 1′ 6′

0′ 1′ 2′ 3′ 4′ 5′ 6′

(a) (b) (c)

Figure 1. Three CWBDs for t treatments on n subjects in t periods which
are uniform on the subjects: (a) t = 7 and n = 3; (b) t = 11 and n = 5; (c)
t = 15 and n = 7.

To find a CWBD which is uniform on subjects, we used GAP (2014) to find

a directed cycle ϕ of length 15 starting (∞, 0, . . .) in Γ2 with the extra property

that if i is any non-zero element of GF(7), then the cycles ϕ and ϕ + i have

no arc in common. Here we use the conventions that if ϕ = (ϕ1, . . . , ϕ15) then

ϕ + i = (ϕ1 + i, . . . , ϕ15 + i), where ∞ + i = ∞ and x′ + i = (x + i)′ for x and

i in GF(7). GAP (2014) found all such cycles. There are 120, and they come

in groups of three because if ϕ is such a cycle and s ∈ S then sϕ is also such a

cycle (here the convention is that sϕ = (sϕ1, . . . , sϕ15), where s ×∞ = ∞ and

s × x′ = (sx)′ for s and x in GF(7)). For each such cycle ϕ, the collection of

cycles ϕ, ϕ + 1, . . . , ϕ + 6 gives a CWBD d for 15 treatments on 7 subjects in

15 periods which is uniform on subjects and for which Ad = A2. One of these is

shown in Figure 1(c).

Alternatively, the function FindHamiltonianCycles in Mathematica 9.0 can

be used to find a Hamiltonian decomposition of Γ2.

For t = 3, Construction 1 gives a design with n = 1 that is disconnected. In

order to obtain a connected CWBD which is not a CBD, we need to use one of

the sequences (0, 1, 2) and (0, 2, 1) twice, and the other one once.

If design d is made by Construction 1 then a uniform design d′ with t(t −
1)/2 subjects may be obtained by replacing the sequence ϕ for each subject by

the sequences ϕ+ i for all i in GF(t). However, this has the effect that Sd′ = tSd,

so d′ is not a CWBD, because the off-diagonal entries of Sd′ include both 0 and
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t. Thus we need a different construction for uniform CWBDs. Again, we use

GF(t), where t ≡ 3 mod 4. If x and y are both in S or N then xy ∈ S; if one is

in S and the other in N then xy ∈ N : see Lidl and Niederreiter (1997).

If ϕ is any sequence (ϕ1, . . . , ϕm) of elements of GF(t), we denote by ϕδ

the sequence (ϕ2 − ϕ1, ϕ3 − ϕ2, . . . , ϕm − ϕm−1, ϕ1 − ϕm) of successive circular

differences in ϕ. Further, let f0(ϕ
δ), fS(ϕ

δ) and fN (ϕδ) be the number of entries

of ϕδ which are in {0}, S and N , respectively.

Definition 1. Let ϕ be a sequence of length t whose entries are in GF(t), where

t is a prime power congruent to 3 modulo 4. Then ϕ is beautiful if the entries in

ϕ are all different and fS(ϕ
δ) = fN (ϕδ)± 1.

If all of the entries of ϕ are different then f0(ϕ
δ) = 0. Thus if ϕ has length t

then it is beautiful if and only if fS(ϕ
δ) ∈ {k, k + 1}.

Construction 2. Given a beautiful sequence ϕ = (ϕ1, . . . , ϕt) of all the elements

of GF(t), form the t(t − 1)/2 sequences sϕ + i for all s in S and all i in GF(t).

Create the design d by using each of these sequences for one subject.

Theorem 6. Suppose t ≡ 3 mod 4 and t is a prime power. If ϕ is beautiful then

the design d given by Construction 2 is a uniform CWBD.

Proof. The entries in ϕ are all different, so the entries in sϕ+ i are all different

for each value of s and i. Therefore each treatment occurs once on each subject,

so d is uniform on subjects and no treatment is preceded by itself.

For each fixed s in S, every element of GF(t) occurs once in each period

among the t sequences sϕ+ i, as i varies in GF(t). Therefore d is uniform.

Consider period j. Put ϕδ
j = v. Let i ∈ GF(t) and s ∈ S. Treatment i

occurs in period j of the sequence sϕ + i − sϕj . The treatment in period j + 1

of this sequence is sϕj+1 + i − sϕj = i + sv. If v ∈ S then {sv : s ∈ S} = S,
and so every ordered pair of treatments of the the form (i, i+ q), for i in GF(t)

and q in S, occurs exactly once in periods j and j + 1. Otherwise, if v ∈ N
then {sv : s ∈ S} = N , and so every ordered pair of treatments of the the form

(i, i+ q), for i in GF(t) and q in N , occurs exactly once in periods j and j + 1.

