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Abstract: The single-index model with an unknown link function is a generalized lin-

ear model that has been intensively investigated. This article considers a goodness-

of-fit test for this model. Cramér-von Mises tests are constructed and the bootstrap

method is used to provide p−values. The problem of bias in nonparametric estima-

tion is tackled by the bootstrap method. Therefore, we do not need to undersmooth

or oversmooth the link function. Some simulations are reported and some data are

used for illustration.
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1. Introduction

Nonparametric methods have eased the problem of model mis-specification.
Because of the curse of dimensionality in nonparametrics, many semi-parametric
models have been introduced. Amongst them the single-index model and the
projection pursuit method have proved to be effective. A single-index model can
be written as

Y = g(XT θ) + ε, (1.1)

where X is a p × 1 covariate, θ is a vector with ‖θ‖ = 1 and E(ε|X) = 0 almost
surely. Both the link function g(·) and the parameter vector θ are unknown.
If the model is correct, then it is known that root-n consistent estimator of θ

can be obtained, where n is the sample size. Furthermore, the estimator of g(·)
can achieve a consistent rate of OP (n−2/5) if the local linear or constant kernel
smoother is used. See, for example, Ichimura and Lee (1991).

Developing appropriate goodness-of-fit tests for these models is an important
and relevant problem. When the link function g(·) = g0(·) is known, Su and Wei
(1991) investigated a supremum type test for

H̃0 : There exists a constant θ such that E[Y − g0(X
T θ)|X] = 0 almost surely.

Their alternative hypothesis, H̃1, is that there does not exist a constant vector
θ such that E(Y |X) = g0(XT θ). H̃1 is quite a narrow alternative hypothesis.
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Härdle, Spokoiny and Sperlich (1997) extended the alternative hypothesis to one
which states that there is another function ϕ(·) (�= g0(·)) and constant vector
ϑ such that Y = ϕ(XT ϑ) + η with E(η|X) = 0 almost surely. More recently,
Stute, Manteiga and Quindimil (1998) considered a similar test using a different
approach.

In this article, we consider the hypothesis

H0 : There exist a constant vector θ and a link function g(·) such that

E[Y − g(XT θ)|X] = 0 almost surely.

Note that H0 does not specify the function g(·). We believe that this set-up
is much more relevant in practical applications. Unlike Su and Wei (1991) and
Stute, Manteiga and Quindimil (1998) who address the test problems under a
parametric set-up, we investigate the test under semi-parametric assumptions in
which the function g(·) is unknown and estimated nonparametrically.

The bias problem in estimation is an important issue in nonparametric in-
ference but is notoriously difficult. This is in sharp contrast to the case of a
parametric family of g’s. There are two main techniques to deal with the bias
problem: undersmoothing and bias correction. The former method is quite ar-
bitrary, because the bandwidth is chosen to be smaller than the optimal one in
the sense of minimizing the mean of integrated squared errors (MISE). As far
as we know, there is as yet no generally accepted guidance on the bandwidth
selection for undersmoothing. Some discussion can be found in Neumann and
Kreiss (1998). For the latter method, we have to estimate the bias term, thus
making the calculation more difficult. Moreover, the bias term is not so easy to
estimate. See, for example, Xia (1998). For bootstraps, the bias problem is some-
times handled by the use of an oversmoothed estimator. See, for example, Härdle
(1990, p.108). The method does not use the data driven bandwidth and is not
completely free from being arbitrary. In this article, we propose a new method.
Since we are going to use the bootstrap method to mimic the null distribution
of the test statistic, we further use it to estimate the bias terms by a simple
average of the bootstrap values. By doing so, we need neither undersmooth nor
oversmooth the link function. Therefore, this method is easier to implement and
is totally data driven.

The rest of this paper is organized as follows. In Section 2, we construct a
Cramér-von Mises test statistic and give its asymptotic distribution. In Section 3,
we propose some bootstrap test statistics and show why we may use these to assist
us in obtaining the p−values of the previous statistic. The proofs are relegated
to the Appendix. Some simulations and data analysis are given in Section 4. The
programs are available at http://www.hku.hk/statistics/paper/test SIM.
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2. The Cramér-von Mises Test

Throughout this paper, we use v to denote a scalar variable and x a vector.

Let gθ(v) = E(Y |XT θ = v) and θ0 = arg minθ:‖θ‖=1 E
[
Y − gθ(XT θ)

]2
. Then H0

holds if and only if
E
[
Y − gθ0

(XT θ0)
∣∣∣X] = 0 a.s. (2.1)

To construct a Cramér-von Mises statistic, we further note that (2.1) is equivalent
to

E
{
[Y − gθ0

(XT θ0)]I(X < x)
}
≡ 0, (2.2)

where “X < x” means that every component of X is less than the corresponding
component of x. Suppose that {(Xi, Yi) : i = 1, . . . , n} is a random sample. Let
Ŷi’s be the fitted values from the model (1.1) using some nonparametric method.
Corresponding to (2.2), we construct the following residual marked empirical
process

Sn(x) = n−1/2
n∑

j=1

(Yj − Ŷj)I(Xj < x).

To calculate the fitted value Ŷj, we need to estimate g(·) and θ in (1.1). For
fixed θ, we estimate gθ(v) using local linear kernel smoothing (see, e.g., Fan and
Gijbels (1996)) by

ĝθ(v) =
∑n

i=1 Wn,h(XT
i θ − v)Yi∑n

i=1 Wn,h(XT
i θ − v)

, (2.3)

where Wn,h(XT
i θ − v) = sn,θ,2(v)n−1Kh(XT

i θ − v) − sn,θ,1(v)n−1Kh(XT
i θ − v)

{(XT
i θ − v)/h} with sn,θ,k(v) = n−1∑n

j=1 Kh(XT
j θ − v){(XT

j θ − v)/h}k , k =
0, 1, 2. Here and later, K(·) is a kernel function, Kh(·) = h−1K(·/h) and h is a
bandwidth. For ease of exposition, we further assume that µ2 =

∫
v2K(v) = 1.

Otherwise, we may use kernel µ
1/2
2 K(µ1/2

2 v).
There are many methods to estimate the parameter θ. See for example

Härdle and Stoker (1989), Ichimura and Lee (1991), Härdle, Hall and Ichimura
(1993) and Weisberg and Welsh (1994). For simplicity, we here only consider
estimators admitting the expression in the Appendix. Most estimation methods
mentioned above admit such an expression. Actually, �n in (C6) can be a more
general appropriate function. See Carroll, Fan, Gijbels and Wand (1997). Having
obtained an estimate of θ we estimate g(v) by ĝθ̂(v) as in (2.3), and obtain the
fitted value of Yj as Ŷj = ĝθ̂(X

T
j θ̂) and hence the process Sn(x).

