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Abstract: This article considers the important problem of tracking multiple moving

targets captured in image sequences. It has two primary objectives. The first

is to serve as an introduction of the target tracking problem to the statistical

community. It achieves this by providing a common definition of the tracking

problem, a survey of important existing work, and a discussion of the relative

advantages and shortcomings of such work. The second objective is to propose

a statistical method for solving a wide class of tracking problems, namely, when

the system of interest contains birth, death, merging and splitting of targets. The

stochastic model behind this method is continuous time in nature and is equipped

with a realistic mechanism for handling merging and splitting. Its finite sample

properties are assessed via numerical experiments. Finally, the method is applied

to two scientific problems for which it was originally designed: the tracking of (i)

storms captured in radar reflectivity image data, and (ii) vortexes from a high-

resolution simulated vorticity field.
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1. Introduction

Multiple target tracking is an important problem arising in many scientific
and engineering investigations. It has importance in radar and signal processing,
air traffic control, robot vision, GPS-based navigation, biomedical engineering,
and video surveillance, to name a few. In this article we provide an introduction
to, and propose a new statistical method for, multiple target tracking. Our
work is motivated by the scientific need for storm tracking from radar reflectivity
data and vortex tracking in turbulence fields. In these applications, the splitting
and merging of targets are quite common, and such events are effectively and
realistically accommodated by the proposed method. It is also our hope that
this article will stimulate more statistical work in the interesting and exciting
area of target tracking.
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1.1. Problem Definition

Typically a complete tracking application is composed of two parts. The
first is to extract the locations and/or other attributes of the targets from each
image frame. There is no unified solution for this, as different targets need dif-
ferent methods for extraction. For example, human faces and missiles require
very different target recognition methods to detect their appearances in an im-
age. Once the target coordinates are located, the second part of the tracking
application is to link these coordinates together so that coordinates of the same
target detected at different image frames are connected to form a reconstruction
of the path that this target traveled. In the tracking literature this second part
of coordinate linking is commonly referred as the data association problem.

For the rest of this article we assume that the target coordinates and/or
other useful attributes have already been extracted from the image sequence and
focus on the second step, the data association. However, we do not assume
that these targets are perfectly extracted. That is, we allow some of the real
targets to remain undetected in some image frames (i.e., “missing” targets), we
allow the presence of false alarms, and we also allow the target coordinates to be
recorded with measurement errors. Furthermore, we also assume the occurrences
of the following four events. First, we allow targets to appear for the first time or
disappear permanently at any times during the image sequence; these events are
called birth and death, respectively. Second, we permit situations under which two
targets combine together to form a larger target; this is called merging. Lastly,
targets are also allowed to break into smaller pieces; this is called splitting.

In summary, the tracking problem that this article considers is to, given
the target information (coordinates and/or other attributes) acquired by the
first extraction phase, recover the path, also known as the track, of each target
traveled. In doing so, we allow birth, death, merging and splitting of targets.
We also allow missing targets and false alarms. Our approach to this tracking
problem is to first fit a stochastic model that incorporates all variables of interest,
including times of birth, death, merging and splitting events, as well as target
locations. We then estimate their conditional distribution given the data. Finally,
the solution that corresponds to the mode of this estimated distribution is taken
as the tracking estimate.

1.2. Review of the tracking problem

We first briefly review some popular methods for tackling the above track-
ing problem. The reader is also referred to the books by Bar-Shalom, Li and
Kirubarajan (2001), Blackman and Popoli (1999), and Stone, Barlow and Cor-
win (1999) for a comprehensive description of modern tracking techniques.

The target tracking problem has been studied extensively in the engineer-
ing literature over the past thirty years. The approaches to this problem can
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be loosely classified into two groups: non-statistical and statistical. The non-
statistical group mainly use either image differencing techniques to detect target
movements for consecutive images, as in Pece (2002), or heuristically minimize
various objective functions that penalize the smoothness of the track estimates
(e.g., Sethi and Jain (1987) and Salari and Sethi (1990)). Typically these non-
statistical methods are fast and simple, and have been used with some success
in the area of storm tracking (e.g., Johnson, Mackeen, Witt, Mitchell, Stumpf,
Eilts and Thomas (1998), Wolfson, Forman, Hallowell and Moore (1999), Dixon
(1994), Tuttle and Gall (1999), Lakshmanan, Rabin and DeBrunner (2003) and
Hodges (1994, 1999)). However, they also possess a serious drawback: their
inability to adequately handle birth, death, missing targets and false alarms.
Moreover, these methods are only able to provide track estimates of the target
movements and do not offer any mechanisms for assessing the associated uncer-
tainties.

Hence, for the rest of this article, we focus our attention on the statistical
approaches. The main idea is to employ a statistical model to describe the
movements of the targets. Once a target model is proposed, the traditional
approach to the data association problem is to then find the collection of tracks
that maximizes the likelihood of the model. In the tracking literature such a
collection of tracks is often called a hypothesis. To achieve such a likelihood
maximization, two major issues are involved: (i) fast calculation of the likelihood
value for any given hypothesis, and (ii) an effective search algorithm for locating
the hypothesis that maximizes the likelihood function.

In the literature, typically a linear Gaussian state space model is applied to
address the first issue, as it allows for efficient likelihood calculation of a given
data association hypothesis via the Kalman filter. However, methods have also
been developed for efficient likelihood calculation for more general cases. For
examples, the extended Kalman filter (Anderson and Moore (1979)) is based on
local linear approximations to a nonlinear system, and the unscented Kalman
filter (Julier and Uhlmann (2004)) uses higher order approximation to calculate
likelihood for nonlinear systems.

Most recently, research in this area has focused on a new class of filtering
methods based on particle filtering or sequential Monte Carlo (Gordon, Salmond
and Smith (1993), Kitagawa (1996), Liu and Chen (1998), Doucet, Godsill and
Andrieu (2000) and Doucet, de Freitas and Gordon (2001)). This approach
represents the target distribution with a set of samples, called particles, each
with its own importance weight. These particles are then propagated through
time to provide an approximation to the distribution at subsequent time steps.
Liu and Chen (1998) develop a sequential importance sampling framework under
which most of these procedures can be unified. Additionally Chen and Liu (2000)
consider a class of models that are conditionally linear and Gaussian. Still other
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methods such as the probability hypothesis density method (Mahler (2003) and
Vo, Singh and Doucet (2005)) approximate the likelihood by propagating only
the posterior expectation instead of the entire distribution through to subsequent
times.

Assuming a method for fast likelihood calculation is available, the next step
is to develop a search algorithm to find the data association hypothesis that
maximizes the likelihood of the model. The most widely used heuristic search
algorithm for this purpose is the Multiple Hypothesis Tracking (MHT) algorithm
of Reid (1979). A brief description is given in Section 4.3. We have implemented
a variant of this MHT algorithm for our likelihood maximization; see also Sec-
tion 4.3.

There is also the Bayesian approach to the data association problem where
a prior distribution is given to the possible data associations. Notice that in this
setup the prior is imposed on the data associations but not on any model pa-
rameters. Usually this prior is an uninformative point uniform distribution over
all of the possible associations. This is akin to assuming that the observations of
targets/false alarms at each time are recorded in a random order. The solution
is then to calculate the posterior distribution of the data association hypotheses
given the observations. Since this is a very computationally intensive task, stan-
dard MCMC methods are generally too time consuming for many applications.
To overcome this issue, several particle filter approaches have been suggested
to take advantage of the sequential nature of the problem (Särkkä, Vehtari and
Lampinen (2007), Kreucher, Kastella and Hero (2005) and Vermaak, Godsill and
Perez (2005)). In Section 4 we have adopted an MHT approach to approximat-
ing the posterior distribution; this is similar in spirit to the ideas presented in
Obermeyer and Poore (2004).

As mentioned earlier, this article is motivated by the need for tracking merg-
ing and splitting targets, such as storms or vortexes. Merging and splitting of
targets can be common in radar applications as well, though in a slightly dif-
ferent context. That is, when two targets are close together, resolution limits
may prevent them from being simultaneously detected. The detection method
will then return only one (or even no) observation for these two targets. This
certainly poses additional difficulties and challenges. Although this is perceived
as a very important issue by Daum (1994) and Blackman (2004), we are unaware
of any satisfactory solution to it. Most existing methods for tracking merging
targets are not well defined in terms of an overall probabilistic model (Trunk and
Wilson (1981), Chang and Bar-Shalom (1984), Koch and van Keuk (1997) and
Genovesio and Olivo-Marin (2004)).

Up to now the most complete model for merging and splitting targets seems
to be the one presented in Khan, Balch and Dellaert (2005, 2006). It is ap-
propriate for the situation of unresolved radar measurements discussed above.
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However, for the following reasons, this model is inadequate for representing the
physical processes that we are studying in Section 2. First, it does not allow
for the birth and death of targets. Second, no dependence structure is specified
to describe the relationship between the merging events and the corresponding
parent target locations. In other words, the model would allow for merging of
targets that are distant apart. Lastly, its merging and splitting events are very
temporary, in the sense that newly merged targets are as likely as any other tar-
gets to not be merged in the next image frame. This is unrealistic for many real
problems where when targets merge, they tend to stay merged for an extended
period of time. There is a clear need for a tracking method that can handle the
above issues satisfactorily.

1.3. The proposed method

Our method for meeting these needs is based on a new continuous-time
stochastic model that incorporates birth, death, merging and splitting of targets
into the likelihood, as well as missing targets and false alarms. It also allows us
to accommodate other target attributes (such as size or intensity) to improve the
estimation results. Utilizing attribute information has been shown to increase
tracking performance in other applications (e.g., Bal and Alam (2005), Roh,
Kang and Lee (2000), Salmond and Parr (2003), and Angelova and Mihaylova
(2006)). To the best of our knowledge, this is the first time all the above events
are explicitly built into a stochastic model for tracking. We note that, although
this model is fairly complex and contains different components, it was designed
so that the resulting likelihood function can be expressed in closed form, and
hence be computed efficiently.

The proposed model is continuous in time, which provides two additional ad-
vantages. First, it can be easily applied to irregularly sampled image sequences,
and second, it allows the asymptotic properties of the tracking estimates to be
studied when the sampling time converges to zero. Although it is beyond the
scope of this article to examine these large sample properties, a theoretical jus-
tification for our tracking method is provided in Storlie, Hannig and Lee (2008).

When compared to existing methods, another benefit of our work is the way
that we handle the static model parameters (e.g. rates of birth and death, noise
variances, etc.). There are many approaches to particle filtering that allow for
estimation of static model parameters along with the state variables (e.g., An-
drieu and Doucet (2003), Doucet, de Freitas and Gordon (2003) and Doucet et al.
(2001)). However, these rarely apply to multiple target tracking problems; most
existing methods assume that many of the key model parameters are known.
We provide consistent estimates of these model parameters and we calculate the
distribution of the data associations given these estimates and the observations.
Our approach might therefore be considered empirical Bayes where, just as in
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the Bayesian approach to tracking, a uniform prior is imposed on the data asso-
ciations but not on any of the model parameters.