Thus if w − i ∈ S then (i, w) occurs fS(ϕ
δ) times in the design, while if

w − i ∈ N then (i, w) occurs fN (ϕδ) times. If ϕ is beautiful then the off-

diagonal entries of Sd are in {k, k + 1} and Ad is the adjacency matrix of one of

the doubly regular tournaments defined by S or N . Hence d is a CWBD.

Example 4. Let t = 7 and ϕ = (3, 1, 0, 2, 6, 4, 5), where the entries are the inte-

gers modulo 7. Then ϕδ = (5, 6, 2, 4, 5, 1, 5). Here S = {1, 2, 4} andN = {3, 5, 6},
and so fS(ϕ

δ) = 3 and fN (ϕδ) = 4. Thus ϕ is beautiful. Hence Construction 2

gives a uniform CWBD for 7 treatments on 21 subjects in 7 periods.
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1 3 4 5 9
2 6 8 10 7
3 9 1 4 5
4 1 5 9 3
5 4 9 3 1
6 7 2 8 10
7 10 6 2 8
8 2 10 7 6
9 5 3 1 4
10 8 7 6 2

∞ ∞ ∞ ∞ ∞ ∞ ∞
0 1 2 3 4 5 6
2′ 3′ 4′ 5′ 6′ 0′ 1′

3 4 5 6 0 1 2
1 2 3 4 5 6 0
5′ 6′ 0′ 1′ 2′ 3′ 4′

6′ 0′ 1′ 2′ 3′ 4′ 5′

1′ 2′ 3′ 4′ 5′ 6′ 0′

5 6 0 1 2 3 4
4 5 6 0 1 2 3
4′ 5′ 6′ 0′ 1′ 2′ 3′

6 0 1 2 3 4 5
2 3 4 5 6 0 1
3′ 4′ 5′ 6′ 0′ 1′ 6′

0′ 1′ 2′ 3′ 4′ 5′ 6′

(a) (b) (c)

Figure 1. Three CWBDs for t treatments on n subjects in t periods which
are uniform on the subjects: (a) t = 7 and n = 3; (b) t = 11 and n = 5; (c)
t = 15 and n = 7.

To find a CWBD which is uniform on subjects, we used GAP (2014) to find

a directed cycle ϕ of length 15 starting (∞, 0, . . .) in Γ2 with the extra property

that if i is any non-zero element of GF(7), then the cycles ϕ and ϕ + i have

no arc in common. Here we use the conventions that if ϕ = (ϕ1, . . . , ϕ15) then

ϕ + i = (ϕ1 + i, . . . , ϕ15 + i), where ∞ + i = ∞ and x′ + i = (x + i)′ for x and

i in GF(7). GAP (2014) found all such cycles. There are 120, and they come

in groups of three because if ϕ is such a cycle and s ∈ S then sϕ is also such a

cycle (here the convention is that sϕ = (sϕ1, . . . , sϕ15), where s ×∞ = ∞ and

s × x′ = (sx)′ for s and x in GF(7)). For each such cycle ϕ, the collection of

cycles ϕ, ϕ + 1, . . . , ϕ + 6 gives a CWBD d for 15 treatments on 7 subjects in

15 periods which is uniform on subjects and for which Ad = A2. One of these is

shown in Figure 1(c).

Alternatively, the function FindHamiltonianCycles in Mathematica 9.0 can

be used to find a Hamiltonian decomposition of Γ2.

For t = 3, Construction 1 gives a design with n = 1 that is disconnected. In

order to obtain a connected CWBD which is not a CBD, we need to use one of

the sequences (0, 1, 2) and (0, 2, 1) twice, and the other one once.

If design d is made by Construction 1 then a uniform design d′ with t(t −
1)/2 subjects may be obtained by replacing the sequence ϕ for each subject by

the sequences ϕ+ i for all i in GF(t). However, this has the effect that Sd′ = tSd,

so d′ is not a CWBD, because the off-diagonal entries of Sd′ include both 0 and
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t. Thus we need a different construction for uniform CWBDs. Again, we use

GF(t), where t ≡ 3 mod 4. If x and y are both in S or N then xy ∈ S; if one is

in S and the other in N then xy ∈ N : see Lidl and Niederreiter (1997).

If ϕ is any sequence (ϕ1, . . . , ϕm) of elements of GF(t), we denote by ϕδ

the sequence (ϕ2 − ϕ1, ϕ3 − ϕ2, . . . , ϕm − ϕm−1, ϕ1 − ϕm) of successive circular

differences in ϕ. Further, let f0(ϕ
δ), fS(ϕ

δ) and fN (ϕδ) be the number of entries

of ϕδ which are in {0}, S and N , respectively.