To avoid the troublesome problem arising from the denominator of ĝθ(XT
i θ)

being near 0, i.e.,
∑n

j=1 Wh(XT
j θ − XT

i θ) ≈ 0, a commonly used approach is to
delete the boundary points, e.g., those satisfying ‖Xi‖ > C for some constant
C. See, for example, Härdle, Hall and Ichimura (1993) and Weisberg and Welsh
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(1994). Here we only delete the observations for which XT
i θ̂ �∈ D and D is a

compact region on which XT θ0 has positive density. We further define

SD(x) = n−1/2
∑

XT
i θ̂∈D

(Yi − Ŷi)I(Xi < x).

Accordingly, we define ID(X < x) = I(XT θ0 ∈ D)I(X < x). Following Stute,
Manteiga and Quindimil (1998), let

H(x) =
{
ID(X < x) − E

(
[g′(XT θ0)ID(X < x){X − E(X|XT θ0)}]T

)
�(X, g, θ0)

−E[ID(X < x)
∣∣∣XT θ0]

}
ε,

where � is defined in the appendix. Let R̄
⊗p = [−∞, ∞]⊗p and D(R̄⊗p) be the

Skorokhod space. Let ‘⇒’ denote the weak convergence (see, e.g., Billingsley
(1968)).

Theorem 1. Assume that conditions (C1)−(C6) hold. Then under H0, we have
SD(x) + BD(x) ⇒ Q(x) in D(R̄⊗p), where BD(x) = n1/10E[g′′(XT θ0)ID(X <

x)]/2 and Q(x) is a mean-zero Gaussian process with covariance function
E[Q(x1)Q(x2)] = E[H(x1)H(x2)].

There is a bias term for the residual marked empirical process SD(x), namely
BD(x). We have to remove it if we want to use the process SD(x) for the pur-
pose of testing. Therefore, we define the bias-corrected statistic as CCVD =∫∞
−∞ [SD(x) + BD(x)]2 Fn(dx), where Fn(x) = n−1∑n

i=1 I(Xi < x). By Theo-
rem 1, we have CCVD → ∫∞

−∞[Q(x)]2F (dx) in distribution, where F (x) is the
cumulative distribution function of X.

As we have commented previously, the bias term will cause trouble in prac-
tice. In principle, it can be estimated using the usual method which, however,
necessitates the selection of another bandwidth. Moreover, the limiting distribu-
tion still depends on the derivative of the unknown function g(·), which is difficult
to estimate. It is hard to give a closed form for the distribution. Instead, we
adopt the bootstrap approach to obtain an estimate of the bias and mimic the
unknown distribution.

3. The Bootstrap Method

In this section, we adopt the wild bootstrap approach which is relevant for
inference about regression models. See, e.g., Wu (1986) and Härdle and Mammen
(1993). Suppose that {(Xi, Yi), i = 1, . . . , n} is a random sample from (1.1)
under H0. We first estimate θ0 and g(·) as given in Section 2. We then generate
independent bootstrap observations from the model

Y ∗
i = ĝθ̂(X

T
i θ̂) + ε∗i , i = 1, . . . , n, (3.1)
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with ε∗i = (Yi − Ŷi)ε∗i , where ε∗i ’s are i.i.d. random variables, each with zero
mean, unit variance, finite moments of all orders and independent of {(Xi, Yi),
i = 1, . . . , n}. We can re-estimate θ̂ and ĝ(·) as given in Section 2, and denote the
estimators by θ̂∗ and ĝ∗

θ̂∗(v), respectively. The bootstrap counterpart of SD(x) is

S∗
D(x) = n−1/2

∑
XT

i θ̂∈D
(Y ∗

i − Ŷ ∗
i )I(Xi < x).

3.1. The idea of bias-correction

Next, for ease of explanation of our basic idea, we temporarily assume that
θ0 is known. Let zi = XT

i θ0. Then ĝθ̂(X
T
i θ̂) in (3.1) changes to ĝθ0

(zi). Under
some assumptions (see the appendix for detail), we have

ĝθ0
(v) = gθ0

(v) +
1
2
g′′θ0

(v)h2 +
1

nfθ0(v)

n∑
i=1

Kh(zi − v)εi + oP (h2),

where fθ0(v) is the density function of XT θ0. For each bootstrap sample, we
have

ĝ∗θ0
(v) = gθ0

(v) + g′′θ0
(v)h2 +

1
nfθ0(v)

n∑
i=1

K ∗ Kh(zi − v)εi

+
1

nfθ0(v)

n∑
i=1

Kh(zi − v)ε∗i + oP (h2), (3.2)

where K ∗ K denotes the convolution of K. The bias for ĝ∗θ0
(x) is

E
[
ĝ∗θ0

(v) − ĝθ0
(v)
∣∣∣(zi, Yi), i = 1, . . . , n

]

=
1
2
g′′(v)h2 +

1
nfθ0(v)

n∑
i=1

{K ∗ Kh(zi − v) − Kh(zi − v)}εi + oP (h2). (3.3)

See Lemma A.1 in the appendix. Note that the second term on the right hand
side above is OP (h2) (as h is proportional to n−1/5). Equation (3.3) implies that
ĝθ0

(·) and ĝ∗θ0
(·) have different bias terms. Therefore if we try to make a pointwise

inference about the regression function g, we have to use another bandwidth and
oversmooth the regression function such that the second term in (3.3) is oP (h2).
See Härdle (1990, p.107). However, the difference in (3.3) can be reduced by the
summation of the residual marked empirical process in our problem, namely

n−1/2
∑
zi∈D

{nfθ0(zi)}−1
n∑

j=1

{K ∗ Kh(zi − v) − Kh(zi − v)}εi = oP (1) (3.4)
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because
∫ {K ∗K(v)−K(v)}dv = 0. By (3.4), we can show that S∗

D(x) and SD(x)
have the same bias term asymptotically. Note that by (3.2), the bias E[ĝ∗θ0

(v) −
ĝθ0

(v)|(zi, Yi), i = 1, . . . , n] can be obtained by the average of the resample.
Therefore the bias terms in the S∗

D(x) and SD(x) can be easily calculated and
removed.

3.2. The asymptotic distributions

Let Bi = E[ĝ∗
θ̂
(XT

i θ̂) − ĝθ̂(X
T
i θ̂)|(Xj , Yj), j = 1, . . . , n], Ỹi = Ŷi − Bi and

Ỹ ∗
i = Ŷ ∗

i − Bi where Ŷ ∗
i = ĝ∗

θ̂∗(X
T
i θ̂∗). Then Ỹi and Ỹ ∗

i can be seen as the bias
corrected fitted values. Let

S̃D(x) = n−1/2
∑

XT
i θ̂∈D

(Yi − Ỹi)I(Xi < x).

Its bootstrap counterpart is

S̃∗
D(x) = n−1/2

∑
XT

i θ̂∈D
(Y ∗

i − Ỹ ∗
i )I(Xi < x).

