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Abstract: The aim of this paper is to characterize and construct universally optimal
designs among the class of circular repeated-measurements designs when the pa-
rameters do not permit balance for carry-over effects. It is shown that some circular
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1. Introduction

The problem of universal optimality of repeated-measurements designs is
widely studied in the literature. Most of the designs considered have the same
number of periods as treatments; we also make this assumption.

For experiments without a pre-period, Hedayat and Afsarinejad (1978) and
Cheng and Wu (1980) proved the universal optimality, for the estimation of direct
as well as carry-over effects, of some balanced uniform repeated-measurements
designs over a restricted class of competing designs. If the number n of subjects
is at most twice the number ¢ of treatments, Kunert (1984a) showed that, for
the estimation of direct effects, balanced uniform designs are universally optimal
over the class of all designs. Hedayat and Yang (2003) extended this by showing
universal optimality of balanced uniform designs if n < ¢(t—1)/2. Kunert (1984a)
also proved that if n is sufficiently large then a balanced uniform design is no
longer optimal. Moreover, this design is not universally optimal for the estimation
of carry-over effects when certain other special designs exist. Stufken (1991)
constructed some universally optimal designs using orthogonal arrays of type 1.
Jones, Kunert and Wynn (1992) proved universal optimality of some balanced
uniform designs under the model with random carry-over effects.




2 R. A. BAILEY, P. J. CAMERON, K. FILIPIAK, J. KUNERT AND A. MARKIEWICZ

Kunert (1983) considered repeated-measurements designs with or without a
pre-period. He proved the universal optimality of some special generalized latin
squares and generalized Youden designs over particular classes of designs.

A repeated-measurements design is called circular if there is a pre-period
and, for each subject, the treatment on the pre-period is the same as the treat-
ment on the last period. Magda (1980) proved the universal optimality of circular
strongly balanced uniform designs (uniform CSBDs) and circular balanced uni-
form designs (uniform CBDs) over appropriate subclasses of possible designs.
Kunert (1984b) strengthened these results by showing the universal optimality
of CBDs over all designs. Recent constructions of CSBDs and CBDs have been
given by Igbal and Tahir (2009) using cyclic shifts and by Mandal, Parsad and
Gupta (2016) using integer programming.

Universal optimality of some CBDs is also studied assuming a model of re-
peated measurements designs in which period effects are negligible. This simpler
model, in which carry-over effects play the role of left-neighbour effects, is known
in the literature as an interference model. Druilhet (1999) considered optimality
of CBDs for the estimation of direct as well as carry-over effects, while Bailey
and Druilhet (2004) proved their optimality for the estimation of total effects.
Filipiak and Markiewicz (2012) showed universal optimality of circular weakly
balanced designs (CWBDs) for the estimation of direct effects only.

In this paper we consider circular repeated-measurements designs under the
full model and under two simpler models. We show universal optimality, for the
estimation of direct as well as carry-over effects, of CWBDs and we give meth-
ods of constructing some of them. For particular parameter sets, there exists a
CWBD using fewer subjects than uniform CBDs. The idea of the possible reduc-
tion of number of subjects is suggested by the results of Filipiak and Markiewicz
(2012).

2. Models and Designs

Let Dy be the set of circular designs with ¢ treatments, n experimental
subjects, and ¢ periods, each subject being given one treatment during each
period. By d({,u), for 1 < ¢ < t and 1 < u < n, we denote the treatment
assigned to the uth subject in the ¢th period. Magda (1980) proposed a model
associated with the design d in Dy,

Yaew = o + Bu + Ty + Pde—1,u) T €, 1 <<t 1<u<n, (2.1)

where 14, is the response of the uth subject in the ¢th period, and ay, 5,, Td(6u)>
and pg—1,4) are, respectively, the £th period effect, the uth subject effect, the
direct effect of treatment d(¢, u), and the carry-over effect of treatment d(¢—1, u),
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where d(0,u) = d(t,u). The e¢, are uncorrelated random variables with common
variance and zero mean.
In vector notation model (2.1) can be rewritten as

y=Pa+UB+ Tyt +Fyp+e. (2.2)

Here y is the transpose of the vector y' = (ya11, Ydo1, - - - » Yan)- Also, o, B, T, and
p are the vectors of period, experimental subject, direct, and carry-over effects,
respectively. Moreover, € is the vector of random errors, with € ~ N(0,¢, 0%L,,;),
2 is a positive constant, I,, denotes the identity matrix of order n, and
0,, is the n-dimensional vector of zeros. The matrices Ty and Fy are the design
matrices for direct and carry-over effects, respectively, while P = 1, ® I; and

where o

U = I, ® 1; are the incidence matrices for period and experimental subject
effects, respectively, where 1,, is the n-dimensional vector of ones and ® denotes
the Kronecker product. Let H; = (h;;) be the circulant matrix of order ¢ with
hij=1if j—i=1ori=1,j =t, and h;; = 0 otherwise. Then Fy = (I, @H;)T4.

In this paper we also consider simpler models — model (2.2) without period
effects,
y=UB+Tyr +Fup+e, (2.3)

and model (2.2) without experimental subject effects,
y=Pa+T;r+Fip+e. (2.4)

In the context of experiments in agriculture and forestry, as discussed by Azais,
Bailey and Monod (1993), periods correspond to rows, subjects correspond to
columns, and the carry-over effect corresponds to the neighbour effect of the
treatment to the North. The roles of rows and columns are frequently inter-
changed in such literature, and so model (2.3) is known as the interference model
with left-neighbour effects; cf., Druilhet (1999), Filipiak and Markiewicz (2012).