Definition 1. Let ϕ be a sequence of length t whose entries are in GF(t), where

t is a prime power congruent to 3 modulo 4. Then ϕ is beautiful if the entries in

ϕ are all different and fS(ϕ
δ) = fN (ϕδ)± 1.

If all of the entries of ϕ are different then f0(ϕ
δ) = 0. Thus if ϕ has length t

then it is beautiful if and only if fS(ϕ
δ) ∈ {k, k + 1}.

Construction 2. Given a beautiful sequence ϕ = (ϕ1, . . . , ϕt) of all the elements

of GF(t), form the t(t − 1)/2 sequences sϕ + i for all s in S and all i in GF(t).

Create the design d by using each of these sequences for one subject.

Theorem 6. Suppose t ≡ 3 mod 4 and t is a prime power. If ϕ is beautiful then

the design d given by Construction 2 is a uniform CWBD.

Proof. The entries in ϕ are all different, so the entries in sϕ+ i are all different

for each value of s and i. Therefore each treatment occurs once on each subject,

so d is uniform on subjects and no treatment is preceded by itself.

For each fixed s in S, every element of GF(t) occurs once in each period

among the t sequences sϕ+ i, as i varies in GF(t). Therefore d is uniform.

Consider period j. Put ϕδ
j = v. Let i ∈ GF(t) and s ∈ S. Treatment i

occurs in period j of the sequence sϕ + i − sϕj . The treatment in period j + 1

of this sequence is sϕj+1 + i − sϕj = i + sv. If v ∈ S then {sv : s ∈ S} = S,
and so every ordered pair of treatments of the the form (i, i+ q), for i in GF(t)

and q in S, occurs exactly once in periods j and j + 1. Otherwise, if v ∈ N
then {sv : s ∈ S} = N , and so every ordered pair of treatments of the the form

(i, i+ q), for i in GF(t) and q in N , occurs exactly once in periods j and j + 1.

Thus if w − i ∈ S then (i, w) occurs fS(ϕ
δ) times in the design, while if

w − i ∈ N then (i, w) occurs fN (ϕδ) times. If ϕ is beautiful then the off-

diagonal entries of Sd are in {k, k + 1} and Ad is the adjacency matrix of one of

the doubly regular tournaments defined by S or N . Hence d is a CWBD.

Example 4. Let t = 7 and ϕ = (3, 1, 0, 2, 6, 4, 5), where the entries are the inte-

gers modulo 7. Then ϕδ = (5, 6, 2, 4, 5, 1, 5). Here S = {1, 2, 4} andN = {3, 5, 6},
and so fS(ϕ

δ) = 3 and fN (ϕδ) = 4. Thus ϕ is beautiful. Hence Construction 2

gives a uniform CWBD for 7 treatments on 21 subjects in 7 periods.
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Now let x be any primitive element of GF(t); that is, x is a generator of

the cyclic group (GF(t) \ {0},×). The even powers of x constitute S, while

the odd powers constitute N . Let ψ be the sequence (1, x, x2, . . . , xt−2). Then

ψ contains each non-zero element of GF(t) exactly once. The entries in ψδ are

x−1, x(x−1), . . . , xt−3(x−1) and 1−xt−2, which is xt−2(x−1). These are again

all the non-zero elements of GF(t) exactly once, and so fS(ψ
δ) = fN (ψδ) = k.

Theorem 7. Let t be a prime power congruent to 3 modulo 4 with t > 3. If x is

a primitive element of GF(t) and ϕ is obtained from ψ by replacing (1, x) with

(x, 1, 0), then ϕ is beautiful.

Proof. If t > 3, the substitution removes 1−x−1, x−1 and x2−x from ψδ, and

replaces them in ϕδ by x− x−1, 1− x, −1 and x2. None of these is zero if t > 3.

Now, −1 ∈ N and x2 ∈ S. Since x ∈ N , one of x−1 and x(x−1) is in S and the

other is in N . Since 1− x−1 = (−x−1)(1− x) and −x−1 ∈ S, the entries 1− x−1

and 1− x are either both in S or both in N . Thus fS(ϕ
δ) = fS(ψ

δ) + 1 = k+ 1

if x− x−1 ∈ S, while fS(ϕ
δ) = fS(ψ

δ) = k if x− x−1 ∈ N .

If t = 7 then 3 is a primitive element. The construction in Theorem 7 gives

the beautiful sequence ϕ in Example 4.