Note that the summations in bootstrap statistics S∗
D(x) and S̃∗

D(x) should be
taken over {XT

i θ̂∗ ∈ D} accordingly. However, by the results of Lemma A.3, the
summations over [{XT

i θ̂ ∈ D}− {XT
i θ̂∗ ∈ D}] ∪ [{XT

i θ̂∗ ∈ D} − {XT
i θ̂ ∈ D}] are

negligible. Finally, we have the following results.

Theorem 2. Suppose (C1)−(C6) hold. Then under H0, we have S̃D(x) ⇒ Q(x)
and S̃∗

D(x) ⇒ Q(x) in D(R̄⊗p), where Q(x) is as defined in Theorem 1.

Because S̃∗
D(x) has the same limiting distribution as S̃D(x), we can use them

to test our hypothesis. Consider the following Cramér-von Mises statistics

CV SD =
∫ ∞

−∞

[
S̃D(x)

]2
Fn(dx), CV S∗

D =
∫ ∞

−∞

[
S̃∗
D(x)

]2
Fn(dx).

By Theorem 2, CV SD and CV S∗
D have the same limiting distribution. We can

mimic the distribution of CV SD by its counterpart CV S∗
D.

3.3. Test statistics with bias terms

Note that S∗
D(x) + BD(x) ⇒ Q(x) in D(R̄⊗p). Both S∗

D(x) and SD(x) have
the same bias term and the same limiting distribution when the bias is removed.
For simplicity of calculation, we can construct the test statistics (with bias terms)

CV TD =
∫ ∞

−∞
[SD(x)]2 Fn(dx), CV T ∗

D =
∫ ∞

−∞
[S∗

D(x)]2 Fn(dx).

Our simulations (not reported here) show that tests based on CV TD and CV T ∗
D

also work well.
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3.4. Single-indexing test statistics

Let r(x) = E[Y − gθ0
(XT θ0)|X = x]. That r(x) �= 0 can usually be de-

tected by E[r(X)|XT θ]. See Huber (1985, Section III). Let rθ(v) = E[Y −
gθ0

(XT θ0)|XT θ = v] and θ1 = arg minθ:‖θ‖=1 E[Y −gθ0
(XT θ0)−rθ(XT θ)]2. Then

rθ1(v) is just the second component of the projection pursuit regression. We can
repeat the estimation method for unknown θ0 to estimate θ1, obtaining θ̂1 say.
Similarly, we can estimate its bootstrap counterpart say θ̂∗1. Let

S′
D(v) = n−1/2

∑
XT

i θ̂∈D
(Yi − Ỹi)I(XT

i θ̂1 < v),

S′∗
D(v) = n−1/2

∑
XT

i θ̂∈D
(Y ∗

i − Ỹ ∗
i )I(XT

i θ̂∗1 < v).

Similarly, let CV S′
D=

∫∞
−∞[S′

D(v)]2Fn,θ̂1
(dv) and CV S′∗D =

∫∞
−∞[S′∗D(v)]2Fn,θ̂1

(dv),
where Fn,θ(v) = n−1∑n

i=1 I(XT
i θ < v). Our simulations show that the test of

H0 based on CV S′
D and CV S′∗D is more stable and powerful than that based on

CV SD and CV S∗
D.

4. Simulations and Data Analyses

To check the performance of our bootstrap method for finite samples, we
carry out the following simulations and data analyses. In the following examples
we use the normal density kernel K(v) = (2π)−1/2 exp(−v2/2), so

∫
K ′′(v)dv = 0.

We use the method of Härdle, Hall and Ichimura (1993) to obtain θ̂ and θ̂∗.

Example 1. Consider the model

Y = x1 + x2 + 4exp{−(x1 + x2)2} + a(x2
1 + x2

2)
1/2 + σε, (4.1)

where x1, x2 and ε
i.i.d.∼ N(0, 1). A typical data set with n = 100, a = 0 and

σ = 0.3 is shown in Figure 1. Note that when a = 0, (4.1) is a single-index model
with link function g(v) =

√
2v + 4exp(−2v2) and θ01 = θ02 =

√
2/2.

Figure 1. The first two panels are the plots of observations. In the third panel,
dot denotes (XT

i θ̂, Yi); solid line denotes the true function g(·); broken line
denotes the estimated function ĝ(·). The estimated θ is θ̂ = (0.7043 0.7100)T .
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Now, we carry out our test of H0 : There exist a (θ01, θ02)T and a link func-
tion g(·) such that E[Y − g(θ01x1 + θ02x2)

∣∣∣(x1, x2)] = 0 almost surely. We set
the region D = [−2.5, 2.5]. For each sample size n = 50, 100 and 300, 1,000
independent samples are drawn. Table 1 presents the percentages of times H0

is rejected for α = 0.05 and 0.10 and selected values of σ and a. (The percent-
age points of the null distribution are by reference to the bootstrap distribution
based on 1,000 samples.) Table 1 shows that our bootstrap method works quite
well if we use a bandwidth selected by cross-validation. It also has reasonable
performance for bandwidths around the optimal ones in the MISE sense. There-
fore any bandwidth comparable with the one obtained by MISE can be used.
Some simulations on the power of the test with respect to different values of a

are shown in Figure 2.

Table 1. Percentage of times H0 is rejected out of 1,000 Monte Carlo repli-
cations.

Nominal level α
n σ a

0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05
h = 0.11 h = 0.16∗ h = 0.21 CV bandwidth

0.00 0.138 0.061 0.118 0.063 0.084 0.037 0.124 0.0760.3
0.25 0.309 0.174 0.195 0.099 0.095 0.044 0.162 0.084
0.50 0.714 0.541 0.526 0.376 0.328 0.186 0.468 0.33450

h = 0.15 h = 0.20∗ h = 0.25 CV bandwidth
0.00 0.126 0.053 0.102 0.043 0.069 0.031 0.121 0.0530.5
0.25 0.204 0.107 0.106 0.043 0.070 0.031 0.120 0.056
0.50 0.412 0.259 0.289 0.163 0.184 0.097 0.296 0.163

h = 0.10 h = 0.14∗ h = 0.16 CV bandwidth
0.00 0.131 0.065 0.094 0.045 0.106 0.037 0.113 0.0520.3
0.25 0.561 0.371 0.314 0.208 0.146 0.089 0.333 0.198
0.50 0.961 0.921 0.905 0.806 0.707 0.554 0.856 0.753100

h = 0.12 h = 0.16∗ h = 0.20 CV bandwidth
0.00 0.126 0.055 0.101 0.057 0.095 0.041 0.120 0.0470.5
0.25 0.250 0.151 0.175 0.082 0.115 0.060 0.183 0.100
0.50 0.788 0.632 0.613 0.445 0.410 0.275 0.535 0.418

h = 0.07 h = 0.10∗ h = 0.13 CV bandwidth
0.00 0.109 0.059 0.097 0.043 0.091 0.042 0.115 0.052

0.3
0.25 0.968 0.903 0.912 0.856 0.698 0.553 0.885 0.800
0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000300

h = 0.10 h = 0.12∗ h = 0.14 CV bandwidth
0.00 0.124 0.055 0.103 0.048 0.102 0.045 0.111 0.0470.5
0.25 0.584 0.461 0.472 0.318 0.328 0.204 0.464 0.260
0.50 0.998 0.991 0.990 0.977 0.985 0.950 0.985 0.964

∗ The optimal bandwidth in the sense of MISE.
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Figure 2. Power for Example 1 with σ = 0.3 and different values of a based
on 1,000 replications. Asterisks are for α = 0.05 and diamonds for α = 0.10.