Following Magda (1980), we say that a design d in Dy, ¢ is:

(i) wuniform on periods if all treatments occur equally often in each period;

(i) uniform on subjects if each treatment occurs exactly once on each subject;
(iii) uniform if it is uniform on both periods and subjects;
(

iv) circular strongly balanced (CSBD) if the collection of ordered pairs
(d(l — 1,u),d(l,u)), for 1 < ¢ < tand 1 < u < n, contains each ordered
pair of treatments (distinct or not) Ag times, where A\g = n/t;

(v) circular balanced (CBD) if the collection of ordered pairs (d(¢ —1,u),d(¢,u)),
for1 </ <tand1 < wu < n, contains each ordered pair of distinct treatments
A1 times, where \y = n/(t — 1), and does not contain any pair of equal
treatments.
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We additionally define circular weakly balanced designs. Let Sq = T/ F; =
(8dij)i<ij<t- The entry 54i; is the number of appearances of treatment 7 preceded
by treatment j in the design d. Thus the rows and columns of S; sum to the
vector of treatment replications. Filipiak et al. (2008) called the matrix Sy the
left-neighbouring matriz. When the number of treatments is equal to the number
of periods, Filipiak and Markiewicz (2012) called a design d in D;

(vi)circular weakly balanced (CWBD) if the collection of ordered pairs
(d(¢ — 1,u),d(l,u)), for 1 < ¢ < tand 1 < u < n, contains each ordered
pair of distinct treatments A or A\ — 1 times, where A = [n/(t — 1)], and

(a) Sq1; = S);1, = nly, so that each treatment has replication n;

(b) S4S!; is completely symmetric (all diagonal entries are equal and all off-
diagonal entries are equal).

In this definition [z] is the smallest integer greater than or equal to z.

Wilkinson et al. (1983) defined partially neighbour balanced designs as de-
signs with sq;; € {0, 1} if i # j; however, their designs are not circular, and they
consider neighbours in more than one direction. Some methods of construct-
ing circular partially neighbour-balanced designs are given by Azais, Bailey and
Monod (1993).

If d is a CSBD then S; = AgJ;, where J; = 1,1}; if d is a CBD then
Si = M(Jy —1). If dis a CWBD but not a CBD then S  is not completely
symmetric but S48/, is.

3. Existence Conditions

A necessary condition for the existence of a CBD with ¢ periods is that (t—1)
divides n: see e.g., Druilhet (1999), while for the existence of a CWBD the expres-
sion n(n —2XA+ 1) must be divisible by ¢ — 1; cf., Filipiak and Markiewicz (2012).
Parameters satisfying the necessary condition for the existence of a CWBD with
t <19 and n < 3(t — 1) are listed in Table 1 of Filipiak and Markiewicz (2012).

Let d be a CWBD in Dy, + which is not a CBD. Then A = [n/(t —1)]. Put

k=n—(\—1)(t—1). (3.1)

Since d is not a CBD, 1 < k < t—2. Using this notation, the necessary condition
for a CWBD given by Filipiak and Markiewicz (2012) is

t—1 divides k(k—2\+1). (3.2)

Filipiak and Rézanski (2009) showed that if n = 1, or if ¢ is even and n = 2,
then all designs are disconnected in the sense that it is not possible to estimate
all contrasts between direct effects and all contrasts between carry-over effects
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without bias. If d is disconnected then it cannot be considered to be universally
optimal; in fact, the proof of Theorem 3.1 of Filipiak and Markiewicz (2012)
breaks down in this case. If n = 2 then (3.1) and (3.2) show that the only
CWBD is a CBD for ¢t = 3. From now on, we assume that n > 3 and d is
connected.

Let Ag =8, — (A —1)(J; —I;). Then A;is a t x ¢t matrix whose diagonal
entries are all zero and whose other entries are all in {0, 1}. Moreover, each row
and column of A, has k non-zero entries. Hence Ay J; = J; Ay = kJ;. Therefore

SaSu=[(A—=1)(Js — L) + Ay] [(A = 1)(Je = T;) + Ay
=A—1D2[t—=2)T + L]+ 20\ — DkJ; + ALA; — (A — 1)(Ag+ A)).
Thus S48/, is completely symmetric if and only if
PAG— (AN —1)(Ag+ Al) is completely symmetric. (3.3)
If it satisfies (3.3), we shall say that design d has
Type I if A;+ A/, is completely symmetric;
Type IT if A;+ A/, is not completely symmetric and X = 1;
Type III if A;+ A/, is not completely symmetric and A > 1.

If d has Type I or IT then A/,A 4 is completely symmetric. The off-diagonal entries
in each row of A/,A; sum to k(k —1), so in this case k(k — 1) is divisible by ¢ — 1.
If d has Type I then k = (t —1)/2 and Ag+ A, = J;, — I,. Then t — 1 divides
(t—1)(t—3)/4, and so t = 3 mod 4. If k = 1 then A/, A; = I;: thus d cannot have
Type III, and (3.1) shows that if d has Type II then n = 1, which we exclude.

Theorem 1. Suppose that d is a CWBD in Dy and d is a CBD in Dimit,
for some values of n and m. Then the design d” in Dy yym which juztaposes d

and d' is a CWBD if and only if d has Type L

Proof. If d’ is a CBD then m is a multiple of ¢t — 1 and Sy is completely
symmetric. Hence Sgv = Sy + Sy and so Agr = Ay, Put N = m/(t — 1).
Condition (3.3) for design d” says that

PAG— (N + X —1)(Ag+ Al) is completely symmetric. (3.4)

If d has Type I then A/, A; and Ay + A/, are both completely symmetric, and
so condition (3.4) is satisfied and d” is a CWBD. Conversely, if d” is a CWBD
then conditions (3.3) and (3.4) are both satisfied. Hence Ag+ A/, is completely
symmetric and so d has Type 1.
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Lemma 1. Suppose that d is a CWBD in Dy, which has Type III.
(a) If k=(t—1)/2 then A < k/2.

(b) If k < (t—1)/2 then A < k.

(¢c) If k> (t—1)/2 then A <t —k — 1.

Proof. Put moy = maX{O, 2k—t}. If ¢ 75 j then mo < (A&Ad)lj < k—(Ad+Afi)1]
Let m; and my be the smallest and largest off-diagonal entries in Ay + A/,. The
entries in the corresponding positions of AJA; — (A —1)(Ag + A/) lie in the
intervals [mo — m1(A — 1),k —miA] and [mg — ma(A — 1), k — ma)| respectively.
If the latter entries are equal then k — maoX > mg — mi(A —1).