The rest of this article is organized as follows. In Section 2 we describe two
problems that motivate our work. The proposed stochastic model is presented
in Section 3. Section 4 demonstrates how this model can be applied to provide
track estimates of the targets. Finite sample performance of the methodology is
then illustrated on simulated data in Section 5. Sections 6 and 7 report the track-
ing results obtained by applying the method to the original problems. Lastly,
concluding remarks and possible future work are given in Section 8. We note
that there is also an online supplementary document to this article, available
at http://www.stat.colostate.edu/~tlee/tracking/. The supplement pro-
vides additional information that we refer to; references to it are always preceded
by the letter S (e.g., equation (S.1) refers to the first equation in the supplemen-
tary document).

2. Two Motivating Problems

This section describes two problems for which the tracking of multiple targets
is an important step to their solutions. Note that these examples are nonstandard
tracking problems meant to serve as a clear illustration of our methodology, even
though this results in difficulty levels that are not necessarily representative of
current state-of-the-art tracking challenges.

2.1. Convective systems

Figure 1 shows radar reflectivity images evolving over time on July 14, 1996
from 1:00am to 3:30am. Radar reflectivity is correlated to rainfall intensity so
that we can roughly attribute the variation of color in these images to different
rainfall activities. In these images blue indicates 0 inches/hour of rainfall increas-
ing, on a log scale, to bright yellow indicating ≥ 2 inches/hour. The images are
separated by 30 minutes.

The merger of two systems that are located at the corner of South Dakota,
Wyoming, and Nebraska can be seen in the first few images of Figure 1. These
are clearly separate systems until the third image, where they are now one. There
is also a splitting event in the panhandle of Florida as a fairly large system breaks
apart into two smaller systems.

The targets that we wish to track are the larger convective systems. For our
purposes, a convective system is defined to be a rainfall system that is larger than
100 km in length (approximately 1◦ of latitude or longitude). This problem has
been studied previously by Davis, Manning, Carbone, Trier and Tuttle (2003).
The very short term behavior (less than 1 hour) of such systems is reasonably
well known, but the moderately short term (1 to 6 hours) and long term (1 to 2
days)
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Figure 1. Radar Reflectivity Images Evolving During July 14, 1996.

behaviors are still largely unknown. It is certainly desirable for the purposes of
climate modeling to gain a better understanding of the longer term behavior.

A real contribution then would be the validation and improvement of the
storm activity in Regional Climate Models. These are complex computer models
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for the state of the atmosphere; they are used for the prediction of weather
and also to generate data to answer hypotheses. It is thus necessary for these
models to maintain a high degree of reality in terms of the storms that they
produce. Comparing the distribution of storm tracks from data to that of the
Regional Climate Model is one way to verify this. Hence, a much needed tool
is a procedure that can recover the movements and the interactions of all of the
convective systems.

2.2. 2D turbulence

The second motivating problem is a 2D turbulence simulation of freely de-
caying vortexes; see Figure 2. These images are of a 2D vorticity field with
random initial conditions as it develops over time with no energy loss to the
overall system. The white objects are centers of vorticity rotating in a clockwise
direction, whereas the black vortexes have the opposite rotation.

Vortexes of the same spin will coalesce as they move close to each other.
There is a good example of a merger, between times 8 and 9, of two white
vortexes that are left of center and below center in the images. Also, vortexes of
opposite spin have a tendency to parallel each other for a while before moving off
in different directions. Two vortexes exhibiting this behavior are called dipoles.
An example of dipoling are the two vortexes that are left of center and above
center in the images, they travel upwards and slightly left during the image
sequence.

Recently such image sequences are a subject of much research (Bracco,
McWilliams, Murante, Provenzale, and Weiss (2000), Pasquero, Provenazale
and Weiss (2002), and Weiss and McWilliams (1993)), as it is a paradigm for
anisotropic geophysical and astrophysical turbulence and, at the same time, it
is also the most computationally accessible example of fluid turbulence. Turbu-
lence remains a largely open area of research. Automatic tracking of turbulence
structures in this simple example is an important first step toward achieving a
better understanding of turbulence dynamics in more complex systems.

3. A Stochastic Model for Target Tracking

In this section we propose a stochastic model for solving multiple target
tracking problems. Throughout the entire modeling process, we aim to achieve
the following two important and somewhat conflicting goals: (i) we want to
incorporate as much as possible of our physical understanding of the scientific
problems into the model, and (ii) for computational feasibility, we want the
resulting likelihood function to be quickly and accurately evaluated.
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Figure 2. 2D turbulence simulation.

Define a path, (X(t), Y (t)), as the coordinates of the centroid of a target at
time t. We assume that the image sequence is sampled from a continuous process
at discrete times t = (t1, . . . , tn). We focus on 2D settings, but our approach can
be easily generalized to higher-dimensional problems. We model the path of any
target by a 2D random process. This is complicated however by the occurrences
of birth, death, splitting and merging of targets, along with missing observations
and false alarms.
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The proposed model consists of the following five sub-models: (i) the Event
Model that controls the birth, death, merging and splitting of targets; (ii) the
Observability Model that determines when a real target is detected or missing; (iii)
the Location Model that describes the movements of the targets; (iv) the Attribute
Model that incorporates other characteristics of the targets (e.g., size, orientation,
or intensity); and (v) the False Alarm Model that handles the occurrence of false
alarms.

3.1. Target event model

The Event Model is a continuous-time Markov model that determines how
and when birth, death, merging or splitting events occur. The Markov assump-
tion implies that the times between successive events are independent exponen-
tially distributed random variables. While the best distribution for modeling
event waiting times is problem dependent, the memoryless property of the expo-
nential distribution does seem to be a realistic assumption for the the storm and
vortex problems discussed above.

In the Event Model the rates at which birth, death, splitting and merg-
ing events happen are given by λb, N(t)λd, N(t)λs, and (N(t) − 1)λm respec-
tively, where N(t) is the number of targets in existence at time t. It is as-
sumed that the initial number of targets N0 follows a Poisson distribution:
N0 = N(t1) ∼ Poisson(λ0). Notice that the rates of death and splitting events
are proportional to the number of targets in existence. This is because every
target has an individual rate of dying (or splitting) which is independent of other
targets. For merging events, it may seem more natural for the rate to be propor-
tional to

(
N(t)

2

)
, the number of pairs of targets. However, we adopted (N(t)−1)λm

for the following two reasons. First, if we used
(
N(t)

2

)
, the problem would not

be scale invariant in that if N(t) were scaled up by a factor of two,
(
N(t)

2

)
would

be scaled up by a factor of 4 instead of 2. Second, it is also intuitive to use
(N(t) − 1)λm as the rate. This is because each target should only be merged
with its closest neighbor, and there are at most N(t) − 1 such closest pairs to
consider when there are N(t) targets.

The following notation will be used to describe the Event Model

Ub,j = number of births in the interval [tj , tj+1)

Ud,j = number of deaths in the interval [tj , tj+1)
(3.1)

Us,j = number of splits in the interval [tj , tj+1)

Um,j = number of mergers in the interval [tj , tj+1).

We write U b = (Ub,1, . . . , Ub,n), and similarly for Ud, U s, and Um. Also, denote
the collection of N0 and the U ’s by U = (N0, U b,Ud,U s, Um).
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Each target, regardless of its status (e.g., alive or dead), will be uniquely
identified by a positive integer starting from 1. We call such integers indices.
The initial targets alive at time t1 are arbitrarily labeled with indices 1 through
N0. The following actions are taken at the times when one of the four possible
events happens. When there is a birth, the new target is given the next available
index. For example, if there are already 10 targets in the model (some currently
alive, some could be dead), these targets would have been labeled uniquely with
indices from 1 to 10, and the new target will be given an index of 11. When there
is a death, all targets that are still alive are equally likely to be selected as the
one that dies. When there is a split, all of the living targets are equally likely to
be the parent, and the children are given the next two available indices. Finally,
for merging events all of the possible pairs of all living targets are equally likely
to be the parents, and the child is given the next available index.

Notice that the assumptions that all pairs of events are equally likely appears
to be in contradiction to the principle that only close targets are eligible to
merge together. We rectify this issue in the Location Model to be described in
Section 3.3. In short, locations of the parents of a merger are conditioned to be
“close” to each other right before the merger. This shifts the burden of enforcing
the property that “only close targets merge together” to the location model.
This leads to an important simplification of the likelihood calculation since the
location model depends on the Event Model but not vice-versa.

We specify which targets were involved in the events by

Vb,j = the collection of indices of targets that were born in the interval [tj , tj+1)

Vd,j = the collection of indices of targets that died in the interval [tj , tj+1)

Vs,j = the collection of triplets (i1, i2, i3) where i1 is the index of the parent and

i2, i3 are the children for every split in the interval [tj , tj+1)

Vm,j = the collection of triplets (i1, i2, i3) where i1, i2 are the indices of the

parents and i3 is the child for every merger in the interval [tj , tj+1). (3.2)

Let V b = (Vb,1, . . . , Vb,n), and similarly for V d, V s, and V m. The collection of
all the V ’s will be denoted as V = (V b, V d, V s, V m).

Lastly, it should be noted that this is a hidden Markov model in that we do
not actually observe the variables U and V from the data. Predicting these vari-
ables is part of the tracking problem. This will be described further in Section 4.

3.2. Observability model

Now we discuss our approach to modeling missing targets, that is, real targets
that exist but were not detected in some image frames. It is certainly not ideal



12 CURTIS B. STORLIE, THOMAS C. M. LEE, JAN HANNIG AND DOUGLAS NYCHKA

to simply allow these targets to die when they have escaped from detection, and
to start new paths when they appear again. Instead, for such a missing target,
a good tracking method should be able to impute its existence and return one
single path as its track estimate. In the tracking literature missing targets are
usually modeled using i.i.d. Bernoulli random variables. We adopt this approach
as well. That is, at any time t, if a target exists it has probability Pd of being
detected and producing an observation. This is also assumed independent over
time.

3.3. Target location model

When a target is determined to exist by the Event Model, we model the path
(Xi(t), Yi(t)) of the ith target with a Gaussian process, which is commonly used
in many tracking applications. We also assume the target paths are independent
of other targets unless they are required to split or merge as determined by
the Event Model. The dependency introduced by splitting and merging will
be described later, and we first present the distribution of Xi(t) under generic
conditions. The distribution of Yi(t) is similar, with the obvious changes in
notation and parameters, and independent of Xi(t).