Example 2. We consider the data set from a study in which the respondents
were adult residents in Los Angeles county. The major objective of the study
was to provide estimates of the prevalence and incidence of depression and to
identify causal factors and outcomes associated with the conditions. There were
294 respondents. See Afifi and Virinia (1984). Here we consider the regression of
the state “depress” (Y ) a person feels on “his/her age” (x1) and “income” (x2).

The original model for this data set is logistic, which is a single-index model
with a known link function. Based on Figure 3(a), we take D sufficiently large
to include all of the observations. We have CV SD = 17.14 and the p−value
is Pr(CV S∗

D > 17.14) = 0.613. These values together with the histogram in
Figure 3(b), suggest that the single-index model (see Figure 3(a)) fits the data
set adequately.

(a) (b)

Figure 3. Calculation results for Example 2. (a) The estimated single-
index function with estimate θ̂ = (0.4625, 0.8866)T and h = 0.73. (b) The
histogram of the bootstrap distribution, the dashed line is the value of the
CV SD statistic.

Example 3. Bell et al. (1989) (see Hastie and Tibshirani (1990, p.282)) studied
multiple level thoracic and lumbar laminectomy, a corrective spinal surgery. The
purpose of the study is to delineate the true incidence and nature of spinal
deformities following this surgery and to assess the importance of age at the time
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of surgery, as well as the effect of the number and location of vertebrae levels
decompressed. The data in the study consist of 83 patients. The specific outcome
of interest here is the relation of the presence of kyphosis (Y ) with the age (x1) in
months at the time of the operation and the starting (x2) and ending (x3) range
of vertebrae levels involved in the operation. The relation was previously fitted
by a generalized additive model (Hastie and Tibshirani (1990, p.282)), which
does not have a single-index form.

Figure 4. Calculation results for Example 3. (a) dot denotes the observation
(a shift to Y is added to make it easier to be visualizable); solid line denotes
the estimated single-index link function with estimate θ̂ = (0.9409, 0.3386)T

and h = 0.4. (b) The fitted single-index model with projection pursuit
direction (−0.2173, 0.9761)T against the errors in (a). (c) The histogram
of the bootstrap distribution, the dashed line being the value of the CV SD
statistic.

Based on Figure 4(a), we take D sufficiently large to include all of the ob-
servations. For simplicity, we only consider the relation of Y with (x1, x3), for
which CV SD = 105.15. The p−value is then Pr(CV S∗

D > 105.15) = 0.003.
This, together with the histogram in Figure 4(c), suggests that we should reject
the single-index model for the data set. Actually, the residual of the single-
index model shows some relation with the covariates (x1, x3) as in Figure 4(b).
Therefore our results are consistent with the additive model fitted by Hastie and
Tibshirani (1990) to this data set.

5. Conclusions

In this article, we have constructed a Cramér-von Mises test to check the
goodness-of-fit of the popular single-index model. Choosing the kernel function
appropriately, we can avoid the troublesome problem of having to oversmooth
or undersmooth the underlying link function. Moreover, we can remove the
bias term easily. To improve the power of the test for multivariate explanatory
variables, we recommend the use of the single-indexing idea. From our proofs, the
supremum type test statistics, such as supx |S̃D(x)|, can also be employed. Their
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distributions can be obtained by the bootstrap methods. Our limited simulations
suggest that our method might also be used for other semiparametric models.

The proposed methods in this paper is computationally intensive because we
need bootstrap to estimate the critical values for the test statistics. Developing
more convenient testing methods is of interest. Another area for further investi-
gation is the test for a multi-index model, as mentioned by one of the referees.
It would also be interesting to verify the feasibility of the Neyman smooth test
investigated by Ledwina (1994) and Fan (1996) under the present setting, and
to compare their powers.

Appendix. Assumptions and Outline of the Proofs

(C1) E|ε|k < ∞, E‖X‖k < ∞ for all k > 0 and var(ε|X = x) = σ2(x) is a
continuous bounded function.

(C2) The density function fθ of θTX has bounded fourth derivatives for all ‖θ‖ =
1, and fθ0 is bounded away from 0 on D.

(C3) E(Y |X = x) has bounded, continuous fourth derivatives.
(C4) The bandwidth h is proportional to n−1/5.
(C5) K(·) is a symmetric probability density function with a compact support.

Furthermore, the Fourier transformation of K(·) is absolutely integrable.
(C6) Under H0, (C1)−(C2) and that g has bounded continuous derivative, θ̂

admits the expression

√
n(θ̂ − θ0) = n−1/2

n∑
i=1

�n(Xi, g, θ0)εi + oP (1),

where �n(Xi, g, θ0) = W−
n w(Xi){Xi − C(Xi, θ0)}g′(XT

i θ0), Wn = n−1∑n
i=1

w(Xi){Xi − C(Xi, θ0)}{Xi − C(Xi, θ0)}T g′(θT
0 Xi)2, W−

n denotes a general-
ized inverse of Wn, and C(x, θ0) =

∑n
j=1 Kh(θT

0 (Xj − x))Xj/(
∑n

j=1 Kh(θT
0

(Xj − x))) and w(x) ≥ 0 is a bounded weight function.