(a) If k = (t — 1)/2 but Az + Al is not completely symmetric then my = 0,
m1 = 0 and mo = 2. Hence k — 2\ > 0.

(b) If k < (t—1)/2 then mo =0, m; =0 and mg > 1. Hence k — XA > 0.

(¢) If k> (t —1)/2 then k > ¢/2 and so mg = 2k —t. Also, mg =2 and m; < 1.
Hence k — 2\ > 2k —t — (A —1).

Theorem 2. If d is a CWBD in Dy, and d has Type II or III then d is not
uniform on the periods.

Proof. If d is uniform on the periods then ¢ divides n. If d has Type II then
n =k < t—2, and so this is not possible. If ¢ divides n then equation (3.1)
shows that t divides &k — A + 1. Lemma 1 shows that if d has Type III then
O<A<k<t—1landso0<k—A+1<t,thus t cannot divide k — \ + 1.

4. Optimality
4.1. Preliminaries

Kunert (1984b) showed that any CBD which is uniform on subjects is univer-
sally optimal for the estimation of direct as well as carry-over effects under model
(2.3) over the class Dy, ¢. Druilhet (1999) extended this to designs where the
number of periods is any multiple of ¢. Filipiak and Markiewicz (2012) defined
circular weakly neighbour balanced designs to be CWBDs for ¢ periods which are
uniform on subjects; they showed their universal optimality for the estimation of
direct effects under model (2.3) over the class Dy, ; with n <t — 1, and over the
class of equireplicated designs without self-neighbours if n > ¢t — 1. One aim of
this paper is to prove universal optimality for the estimation of direct as well as
carry-over effects of uniform CWBDs, CWBDs uniform on subjects, and CWBDs
uniform on periods under models (2.2), (2.3) and (2.4), respectively.

We are interested in determining designs with minimal (in some sense) vari-
ance of the best linear unbiased estimator of the vector of parameters. Kiefer
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(1975) formulated the universal optimality criterion in terms of the information
matrix, which is the inverse of the variance-covariance matrix; cf., Pukelsheim
(1993). Therefore, following Proposition 1 of Kiefer (1975), we suppose that a
class C = {Cy : d € Dy} of non-negative definite information matrices with
zero row and column sums contains a matrix Cg« which is completely symmetric
and has maximal trace over Dy, ;. Then the design d* is universally optimal in
Kiefer’s sense in the class Dy, .

For a k1 X ko matrix K define wt(K) =1, — K(K'K)"K = I,,, — w(K)
as the orthogonal projector onto the orthocomplement of the column space of K,
where (K'K)~ is a generalized inverse of K'K. Then the information matrix
for the least squares estimate of 7 under model (2.g), g = 2, 3,4, is given by

CY = Ty (29T,

with zero row and column sums, where Z(9 is a block matrix containing the
design matrices of nuisance parameters, Z?) = (P : U : Fy), Z®) = (U : F,),
and ZW = (P : Fy); cf., e.g., Kunert (1983, 1984a,b). Since w((A : B)) =
w(A) + w(wt(A)B), we may rewrite the matrix C[(ig) as

CY) = T (F))Ty — Tho(w (F) W) T,

with W@ = (P:U), W& =U, and W® = P.
Similarly, Kunert (1984b) showed that the information matrix for the least
squares estimate of p under model (2.g), g = 2,3,4, is

CY) = Fiw'(Z9)F, = Fjw" (Ty)Fy — Fiw(w(T)W9)F,,
with Z® = (P: U : T), Z® = (U : T;), and ZW = (P : T}).

4.2. Optimality results

Filipiak and Markiewicz (2012) showed that for a CWBD, S;S/, = ¢I, + £J;
with ¢ = n(2A—1)=A(A—=1)t—n(n—2X+1)/(t—1) and £ = A(A—1)+n(n—2\+
1)/(t —1). Since Sy is nonsingular and commutes with J;, pre-multiplying by
S/, and post-multiplying by (S%5)~! we get S48/, = S/,Sq; cf., Raghavarao (1971,
Theorem 5.2.1), Filipiak and Markiewicz (2016). Moreover, since for a CWBD
Tjwt(Fy) Ty = nl; — n1'S,8/, = Fjw (T,) Fy, the following holds.

Proposition 1. Assume d is a CWBD. Under models (2.2), (2.3) or (2.4),
if d is uniform, uniform on subjects, or uniform on periods, respectively, then
d is universally optimal for the estimation of direct effects if and only if d is
uniwversally optimal for the estimation of carry-over effects.
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Let Ay ¢ be the class of designs in Dy 5, ; with no treatment preceded by itself.
Using the above proposition we can extend Theorem 3.1 and Theorem 3.2 of
Filipiak and Markiewicz (2012), in which optimality of CWBDs for the estimation
of direct effects was shown, as follows.

Theorem 3. If there exists a CWBD in Dy, which is uniform on subjects,
then it is universally optimal for the estimation of carry-over effects under model
(2.3) over the collection of designs in Dyny if n <t —1, and over the collection
of equireplicated designs in Ny otherwise.

If a design is uniform on periods then ¢ divides n and so n > t — 1. The
following theorem can be proved in the same way as Theorem 3.2 of Filipiak and
Markiewicz (2012) using additionally Proposition 1 of this paper.

Theorem 4. Assume thatt > 2 and n >t —1. If there exists a CWBD in Ay
which is uniform on periods, then it is universally optimal for the estimation
of direct as well as carry-over effects under model (2.4) over the collection of
equireplicated designs in A¢ ¢

For the two models with subject effects, we now show optimality over a
broader class of designs than in Theorem 4. Theorem 1 shows that if d is a
CWBD which is not a CBD, then we can make larger CWBDs by juxtaposing
d with one or more CBDs only if d has Type 1. Therefore, we restrict attention
to the case that k = (t — 1)/2, where t = 3 mod 4, and n is an odd multiple of
(t—1)/2. It follows from Theorem 2 that a uniform CWBD which is not a CBD
can only exist if, additionally, n is an odd multiple of ¢(¢t — 1)/2. For such design
parameters, A =n/(t — 1)+ 1/2.