Theorems 6−7 show that there is a uniform CWBD for t treatments on

t(t − 1)/2 subjects in t periods whenever t is a prime power congruent to 3

modulo 4 and t > 3. This covers t = 7, 11, 19, 23, 27 and 31 for t < 35.

5.2. Designs of Type II

For a design of Type II, we have n = k, where 2 ≤ k ≤ t − 2. Also,

condition (3.2) shows that t − 1 divides k(k − 1). We need a t × t matrix A

which has k entries equal to 1 in each row and column, and all other entries

zero, in such a way that A′A = φIt + ξJt with φ = k(t − k)/(t − 1) and ξ =

k(k − 1)/(t − 1). The matrix A can be regarded as the incidence matrix of a

symmetric balanced incomplete-block design (BIBD) ∆: treatment i is in block

j if and only if Aij = 1. Given such a design ∆, Hall’s Marriage Theorem (Bailey

(2008), Cameron (1994), Hall (1935)) shows that the treatments and blocks can

be labelled in such a way that the diagonal entries of A are all zero. Now our

strategy is to find a known BIBD ∆ of the appropriate size, label its blocks in

such a way that the diagonal entries of A are all zero, and then try to find a

CWBD which is uniform on subjects for which λ = 1 and S′
d = Ad = A.

The condition that t − 1 divides k(k − 1) is not sufficient to guarantee the

existence of a BIBD. The Bruck–Ryser–Chowla Theorem shows that some pairs

(t, k) have no BIBD: see Cameron (1994). For t < 35, the following pairs are

excluded by this theorem: (22, 7), (22, 15), (29, 8), (29, 21), (34, 12) and (34, 22).
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Some BIBDs can be constructed from difference sets, see Hall (1986). If

(G,+) is a finite Abelian group and P ⊂ G, then P is called a difference set if

every non-zero element of G occurs equally often among the differences x−y for x

and y in P with x �= y. When G is the additive group of GF(t) and t ≡ 3 mod 4

then S and N are both difference sets. If P is a difference set then so is its

complement P, and so is the set P + i = {x+ i : i ∈ P} for each i in G. If i /∈ P
then P − i is a difference set that does not contain 0. In particular, when t is a

prime power and t ≡ 3 mod 4 then S − 1 is a difference set with k = (t + 1)/2

that does not contain 0.

To obtain a BIBD ∆ from the difference set P, label the treatments and

blocks by the elements of G, and put Aij = 1 if and only if j − i ∈ P. As above,

we can assume that 0 /∈ P, and then the diagonal entries of A are all zero.

Difference sets give a generalization of Construction 1.

Construction 3. Suppose P is a difference set of size k in Zt, that 0 /∈ P,

and that all elements of P are coprime to t. Label the t treatments and the

t periods by the elements of Zt, and the k subjects by the elements of P. Define

the design d by d(�, u) = �u for � in Zt and u in P. Then d is a CWBD which is

uniform on subjects with λ = 1.

Example 5. When t = 7 and k = 4 we have the difference set S−1 = {2, 4, 5, 6}.
Then Construction 3 gives a CWBD for 4 subjects which is uniform on subjects.

Difference sets exist for many other values of t and k satisfying the divisibility

conditions, see Baumert (1971) and Table 2 of Filipiak and Markiewicz (2012).

For example, when t = 13 then {1, 2, 5, 7} and {2, 3, 5, 7, 8, 9, 10, 11, 12} are both

difference sets in Z13. Construction 3 gives CWBDs that are uniform on subjects,

one for 4 subjects and one for 9 subjects. When t = 31, {1, 2, 4, 9, 13, 19} is a

difference set in Z31. Thus Construction 3 gives CWBDs uniform on subjects,

one for 6 subjects and one for 25 subjects.

A result of Mann (1964) shows that there is no difference set of size 9 or 16

for Z25. Theorems of Lander (1983) rule out difference sets of size k or t− k for

Zt when (t, k) is (16, 6), (27, 13) or (31, 10). There is a difference set of size 8

for Z15, but its elements are not all coprime to 15, so Construction 3 cannot be

used. The same problem occurs for k = 5 and k = 16 when t = 21.

If A is symmetric then it can also be regarded as the adjacency matrix of

an undirected graph. If A′A is completely symmetric then every pair of distinct

vertices have the same number of common neighbours. Such graphs were studied

by Rudvalis (1971). If such a graph has a Hamiltonian decomposition then using

each cycle once in each direction gives a CWBD which is uniform on subjects.
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d = Ad = A.