Let the x component of location and velocity of the ith target at time t be
denoted by Xi(t) and X ′

i(t), respectively, and denote the time of initiation of
the ith target by ξi. If the ith target exists at the first observation time t1, it is
assumed that ξi = t1. Then

Xi(t) = Xi(ξi) + X ′
i(ξi)(t − ξi) + σiGi(t − ξi), (3.3)

where Gi(t) is some continuous mean zero Gaussian process, for which we have
chosen to use an integrated Brownian motion (IBM). This is sometimes referred
to as a nearly constant velocity model, and is popular for target location within
the tracking community. In addition, a comparison of IBM path realizations to
those produced by storms and vortexes revealed that the IBM model was flexible
enough to represent these paths well.

The initial position Xi(ξi) and the initial velocity X ′
i(ξi) depend on whether

the target resulted from a birth, merging or splitting event. More detail for each
of these cases is given below.

Initial Conditions for a Target Resulting from a Birth Event.
Suppose that the ith target is the result of a birth. It is assumed that the

initial position and velocity are Gaussian, Xi(ξi) ∼ N
(
µX0 , σ

2
X0

)
and X ′

i(ξi) ∼
N

(
µX′

0
, σ2

X′
0

)
. For the two problems described above, it may also seem reason-

able to use a uniform distribution to model the initial location Xi(ξi). However,
very often the likelihood of a uniform distribution can be satisfactorily mimicked
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by sufficiently increasing the variance of a normal distribution. Thus we keep the
original Gaussian assumption for mathematical convenience.

Initial Conditions for a Target Resulting from a Merging Event. Now
suppose that the ith target is the child resulting from a merging event. Let
pi = (pi,1, pi,2) be the vector containing the indices of the two parents. Suppose
for now that size information is available and that it is realistic to model the
expected size as a constant, as in Section 3.4. Use E(Sj) to denote the mean size
of the jth target. Physically, the initial position or centroid of the child should
be the average, weighted by size, of the positions of the parents at the time of
merger,

Xi(ξi) =
(

E(Spi,1)
E(Si)

Xpi,1(ξi) +
E(Spi,2)
E(Si)

Xpi,2(ξi)
)

.

Also, by conservation of momentum, the initial velocity of the child should be
the weighted average of the velocities of the parents at the time of merger,

X ′
i(ξi) =

(
E(Spi,1)
E(Si)

X ′
pi,1

(ξi) +
E(Spi,2)
E(Si)

X ′
pi,2

(ξi)
)

.

If there is no size information available then we can let the initial position
of the child be the simple average of the positions of the parents, plus perhaps a
small amount of noise ψm,i. Figure 3 displays a physical representation of this.
We can also mimic the conservation of momentum by taking the child’s velocity
to be the simple average of the parent velocities plus noise. This yields

Xi(ξi) =
1
2

(
Xpi,1(ξi) + Xpi,2(ξi)

)
+ ψm,i (3.4)

X ′
i(ξi) =

1
2

(
X ′

pi,1
(ξi) + X ′

pi,2
(ξi)

)
+ ψ′

m,i (3.5)

where ψm,i ∼ N (0, σ2
Xm

) and ψ′
m,i ∼ N (0, σ2

X′
m

). Presumably, σ2
Xm

and σ2
X′

m

are small so that the new target location and velocity are likely to be close to
the averages of the parents. Parent Locations at the Time of a Merging
Event. Notice that in our modeling so far, the parent targets are not required to
be close to each other at the time of a merging event. To ensure that the parents
move close to each other before merging, the difference between locations of the
parents at the time of merger is conditioned to be small. This is done as follows.

Let d = (d1, d2, d3) be a vector containing the indices of the three targets
involved in a merging event where d1 and d2 are the parents while d3 is the index
of the child. Let D be the difference in location between the two parents at the
time of merger plus a noise term,

D = Xd1(ξd3) − Xd2(ξd3) + ψd, (3.6)
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Figure 3. Physical description of a merger.

where ψd ∼ N (0, σ2
Xd

) and independent of the targets. If σXd
is small, then it is

likely that ψd is small in absolute value. If we then condition the model for Xd1

and Xd2 on the event D = 0, this will ensure that the parents are only a small
distance ψd apart at the time of the merging event. In Figure 3 once again, we
see a merging event with a possible realization of ψd.

In general, there will be Nm =
∑n

j=1 Um,j merging events during the time
window [t1, tn]. We condition the target paths on all of these mergers in a man-
ner similar to that above. This is described more precisely as follows. Let Di

be the D from (3.6) and ψd,i be the corresponding ψd for the ith merging event,
i = 1, . . . , Nm. We then condition the model for (X1, . . . , XM ) on the event
{(D1, . . . , DNm) = (0, . . . , 0)}, where M is the total number of targets that ex-
isted before time tn.

Here we remark that our approach for handling merging, as illustrated by
Figure 3, is a very realistic physical description of merging targets for many real
problems, including the two problems described earlier.

Initial Conditions for a Target Resulting from a Splitting Event. Sup-
pose that the ith target is initiated by a splitting event. That is, the ith target is
one of two children resulting from a splitting event. To keep notation consistent,
let pi,1 be the index of the parent. The location of a child resulting from a split
is modeled by

Xi(t) = Xpi,1(ξi) + ψs,i +
[
X ′

pi,1
(ξi) + ψ′

s,i

]
(t − ξi) + σiGi(t − ξi), (3.7)

where ψs,i ∼ N (0, σ2
Xs

) and ψ′
s,i ∼ N (0, σ2

X′
s
). Similar to that for merging events,

the initial position and velocity of a new child from a splitting event is the same
as that of the parent plus a random error. It is assumed that σ2

Xs
is small so that

the new targets are likely to appear close to where the parent split. Similarly,
σ2

X′
s

should be small so that the new targets have a velocity similar to that of
their parent.



MULTIPLE TARGET TRACKING 15

Figure 4. R1, R2, and Q2.

If size information is available then the conservation of momentum assump-
tion can be imposed on the two new paths from the children splitting off from the
parent. This can be achieved by conditioning in a similar manner as for parent
locations at the time of a merging event.

Measurement Error. Due to imperfect detection or some other reasons, we do
not always observe the exact locations of the targets. Rather, instead of Xi(t),
we observe a noisy version of it. We assume that the measurement errors are
additive, Gaussian and independent over time. That is, for j = 1, . . . , n, we
observe

X∗
i (tj) = Xi(tj) + εi,j with εi,j

i.i.d.∼ N (0, σ2
Xe

).

3.4. Target attribute models

In this section we describe several models that can be applied in conjunction
with the Event and Location Models to improve the tracking results when some
auxiliary information about target attributes is available. We present a few
special cases of attributes that are commonly available: size, orientation and
intensity. Other attributes may be handled in a similar manner.

Size. In the 2D case, the size of a target is the area and, similar to the approach
in Angelova and Mihaylova (2006), we use the length of the minor and major
axes, R1(t) and R2(t), of the best fitting ellipse of the target to characterize it
(see Figure 4). We assume that a best fitting ellipse for each target has already
been obtained, e.g., by standard imaging techniques as described in Rosenfeld
and Kak (1982).

Let R1,i(t) and R2,i(t) be the minor and major radii respectively for the ith
target at time t. The quantities R1,i(t) and R2,i(t) are modeled as log-normal
random variables with parameters (µR1,i , σ

2
R1,i

) and (µR2,i , σ
2
R2,i

), respectively.
The log-normal distribution is commonly used to describe the distribution of



16 CURTIS B. STORLIE, THOMAS C. M. LEE, JAN HANNIG AND DOUGLAS NYCHKA

lengths (Wang and Lee (2006)). These observations are also assumed to be inde-
pendent over time. One could certainly make other more realistic assumptions,
such as allowing the size of a target to change as a positive continuous process.
However, this assumption leads to complications in the likelihood calculation
when there are splitting and merging events. This in turn drastically increases
the computational load, and we do not consider this option further.

Intensity. For many tracking problems, the intensity I(t) of a target can be
defined in various meaningful manners. For example, for the storm application,
it can be defined as the maximum rainfall rate, the average of rainfall rates,
or even some combination of the two. Such intensities can be modeled in a
manner similar to size. We can assume some appropriate random process for the
observations. For the storm application in Section 6, the intensity did not seem
to change much over time, and we found that treating the observations as i.i.d.

from a lognormal distribution was adequate.
Orientation. The orientation of a target can be measured by the angle, Q2

of the major axis corresponding to R2, as shown in Figure 4. We assume that
Q2 follows a von Mises distribution on [0, π] with parameters αi and βi (Fisher
(1995)). As with intensity and radii, we assume that Q2(t) is i.i.d. over time in
the storm application of Section 6.

3.5. False alarm model

The modeling of false alarms, also known as clutter, is divided into three
parts (event, location and attributes) in a manner similar to that for targets.

False Alarm Event and Location. In most existing tracking methods, the
number of false alarms in each image is assumed to be Poisson while the locations
are typically assumed uniform throughout the image. This is equivalent to a
homogeneous spatial Poisson process (Diggle (2003)). We also assume that the
distribution of false alarms is a spatial Poisson process (possibly heterogeneous)
that is independent over time, with intensity function ρ(x, y). In addition, we
recommend using ρ(x, y) = λf [Xi(ξ)](x)[Yi(ξ)](y), where [Xi(ξ)] is the density of
the initial x-location of a target resulting from a birth, and similarly for [Yi(ξ)]
with respect to the y-location. This ensures that the contribution of the initial
location to the likelihood does not influence the probability that an observation
is a target versus a false alarm; see Section 4. Notice that λf is then the expected
number of false alarms at each time point. Unlike the case for real targets, there
is no need for an Observability Model for false alarms, as “missing false alarms”
will never exist.

False Alarm Attributes. If any attributes are used to model the real targets,
they must also be used to model the false alarms. This is to guarantee that the
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likelihood computed by assuming a group of sequential observations originated
from a real target would be comparable to the likelihood computed by assuming
the same observations were false alarms. We also propose that a false alarm
attribute be i.i.d. over each of the false alarm occurrences. The conceptual reason
for the identical distribution is that all of these false observations are artifacts of
the same device. Hence it is reasonable to assume the parameters are the same.

4. The Tracking Estimate

In this section we formally define the estimand of our tracking problem and
propose a method for estimating it. The setup for this problem is as follows.
We collect data at times t1, . . . , tn. At the jth time step, mj observations are
detected from the jth image frame. Each of these mj observations is either a real
target or a false alarm. Let Zi(tj) be the ith observation at time tj , i = 1, . . . ,mj .
Each Zi(tj) is a vector of the location values for either a target or a false alarm.
Depending on the problem, it may also include the values of attribute variables.