We denote by ng;,, the number of times that treatment ¢ appears in the uth
subject (T;U = FjU = (n4;,)), and by 74; the number of times that treatment ¢
appears in the design. As shown by e.g., Kunert (1984b), if g = 2 or g = 3 then

t t n t t n
RS ST 3 ITHED 3) SR> LI OR]
=1

o
i=1 u—=1 i—1 j—1 dj

We begin with a technical lemma, and omit the straightforward proof.
Lemma 2. If x1,22,...,x, satisfy Ele x; = c then Z?:l z? > 2 /b.
Proposition 2. If j is a treatment in design d in Ay then

¢ 17 2 re
lj
E (Sdij—*E ndiu”dju) > -
t t(t—1)

i=1
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Proof. For all competing designs all sdjj = 0. Therefore,

t n
5 Sd’Lj 5 ndzundju = 5 nd]u + 5 Sdz] 5 ndiundju)-
=1 u:l

7]
It follows that

1 n
S loas 1 3 nana) = § Y
i#] u=1
Applying Lemma 2, we conclude that

t 9 n
Sdm ndwndju t2 ( ndju> + Sdz] ndiundju)
=1 u=1

i#]
1 9 \2
L) t_m(z )
1 LN rgj
tt—1) (;”dju) “tt-1)
Proposition 3. For a design d € Ay, define ag =3 S max{ngy, —1,0}.

Then t n
Z Z néw > nt + 2aq.
i=1 u=1

Proof. For 1 < i <t and 1 < u < n, define ey, = ngi, — 1. Then all ey,
are integers and, therefore, €2, > |egqi,|. Since Zﬁzl > o1 Ndin, = nt, we have
>3 eqiw = 0 and, since the sum of all positive ey, equals ag, we conclude that

ZZ ’ediu| = 2aq.

In all, we get

Z anw = Z Z(ediu + 1)2

vV

i=1 u=1 i=1 u=1
t n t n
=nt+23 ) equt YD eq = nt+ 2aq.

We immediately get a first bound for the trace of the information matrix
which depends on ag.

Proposition 4. For any design d € Ay and g = 2,3 we have

1 2

Proof. The bound is well-known; it was used by Kunert (1984a,b).

If aq is small, we get a sharper bound, derived in the next proposition.
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Proposition 5. If t > 5 and design d has aq < (t — 1)/2 then, for g = 2,3,

1 2 t—1 2

Proof. There are at most 2a4 of the ng;, not equal to 1. Since ag < (t — 1)/2,
we conclude that there must be at least ¢ — 2a4 treatments j such that ng, =1
for 1 <wu < n. Define J; as the set of all such treatments.

Assume without loss of generality that treatment ¢ is in J;. Then r4 = n.
Since we consider the circular neighbour structure, 25:1 Sqit = rqr = n. Without
loss of generality we can assume that the treatments are labelled in such a way
that sqi¢ > Sa2¢ >+ > Sa4—14-

Recall that 2k = ¢t — 1 and A = n/(t — 1)+ 1/2. If sgpe < A — 1 then
Zf_}ﬁ_l Sait < ksqpe = k(A —1) = (n — k)/2. Since Zf_% S4it = m, this implies
that Z "1 Sait > (n+k)/2. Otherwise, sqr: > A and so Z " Sdit > kA= (n+k)/2
again.

Now put ¢ = Zle(sdit—rdi/t). The definition of ag gives Z,’f:l rag < kn+ay.
Hence

n —|— E 1 /(t—1)n B E aq
c_zsdn— Zm_ () = )
It follows that ¢ > n/(2t) because ag < k and t > 2. Furthermore,

t t—1 t—1
Tdi T rd Tdi n
0= 3 (=) e 5 (s Y ek 3 (s )

i=1 i=k+1 i=k+1
and therefore Zf;}g 41(8ait —74i/t) = n/t — c. Then Lemma 2 gives
! Tdi n n 2
L@ 2 R
;(Sd’t t>—t2+k[ +(t C)]

Since ¢ > n/(2t), this bound is increasing in c¢. Therefore (4.2) gives
¢ 2 2

S (su - ) 2 2 n® K kag ag\ n® k24
) s\ T T e -0 2

Since ngy,, = 1 for 1 < i < n, this shows that
t n 2 t 2
1 rdi)Q n k  2a4

Sdit — — Negin T = Sdit—— ) 27—+ — —.
5 (sa = 3 o mainans) =3 (sae = ) 2 s g - 2
i=1 u=1 i=1
The same bound applies when treatment ¢ is replaced by any treatment j in J.
For all other treatments j, we use the bound in Proposition 2. Inserting these,
and the bound in Proposition 3, into (4.1), we get, for g = 2, 3,
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(9) 1 T'dj " b=l pad
tr Gy <nt — o (nt +2aq) — > Ht—1) 2 (t(t—l) LT
J&T; Jedg

t

1 Tdj aft—1 aq
—nt—(nt+2ag) — S — 4 _ L L
nt = 3 (nt +2aq) Z%@—l)liﬂ<4n nJ’

J=1

where we have used the fact that rg; = n for all j € J7, and where |JJ| is
the number of elements of J;. Due to the restrictions that ag < (t —1)/2 and
t > 5, we observe that (t —1)/(4n) — 2aq/(nt) > (t — 1)(t — 4)/(4nt) > 0. Since
|\T;| >t — 2aq, it follows that, for g = 2,3,

1 n t—1 2ayg
tr CY < nt — ~(nt + 2aq) — —— — (t — 2aq) [ —— — =2
rCy7 s mt = b+ 20q) = 59 = (8= 200) 7= = 00 )

which implies the desired inequality.