The condition that t − 1 divides k(k − 1) is not sufficient to guarantee the

existence of a BIBD. The Bruck–Ryser–Chowla Theorem shows that some pairs

(t, k) have no BIBD: see Cameron (1994). For t < 35, the following pairs are

excluded by this theorem: (22, 7), (22, 15), (29, 8), (29, 21), (34, 12) and (34, 22).

CIRCULAR WEAKLY BALANCED DESIGNS 17

Some BIBDs can be constructed from difference sets, see Hall (1986). If

(G,+) is a finite Abelian group and P ⊂ G, then P is called a difference set if

every non-zero element of G occurs equally often among the differences x−y for x

and y in P with x �= y. When G is the additive group of GF(t) and t ≡ 3 mod 4

then S and N are both difference sets. If P is a difference set then so is its

complement P, and so is the set P + i = {x+ i : i ∈ P} for each i in G. If i /∈ P
then P − i is a difference set that does not contain 0. In particular, when t is a

prime power and t ≡ 3 mod 4 then S − 1 is a difference set with k = (t + 1)/2

that does not contain 0.

To obtain a BIBD ∆ from the difference set P, label the treatments and

blocks by the elements of G, and put Aij = 1 if and only if j − i ∈ P. As above,

we can assume that 0 /∈ P, and then the diagonal entries of A are all zero.

Difference sets give a generalization of Construction 1.

Construction 3. Suppose P is a difference set of size k in Zt, that 0 /∈ P,

and that all elements of P are coprime to t. Label the t treatments and the

t periods by the elements of Zt, and the k subjects by the elements of P. Define
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for Z15, but its elements are not all coprime to 15, so Construction 3 cannot be

used. The same problem occurs for k = 5 and k = 16 when t = 21.

If A is symmetric then it can also be regarded as the adjacency matrix of
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each cycle once in each direction gives a CWBD which is uniform on subjects.
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Example 6. The smallest such graph is the square lattice graph L2(4), which
has 16 vertices and valency 6. Every pair of distinct vertices has exactly two
common neighbours. The vertices form a 4× 4 grid. There is an edge between i
and j if i �= j but i and j are in the same row or i and j are in the same column.

Label the vertices row by row, so that the first row is (1, 2, 3, 4), and so
on. Let π be the permutation (2, 3, 4)(5, 9, 13)(6, 11, 16)(7, 12, 14)(8, 10, 15) of
the vertices, which is an automorphism of L2(4). There is a Hamiltonian decom-
position of L2(4) which is invariant under π. Using each of these cycles in both
directions gives the design in Figure 2(a).

The Shrikhande graph is another graph with 16 vertices, valency 6, and the
common-neighbour property, see Seidel (1968). Using GAP (2014), we found
that it has a large number of Hamiltonian decompositions. Each gives a CWBD
that cannot be obtained from the one in Figure 2(a) by renaming treatments.

Example 7. The Clebsch graph Ω is another such graph with 16 vertices, see
Seidel (1968). It has valency 10, and every pair of distinct vertices has exactly
6 common neighbours. The vertices are the vectors of length 5 over GF(2)
of even weight (equivalently, the treatments in the 25−1 factorial design with
defining contrast ABCDE = I); two vertices are joined if they differ in precisely
two positions. The permutation π taking (x1, x2, x3, x4, x5) to (x2, x3, x4, x5, x1)
is an automorphism of Ω.

Using GAP (2014), we found a very large number of Hamiltonian decompo-
sitions of Ω which are invariant under π (as in Example 6, it is sufficient to find
a single Hamiltonian cycle which has no edges in common with any of its images
under powers of π). For any one of these decompositions, using each cycle in
both directions gives the required CWBD. One is shown in Figure 2(b), where
vertex (x1, x2, x3, x4, x5) is identified as the integer 8x1 + 4x2 + 2x3 + x4 + 1.

For t > 16, Rudvalis (1971) showed that the smallest value of t for which
there exists a graph with the common-neighbour property is t = 36.

5.3. Designs of Type III

For a design of Type III, we consider A to be the adjacency matrix of a
directed graph Ξ. Now λ �= 1 and condition (3.3) is satisfied. However, neither
A′A nor A +A′ is completely symmetric, so at most one value of λ is possible
for any given directed graph Ξ. As in Section 5.1, we build larger matrices from
smaller ones.

Let A1 be the adjacency matrix of a doubly regular tournament Γ on r ver-
tices, where r = 4q+3. Let t = mr, where m ≥ 2, and put A2 = Jm⊗(Ir+A1)−
It. ThenA2+A′

2 = Jm⊗(Jr+Ir)−2It andA′
2A2 = (mq+m−1)Jm⊗(Jr+Ir)+It.