Let Z = {Zi(tj) : j = 1, . . . , n; i = 1, . . . ,mj} be the collection of observa-
tions at all times. From our data, Z, we need to decide whether each observation,
Zi(tj), originated from a real target or a false alarm. In addition, if it was from
a real target, we also need to decide which target it should be assigned to. Note
that each observation can be assigned to only one target and each target can only
have one observation assigned to it. We let pi(tj) be the index of the target that
observation Zi(tj) originated from. We can define the index for a false alarm to
be 0.

Write P = {pi(tj) : j = 1, . . . , n; i = 1, . . . ,mj}. So for a given Z, P
will specify the tracks of each target. On top of that we must also specify the
events (births, deaths, splitting and merging) that occurred with the variables U
and V defined in (3.1) and (3.2), respectively. The variables U and V, together
with P, will denote a solution to the tracking problem. Let our estimate of
the tracking solution (U ,V,P) be denoted (Û , V̂, P̂). Notice that in the usual
statistical terminology this is actually called a prediction problem, since (U ,V,P)
is a random variable in our framework. We chose to call it the tracking estimate
instead of the tracking prediction to avoid the potential confusion with track
prediction (of future target locations).

4.1. Calculating (Û , V̂, P̂)

First we delay the issue of parameter estimation to Section 4.4, and assume
for the moment that all the parameters in the model, such as λ0, λb, . . . , Pd,, the
σi’s etc., described in Section 3, are known; see the first paragraph in Section S.6
for a complete listing of the model parameters. We use the notation [X] to denote
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the probability density function of the random variable X, [X](x) to denote [X]
evaluated at x and [X | Y ] to denote the conditional density of X given Y .

To achieve our tracking estimate, we compute the conditional density of
(U ,V,P) given Z,

[U ,V,P | Z = z](u, v, p). (4.1)

Note that this is a probability mass function since the variables (U ,V,P) are
discrete. This can be computed fairly efficiently because the likelihood of our
model conveniently factorizes into several conditional densities. See Section S3
for details.

From this it is natural to define our tracking estimate as

(Û , V̂, P̂) = arg max
u,v,p

[U ,V,P | Z = z](u, v, p). (4.2)

Even more, we can calculate the probability that (Û , V̂, P̂) is the correct solution
given the data Z as [U ,V,P | Z = z](Û , V̂, P̂).

A common but major difficulty in most problems is that it is not computa-
tionally feasible to enumerate all possible tracking solutions and calculate their
likelihood values. To overcome this issue, we have developed a variant of the
Multiple Hypothesis Tracking (MHT) algorithm of Reid (1979), the details of
which are described in Section 4.3.

Our MHT algorithm will locate an approximation to the solution that max-
imizes (4.1), and hence it provides a point estimate (Û , V̂, P̂) to our tracking
problem. Furthermore, by providing an estimate of the density function (4.1),
this MHT algorithm also allows us to make probability statements about the
solution. This is achieved as follows. Upon completion, the MHT algorithm
provides, approximately, the K best solutions; i.e., those with highest likelihood
values. We discuss the choice of K in the next subsection. Label these K solu-
tions (ui, vi, pi) for i = 1, . . . ,K and let K denote the set of these K solutions. If
we assume that the correct solution is in K, then we can calculate the conditional
density of (U ,V,P) given Z = z and the event (U ,V,P) ∈ K,

[U ,V,P | Z, (U ,V,P) ∈ K](u, v, p | z). (4.3)

In practice we can then compute the distribution given in (4.3) to approximate
that in (4.1).

4.2. Confidence sets

Equation (4.1) provides the distribution of all possible tracking solutions
given the data Z, which is much more informative than just the estimate (Û , V̂, P̂).
For example, by summing over the relevant probabilities, we could calculate the
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probability that a given observation is a target or a false alarm, or the probability
that two targets merged, etc. Another innovative use of (4.1) is confidence set
construction. That is, we could construct a confidence set C in the sense that
the probability that C contains the correct solution is ≥ (1 − α)100%. A major
challenge for this is how to summarize and display all elements (i.e., different
solutions of paths) in C in a meaningful and informative manner. We will report
our work on this topic in a future paper.

4.3. A modified MHT algorithm

We have modified the MHT algorithm of Reid (1979) to approximate our
tracking solution (4.2). Major steps of this modification are described next,
while a more detailed description is given in Section S.4. We begin with a brief
description of the original MHT algorithm of Reid (1979).

First we note that in the tracking literature a possible solution to a tracking
problem is called a hypothesis, and hence the name of the algorithm. The original
MHT algorithm assumes that an objective function (e.g., likelihood) has been
constructed for evaluating the score of any solution at any time step. It processes
the data sequentially; at each time step t it keeps a set of the K hypotheses with
highest likelihood, where K is pre-specified by the user; at time step t + 1 it
forms the collection of all feasible hypotheses given the new data for each of the
hypotheses from time t, and prunes the list of the new hypotheses back to K

of them, by eliminating those that have low scores; the algorithm continues in a
similar fashion until the data sequence finishes. In this way K sets of tracking
estimates are obtained and the one that corresponds to the best score value is
taken as the final tracking estimate.

Here is an overview of our modified MHT algorithm. For all of the details
including “gating” procedures and other computational efficient shortcuts, see
Section S.4. At time t1, we consider all combinations of each observation treated
as a real target or a false alarm (thus if there are m1 initial observations, there
are 2m1 possible combinations). Now imagine that we have a set of solutions
for the observations through time tj−1. We then take the new observations Zj

at time tj to form updated solutions based on all possible combinations of the
following possibilities: we assume that each observation Zi(tj) ∈ Zj is either
(i) an observation from an existing target track, (ii) the first observation from
a target resulting from birth, (iii) the first observation from a target resulting
from split, (iv) the first observation from a target resulting from merger, or (v) a
false alarm. We also assume that any existing track that does not receive a new
observation must either (i) become (or stay) missing, or (ii) terminate.

To reduce computational load, we only keep a subset of the new solutions
(those with the highest likelihood) to form solutions for the next time step tj+1.
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The actual number of solutions K that we keep through to the next time step
is determined as follows. Let Lj be the likelihood value of the best solution at
time tj . At each time step tj , we keep only solutions that have likelihood values
greater than cLj , where c < 1 is a user-defined parameter. In addition we limit
the total number of hypotheses kept to be less than Ks. In our implementation
we set c = e−10 and Ks = 200.

4.4. Incorporating estimation of static model parameters

To this point we have assumed the values of all static model parameters to be
known, the approach that is taken by most tracking methods. Here we consider
the more realistic stance that these parameter values are unknown. First we
collect all the static model parameters such as λ0, λb, σ2

i , etc. into the vector
θ, and we write the density in (4.1) as [U ,V,P | Z]θ to explicitly represent the
dependence on θ.

To estimate θ, one could use maximum likelihood, or any other suitable esti-
mates; see Section S.5. Since these estimates depend on the variables (U ,V,P),
we could allow each of the solutions (u, v, p) that we consider in the above
modified MHT algorithm to have its own parameter estimate, which we denote
θ̂(u, v, p). Notice that this leads to an overly optimistic likelihood value

[U ,V,P | Z]θ=θ̂(u,v,p)(u, v, p | z) (4.4)

for each of the solutions. However, based on the work of Storlie et al. (2008),
it can be shown under certain conditions that, as the time between observations
tends to zero,

(Û , V̂, P̂) = arg max
u,v,p

[U ,V,P | Z]θ=θ̂(u,v,p)(u, v, p | z) (4.5)

is equal to (U ,V,P) eventually, almost surely. Hence we use the distribution
defined in (4.4) to calculate likelihood values within the MHT iterations, and to
decide which solutions that we keep for propagation to the next time step.

Although the function in (4.4) is useful for calculating the point estimate
(Û , V̂, P̂), it is not a good approximation of the distribution in (4.1). This is
because each argument, (u, v, p), is given its own estimated value for θ which
introduces a bias that persists even asymptotically. In order to estimate (4.1),
we can, however, use [U ,V,P | Z]θ=θ̃ where θ̃ is a consistent estimator of θ.
This ensures that the probabilities given by [U ,V,P | Z]θ=θ̃ have a frequentist
interpretation, at least in an asymptotic sense. A natural candidate for θ̃ is
given by θ̃ = θ̂(Û , V̂, P̂). As long as the estimator θ̂(U ,V,P) is consistent, then
θ̂(Û , V̂, P̂) is also consistent by the result given in Storlie et al. (2008), mentioned
above.
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Thus, if the MHT algorithm finishes with K solutions {(ui, vi, pi)}K
i=1 at the

last step, we could use{
[U ,V,P | Z, (U ,V,P) ∈ K]θ=θ̂(Û ,V̂,P̂)(ui, vi, pi | z)

}K

i=1
(4.6)

as an estimate of (4.1) to allow us to make various probability statements con-
cerning our final tracking estimates. We used (4.6) to compute the probabilities
to be reported in Figure 5 and Section S.6.

Lastly we remark that in practice the researcher can, based on physical
consideration on the tracking problem at hand, impose various limits on the
parameter estimates. This would serve to limit the amount of bias introduced
into the approximation given in (4.6). For example, the researcher is usually
familiar with the range for the number of targets and/or false alarms so that
effective limits can be imposed for the corresponding model parameters. This
is certainly an improvement over the need for specifying these parameter values
exactly.

4.5. Summary

Here we summarize the major steps of the proposed tracking method,

1. To initialize the algorithm, consider all combinations of each observation from
Z1 treated as a real target or a false alarm. Denote the set of these combina-
tions as K1. Set t = 2.

2. With Zt and Kt−1, obtain the set of possible solutions for time {1, . . . , t} by
enumerating the possibilities listed in the third paragraph of Section 4.3.

3. Calculate the likelihood values for all these solutions using (4.4). Keep the K

solutions that have the K largest likelihood values, where K is determined by
the method described in the last paragraph of Section 4.3. Collect these K

best solutions into Kt.

4. Increment t and repeat Steps 2 and 3 until all Zt are processed. Denote the
last set of tracking solutions as Kn.

5. Take the solution from Kn with the highest likelihood value as the final track-
ing estimate. In addition, using (4.6), one can use all members of Kn to
provide an estimate for the distribution (4.1).

5. Simulated Data Results

In this section, we present the results of the above proposed tracking method
on a simulated data set. For a full description and discussion of more extensive
simulation results, see Section S.6 of the online supplementary document.



22 CURTIS B. STORLIE, THOMAS C. M. LEE, JAN HANNIG AND DOUGLAS NYCHKA

Figure 5. Tracking estimates of the proposed method on simulated data.

In this example, the data Z are assumed to come from the model described
in Section 3. The random motion component Gi(t) is an integrated Brownian
Motion for all targets. The event parameters are set at λ0 = 4, λb = 0.1,
λd = 0.02, λs = 0.06, λm = 0.08, and λf = 8.0. All parameter values were chosen
to mimic the rainfall data of Section 6. Values for other model parameters, along
with the limits imposed on the parameters for the purposes of estimation, are
given in Section S.6.