Now we can prove our main optimality result.

Theorem 5. Assume thatt > 5 and that n > t(t — 1)/2. Assume that t is odd
and that n is an odd multiple of (t —1)/2. If d* is a uniform CWBD in A¢ 4
then d* is universally optimal for the estimation of direct as well as carry-over
effects over the designs in Ay under model (2.2). If d* is a CWBD in Ay, 4
which is uniform on subjects, then d* is universally optimal for the estimation of
direct as well as carry-over effects over the designs in Aty under model (2.3).

Proof. If the design d has ay = 0, we get from Proposition 5 that, for g = 2, 3,

1 tt—1
uq?gnG—l—tl>—(4 ),
— n

which is the trace of the information matrix of the CWBD d*. Considering the
simple bound derived in Proposition 4, we see that any design d € Ay, ¢ can only

perform better than d* if
t(t—1) - @.
dn Tt
Since we restrict to the case n > t(t — 1)/2, the left-hand side is less than or
equal to 1/2. If, however, ag > (t — 1)/2, then the right-hand side is at least
(t—1)/t >1/2.
Therefore, we only have to consider designs with ay < (¢ — 1)/2 and the

bound in Proposition 5 applies. Taking the derivative of
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with respect to a, we get

—8n+2t(t — 1) + 8t — 32a

4nt
S TME-D2AE-1) 48 (-1 +4
- dnt 2n -

This, however, implies that the bound from Proposition 5 is largest for ay = 0,
and for any design d € A, ¢ we have tr Cc(lg) < tr Cég), for g = 2, 3.

5. Constructions

In this section we suppose that d is a CWBD in D; ,; which is not a CBD.
For each type of CWBD, we give constructions for a suitable matrix A and then
search for a design d with Ay = A. By Theorem 2, only Section 5.1 includes
uniform CWBDs.

5.1. Designs of Type I

For a design of Type I, we have t = 3 mod 4 and k = (t—1)/2. We need a t xt
matrix A which has zero entries on the diagonal, k entries equal to 1 in each row
and column, and all other entries zero; it must also satisfy (a) A+ A’ =J, -1,
and (b) A’A = ¢I; 4+ &J; with ¢ = (t +1)/4 and € = (¢t — 3) /4.

The matrix A can be regarded as the adjacency matrix of a directed graph I'
on t vertices: there is an arc from vertex 7 to vertex j if and only if A;; = 1. This
directed graph is called a doubly reqular tournament precisely when the matrix A
satisfies the foregoing conditions, see Reid and Brown (1972). For a design which
is a CWBD, is uniform on subjects, and has A = 1, we need a decomposition of
a doubly regular tournament I' into Hamiltonian cycles.

One construction of doubly regular tournaments uses finite fields. If ¢ is a
power of an odd prime then there is a finite field GF(t) of ¢ elements. If ¢ is prime
then GF(t) is the same as Z;, which is the ring of integers modulo ¢. Let S be the
set of non-zero squares in GF(t), and N the set of non-squares. If ¢ = 3 mod 4
then —1 € A in this case, if we label the vertices of T' by the elements of GF(t)
and define the adjacency matrix A by putting A;; = 1 if and only if j —i € S,
then T' is a doubly regular tournament, see Lidl and Niederreiter (1997). By
reversing all the edges of I', we obtain another doubly regular tournament, which
can be made directly by using N in place of S.
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If ¢ is itself prime, then there is an obvious Hamiltonian decomposition of I':
the circular sequences have the form (0, s,2s,...,(t —1)s) for sin S.

Construction 1. Suppose that ¢ = 3 mod 4 and ¢ is prime with ¢ > 3. Put
n = (t —1)/2. Label the ¢ treatments and the ¢ periods by the elements of Z;,
and the n subjects by the elements of S. Define the design d by d(¢,u) = fu for
{in Z; and v in S. Then d is a CWBD which is uniform on the subjects with
A=1.

Example 1. When ¢t = 7 we have § = {1,2,4}. We obtain the design in
Figure 1(a), where the entries are integers modulo 7. (In every figure, the rows
denote periods and the columns denote subjects.)

Example 2. When ¢ = 11 we have § = {1,3,4,5,9}. This gives the design in
Figure 1(b), where the entries are integers modulo 11.

For n > 1, Construction 1 deals with t =7, 11, 19, 23 and 31 for ¢ < 35.
Suitable matrices A also exist for many other values of . Reid and Brown
(1972) showed that the (t+ 1) x (¢ + 1) matrix

1 1
1, J,—2A

is a skew-Hadamard matrix if and only if A is the adjacency matrix of a doubly
regular tournament. Skew-Hadamard matrices of order ¢ + 1 are conjectured to
exist whenever t + 1 is divisible by 4. This has been verified for ¢t < 187: see
Craigen (1996).

Reid and Brown (1972) give the following doubling construction. If A; is
the adjacency matrix of a doubly regular tournament I'; on ¢ vertices and

All 0; Ai+1;
Ay = 12 0 0; , (5.1)
A 1, A,

then A, is the adjacency matrix of a doubly regular tournament I'y on 2t + 1
vertices.

Example 3. Let t = 15. Take I'; to be the doubly regular tournament used in
Example 1. The doubling construction (5.1) gives the adjacency matrix Ag of a
doubly regular tournament I's on 15 vertices. Label the vertices, in order, 0, 1,
2,3,4,5,6, 00, 0,1, 23 4 5 and 6. For z in GF(7), there is an arc from
oo to z and an arc from 2’ to co. For x and y in GF(7), there is an arc from z
toy if y —x € N; an arc from x to 3/ if =y or y — x € S; an arc from 2’ to ¢/
if y— 2 € S; and an arc from 2’/ toy if y —x € S.
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0 1 2 3 4 5 6

0 0 0 0 O 1 2 3 4 5 6 0
13 4 5 9 5 6 0 1 2 3 4
2 6 810 7 6 0o 1 2 3 4 ¥
39 1 4 5 17 203 4 5 6 0
000 4 1 5 9 3 5 6 0 1 2 3 4
1 2 4 5 4 9 3 1 4 5 6 0 1 2 3
2 41 6 7 2 810 4 5 6 0 1 203
3 6 5 710 6 2 8 6 0 1 2 3 4 5
4 1 2 8§ 210 7 6 2 3 4 5 6 0 1
5 3 6 9 5 3 1 4 3 4 5 ¢ 0 1V ¢
6 5 3 10 8 7 6 2 o 1 2 3 4 5 ¢
(a) (b) ()

Figure 1. Three CWBDs for ¢ treatments on n subjects in ¢ periods which
are uniform on the subjects: (a) ¢ =7 and n =3; (b) t = 11 and n = 5; (c)
t=15andn=".