The first part of assumption (C1) is made for simplicity of proof. See, for
example, Härdle, Hall and Ichimura (1993). The existence of finite moments is
sufficient. The second part is made to handle the boundary points of X. Since
we only consider a finite region of g in many applications, this assumption is
not unduly restrictive. If we standardize X, then X having a positive density
function with a bounded fourth derivative near the origin can guarantee (C2). A
drawback of (C2) is that it rules out dummy variables. Assumption (C3) is made
to meet the requirement of continuity for kernel smoothing. As for the bandwidth
assumption (C4), our results still hold for a larger range of bandwidths. However,
the restriction will make the exposition easier. Since we use the data driven
bandwidth, which is proportional to n−1/5 asymptotically, the assumption is
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quite natural. The kernel assumption (C5) is satisfied by the Gaussian kernel and
the triweight kernel. For ease of exposition, we standardize the kernel such that
the variance is 1. The expression in (C6) was given in Härdle, Hall and Ichimura
(1993). The weight function w(x) is used to handle points with small density. In
Härdle, Hall and Ichimura (1993), w(x) = 1 when x ∈ Dp, 0 otherwise, where Dp

is a compact region on which the density function f(x) of X is continuous and
positive. In Weisberg and Welsh (1994), w(x) is a smooth version of the indicator
function. We do not use their final expression in order to avoid some notational
problem in the bootstrap counterpart. It is easy to see that �n(x, g, θ0) in (C6)
can be replaced by

�(x, g, θ0)=
[ ∫

w(z){z−µ(z, θ0)}{z−µ(z, θ0)}T g′(θT
0 z)2f(z)dz

]−{x−µ(x, θ0)},

where µ(x, θ0) = E(X|θT
0 X = θT

0 x). See the proof of Theorem 2 below. For
some other estimation methods, such as Carroll et al. (1997), the estimators of
θ admit a similar expression.

Let B = {θ ∈ R
p : ‖θ − θ0‖ ≤ Cn−1/2+τ}, where C > 0 is a constant and

0 < τ < 1/10. By (C6), we can restrict θ̂ to B almost surely. See also Weisberg
and Welsh (1994). Similarly, we can restrict θ̂∗ to B. See (A.39) below. For ease
of exposition, we write ID(Xi < x) = I(θT

0 Xi ∈ D)I(Xi < x).

Lemma A.1. Under assumptions (C1)−(C5), we have

ĝθ(v) = gθ(v) + g′θ(v)(θ0 − θ)Tµθ(v) +
1
2
g′′θ(v)h2

+
1

nfθ(v)

n∑
i=1

Kh(XT
i θ − v)εi + OP (h3(log n)1/2),

ĝ∗θ(v) = ĝθ̂(v) + g′θ(v)(θ̂ − θ)Tµθ(v) +
1
2
g′′θ(v)h2 +

1
nfθ(v)

n∑
i=1

Hh(XT
i θ − v)εi

+
1

nfθ(v)

n∑
i=1

Kh(XT
i θ − v)ε∗i + OP (h3(log n)1/2),

ĝ′θ(v) = g′θ(v) +
1

nhfθ(v)

n∑
i=1

K ′
h(XT

i θ − v)εi + OP (h2(log n)1/2),

ĝ′′θ(v)h2 = g′′θ(v)h2 +
1

nfθ(v)

n∑
i=1

K ′′
h(XT

i θ − v)εi + OP (h3(log n)1/2)

uniformly for θ ∈ B and v ∈ D, where µθ(v) = E(X|θT X = v) and H =
K ∗ K − K.

Proof. Let µk =
∫

vkK(v)dv, k = 0, 1, 2, and δn = h2(log n)1/2, the same order
as {log n/(nh)}1/2 under (C4). Following the steps of Lemma A.2 in Xia and Li
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(1999) or Masry (1996), we have

n−1
n∑

i=1

Kh(θT Xi − v){(θT Xi − v)/h}�εi = OP (δn),

n−1
n∑

i=1

Kh(θT Xi − v)(θT Xi − v)�Xi = µ�h
�fθ(v)µθ(v) + OP (h�(h + δn)),

n−1
n∑

i=1

Kh(θT Xi − v)|{(θT Xi − v)/h}�| = OP (1),

sn,θ,�(v) = µ�fθ(v) + µ�+1f
′
θ(v)h + OP (h2 + δn), � = 0, 1, 2, (A.1)

uniformly for v ∈ D and θ ∈ B where µ� =
∫

K(v)v�dv. By writing

yi = gθ(θ
TXi) + g′θ(θ

T Xi)(θ0 − θ)T Xi + εi + OP (n−1+2τ )

= gθ(v) + g′θ(v)(θT Xi − v) +
1
2
g′′θ(v)(θT Xi − v)2 + g′θ(v)(θ0 − θ)T Xi

+εi + OP {|θT Xi − v|3 + |θTXi − v|n−1/2+τ + n−1+2τ},
the first part of Lemma 1 follows from (2.3), the set of equations in (A.1) and
the fact that h3 = o(n−1/2) and hδn = o(n−1/2). Similarly, write

y∗i = gθ(θ
TXi) + g′θ(θ

T Xi)(θ0 − θ̂)T µθ(θT Xi) + g′θ(θ
TXi)(θ̂ − θ)TXi

+
1
2
g′′θ(θ

T Xi)h2 +
1

nfθ(θ̂T Xi)

n∑
j=1

Kh(θ̂T (Xj−Xi))εj + ε∗i +OP {|θT Xi − v|3

+|θTXi − v|n−1/2+τ + h3(log n)1/2 + n−1+2τ}.
The second part of Lemma 1 follows from (2.3), (A.1) and the fact that

1
nfθ(θ̂TXi)

n∑
j=1

Kh(θ̂T (Xj − Xi))εj

=
1

nfθ(θTXi)

n∑
j=1

Kh(θT (Xj − Xi))εj + OP (h3(log n)1/2),

1
n

n∑
i=1

Kh(θT Xi − v)
1

nfθ(θT Xi)

n∑
j=1

Kh(θT (Xj − Xi))εj

= n−1
n∑

i=1

Hh(θT Xi − v)εi + OP (hδn).

See Xia and Li (1999) and Linton and Nielsen (1994). Next, we prove the last
part. Let δn = h2(log n)1/2, the same order as {log n/(nh)}1/2 under (C4). For
ease of exposition, all the derivatives in the following context of the proof are
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taken with respect to v. Write K(k)(v) = K(v)vk and K(k),h(v) = h−1K(v/h)
{v/h}k. Let sn,θ,k(v) = n−1∑n

i=1 K(k),h(θTXi − v), where k = 0, 1, 2, 3 and

g̃θ(Xi) = g(XT
i θ0) − gθ(X

T
i θ),

∆θ,i(v) = gθ(X
T
i θ) − {gθ(v) + g′θ(v)(XT

i θ − v) +
1
2
g′′θ(v)(XT

i θ − v)2},
Wn,h(XT

i θ − v) = sn,θ,2(v)n−1Kh(XT
i θ − v) − sn,θ,1(v)n−1K(1),h(XT

i θ − v),

Dn,θ,0(v) = sn,θ,0(v)sn,θ,2(v) − s2
n,θ,1(v),

Dn,θ,2(v) = s2
n,θ,2(v) − sn,θ,1(v)sn,θ,3(v).

Since
∑n

i=1 Wn,h(XT
i θ − v)(XT

i θ − v) = 0, the estimate of gθ(v) can be written
as (see, e.g., Fan and Gijbels (1996))

ĝθ(v) =
∑n

i=1 Wn,h(XT
i θ − v)Yi

Dn,θ,0(v)

= gθ(v) +
1
2
g′′θ(v)h2 Dn,θ,2(v)

Dn,θ,0(v)
+

n∑
i=1

Wn,h(XT
i θ − v)

Dn,θ,0(v)
∆θ,i(v)

+
n∑

i=1

Wn,h(XT
i θ − v)

Dn,θ,0(v)
g̃θ(Xi) +

n∑
i=1

Wn,h(XT
i θ − v)

Dn,θ,0(v)
εi.