A realization from this model is shown in Figure 5. All the observations
from all time steps are plotted together in one plot. Observations from time tj
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are labeled ’tj ’. The correct solution and the top four alternative solutions are
provided along with their estimated probabilities approximated by (4.3). In this
example we would be about 90% confident that our point tracking estimate is
the correct solution. In fact, our estimate is the correct solution in this case.

6. Application to Rainfall Data

Here we consider tracking the storms that evolved during the morning of July
14, 1996, and shown in the images of Figure 1. We utilize available attribute data:
size (radii of best fitting ellipse) and orientation. It can be concluded from the
simulation results of Section S.6 that attribute information can be very beneficial
for tracking estimation.

For the purposes of this problem, we are interested in tracking the mesoscale
convective systems, which are usually defined to be storms with major axis longer
than 100 km. This corresponds to roughly 1◦ latitude or longitude in Figure 1.
Before we can track the storms, we must first identify them from the images and
measure their location and attributes. An effective detection algorithm was used
for this step and is described in Section S.7.

Recall that the images in Figure 1 are separated by 30 minutes. So this small
illustration covers a time span of 2.5 hours. Figure 6 shows the same images as in
Figure 1 after the initial processing of the detection algorithm. It is the ellipses
in these images that we actually track.

Figure 7 shows the results of applying the proposed tracking method to the
images in Figure 6. The limits for parameter estimation were set to the same as
those in the simulations of Section S.6. The estimated tracks of the storms given
by the tracking algorithm are displayed in black. Whenever there is a merging
event an orange line is drawn connecting the parents to the child. Whenever
there is a splitting event a magenta line is drawn connecting the parent to the
children.

Notice that the estimate recovers the merging event that occurred between
1:00am and 1:30am, where the two storms in the south west corner of South
Dakota merged together into one storm. Also, in this same time interval, the
large system over Alabama and the panhandle of Florida split into two smaller
systems. The reader is also referred to the same website that contains the online
supplementary document (end of Section 1) to see a video of the raw data, the
processed data, and the tracking solution with the path lines. The corresponding
links from the above webpage are Rain Fall Video, Cleaned Rainfall Images, and
Paths Given by Tracking Algorithm. These videos cover a longer time span as
well, from 1:00am to 1:00pm on July 14, 1996.
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Figure 6. Best fitting ellipses of radar reflectivity images.

7. Application to 2D Turbulence

Here we consider tracking the vortexes in the 2D turbulence simulation dis-
played in Figure 2. We again utilize the size information but forgo the use of
orientation, since all of the vortexes are nearly circular. The detection algorithm
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Figure 7. Best fitting ellipses with estimated paths superimposed

used to identify the vortexes is similar to that used for the storms in Section 6.
Figure 8 shows the resulting (Û , V̂, P̂) after applying the tracking algorithm

to the processed data of Figure 2. Recall that the black vortexes are spinning in
a counterclockwise direction while the white vortexes are spinning in a clockwise
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Figure 8. 2D turbulence simulation.

direction. The red lines indicate the paths of black vortexes, while blue lines
indicate the paths of white vortexes. Merging events are indicated by orange
lines for black vortexes and green lines for white vortexes. There is no splitting
of targets in this problem.

A good example of a merging event can be found between frames 8 and 9.
In addition, the tracking algorithm was able to capture the fact that one of these
vortexes was missing (not found by the detection algorithm) for two frames just
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prior to the merging event. This is illustrated by a continuous path line where
the vortex disappears for two frames.

The same website given at the end of Section 1 above also contains the
corresponding video of the raw data given by the link 2D Turbulence Video.
Videos of the best estimate path lines superimposed on the cleaned images, as
well as on the raw images, are given by the links Vortex Paths on Cleaned Images
and Vortex Paths on Raw Images, respectively.

8. Conclusions and Further Work

In this article we have presented an introduction to multiple target tracking.
We have also developed a new stochastic model that incorporates the events
of birth, death, splitting and merging of targets into the likelihood, as well as
missed detections and false alarms. Track estimation is then accomplished by
considering the distribution of the relevant variables given the data.

The results obtained from simulated data provides strong evidence that this
estimation procedure works very well even under the presence of false alarms
and missing observations. The utility of the method was also demonstrated on
two non-standard applications: radar reflectivity data collected over the United
States and vortexes in 2D turbulence images. A future project is to apply the
method to other more difficult tracking applications, such as smaller scale con-
vective systems (thunder storms) and/or missile target tracking.

For multiple target tracking estimation, there remain many challenging and
interesting problems that are particularly suited for statisticians to tackle. As
a first example, it would be useful to develop a procedure for sampling rate
determination for tracking problems. That is, to automatically determine how
frequently one should collect the data.

Secondly, what would be the best approach to incorporating and utilizing
target attribute information when they are available? In this article we have
used an ellipse to represent shape. Previously, Isard and Blake (1998) use curve
segments to model target shape, allowing them to change over time, and Wang
and Zhu (2004) decompose an image into basis functions, called tokens, and
group these tokens together to form targets, again allowed to deform over time.
However, all these methods are very much problem-dependent. It would be
advantageous to develop a statistically sound principle to guide us in how to
incorporate attribute information into the tracking solutions.

It would also seem very beneficial to combine the detection problem with
the tracking problem. This is because the inherent spatio-temporal dependency
provides additional information to help the detection algorithm predict where
targets are more likely to exist in successive images. Some work has been done in
this direction (e.g., Tonissen and Bar-Shalom (1998), Salmond and Birch (2001),
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Kreucher et al. (2005) and Boers, Driessen, Torstensson, Trieb, Karlsson and
Gustafsson (2006)), but the tracking models adopted tend to be relatively simple.

Lastly, virtually no rigorous attempts have been made to theoretically justify
the use of any particular tracking methods. Although, as a first step, Storlie
et al. (2008) investigate some theoretical properties of the estimates described
in this article, there is still much theoretical work to be done to further the
understanding of the multiple target tracking problem. Statisticians are well
equipped to answer these questions (especially the last one), and it is our hope
that this article will stimulate further statistical investigations in various aspects
of the problem.
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COMMENTARY

Jason Adaska

BAE Systems, Advanced Information Technologies

Storlie, Lee, Hannig, and Nychka approach the problem of multi-target track-
ing with merging and splitting events from a statistical point of view. The target
tracking problem is well known in the engineering literature, and the authors
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provide a great review of the history and successes in that field, particularly
Multiple Hypothesis Tracking. They also set out to tackle a one of the toughest
current problems in the field, that of tracking targets which interact. They apply
this work to the practical problem of tracking storms.

Since my own background comes from an applied discipline, I can not help
but approach this work with an eye toward some of the issues considered impor-
tant for tracking systems used in the engineering community. Two broad criteria
will be used for this purpose:
• Modeling − Does the statistical model accurately and succinctly capture the

relevant behavior?
• Implementation − Will the procedure scale to realistic versions of the problem

considered?

Modeling Comments

The first criticism with regards to modeling has to do with the use of the
size attributes (two radii and an orientation) R1, R2, Q. Blackman and Popoli
(1999) remark that the “primary purpose of attribute fusion is to ascertain the
ID of the target”, that is, they provide a mechanism to separate out one target
from potential “confusers”. In traditional tracking contexts, one could consider
something like color to be a useful attribute. If you want to track a red truck,
then receiving a “red” measurement at two different times, would help discern the
path of the target in the intervening period. This is usually made precise with a
statistical model for the color sensor, and a prior probability on red trucks. What
is clear from this simplified example is that an attribute must be correlated in
time for it to be useful for ascertaining the identity of a target. If a truck changed
color from one instant to the next, it would have no utility for resolving confusion.
The size attributes R1, R2, Q are modeled as independent in time, so they suffer
from a similar problem. They are not attributes in this usual sense, and thus
not useful for resolving confusion in the multi-target tracking problem. Their use
appears to be mainly in mitigating false alarms, and if this is the intent, then I
would argue they should be treated from this perspective. For physical reasons,
sizes of storms are correlated with time, and this could be an important feature to
model. Additional utility for size could be injected by using it to inform merging
events. For instance, the noise term for D (distance between two parent storms
at the time of a merging event) could utilize a covariance that scales with the
size of the object, thus allowing two large storms to merge even if their centroids
are distantly separated.

The second comment pertains to the implicit coupling of the sensors to the
underlying process. In short, the sensors should not be driving merging and
splitting events, but “(p.22) Existing tracks that do not receive a new observation
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· · · must either 1) go missing or 2) terminate”. Setting aside the awkwardness of
incorrect causality, there is a practical danger to this choice as a simple example
illustrates. Suppose two storms are observed separated at t0, merge unobserved
at t1, and are observed merged at t2. The correct hypothesis is not available
for this situation. One could imagine “recovering” by choosing the hypothesis
“separated at t0, t1 and merged at t2” which is available, and in a sense close
to the true event history. The problem here is that this hypothesis requires two
simultaneous misses at t1. The likelihood could be very low in this instance, and
in danger of being pruned by the MHT algorithm.

As a final modeling comment, the treatment of false alarm versus new track
hypotheses seems to result a poor engineering design. Particularly, the false
alarm intensity is set to the new track intensity. The authors state this was done
“to ensure that the contribution of the initial location to the likelihood will not
influence the probability that an observation is a target versus a false alarm”. In
practical terms, if location provides a mechanism for discriminating false alarms
versus new targets, then this information should be put to use. In many cases,
false alarms are a function of sensor errors which are typically decoupled from
the physics of creating new objects. For instance, the formation of new storms
would likely be a function of regional atmospheric conditions, while false alarms
would often be related to thermal noise at the sensor. These stochastic processes
are almost certainly uncorrelated.

Implementation Comments

Perhaps the most important issue in a practical multi-target tracking sys-
tem is the way in which the combinatorial explosion of hypotheses is managed.
Clearly, one could always consider additional behavior in a stochastic system,
and merging/splitting events are an important (and particularly challenging) ex-
ample. However, additional branching of potential hypotheses only increases the
rate at which hypotheses grow (and must be pruned), so attention to this issue is
paramount. For instance, the number of individual merging events that could be
hypothesized grows like the square of the number of tracks. The authors navigate
this particular issue by setting the rate of merging events to be proportional to
N(t) rather than N(t)2 and then using the location model to evaluate the pair-
wise distance between merging tracks, but, fundamentally, a procedure is still
needed to efficiently prune away hypotheses that are unlikely without discarding
those hypotheses which may be end up becoming the most likely at a later time.
I would be very interested in seeing the authors extend their analysis to address
these issues in combinatorial growth.