To find a CWBD which is uniform on subjects, we used GAP (2014) to find
a directed cycle ¢ of length 15 starting (00,0, ...) in I's with the extra property
that if ¢ is any non-zero element of GF(7), then the cycles ¢ and ¢ + ¢ have
no arc in common. Here we use the conventions that if ¢ = (¢1,...,¢15) then
p+i=(p1+1i,...,015+1), where co + i = oo and &’ + i = (x + i)’ for x and
i in GF(7). GAP (2014) found all such cycles. There are 120, and they come
in groups of three because if ¢ is such a cycle and s € S then s is also such a
cycle (here the convention is that s¢ = (sp1,...,Sp15), where s x 0o = oo and
s x 2’ = (sz)’ for s and x in GF(7)). For each such cycle ¢, the collection of
cycles o, o+ 1, ..., ¢ + 6 gives a CWBD d for 15 treatments on 7 subjects in
15 periods which is uniform on subjects and for which A; = As. One of these is
shown in Figure 1(c).

Alternatively, the function FindHamiltonianCycles in Mathematica 9.0 can
be used to find a Hamiltonian decomposition of I's.

For t = 3, Construction 1 gives a design with n = 1 that is disconnected. In
order to obtain a connected CWBD which is not a CBD, we need to use one of
the sequences (0,1,2) and (0,2,1) twice, and the other one once.

If design d is made by Construction 1 then a uniform design d’ with ¢(t —
1)/2 subjects may be obtained by replacing the sequence ¢ for each subject by
the sequences ¢+ for all 7 in GF(t). However, this has the effect that Sy = ¢S,
so d' is not a CWBD, because the off-diagonal entries of Sy include both 0 and
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t. Thus we need a different construction for uniform CWBDs. Again, we use
GF(t), where t = 3 mod 4. If z and y are both in S or N then zy € S; if one is
in § and the other in A then xzy € N: see Lidl and Niederreiter (1997).

If  is any sequence (@1, ...,¢m) of elements of GF(t), we denote by °
the sequence (p2 — ©1,P3 — Y2, -, Om — Om—1, Y1 — Pm) of successive circular
differences in . Further, let fo(?), fs(¢?) and far(°) be the number of entries
of ¢° which are in {0}, S and N, respectively.

Definition 1. Let ¢ be a sequence of length ¢t whose entries are in GF(t), where
t is a prime power congruent to 3 modulo 4. Then ¢ is beautiful if the entries in
@ are all different and fs(¢?) = fa(¢°®) £ 1.

If all of the entries of ¢ are different then fy(¢?) = 0. Thus if ¢ has length ¢
then it is beautiful if and only if fs(¢?) € {k, k4 1}.

Construction 2. Given a beautiful sequence ¢ = (¢1, ..., ;) of all the elements
of GF(t), form the ¢(t — 1)/2 sequences s + i for all s in S and all ¢ in GF(¢).
Create the design d by using each of these sequences for one subject.

Theorem 6. Suppose t =3 mod 4 and t is a prime power. If @ is beautiful then
the design d given by Construction 2 is a uniform CWBD.

Proof. The entries in ¢ are all different, so the entries in s + i are all different
for each value of s and i. Therefore each treatment occurs once on each subject,
so d is uniform on subjects and no treatment is preceded by itself.

For each fixed s in S, every element of GF(t) occurs once in each period
among the ¢ sequences s + i, as i varies in GF(t). Therefore d is uniform.

Consider period j. Put gag- = v. Let i € GF(t) and s € §. Treatment ¢
occurs in period j of the sequence s¢ + i — sp;. The treatment in period j + 1
of this sequence is s@jy1 +17—sp; =1+ sv. If v € S then {sv:s € S} =S,
and so every ordered pair of treatments of the the form (i, + ¢), for i in GF(¢)
and ¢ in S, occurs exactly once in periods j and j + 1. Otherwise, if v € N
then {sv:s € S} =N, and so every ordered pair of treatments of the the form
(i, + q), for i in GF(¢) and ¢ in NV, occurs exactly once in periods j and j + 1.

Thus if w — i € S then (i,w) occurs fs(¢?) times in the design, while if
w—1i € N then (i,w) occurs fa(¢?) times. If ¢ is beautiful then the off-
diagonal entries of Sy are in {k,k + 1} and A, is the adjacency matrix of one of
the doubly regular tournaments defined by S or . Hence d is a CWBD.

Example 4. Let t = 7 and ¢ = (3,1,0,2,6,4,5), where the entries are the inte-
gers modulo 7. Then ¢ = (5,6,2,4,5,1,5). Here S = {1,2,4} and N = {3,5,6},
and so fs(¢?) = 3 and fa(®) = 4. Thus ¢ is beautiful. Hence Construction 2
gives a uniform CWBD for 7 treatments on 21 subjects in 7 periods.
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Now let x be any primitive element of GF(t); that is, = is a generator of
the cyclic group (GF(t) \ {0}, x). The even powers of x constitute S, while
the odd powers constitute A/. Let v be the sequence (1,x,22,...,2'72). Then
@b contains each non-zero element of GF(t) exactly once. The entries in 1)° are
r—1,z(x—1),..., 2" 3(x—1) and 1 —2!~2, which is 2!=2(z—1). These are again
all the non-zero elements of GF(t) exactly once, and so fs(¢?) = fa(°) = k.