Thus A2 satisfies condition (3.3) with λ = m(q + 1), k = 2m(q + 1) − 1, and
n = m2(4q + 3)(q + 1)−m(3q + 2).

CIRCULAR WEAKLY BALANCED DESIGNS 19

1 1 1 5 9 13
2 3 4 8 10 15
6 11 16 16 6 11
7 12 14 15 8 10

11 16 6 3 4 2
9 13 5 4 2 3

13 5 9 12 14 7
14 7 12 10 15 8
10 15 8 14 7 12
12 14 7 13 5 9
4 2 3 9 13 5
3 4 2 11 16 6

15 8 10 7 12 14
16 6 11 6 11 16
8 10 15 2 3 4
5 9 13 1 1 1

1 1 1 1 1 11 5 10 3 6
2 4 7 13 9 9 2 4 7 13
3 6 11 5 10 15 14 12 8 16
4 7 13 9 2 13 9 2 4 7
7 13 9 2 4 14 12 8 16 15
5 10 3 6 11 16 15 14 12 8
6 11 5 10 3 10 3 6 11 5
8 16 15 14 12 12 8 16 15 14

12 8 16 15 14 8 16 15 14 12
10 3 6 11 5 6 11 5 10 3
16 15 14 12 8 5 10 3 6 11
14 12 8 16 15 7 13 9 2 4
13 9 2 4 7 4 7 13 9 2
15 14 12 8 16 3 6 11 5 10
9 2 4 7 13 2 4 7 13 9

11 5 10 3 6 1 1 1 1 1
(a) (b)

Figure 2. Two CWBDs for 16 treatments on n subjects in 16 periods which
are uniform on the subjects: (a) n = 6; (b) n = 10.

Example 8. When q = 0 we may let A1 be the adjacency matrix of the doubly

regular tournament defined by S in GF(3). When m = 2 then t = 6, n = 8, and

A2 is Ad for the design d in Example 4.4 of Filipiak and Markiewicz (2012) with

its treatments written in the order 1, 3, 5, 6, 2, 4.

Babai and Cameron (2000) give a doubling construction for what they call

an S-digraph. Let A1 be the adjacency matrix of a doubly regular tournament Γ

on r vertices, where r = 4q + 3. Put

A2 =




0 1′r 0 0′r
0r A1 1r A′

1

0 0′r 0 1′r
1r A′

1 0r A1




and I∗8q = (J2− I2)⊗ I4q. Then the S-digraph Ξ has adjacency matrix A2. Now,

A2 +A′
2 = J8q − I8q − I∗8q and A′

2A2 = (4q + 3)I8q + (2q + 1)(J8q − I8q − I∗8q).

Thus A2 satisfies condition (3.3) with t = 8(q+1), k = 4q+3, λ = 2(q+1), and

n = 16q2 + 26q + 10.

Example 9. If q = 0 and and A1 is as in Example 8, then this doubling con-

struction gives a matrix A2 which, after relabelling of the treatments, is the

matrix Ad for the design d in Example 4.3 of Filipiak and Markiewicz (2012).

If t /∈ {4, 6}, then there is a CBD for t treatments with n = t− 1 and λ = 1,

see Tillson (1980). Examples for t = 3, t = 5, and 7 ≤ t ≤ 16 are given by
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Example 6. The smallest such graph is the square lattice graph L2(4), which
has 16 vertices and valency 6. Every pair of distinct vertices has exactly two
common neighbours. The vertices form a 4× 4 grid. There is an edge between i
and j if i �= j but i and j are in the same row or i and j are in the same column.

Label the vertices row by row, so that the first row is (1, 2, 3, 4), and so
on. Let π be the permutation (2, 3, 4)(5, 9, 13)(6, 11, 16)(7, 12, 14)(8, 10, 15) of
the vertices, which is an automorphism of L2(4). There is a Hamiltonian decom-
position of L2(4) which is invariant under π. Using each of these cycles in both
directions gives the design in Figure 2(a).

The Shrikhande graph is another graph with 16 vertices, valency 6, and the
common-neighbour property, see Seidel (1968). Using GAP (2014), we found
that it has a large number of Hamiltonian decompositions. Each gives a CWBD
that cannot be obtained from the one in Figure 2(a) by renaming treatments.

Example 7. The Clebsch graph Ω is another such graph with 16 vertices, see
Seidel (1968). It has valency 10, and every pair of distinct vertices has exactly
6 common neighbours. The vertices are the vectors of length 5 over GF(2)
of even weight (equivalently, the treatments in the 25−1 factorial design with
defining contrast ABCDE = I); two vertices are joined if they differ in precisely
two positions. The permutation π taking (x1, x2, x3, x4, x5) to (x2, x3, x4, x5, x1)
is an automorphism of Ω.