From a computational perspective, the choice made in computing Σ∗ and µ∗

(parameters in the position distribution after a merger) is particularly troubling.
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These quantities require a matrix inversion whose size depends on the length of
the track (Supplement pp.5-6). Thus the computational cost increases with time
as the tracks become larger. This is a chief reason why recursive estimation filters
are pursued for multi-target tracking solutions in other fields. This is possibly the
largest single problem for incorporating this technique in a real-world tracking
application.

Conclusion

I was pleased to read the authors contribution to the problem of multi-target
tracking when targets split and merge, since it is simultaneously difficult and of
great practical utility for the tracking community. In that literature, the problem
of tracking objects that split and merge is sometimes referred to as the “group
tracking problem”, where clusters of tracks may come together in formation,
move as a coordinate unit, and split apart at a later time. Some recent work
done under this heading is in Huali et al. (2001) and in Van Keuk (2002).

References

Blackman, S. and Popoli, R. (1999). Design and Analysis of Modern Tracking Systems, Artech

House, Boston.

Huali, W., Wang, D., et. al (2001). A New Algorithm for Group Tracking. CIE International

Conference on Radar, 1159-1163.

Van Keuk, G. (2002). MHT extraction and track maintenance of a target formation. IEEE
Transactions on Aerospace and Electronic Systems, 288-295.

BAE Systems, Advanced Information Technologies 6 New England Executive Park Burlington,

MA 01803, U.S.A.

E-mail:

(Received October 2008; accepted November 2008)

COMMENTARY

David S. Choi and Patrick J. Wolfe

Harvard University

Abstract: Target tracking is a ubiquitous and important application in engineering
and the sciences, with several problems still open for advancement from both an

algorithmic and a methodological perspective. In this discussion we highlight two
key issues that arise in practice: target covariance estimation and data association.
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Key words and phrases: Data association, multi-target tracking, posterior covari-

ance estimation

1. The Target Tracking Formulation of Storlie et al.

Storlie et al. describe a continuous-time stochastic model for target tracking
in which a random number N of targets, each with random birth and death times,
is observed in total over a finite time interval t ∈ [0, T ]. Two-dimensional target
paths (Xk(t), Yk(t)), for k ∈ {1, . . . , N}, evolve as standard linear dynamical
systems with Gaussian process noise; however, with positive probability, their
initial states are constrained to be near the final states of other paths—indicating
a splitting or merging of target “tracks.” In the sequel we denote by P the set
of N target paths {(Xk(t), Yk(t))} and their associated birth and death times.

For each observation time tj , a random number mj of measurements is as-
sumed; these measurements comprise either noisy observations of the targets or
spurious “false alarms.” To indicate the association of measurements to targets,
a latent categorical variable pi(tj) is defined for every i ∈ {1, . . . ,mj} and time
tj , such that pi(tj) = 0 denotes a spurious measurement and pi(tj) = k a mea-
surement of the kth target, with a specified prior odds ratio governing the false
alarm rate. Computing the posterior distribution of the target paths, each with
associated birth and death times, is made difficult by the fact that one must es-
timate or marginalize over a number of unknown nuisance parameters, including
the set of latent target assignment variables A := {pi(tj)}.

2. The Nagging Issue of Covariance Misunderestimation

In the absence of splits and merges, the celebrated Kalman filter provides an
analytical means of estimating the set of target paths P and associated uncer-
tainty due to Gaussian measurement noise and linear, Gaussian state dynamics,
conditional upon the set A of latent target assignment variables. However, in
cases where A must be estimated from measurements, leading to the so-called
data association problem (Blackman and Popoli (1999)), much work remains to
be done in efficiently and accurately estimating the uncertainty associated with
posterior estimates of P as a function of the uncertainty associated with A.

If we assume an average of n active targets at each measurement time, then
the effective cardinality of A is seen to be O(n

P

mj ), which quickly renders an
exact marginalization infeasible. For this reason, the tracking community has
long focused on efficiently approximating the K ¿ |A| most likely posterior
estimates of A. Storlie et al. adopt the same approach; however, it is clear that
in cases where posterior mass fails to be well concentrated, this approximation
can severely underestimate the uncertainty associated with estimates of P.
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Figure 2.1. Left: Simulated measurements of three target paths, displaying
either a single path crossing a pair of paths, or two paths that diverge as a
third path approaches. Right: Ranked posterior probabilities of the target
association set A for its 15,000 most likely values, with those corresponding
to the former possibility distinguished by asterisks.

Figure 2.1 provides a typical example in which this “K-best” heuristic fails
unless K is roughly exponential in the number of measurements. Noiseless mea-
surements are taken from three targets whose dynamics are modeled as a one-
dimensional Brownian motion, with zero probability of false alarm or missed
detection at each measurement time. For this scenario, the K most probable
choices of A can be found without resorting to approximation. Measurements
could correspond either to two similar paths that are intersected by a third path,
or to two paths that closely follow each other but then diverge as a third path
approaches. Under typical assumptions, both possibilities are comparable in
posterior probability, but the largest values of the target association set A are
dominated by the second possibility alone. Unless K is very large, it is clear that
the resultant posterior estimates of the target paths P may not only be extremely
erroneous, but will also exhibit drastically underestimated covariance terms.

Moreover, in applications, these covariances are typically visualized sepa-
rately for each target trajectory, amounting to a summarization of the joint
posterior based on various marginals of the posterior of P. However, symmetries
resulting from exchangeability of the target parameters with respect to their
labels arise when considering the entire posterior—an issue that can escape at-
tention when conditioning on the K best estimates of A. Hence, while the many
modern-day successes of Monte Carlo methods would seem to suggest an ap-
proach based on sampling from the posterior of A to more accurately capture
true posterior covariances, it remains an open problem as to how best to employ
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such samples in the context of posterior summarization for multi-target tracking.

3. A Role for Efficient Batch Methods in Tracking?

The target tracking scenario described above provides a canonical example
of the label-switching problem associated with estimating a mixture of distribu-
tions from data (Jasra, Holmes, and Stephens (2005)). The optimal procedure
frequently being intractable, offline mixture estimation problems are typically
treated using variants of the expectation-maximization approach. For online
applications exhibiting an appropriate latency tolerance—potentially even the
applications of Storlie et al.—batch estimation techniques may also hold promise
for the target tracking problem. In this vein, one possible approach to batch
clustering for target tracking would involve choosing an initial estimate for A,
and then iterating between the following steps.

1. Estimate P, conditioned upon A. Generally, P is estimated using the
Kalman filter; in the setting of Storlie et al., however, elements of P fail to
be conditionally independent given A, and hence must be estimated jointly.

2. Given an estimate of P, assume the target paths to be independent and
choose A to maximize the probability of the data. As is well known in the
tracking community, such a target assignment can be efficiently computed.

To illustrate this latter point, let nj be the number of active targets at
measurement time tj , and denote by k1, k2, . . . , knj their indices with respect
to the full index set of all targets {1, . . . , N}. Define a likelihood by letting
zi(tj) denote the measurement value associated with the latent variable pi(tj),
assuming that targets are detected with probability pd at each time tj . We may
then define for each tj an (mj +nj)× (mj +nj) matrix Cj with entries as follows:

Cj(i, l) =



log p(zi(tj) |Xkl
(tj), Ykl

(tj), pi(tj) = kl) i ∈ {1, . . . ,mj},
l ∈ {1, . . . , nj},

log p(zi(tj) | pi(tj) = 0) i ∈ {1, . . . ,mj},
l ∈ nj + {1, . . . ,mj}

log(1 − pd) i ∈ mj + {1, . . . , nj},
l ∈ {1, . . . , nj}

0 otherwise.

The maximizing set of latent assignment variables A can then be efficiently
computed at each time step, for instance by applying the well-known Hungarian
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algorithm (Kuhn (1955)) to solve the optimization problem maxΠ tr(CjΠT ) over
the set of all permutation matrices Π; one then sets pi(tj) = kl if the (i, l)th
element of Π equals 1 for l ≤ nj , and pi(tj) = 0 if Π(i, l) = 1 for l > nj .

This example serves to illustrate the connection between estimation of mix-
ture distributions and the data association problem in tracking, and we conclude
with a brief mention of more sophisticated approaches in the recent literature.
In this vein, Markov chain Monte Carlo algorithms inspired by results of Jerrum,
Sinclair and Vigoda (2001) have recently been adapted for the target tracking
problem by Oh, Russell and Sastry (2004) and Fox, Choi, and Willsky (2006),
and a growing body of work from the computer vision and robotics communities,
for instance work by Montemerlo and Thrun (2003), employs related ideas by
way of sequential importance sampling.
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COMMENTARY

Arnaud Doucet and Ba-Ngu Vo

University of British Columbia and University of Melbourne

We would like to congratulate the authors for this interesting and timely
paper. We hope it will generate a lot of interest in the statistical community.
Multitarget tracking problems appear in numerous applications in computer vi-
sion and signal processing, and the storms tracking example provided by the au-
thors is an additional attractive application. We share the opinion of the authors
that such problems require the development of principled statistical methods,
and that statisticians have the potential to make valuable contributions to this
field.

It should also be acknowledged that tracking is a field where statistical tools
have been used for a very long time. In particular, tracking problems have long
been formulated as optimal (Bayesian) filtering problems and a large number of
approximation techniques, such as the MHT described in this paper, have been
proposed to perform inference. Advanced computational methods such as particle
filtering techniques (Gordon, Salmond and Smith (1993)) for non-linear non-
Gaussian models resulted from a collaboration between tracking specialists and
a statistician and first became popular in tracking/vision before being adopted
by statisticians. This is a perfect illustration that there is much to be gained
from interactions between the statistical and tracking/vision communities.

We want to comment here on a few recent approaches and open problems
arising in tracking which should be of interest to statisticians.

Many tracking applications require us to track simultaneously potentially
hundreds of targets using very noisy measurements. In such cases, although it
is possible ‘theoretically’ to formulate the problem using a Bayesian model quite
similar to the one presented in this paper, the current approximation techniques
such as the MHT-based approaches typically do not scale gracefully. In the
example provided by the authors the targets appear rather well separated, the
clutter rate is quite low. Perhaps the authors could comment on the performance
of their algorithm in more challenging settings, e.g. higher number of targets and
denser clutter. Typically, the main problem is that more challenging scenarios
require solving a difficult data association problem. This is why a variety of
interesting alternatives have been proposed over the past few years.

In particular, we believe that the random set/point process approach to mul-
titarget tracking originally proposed by Mahler and approximations such as the
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PHD/CHPD type filters are very useful for these types of applications (Mahler
(2007)), (Vo, Vo and Cantoni (2007)). For example, the PHD filter can accom-
modate splitting; merging is also permitted since the intensity function in the
PHD filter is essentially the density of the average count of the number of tar-
gets. It is also possible to incorporate other features such as intensity, spin, size
and shape into the state; see (Mahler (2007)) for a recent review. This emerg-
ing area should be of interest to statisticians especially those working on spatial
point processes. A good source of information and papers can be found from the
website http://randomsets.eps.hw.ac.uk/index.html. Other techniques have also
been proposed to reduce the computational complexity of multitarget tracking;
this includes the use of belief propagation techniques or the use of a modified like-
lihood (Gilholm, Godsill, Maskell and Salmond (2005)) that bypasses the data
association problem.