Theorem 7. Lett be a prime power congruent to 3 modulo 4 with t > 3. If x is
a primitive element of GF(t) and ¢ is obtained from 1 by replacing (1,z) with
(z,1,0), then @ is beautiful.

1 z—1and 22 —z from ¢?, and

Proof. If t > 3, the substitution removes 1 —z~
replaces them in ¢® by  — 21, 1 —z, —1 and x2. None of these is zero if ¢ > 3.
Now, —1 € N and 2% € S. Since z € NV, one of x — 1 and x(z — 1) is in S and the
other is in . Since 1 —27 ! = (—z71)(1 —z) and —z~! € S, the entries 1 — 2!
and 1 — x are either both in S or both in A'. Thus fs(¢?) = fs(¥)+1=k+1
if  — 27! €8, while fs(¢°) = fs(¥®) =kifz —a~t € N.

If t = 7 then 3 is a primitive element. The construction in Theorem 7 gives
the beautiful sequence ¢ in Example 4.

Theorems 6—7 show that there is a uniform CWBD for ¢ treatments on
t(t — 1)/2 subjects in t periods whenever ¢ is a prime power congruent to 3
modulo 4 and t > 3. This covers t = 7, 11, 19, 23, 27 and 31 for ¢ < 35.

5.2. Designs of Type II

For a design of Type II, we have n = k, where 2 < k < t — 2. Also,
condition (3.2) shows that ¢t — 1 divides k(k — 1). We need a t x ¢ matrix A
which has k entries equal to 1 in each row and column, and all other entries
zero, in such a way that A’A = ¢I; + £J; with ¢ = k(t — k)/(t — 1) and & =
k(k —1)/(t —1). The matrix A can be regarded as the incidence matrix of a
symmetric balanced incomplete-block design (BIBD) A: treatment i is in block
j if and only if A;; = 1. Given such a design A, Hall’s Marriage Theorem (Bailey
(2008), Cameron (1994), Hall (1935)) shows that the treatments and blocks can
be labelled in such a way that the diagonal entries of A are all zero. Now our
strategy is to find a known BIBD A of the appropriate size, label its blocks in
such a way that the diagonal entries of A are all zero, and then try to find a
CWBD which is uniform on subjects for which A =1 and S/, = A; = A.

The condition that ¢ — 1 divides k(k — 1) is not sufficient to guarantee the
existence of a BIBD. The Bruck—Ryser—Chowla Theorem shows that some pairs
(t,k) have no BIBD: see Cameron (1994). For t < 35, the following pairs are
excluded by this theorem: (22,7), (22,15), (29, 8), (29,21), (34,12) and (34, 22).
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Some BIBDs can be constructed from difference sets, see Hall (1986). If
(G,+) is a finite Abelian group and P C G, then P is called a difference set if
every non-zero element of G occurs equally often among the differences x —y for x
and y in P with  # y. When G is the additive group of GF(¢) and ¢t = 3 mod 4
then S and A are both difference sets. If P is a difference set then so is its
complement P, and so is the set P +i = {x +i:4i € P} for each i in G. If i ¢ P
then P — i is a difference set that does not contain 0. In particular, when ¢ is a
prime power and ¢t = 3 mod 4 then S — 1 is a difference set with & = (¢ +1)/2
that does not contain 0.

To obtain a BIBD A from the difference set P, label the treatments and
blocks by the elements of G, and put A;; = 1 if and only if j —¢ € P. As above,
we can assume that 0 ¢ P, and then the diagonal entries of A are all zero.

Difference sets give a generalization of Construction 1.

Construction 3. Suppose P is a difference set of size k in Z;, that 0 ¢ P,
and that all elements of P are coprime to t. Label the ¢ treatments and the
t periods by the elements of Z;, and the k subjects by the elements of P. Define
the design d by d(¢,u) = ¢u for ¢ in Z; and u in P. Then d is a CWBD which is

uniform on subjects with A = 1.

Example 5. When t = 7 and k = 4 we have the difference set S—1 = {2,4,5,6}.
Then Construction 3 gives a CWBD for 4 subjects which is uniform on subjects.

Difference sets exist for many other values of t and k satisfying the divisibility
conditions, see Baumert (1971) and Table 2 of Filipiak and Markiewicz (2012).
For example, when ¢ = 13 then {1,2,5,7} and {2,3,5,7,8,9,10,11,12} are both
difference sets in Z13. Construction 3 gives CWBDs that are uniform on subjects,
one for 4 subjects and one for 9 subjects. When ¢t = 31, {1,2,4,9,13,19} is a
difference set in Zs;. Thus Construction 3 gives CWBDs uniform on subjects,
one for 6 subjects and one for 25 subjects.

A result of Mann (1964) shows that there is no difference set of size 9 or 16
for Zss. Theorems of Lander (1983) rule out difference sets of size k or t — k for
Zy when (t,k) is (16,6), (27,13) or (31,10). There is a difference set of size 8
for Zi5, but its elements are not all coprime to 15, so Construction 3 cannot be
used. The same problem occurs for £ =5 and k& = 16 when ¢t = 21.

If A is symmetric then it can also be regarded as the adjacency matrix of
an undirected graph. If A’A is completely symmetric then every pair of distinct
vertices have the same number of common neighbours. Such graphs were studied
by Rudvalis (1971). If such a graph has a Hamiltonian decomposition then using
each cycle once in each direction gives a CWBD which is uniform on subjects.
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Example 6. The smallest such graph is the square lattice graph Lo(4), which
has 16 vertices and valency 6. Every pair of distinct vertices has exactly two
common neighbours. The vertices form a 4 x 4 grid. There is an edge between i
and j if ¢ # j but ¢ and j are in the same row or ¢ and j are in the same column.