It is easy to see that ∆′
θ,i(v) = −(1/2)g(3)

θ (v)(XT
i θ−v)2, ∆′′

θ,i(v) = g(3)
θ (v)(XT

i θ−
v) − (1/2)g(4)

θ (v)(XT
i θ − v)2. We have

ĝ′′θ(v) = g′′θ(v) +
1
2
g(4)
θ (v)h2 Dn,θ,2(v)

Dn,θ,0(v)
+ g(3)

θ (v)h2

(
Dn,θ,2(v)
Dn,θ,0(v)

)′

+
1
2
g′′θ(v)h2

(
Dn,θ,2(v)
Dn,θ,0(v)

)′′
+

n∑
i=1

Wn,h(XT
i θ − v)

Dn,θ,0(v)
∆′′

θ,i(v)

+
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′
∆′

θ,i(v) +
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
∆θ,i(v)

+
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
g̃θ(Xi) +

n∑
i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
εi

= g′′θ(v) + g(3)
θ (v)h2

(
Dn,θ,2(v)
Dn,θ,0(v)

)′
+

1
2
g′′θ(v)h2

(
Dn,θ,2(v)
Dn,θ,0(v)

)′′

−g(3)
θ (v)h2

n∑
i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′
{(XT

i θ − v)/h}2

+
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
∆θ,i(v) +

n∑
i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
g̃θ(Xi)
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+
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
εi. (A.2)

Note that

W ′
n,h(XT

i θ − v) = s′n,θ,2(v)n−1Kh(XT
i θ − v) − s′n,θ,1(v)n−1K(1),h(XT

i θ − v)

−sn,θ,2(v)(nh)−1K ′
h(XT

i θ − v) + sn,θ,1(v)(nh)−1K ′
(1),h(XT

i θ − v), (A.3)

W ′′
n,h(XT

i θ − v) = s′′n,θ,2(v)n−1Kh(XT
i θ − v) − s′′n,θ,1(v)n−1K(1),h(XT

i θ − v)

−2(nh)−1{s′n,θ,2(v)K ′
h(XT

i θ − v) − s′n,θ,1(v)K ′
(1),h(XT

i θ − v)}
+(nh2)−1{sn,θ,2(v)K ′′

h(XT
i θ − v) − sn,θ,1(v)K ′′

(1),h(XT
i θ − v)}. (A.4)

Then by Lemma A.2 of Xia and Li (1999), for any integrable function K̃ with∫
K̃(v)v2dv ≤ ∞ and any continuous function mθ(v, u) with E(mθ(Xi, εi)|Xi) =

0 almost surely and E|mθ(Xi, εi)|r < ∞ for all r > 0, we have

n−1
n∑

i=1

K̃h(θT Xi − v) = fθ(v)
∫

K̃(v)dv + hf ′
θ(v)

∫
K̃(v)vdv + OP (δn), (A.5)

n−1
n∑

i=1

K̃h(θT Xi − v)mθ(Xi, εi) = OP (δn), (A.6)

uniformly for θ ∈ B and v ∈ D. By assumption (C5), simple calculation leads to

n−1
n∑

i=1

Kh(XT
i θ − v) = fθ(v) + OP (δn), (A.7)

n−1
n∑

i=1

Kh(XT
i θ − v){(XT

i θ − v)/h} = f ′
θ(v)h + OP (δn),

n−1
n∑

i=1

Kh(XT
i θ − v){(XT

i θ − v)/h}2 = fθ(v) + OP (δn),

n−1
n∑

i=1

Kh(XT
i θ − v){(XT

i θ − v)/h}3 = k4f
′
θ(v)h + OP (δn),

n−1
n∑

i=1

K ′
h(XT

i θ − v) = −f ′
θ(v)h + OP (δn),

n−1
n∑

i=1

K ′
h(XT

i θ − v){(XT
i θ − v)/h} = −fθ(v) + OP (δn),

n−1
n∑

i=1

K ′
h(XT

i θ − v){(XT
i θ − v)/h}2 = −3f ′

θ(v)h + OP (δn),

n−1
n∑

i=1

K ′
h(XT

i θ − v){(XT
i θ − v)/h}3 = −3fθ(v) + OP (δn),
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n−1
n∑

i=1

K ′′
h(XT

i θ − v) = OP (h),

n−1
n∑

i=1

K ′′
h(XT

i θ − v){(XT
i θ − v)/h} = OP (h),

n−1
n∑

i=1

K ′′
h(XT

i θ − v){(XT
i θ − v)/h}2 = OP (1),

n−1
n∑

i=1

K ′′
h(XT

i θ − v){(XT
i θ − v)/h}3 = OP (h),

where k4 =
∫

v4K(v)dv. It follows that

Dn,θ,0(v) = f2
θ (v) + OP (δn),

D′
n,θ,0(v) = s′n,θ,2(v)sn,θ,0(v) + sn,θ,2(v)s′n,θ,0(v) − 2sn,θ,1(v)s′n,θ,1(v)

= h−1{2fθ(v)f ′
θ(v)h + OP (δn)},

D′′
n,θ,0(v) = s′′n,θ,2(v)sn,θ,0(v) + sn,θ,2(v)s′′n,θ,0(v) + 2s′n,θ,2(v)s′n,θ,0(v)

−2sn,θ,1(v)s′′n,θ,1(v) − 2{s′n,θ,1(v)}2

= h−2OP (δn),
Dn,θ,2(v) = f2

θ (v) + OP (δn),
D′

n,θ,2(v) = 2sn,θ,2(v)s′n,θ,2(v) − s′n,θ,1(v)sn,θ,3(v) − s′n,θ,1(v)s′n,θ,3(v)
= h−1{2fθ(v)f ′

θ(v)h + OP (δn)},
D′′

n,θ,2(v) = 2{s′n,θ,2(v)}2 + 2sn,θ,2(v)s′′n,θ,2(v) − 2s′n,θ,(v)s′n,θ,3(v)
−sn,θ,1(v)s′′n,θ,3(v) − s′′n,θ,1(v)sn,θ,3(v)

= h−2OP (δn) = OP ((log n)1/2).