We also share the opinion of the authors that tracking specialists have ne-
glected important problems. It is indeed often assumed that the parameters of
the tracking model are known, which is rarely the case. The procedure proposed
by the authors in this paper is a valuable addition to the tracking literature.
Although the authors did establish consistency of their procedure when the sam-
pling rate goes to zero, we wonder whether it would be beneficial to try to ap-
proximate directly the marginal likelihood of the parameters in general scenarios.
Ideally a Bayesian approach to recursive static parameter estimation would be
the most appropriate approach to address this problem as we are typically able
to elicit reasonable prior distributions. Unfortunately the current approximation
schemes for Bayesian recursive parameter estimation (Andrieu, De Freitas and
Doucet (1999)), (Fearnhead (2002)), (Storvik (2002)) suffer from serious pitfalls
as discussed in (Andrieu, De Freitas and Doucet (1999)). Even if it were possible
to find a sound computational method, it is unlikely that this would scale for
high-dimensional tracking problems.
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COMMENTARY

Sumeetpal S. Singh

University of Cambridge

The authors have attempted to address a number of genuinely important
modeling, inference and computational issues in multi-target tracking. The au-
thors have developed a more detailed statistical model that explicitly accounts
for merging and splitting. I agree with the need to give merging a more careful
consideration and models that explicitly penalize merging of distant targets is
definitely needed. In fact the model for merging proposed is appealing as it does
not complicate the computation of the likelihood. However it appears to be more
a model for mathematical convenience and lacks a physical interpretation. Per-
haps the authors could shed some light on this matter and several others detailed
below.

Regarding the estimation of model parameters in multi-target tracking, the
authors have not pointed to any previous work on the subject. The method they
have proposed is intriguing and potentially quite useful as it appears to integrate
nicely with the Multiple Hypothesis Tracking (MHT) algorithm. However, how
accurate are the estimates of the static parameters themselves?

Modeling in continuous time naturally deals with irregularly spaced observa-
tions. However, as the supplement to the paper details, inference is more complex
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and approximations are necessary. One of my concerns is about the accuracy of
the approximations employed therein to define the sampling distribution of in-
terest. How does one cope with the scenario when the frequency at which the
observations are gathered cannot be increased to control the error induced by
these specific approximations?

The introduction certainly makes the case for online inference and hence
the use of an iterative batch inference technique like MCMC is not appropriate.
However, I wish to alert the authors that this conclusion may not necessarily
hold for their Convective Systems application where the observation records are
spaced by thirty minute intervals. This problem is dealt with in Section 6 where
results are given for a small illustration with six image sequences. The number
of observations per post-processed image is about 13. My recent experience with
a similar sized data set (but for a different application) Yoon and Singh (2008)
that spanned 30 observation times and about the same number of observations
per time instance suggests that the Convective Systems data could have been
analyzed with a Bayesian approach and with MCMC as the computation tool.
Below I make the case for a simplified model in discrete time that does not
including merging or splitting targets.

Generally the model I considered is similar to that defined by the authors
but in discrete time. Specifics are as follows. Linear Gaussian dynamics were
assumed for the motion of individual targets and individual targets did not in-
teract. Target evolutions were subjected to thinning (probability of death) and
new targets were introduced at each time according to a spatial Poisson birth
process. The observability model was the same as that of the authors but did not
include any attributes. All hyperparameters were estimated, i.e., target survival
and detection probabilities, intensities of the target birth and false alarms pro-
cesses, covariance matrix of target measurement model. The statistical problem
(and sampling procedure) was essentially an extension of that in Oh, Russell
and Sastry (2004) to include, in addition to the estimation of the tracks, the
estimation of hyperparameters as well as the birth and death time of targets. A
simple Metropolis-Within-Gibbs sampler that alternated between sampling the
tracks (association of observations and targets) and hyperparameters was em-
ployed. For about 20 to 30 observation times, the total computation time for the
tracks and hyperparameters was a couple of hours (on an Intel Dual-Core CPU @
3.00GHz). To extract the tracks, the (marginal) MAP estimate was chosen. The
implementation was in Matlab and no attempt was made to code it efficiently.
I would imagine that a C++ implementation with merging and splitting would
run in comparable if not less time.
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COMMENTARY

Ying Wu and Ying Nian Wu

Northwestern University and University of California, Los Angeles

Model and Inference

The statistical model proposed in this paper is a generative model. It is very
natural to use a top-down model for the birth/death and split/merge events.
However, it can be quite difficult to fit this model. The proposed modified-MHT
amounts to heuristics, and theoretical justification would be helpful.

The fundamental issue in video-based tracking is the matching of the image
evidence between frames. This corresponds to the likelihood (or observation or
measurement) model. If this model is weak, no matter how good the prior model
(e.g., the event model, split/merge model in this paper) is, the tracking method
cannot be expected to work well.

Multiple Identical Targets

If the multiple targets have different visual appearances, tracking is a man-
ageable task as we can track the targets individually, with a linear complexity.
However, if the targets are more or less the same in their appearances and are
interacting with each other, it becomes a very difficult problem, especially when
we want to keep track of the identities of the targets.
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If it is difficult to separate the collected observations or measurements so
as to associate them to different targets, a conventional solution is to test joint
hypotheses. This leads to exponential complexity, and heuristics are needed in
practice to reduce the complexity. An interesting idea, which is quite different
from the joint hypothesis approach, is to perform distributed inference. Each
target is associated with an individual tracker, but these trackers are not inde-
pendent. They exchange messages and interact with each other. When their
interaction reaches equilibrium, the inference is obtained and the targets are
tracked.

The sequence of papers by Yu and Wu (2004, 2005), Yu, Wu, Krahnstoever
and Tu (2008) and Yang, Yu and Wu (2007) aim to develop a distributed/col-
laborative approach to multiple target tracking. These papers seek to answer the
following question: if we assign a single-target tracker to an individual target,
how can they communicate or collaborate in a network to track the entire scene
with a linear complexity, and in an optimal way.

Trackability

Another interesting issue is ”trackability,” that is, whether the image frames
of a motion sequence contain elements whose trajectories can be inferred unam-
biguously. In natural scenes, there are patterns that are not very trackable, such
as the surfaces of sea, lake, and river, fire, smoke, tree leaves in wind viewed
from far distance, etc. For such patterns, even though it is difficult to identify
individual elements and their trajectories, we do perceive vivid motion patterns.
It is still unclear how to represent and model such patterns. Doretto, Chiuso,
Wu and Soatto (2003) call such patterns ”dynamic textures,” and propose an
auto-regressive model coupled with singular value decomposition for dimension
reduction. In this model, there are no explicit targets and trajectories.

There are also a lot of trackable patterns, such as the movements of human
figures, animals, and vehicles. For such patterns, it is important to learn what is
trackable, at least within a small period of time.

Recently, Wu, Si, Gong and Zhu (2008) proposed a method for learning what
is trackable by assuming that there is an object moving at an unknown speed,
and in addition to this overall movement, the object is also allowed to have
local movements or deformations. Such an object is represented by a deformable
template, modeled by an active basis model. An active basis is a composition of
a small number (e.g., 60) of elongate and oriented wavelet elements, and these
elements are allowed to locally perturb their locations and orientations when the
template is matched to an image or a frame of a video sequence. The goodness
of fit is measured by log-likelihood ratio or a correlation score.
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Figure 1. Learned template and superposed sketch for each frame at the
estimated speed and direction.

Figure 1 illustrates an example. The first plot is the template of a man
with a bag, where each wavelet element is represented by a small bar with the
same length and at the same location and orientation as that wavelet element.
The remaining plots show the 19 frames, and the superposed templates, which
are deformed from the template in the first plot by perturbing the locations
and orientations of the wavelet elements. Both the deformable template and the
overall speed of this template can be learned automatically.

The above model is clearly too simple to describe more sophisticated mo-
tions, such as people dancing, horses running, birds flying while flapping their
wings, etc. To model such motion patterns, we may need a sequence of animated
templates, where each animated template can be modeled as a composition of a
small number of moving wavelet elements.

It is still unclear how to define the concept of trackability. Apparently, it
is related to coding complexity. The untrackable patterns appear more complex
than the trackable ones, because the former do not have clear elements and tra-
jectories. The concept of trackability seems also related to inferential uncertainty,
that is, when there is too much uncertainty in estimating the targets and their
trajectories, the pattern becomes untrackable.

Trackability also depends on spatial and temporal resolutions. When we
reduce the resolutions of a trackable pattern in either the spatial or temporal
domain or both, the pattern may become untrackable. It would be interesting to
see whether one can develop a unified framework for modeling both regimes of
motion patterns, as well as accounting for the transition between the two regimes.
See Gong and Zhu (2008) for a preliminary attempt at understanding this issue.
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RESPONSE

Curtis B. Storlie1, Thomas C. M. Lee2,3, Jan Hannig3,4 and Douglas Nychka5

1University of New Mexico, 2Chinese University of Hong Kong,
3Colorado State University, 4University of North Carolina at Chapel Hill

and 5National Center for Atmospheric Research

First of all we would like to thank the co-editors of Statistica Sinica for or-
ganizing this discussion. We are also most grateful to all of the distinguished
discussants for their insightful comments on our paper (henceforth denoted as
SLHN). Many important points and suggestions are raised to improve our track-
ing procedure, along with some stimulating discussion of related topics. Space
limitations prevent us from providing a comprehensive response to all of these
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comments, but we shall attempt to respond to as many as possible. Our main
goals are to clarify some of the important points raised, to provide a deeper un-
derstanding of our procedure, and to discuss how it can be improved. Before we
start our individualized responses, we would like to mention that some theoret-
ical justification to our tracking method is provided in Storlie, Hannig and Lee
(2008).
Adaska: In this discussion, Adaska mentions several areas where he has ques-
tions about the practical application of our procedure. These criticisms are well
thought out and will ultimately serve to improve the proposed method. Below,
we use these criticisms to help further clarify some of the more subtle details of
our tracking method.

Size attributes: Adaska comments that “If a truck changed color from one
instant to the next, it would have no utility for resolving confusion. The size
attributes R1, R2, Q are modeled as independent in time, so they suffer from
a similar problem. They are not attributes in this usual sense, and thus not
useful for resolving confusion in the multi-target tracking problem.” It is true
that the size attributes R1, R2, Q are treated as independent observations over
time. However, these variables are not identically distributed across targets in
our model. Each target is allowed to have its own parameters (i.e., mean and
variance) for R1, R2, Q. Thus, to use the analogy of the discussant, it would be
as if the red truck was to appear red in color in each frame, but the exact color
fluctuated slightly from one frame to another. The color produced by the truck
(or, more precisely, captured and recorded by the sensor) would be independent
from frame to frame, but the color observed in each frame comes from the same
distribution that produces red observations on average.