Label the vertices row by row, so that the first row is (1,2,3,4), and so
on. Let m be the permutation (2,3,4)(5,9,13)(6,11,16)(7,12,14)(8,10,15) of
the vertices, which is an automorphism of Ly(4). There is a Hamiltonian decom-
position of Ly(4) which is invariant under 7. Using each of these cycles in both
directions gives the design in Figure 2(a).

The Shrikhande graph is another graph with 16 vertices, valency 6, and the
common-neighbour property, see Seidel (1968). Using GAP (2014), we found
that it has a large number of Hamiltonian decompositions. Each gives a CWBD
that cannot be obtained from the one in Figure 2(a) by renaming treatments.

Example 7. The Clebsch graph € is another such graph with 16 vertices, see
Seidel (1968). It has valency 10, and every pair of distinct vertices has exactly
6 common neighbours. The vertices are the vectors of length 5 over GF(2)
of even weight (equivalently, the treatments in the 2°~! factorial design with
defining contrast ABCDE = I); two vertices are joined if they differ in precisely
two positions. The permutation 7 taking (x1, xe, 3, x4, x5) to (x2, x3, x4, T5,1)
is an automorphism of (2.

Using GAP (2014), we found a very large number of Hamiltonian decompo-
sitions of 2 which are invariant under 7 (as in Example 6, it is sufficient to find
a single Hamiltonian cycle which has no edges in common with any of its images
under powers of 7). For any one of these decompositions, using each cycle in
both directions gives the required CWBD. One is shown in Figure 2(b), where
vertex (x1, T2, X3, 24, x5) is identified as the integer 8z1 + 4xo + 223 + x4 + 1.

For ¢ > 16, Rudvalis (1971) showed that the smallest value of ¢ for which
there exists a graph with the common-neighbour property is t = 36.

5.3. Designs of Type III

For a design of Type III, we consider A to be the adjacency matrix of a
directed graph =. Now A # 1 and condition (3.3) is satisfied. However, neither
A’A nor A + A’ is completely symmetric, so at most one value of \ is possible
for any given directed graph Z. As in Section 5.1, we build larger matrices from
smaller ones.

Let A be the adjacency matrix of a doubly regular tournament I' on r ver-
tices, where r = 4¢+3. Let t = mr, where m > 2, and put Ag = J,,@(I, + A1) —
I;. Then Ags+AL = J,,@(J,+1,)—2I; and ALAy = (mg+m—1)J 5, @(J,+1,)+1;.
Thus Ay satisfies condition (3.3) with A = m(¢ + 1), k = 2m(q+ 1) — 1, and
n=m*(4q+3)(¢+1) —m(3¢ +2).
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1 1 1 5 913 1 1 1 1 111 510 3 6
2 3 4 810 15 2 4 713 9 9 2 4 713
6 11 16 16 6 11 3 611 510 15 14 12 8 16
7 12 14 15 8 10 4 713 9 213 9 2 4 7
1116 6 3 4 2 713 9 2 414 12 8 16 15
913 5 4 2 3 510 3 6 11 16 15 14 12 8
13 5 912 14 7 6 11 510 310 3 6 11 5
14 7 12 10 15 8 8 16 15 14 12 12 8 16 15 14
10 15 8 14 7 12 12 8 16 15 14 8 16 15 14 12
12 14 713 5 9 10 3 611 5 6 11 5 10 3
4 2 3 913 5 16 15 14 12 8 510 3 6 11
3 4 211 16 6 14 12 816 15 713 9 2 4
15 8 10 7 12 14 13 9 2 4 7 4 713 9 2
16 6 11 6 11 16 1514 12 8 16 3 6 11 5 10
8 10 15 2 3 4 9 2 4 713 2 4 713 9
5 913 1 1 1 11 510 3 6 1 1 1 1 1
(a) (b)

Figure 2. Two CWBDs for 16 treatments on n subjects in 16 periods which
are uniform on the subjects: (a) n = 6; (b) n = 10.

Example 8. When ¢ = 0 we may let A; be the adjacency matrix of the doubly
regular tournament defined by S in GF(3). When m = 2 then ¢t = 6, n = 8, and
Ay is Ay for the design d in Example 4.4 of Filipiak and Markiewicz (2012) with
its treatments written in the order 1, 3, 5, 6, 2, 4.

Babai and Cameron (2000) give a doubling construction for what they call
an S-digraph. Let Ay be the adjacency matrix of a doubly regular tournament I"
on r vertices, where r = 4¢ + 3. Put

0 1. 0 0.
0, A; 1, A/
0o o o0 1.
1, AL 0, A

Ay =

and ng = (J2 —I3) ® I4,. Then the S-digraph E has adjacency matrix As. Now,
Ao + AIQ = ng - ng — ng and AI2A.2 = (4(] + 3)ng + (2(] + 1>(J8q - ng — gq)
Thus Aj satisfies condition (3.3) with t =8(¢+1), k =4¢+3, A =2(¢+1), and
n = 16¢° + 26q + 10.

Example 9. If ¢ = 0 and and A; is as in Example 8, then this doubling con-
struction gives a matrix Ao which, after relabelling of the treatments, is the
matrix A, for the design d in Example 4.3 of Filipiak and Markiewicz (2012).

If t ¢ {4,6}, then there is a CBD for ¢ treatments with n =¢—1 and A =1,
see Tillson (1980). Examples for t = 3, t = 5, and 7 < t < 16 are given by
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Azals, Bailey and Monod (1993). When ¢ = 4 or ¢ = 6 then there is a CBD with
n = 2(t—1), and there is no CWBD for ¢t = 4 with n < 5. Thus Type III designs
do not give a CWBD with fewer subjects than a CBD unless ¢t = 6. However,
in a situation like Example 9, the CWBD with 10 subjects gives lower variances
of all treatment estimators than the CBD with 7 subjects, so there may still be
some interest in constructing such designs. The methods in this section give two
possible ways of constructing the matrix Ay. A computer search should quickly
find whether the corresponding digraph = has a Hamiltonian decomposition. If
so, this can be juxtaposed with A — 1 copies of the relevant CBD to obtain a
CWBD.
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