Using GAP (2014), we found a very large number of Hamiltonian decompo-
sitions of Ω which are invariant under π (as in Example 6, it is sufficient to find
a single Hamiltonian cycle which has no edges in common with any of its images
under powers of π). For any one of these decompositions, using each cycle in
both directions gives the required CWBD. One is shown in Figure 2(b), where
vertex (x1, x2, x3, x4, x5) is identified as the integer 8x1 + 4x2 + 2x3 + x4 + 1.

For t > 16, Rudvalis (1971) showed that the smallest value of t for which
there exists a graph with the common-neighbour property is t = 36.

5.3. Designs of Type III

For a design of Type III, we consider A to be the adjacency matrix of a
directed graph Ξ. Now λ �= 1 and condition (3.3) is satisfied. However, neither
A′A nor A +A′ is completely symmetric, so at most one value of λ is possible
for any given directed graph Ξ. As in Section 5.1, we build larger matrices from
smaller ones.

Let A1 be the adjacency matrix of a doubly regular tournament Γ on r ver-
tices, where r = 4q+3. Let t = mr, where m ≥ 2, and put A2 = Jm⊗(Ir+A1)−
It. ThenA2+A′

2 = Jm⊗(Jr+Ir)−2It andA′
2A2 = (mq+m−1)Jm⊗(Jr+Ir)+It.

Thus A2 satisfies condition (3.3) with λ = m(q + 1), k = 2m(q + 1) − 1, and
n = m2(4q + 3)(q + 1)−m(3q + 2).
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1 1 1 5 9 13
2 3 4 8 10 15
6 11 16 16 6 11
7 12 14 15 8 10
11 16 6 3 4 2
9 13 5 4 2 3
13 5 9 12 14 7
14 7 12 10 15 8
10 15 8 14 7 12
12 14 7 13 5 9
4 2 3 9 13 5
3 4 2 11 16 6
15 8 10 7 12 14
16 6 11 6 11 16
8 10 15 2 3 4
5 9 13 1 1 1

1 1 1 1 1 11 5 10 3 6
2 4 7 13 9 9 2 4 7 13
3 6 11 5 10 15 14 12 8 16
4 7 13 9 2 13 9 2 4 7
7 13 9 2 4 14 12 8 16 15
5 10 3 6 11 16 15 14 12 8
6 11 5 10 3 10 3 6 11 5
8 16 15 14 12 12 8 16 15 14
12 8 16 15 14 8 16 15 14 12
10 3 6 11 5 6 11 5 10 3
16 15 14 12 8 5 10 3 6 11
14 12 8 16 15 7 13 9 2 4
13 9 2 4 7 4 7 13 9 2
15 14 12 8 16 3 6 11 5 10
9 2 4 7 13 2 4 7 13 9
11 5 10 3 6 1 1 1 1 1

(a) (b)

Figure 2. Two CWBDs for 16 treatments on n subjects in 16 periods which
are uniform on the subjects: (a) n = 6; (b) n = 10.

Example 8. When q = 0 we may let A1 be the adjacency matrix of the doubly

regular tournament defined by S in GF(3). When m = 2 then t = 6, n = 8, and

A2 is Ad for the design d in Example 4.4 of Filipiak and Markiewicz (2012) with

its treatments written in the order 1, 3, 5, 6, 2, 4.

Babai and Cameron (2000) give a doubling construction for what they call

an S-digraph. Let A1 be the adjacency matrix of a doubly regular tournament Γ

on r vertices, where r = 4q + 3. Put

A2 =




0 1′r 0 0′r
0r A1 1r A′

1

0 0′r 0 1′r
1r A′

1 0r A1




and I∗8q = (J2− I2)⊗ I4q. Then the S-digraph Ξ has adjacency matrix A2. Now,

A2 +A′
2 = J8q − I8q − I∗8q and A′

2A2 = (4q + 3)I8q + (2q + 1)(J8q − I8q − I∗8q).

Thus A2 satisfies condition (3.3) with t = 8(q+1), k = 4q+3, λ = 2(q+1), and

n = 16q2 + 26q + 10.

Example 9. If q = 0 and and A1 is as in Example 8, then this doubling con-

struction gives a matrix A2 which, after relabelling of the treatments, is the

matrix Ad for the design d in Example 4.3 of Filipiak and Markiewicz (2012).