As far as using size to help determine splitting and merging events, this is
also built into the model by means of restricting the size parameters. That is, a
storm resulting from a merger must have mean size equal to the sum of the mean
sizes of the children. The comment about letting the noise term for D (distance
between two parent storms at the time of a merging event) depend on the size
of the storms is a good idea. This could be difficult to effectively implement
however, since orientation of the two child storms would be an important factor
in determining D as well.

False Alarm Locations: Adaska criticizes our use of the same initial lo-
cation distribution for targets as that used for false alarms. He suggests that if
location provides a mechanism for discriminating false alarms from new targets,
then this information should be included. This is a valid point and our simpli-
fication in this case was admittedly made out of convenience. If there is a good
reason to believe that false alarms and targets appear in substantially different
locations, then this information should absolutely be incorporated into the initial
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location distributions. As mentioned in SLHN, our model can easily allow for
this if necessary. In future applications (e.g., recovering storm tracks) we will
investigate its use.

Implementation: We made the choice in our implementation of searching
over possible hypotheses to enforce the rule that “Existing tracks that do not
receive a new observation ... must either 1) go missing or 2) terminate”. This
choice is of course to make the search over hypotheses feasible in practice. If
we allow for an arbitrary number of splits/mergers while targets are missing,
then the number of hypotheses to examine increases too fast for even modest
problems. Thus, such simplifications are necessary. As Adaska points out, this
prevents us from identifying the correct hypothesis if two targets merge between
frames; the new merged target is missing at the next frame. It is also true that
this event can be approximated by the event that both targets are missing, then
merge together in the next frame. The criticism is that this approximate event
might have low likelihood. If the probability of missed detections is very small
this could become a reasonable concern. However, in the 2D turbulence example,
where the probability of missed detections is rather small, this exact situation can
happen occasionally. That is, two vortexes start to merge and become distorted,
thus causing the partially merged vortexes to show up missing. Even in cases
such as this, we have had good success recovering the true event or the correct
approximation to it. Also, it is hard to objectively define what is the truth in
these cases; i.e., are there two missing targets or only one?

Lastly, there is concern about the likelihood calculation which requires the
inversion of a matrix whose size depends on the length of the track. Because of
the dependence introduced by splitting and merging, it is not possible to apply
traditional filtering techniques to this model. Yes, this could be problematic for
some applications if a simplification is not made. However, this issue can easily
be handled in practice by simply ignoring the past beyond a certain point. The
covariance of an integrated Brownian motion decays like t3 for example. There is
very little extra information about a new observation in a track contained by an
observation, say 20 time steps prior. That is, at time t21 the X(tj), j = 2, . . . , 20,
from the previous 19 time steps can tell us approximately all there is to know
about the conditional distribution of X(t21). In that case, we can safely ignore
X(t1) for practical purposes. Therefore, we can calculate likelihoods with a
moving window when it is necessary to process data in real time, or if there
are just a large number of frames. This can be accomplished by treating the
“initial” locations in the first frame of the moving window as known according
to the currently stored hypotheses. Also, as stated in the Supplement page 6, it
may be possible to apply the innovations algorithm in a creative manner to this
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problem to avoid the matrix inversion altogether. In either case, the method can
be made feasible for sequential processing if necessary.
Choi and Wolfe: We are thankful for the interesting discussion by Choi and Wolfe
of the challenges in the data association problem and the use of efficient batch
algorithms to solve it. Specifically, they point out that the heuristic “K-best”
hypotheses approach can fail under certain circumstances. They suggest that a
Markov Chain Monte Carlo approach may capture the posterior probability more
accurately, but the best way to utilize this approach is still an open problem.

We fully agree that the algorithm used in SLHN for finding likely hypotheses
could be improved and this is a topic of further research. One practical issue with
respect to the number of hypotheses, at least in the storm and vortex applications,
is the number of time steps and size of the region involved in the processing of
the data. For example, one might want to know the probability of a merger of
two targets in a certain sub-region of time and space. Because of the number of
targets and time points involved in the entire batch processing of the data, all of
the K hypotheses kept may not contain enough information to distinguish them
from this particular merging event. However, one could consider evaluating more
alternative hypotheses by perturbing existing hypotheses “locally” in time and
space to evaluate more precisely how likely a merger was in this particular case.
This is still a heuristic approach to the posterior evaluation, but does provide a
satisfactory solution to this particular question.
Doucet and Vo: We thank Doucet and Vo for their important discussion on the
static parameter estimation issue and more challenging tracking problems. We
discuss the static parameter estimation further as well in response to Singh. In
very challenging tracking scenarios, where there are hundreds of targets and high
clutter intensity, the random set/PHD approach has shown promises. Of course
one can always use the approach we have taken in SLHN on more challenging
problems. Whether we use MHT or Monte Carlo methods to approximate the
posterior distribution, a major issue is the trade-off between computation time
and approximation accuracy. When faced with any tracking problem, it is im-
portant to carefully consider all of the strengths and weaknesses of the available
tracking algorithms/methods. More theoretical results considering algorithmic
complexity and statistical convergence properties would certainly aid with this
decision. However, there is no substitute for designing a simulation study that
is similar (in terms of number of targets and clutter, etc) to the actual tracking
problem at hand. One can then apply several of the viable algorithms (ap-
propriately tuned to satisfy computation time constraints) and compare their
performances. In many applications we suspect there will be a clear winner, thus
making the implementation decision relatively simple.
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Singh: We very much appreciate Singh’s points. In particular, he provides ex-
cellent discussion about batch versus real-time processing, static parameter es-
timation, and a similar problem to our storms application for comparison. As
Singh points out, we propose a model that explicitly allows for the merging of
targets and automatically prohibits the merging of distant targets. In our view
this is much more realistic than any of the existing approaches that attempt to
allow for merging of targets. In Figure 3 of SLHN we make explicit the connec-
tion between our model and the physical reality of a merger. We feel that the
description given there is actually a very good representation of the actual event.

It is true that when observations are coarsely spaced in time, some of the
approximations made in the likelihood calculation could become less accurate.
For example, suppose targets move quickly relative to the coarse time increment.
Our approximation assumes that splitting events occur during the midpoint of
the time increment. If, in reality, the split happens close to the beginning of
the time increment, then it might allow the two children to get much further
away from each other than our approximation would find likely. However, the
use of a discrete model in place of our continuous model does not rectify this
problem. It puts the burden of approximation in the modeling step, as opposed
to the likelihood calculation. The reality is that storms, and most other targets in
tracking applications, move and change state continuously in time. Any discrete
time model is necessarily an approximation to the true dynamics. Often it is not
possible to account for the error imposed by incorrectly modeling the process.
Thus a major advantage to the continuous time model is that the process can
be modeled more accurately and intuitively. Further, any approximations we
have to make in the likelihood can be studied asymptotically to at least partially
address the approximation issue. An asymptotic study of this model addressing
these concepts in particular is provided in Storlie et al. (2008).

The consequences of incorrectly specified values of the static parameters is a
largely ignored issue in the literature. How accurate the estimates of these static
parameters are, and to what extent these estimates affect the track estimate,
are important questions. These questions are at least partially addressed in
Storlie et al. (2008), but for coarse time increments we are left without much
knowledge about these estimates. Singh is promoting a fully Bayesian approach
to this problem, which is certainly warranted in many cases. Practitioners are
often familiar with the range for the number of targets and/or false alarms in
their problems, etc. In these cases it is reasonable to provide boundaries for
an uninformative prior, or even more informative prior distributions, for the
values of the corresponding static parameters. The uncertainty in the values of
these parameters can then be incorporated into the MCMC sampling scheme to
build the posterior distribution of possible tracking solutions. When we wish
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to batch process an image sequence, this is a viable alternative. In addition,
sequential Monte Carlo techniques (e.g., particle filtering as described by Doucet,
de Freitas and Gordon (2001)) could possibly be used when images must be
processed sequentially. As, mentioned in the discussion of Doucet and Vo, this
is still an open problem. In either case, however, adding more complexity to
the estimation problem adds computation time. These approaches are the most
appropriate when some prior information is known about static parameter values
and the problem is small enough to make computation feasible.

We conclude by giving a computation time comparison to the example given
in the discussion. The storm example as presented on the web ( http://www.stat.
colostate.edu/∼tlee/tracking/) has 48 images over the course of 12 hours (only
a subset was presented in SLHN), roughly twice the sample size of the example
used by Singh. Also, allowing for the added complexity of splitting and merging
roughly quadruples the computation time, at least with our implementation in
this example. Our code is written in R and is also not optimized for efficiency.
Still, on an Athalon 2,000 processor (1.67 GHz), this example took two hours to
analyze. There are also a number of other control parameters that can make a
difference here (burn-in and number of samples for MCMC, number of hypothe-
ses kept for MHT, etc), so this is not necessarily an apples-to-apples comparison.
Still, it seems that the fully Bayesian approach is substantially more computa-
tionally intensive. In this small, illustrative example, the fully Bayesian approach
is certainly feasible. To analyze many months or even a year’s worth of storm
images, however, may not be feasible.
Wu and Wu: We thank Wu and Wu for their provocative discussion of trackabil-
ity and distributed inference. First, we fully agree that theoretical justification is
always helpful, and some is provided to our model choice in Storlie et al. (2008).
In terms of the heuristic search, we also agree that there is room for improvement
in this area. As pointed out by Choi and Wolfe, and by Doucet and Vo, this is an
open problem. We appreciate the description of the interacting individual track-
ers approach as an alternative to the joint hypothesis approach. This does seem
to have some promise in terms of alleviating algorithmic complexity in the opti-
mization problem posed. However, it does seem that the optimization problem
posed become less intuitive in order to gain this computational advantage.

We very much agree that the observation model (we call it the location model
or motion model) is the most important part of the overall tracking model. If this
model does not represent the actual physical motion well, then having a good
event model for birth/death/split/merge will not help much. Thus, the beast of
burden in our approach still remains the choice of the location model. We want
to emphasize though, that our event model is completely flexible to allow for any
location model that the modeler requires for his/her targets. Although, to be
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completely candid, the location model should be a Gaussian process; otherwise, a
difficult and/or computationally intensive likelihood evaluation would be neces-
sary because of the conditioning on mergers. We would like to point out the flip
side of this argument as well. If the motion of the targets is very well described by
the location model, but the other dynamics (such as splitting and merging) are
not modeled well or at all, then this can also have substantial adverse effects on
the results as well. This would be particularly true in the applications described
in SLHN.
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