Therefore(
Dn,θ,2(v)
Dn,θ,0(v)

)′
=D−2

n,θ,0(v){D′
n,θ,2(v)Dn,θ,0(v)−Dn,θ,2(v)D′

n,θ,0(v)}=OP (1), (A.8)

(
Dn,θ,2(v)
Dn,θ,0(v)

)′′
={D−1

n,θ,0(v)}′′Dn,θ,2(v) + 2{D−1
n,θ,0(v)}′D′

n,θ,2(v)

+D−1
n,θ,0(v)D′′

n,θ,2(v) = OP ((log n)1/2), (A.9)
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′
{(XT

i θ − v)/h}2 = OP (1). (A.10)

Similarly, by (A.5), (A.3) and (A.4), we have
n∑

i=1

|Wn,h(XT
i θ − v){XT

i θ − v)}3| = OP (h3),
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n∑
i=1

|W ′
n,h(XT

i θ − v){XT
i θ − v)}3| = OP (h2),

n∑
i=1

|W ′′
n,h(XT

i θ − v){XT
i θ − v)}3| = OP (h).

Note that |∆θ,i(v)| ≤ c(XT
i θ − v)3, where c is a constant. Therefore

|
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
∆θ,i(v)|

≤ c{D−1
n,θ,0(v)}′′

n∑
i=1

|Wn,h(XT
i θ − v){XT

i θ − v}3|

+2c{D−1
n,θ,0(v)}′

n∑
i=1

|W ′
n,h(XT

i θ − v){XT
i θ − v}3|

+cD−1
n,θ,0(v)

n∑
i=1

|W ′′
n,h(XT

i θ − v){XT
i θ − v}3|

= OP (h). (A.11)

Similarly, by (A.6), (A.3) and (A.4), we have
n∑

i=1

Wn,h(XT
i θ − v)εi = OP (δn),

n∑
i=1

W ′
n,h(XT

i θ − v)εi = OP (h(log n)1/2),

n∑
i=1

W ′′
n,h(XT

i θ − v)εi = fθ(v)n−1h−2
n∑

i=1

K ′′
h(XT

i θ − v)εi + OP (h(log n)1/2).

Therefore
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
εi = {D−1

n,θ,0(v)}′′
n∑

i=1

Wn,h(XT
i θ − v)εi

−2{D−1
n,θ,0(v)}′

n∑
i=1

W ′
n,h(XT

i θ − v)εi + D−1
n,θ,0(v)

n∑
i=1

Wn,h(XT
i θ − v)εi

= h−2 1
nfθ(v)

n∑
i=1

K ′′
h(XT

i θ − v)εi + OP (h(log n)1/2). (A.12)

By (4.9) and (4.10) of Härdle, Hall and Ichimura (1993), we have

n∑
i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
g̃(Xi)

= (θ0 − θ)T
n∑

i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
{Xi − E(Xi|XT

i θ)}g′θ(XT
i θ)
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+
n∑

i=1

∣∣∣
(

Wn,h(XT
i θ − v)

Dn,θ,0(v)

)′′ ∣∣∣OP (n−1+2τ ).

Note that E({Xi − E(Xi|XT
i θ)}gθ(XT

i θ)|XT
i θ) = 0 almost surely. By the same

approach which leads to (A.11) and (A.12), we have

n∑
i=1

(
Wn,h(XT

i θ − v)
Dn,θ,0(v)

)′′
g̃(Xi) = OP (h). (A.13)

Finally, combining (A.2), (A.8) (A.9), (A.10), (A.11), (A.12) and (A.13), we
have ĝ′′θ(v) − g′′θ(v) = {nfθ(v)h2}−1∑n

i=1 K ′′
h(XT

i θ − v)εi + OP (h(log n)1/2). This
completes the proof of the last part of Lemma A.1.

Lemma A.2. Let Bi = E[ĝ∗
θ̂
(XT

i θ̂) − ĝθ̂(X
T
i θ̂)

∣∣∣(Xj , Yj), j = 1, . . . , n]. Then
under assumptions (C1)−(C6), we have

Bi =
1
2
g′′
θ̂
(θ̂T Xi)h2 +

1
nfθ̂(θ̂

TXi)

n∑
j=1

Hh(θ̂T (Xj − Xi))εi + OP (h3(log n)1/2),

n−1/2
∑

XT
i θ̂∈D

[
1
2
g′′
θ̂
(XT

i θ̂)h2 − Bi

]
I(Xi < x) = oP (1),

uniformly for x ∈ R̄
⊗p.

Proof. By Lemma A.1, we have

ĝ∗
θ̂
(XT

i θ̂) = ĝθ̂(X
T
i θ̂) +

1
2
ĝ′′
θ̂
(XT

i θ̂)h2 +
1

nfθ̂(v)

n∑
i=1

Hh(XT
i θ̂ − v)εi

+
1

nfθ̂(X
T
i θ̂)

n∑
j=1

Kh(XT
j θ̂ − XT

i θ̂)ε∗j + OP (h3(log n)1/2) (A.14)

uniformly for XT
i θ̂ ∈ D. By the definition of Bi, the first part of Lemma A.2

follows automatically from n1/2h3(log n)1/2 = oP (1). By Lemma A.1, we have

1
2
g′′
θ̂
(XT

i θ̂)h2−Bi =
1

nfθ̂(X
T
i θ̂)

n∑
j=1

Hh(XT
j θ̂−XT

i θ̂)εj +OP (h3(log n)1/2) (A.15)

uniformly for all XT
i θ̂ ∈ D. Therefore

n−1/2
∑

XT
i θ̂∈D

[
1
2
g′′
θ̂
(XT

i θ̂)h2 − Bi

]
I(Xi < x)

= n−3/2
n∑

j=1

εj

∑
XT

i θ̂∈D
Hh(XT

j θ̂ − XT
i θ̂)f−1

θ̂
(XT

i θ̂)I(Xi < x) + oP (1). (A.16)
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Let Gθ(v) = ED{Hh(v − XT
i θ)f−1

θ (XT
i θ)I(Xi < x)}. Then

n−3/2
n∑

j=1

εj

∑
XT

i θ∈D
Hh(XT

j θ − XT
i θ)f−1

θ (XT
i θ)I(Xi < x)

= n−3/2
n∑

j=1

εj

∑
XT

i θ∈D

[
Hh(XT

j θ − XT
i θ)f−1

θ (XT
i θ)I(Xi < x) − G(XT

j θ)
]

+n−1/2
n∑

j=1

εjGθ(XT
j θ). (A.17)

Because
∫

H(v)dv = 0, we have ED
{
Hh((x − Xi)T θ)f−1

θ (XT
i θ)I(Xi < x)

}
=

O(h), uniformly for all x ∈ R̄
⊗p and θ ∈ B. By Lemma A.2 of Xia and Li (1999),

the second term on the right hand side of (A.17) is oP (1) uniformly for θ ∈ B and
x ∈ R̄

⊗p. The first term on the right hand side of (A.17) is also oP (1) uniformly
for θ ∈ B and x ∈ R̄

⊗p. Therefore

n−3/2
n∑

j=1

εj

∑
XT

i θ∈D
Hh(XT

j θ − XT
i θ)f−1

θ (XT
i θ)I(Xi < x) = oP (1) (A.18)

uniformly for θ ∈ B and x ∈ R̄
⊗p. The second part of Lemma A.2 follows from

(A.18) and (A.16).