If t /∈ {4, 6}, then there is a CBD for t treatments with n = t− 1 and λ = 1,

see Tillson (1980). Examples for t = 3, t = 5, and 7 ≤ t ≤ 16 are given by
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Azäıs, Bailey and Monod (1993). When t = 4 or t = 6 then there is a CBD with

n = 2(t−1), and there is no CWBD for t = 4 with n ≤ 5. Thus Type III designs

do not give a CWBD with fewer subjects than a CBD unless t = 6. However,

in a situation like Example 9, the CWBD with 10 subjects gives lower variances

of all treatment estimators than the CBD with 7 subjects, so there may still be

some interest in constructing such designs. The methods in this section give two

possible ways of constructing the matrix Ad. A computer search should quickly

find whether the corresponding digraph Ξ has a Hamiltonian decomposition. If

so, this can be juxtaposed with λ − 1 copies of the relevant CBD to obtain a

CWBD.
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Azäıs, J.-M., Bailey, R. A. and Monod, H. (1993). A catalogue of efficient neighbour-designs

with border plots. Biometrics 49, 1252-1261.

Babai, L. and Cameron, P. J. (2000). Automorphisms and enumeration of switching classes of

tournaments. Electron. J. Combin. 7, article #R38 (25pp.)

Bailey, R. A. (2008). Design of Comparative Experiments. Cambridge University Press, Cam-

bridge.

Bailey, R. A. and Druilhet, P. (2004). Optimality of neighbour balanced designs for total effects.

Ann. Statist. 32, 1650-1661.

Baumert, L. D. (1971). Cyclic Difference Sets. Springer-Verlag, Berlin.

Cameron, P. J. (1994). Combinatorics: Topics, Techniques, Algorithms. Cambridge University

Press, Cambridge.

Cheng, C.-S. and Wu, C.-F. (1980). Balanced repeated measurements designs. Ann. Statist. 8,

1272-1283.

Craigen, R. (1996). Chapter IV.24 Hadamard matrices and designs. In The CRC Handbook of

Combinatorial Designs (Edited by Charles J. Colbourn and Jeffrey H. Dinitz), 370-377.

CRC Press, Boca Raton.

Druilhet, P. (1999). Optimality of circular neighbor balanced designs. J. Statist. Plann. Inference

81, 141-152.

CIRCULAR WEAKLY BALANCED DESIGNS 21

Filipiak, K. and Markiewicz, A. (2012). On universal optimality of circular weakly neighbor

balanced designs under an interference model. Comm. Statist. Theory Methods 41, 2356-

2366.

Filipiak, K. and Markiewicz, A. (2016). Universally optimal designs under interfer-

ence models with and without block effects. Comm. Statist. Theory Methods. DOI:

10.1080/03610926.2015.1011786.
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THE CEPSTRAL MODEL FOR MULTIVARIATE TIME

SERIES: THE VECTOR EXPONENTIAL MODEL

Scott H. Holan, Tucker S. McElroy and Guohui Wu
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Abstract: Vector autoregressive models have become a staple in the analysis of

multivariate time series and are formulated in the time domain as difference equations,

with an implied covariance structure. In many contexts, it is desirable to work

with a stable, or at least stationary, representation. To fit such models, one must

impose restrictions on the coefficient matrices to ensure that certain determinants

are nonzero which, except in special cases, can prove burdensome. To circumvent

these difficulties, we propose a flexible frequency domain model expressed in terms of

the spectral density matrix. Specifically, this paper treats the modeling of covariance

stationary vector-valued time series via an extension of the exponential model for

the spectrum of a scalar time series. We discuss the modeling advantages of the

vector exponential model and its computational facets, such as how to obtain moving

average coefficients from given cepstral coefficients. We demonstrate the utility of

our approach through simulation as well as two illustrative data examples focusing

on multi-step ahead forecasting and estimation of squared coherence.

Key words and phrases: Autocovariance matrix, Bayesian estimation, cepstral,

coherence, moving average coefficients, spectral density matrix, stochastic search

variable selection.

1. Introduction

This paper treats the modeling of covariance stationary vector-valued time

series through an extension of the exponential model of Bloomfield (1973). Such

a process will be called a Vector EXPonential (VEXP). In contrast to Vector

AutoRegressive Moving Average (VARMA) models, the VEXP processes are

always invertible, which means that the (causal) Moving Average (MA) form of

the process can be inverted into a (stable) Vector AutoRegressive (VAR) form

– or equivalently, that the spectral density matrix of the VEXP is non-singular

at all frequencies. Necessarily, a VEXP process is also stable, or stationary,

which here means that the spectral density matrix has finite determinant at all

frequencies. We note that, when estimation proceeds in an unconstrained fashion

(e.g., by ordinary least squares) a VAR or VARMA process need not be stable

or invertible; see Lütkepohl (2007) for a basic treatment. Nevertheless, there are
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