Lemma A.3. Let Ii(θ) = I(XT
i θ ∈ D) − I(XT

i θ0 ∈ D). Under assumptions
(C1)−(C5), we have n−1/2 sup

θ∈B,x∈R̄
⊗p

∑n
i=1 Ii(θ)εiI(Xi < x) = OP (n−1/4+τ ′/2)

for any τ ′ > τ . Furthermore, if ξi is any measurable function of Xi and has finite
second moment, then n−1/2 sup

θ∈B,x∈R̄
⊗p

∑n
i=1 Ii(θ)ξiI(Xi < x) = OP (nτ ′

).

Proof. We follow the method of “continuous argument” as in Härdle, Hall and
Ichimura (1993). See also Xia and Li (1999) and Masry (1996). Let c1, c2, . . .

be positive constants in the following. Let F1, . . . , Fp be the distributions of
the components of X = (x1, . . . , xp)T , respectively. Let Zi = (zi1, . . . , zip)T =
(F1(xi1), . . . , Fp(xip))T . Then zik, k = 1, . . . , p, are uniformly distributed on [0,
1]. Note that

∞∑
n=1

P (|εn| > nδ1) ≤
∞∑

n=1

E|εn|tn−(t−1)δ1 < ∞,

∞∑
n=1

P (‖Xn‖ > nδ1) ≤
∞∑

n=1

E‖Xn‖tn−(t−1)δ1 < ∞

for any δ1 > 0 by taking t sufficiently large. By the Borel-Cantelli Lemma and
that nδ1 is increasing in n, we need only consider the summation in Lemma A.3
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on {‖Xi‖ ≤ nδ1} ∩ {|εi| ≤ nδ1}, i.e., supθ∈B,z∈[0,1]⊗p n−1/2∑n
i=1 Ii(θ)ε̃iI(Zi <

z)I(‖Xi‖ < nδ1), where ε̃i = εiI(|εi| ≤ nδ1) (cf. Masry (1996)). Let Sn(θ, z) =
n−1/2∑n

i=1 Ii(θ)ε̃iI(Zi < z)I(‖Xi‖ < nδ1). Now, consider the bounded set B ⊗
[0, 1]⊗p. It is easy to see that there are n2p balls Bnk

with diameters less than
c1n

−1 and center (θnk
, znk

) (in B⊗ [0, 1]⊗p) such that B⊗ [0, 1]⊗p ⊂ ∪1≤k≤n2pBnk
.

Then

sup
θ∈B,

z∈[0,1]⊗p

|Sn(θ, z)|≤ max
1≤k≤n2p

|Sn(θnk
, znk

)|+ max
1≤k≤n2p

sup
(θ,z)∈Bnk

|Sn(θ, z)−Sn(θnk
, znk

)|.

(A.19)
Note that for (θ, z) ∈ Bnk

and ‖Xi‖ ≤ nδ1 , we have |(θ − θnk
)T Xi| ≤ c1n

−1+δ1

and θT
nk

Xi − c1n
−1+δ1 ≤ θT Xi ≤ θT

nk
Xi + c1n

−1+δ1 . Hence

|Sn(θ, z)−Sn(θnk
, zn,k)|

≤ n−1/2
n∑

i=1

|I(θT Xi ∈ D) − I(θT
nk

Xi ∈ D)|I(‖Xi‖ ≤ nδ1)|ε̃i|

≤ n−1/2
n∑

i=1

I(a − c1n
−1+δ1 ≤ θT

nk
Xi < a + c1n

−1+δ1)|ε̃i|

+n−1/2
n∑

i=1

I(b − c1n
−1+δ1 ≤ θT

nk
Xi < b + c1n

−1+δ1)|ε̃i|
∆= Q1,n,k + Q2,n,k. (A.20)

Note that by assumptions (C1) and (C2),

EQ1,n,k ≤ E|ε̃i|n1/2
∫ a+c1n−1+δ1

a−c1n−1+δ1

fθnk
(v)dv ≤ c2n

−1/2+δ1 , (A.21)

EQ2,n,k ≤ E|ε̃i|n1/2
∫ b+c1n−1+δ1

b−c1n−1+δ1

fθnk
(v)dv ≤ c3n

−1/2+δ1 . (A.22)

Since Eεi = 0, we have |Eε̃i| = |E{εiI(|εi| > nδ1)}| ≤ E|εi|tn−(t−1)δ1 for
any t and |ESn(θnk

, znk
)| ≤ E|εi|tn−(t−1)δ1−1/2+1. Choosing t sufficiently large,

ESn(θnk
, znk

) is negligible as n → ∞. By (A.19) and (A.20), to finish the proof,
it is sufficient to show that

max
1≤k≤n2p

|Sn(θnk
, znk

) − ESn(θnk
, znk

)| = OP (n−1/4+τ ′/2), (A.23)

max
1≤k≤n2p

(Q1,n,k − EQ1,n,k) = OP (n−1/2+δ′), (A.24)

max
1≤k≤n2p

(Q2,n,k − EQ2,n,k) = OP (n−1/2+δ′), (A.25)
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where δ′ is any small positive number. To save space, we only give the details for
(A.25), which are more complicated than those for (A.23). Equation (A.24) can
be proved similarly. Let wk,i = I(b− c1n

−1+δ1 ≤ θT
nk

Xi < b+ c1n
−1+δ1)|ε̃i|. Note

that V ar{n−1/2∑n
i=1 wk,i} = c4n

−1+δ1. By Bernstein’s inequality (cf. Chow and
Teicher (1988, p.111)), we have

Pr(|
n∑

j=1

{wk,i − E(wk,i)}| > nδ2) ≤ 2 exp
( −n2δ2

2(c4nn−1+δ1 + c5nδ1+δ2)

)
.

Let δ2 > δ1, we have Pr(|∑n
j=1{wk,i − E(wk,i)}| > nδ2) ≤ c6 exp(−c7n

δ3), where
δ3 > 0. Thus

Pr( max
1≤k≤n2p

|
n∑

j=1

{wk,i − E(wk,i)}| > nδ2)

≤
∑

1≤k≤n2p

Pr(|
n∑

j=1

{wk,i − E(wk,i)}| > nδ2)

≤ c6n
2p exp(−c7n

δ3) → 0. (A.26)

Note that δ2 > 0 can be chosen to be sufficiently small. Equation (A.25) follows
from (A.26).

For ease of exposition, we use
∑

D to denote
∑

XT
i θ0∈D throughout the rest

of this section.

Lemma A.4. Under assumptions (C1)-(C6), we have SD(x) = n−1/2∑D(Yi −
Ŷi)I(Xi < x)+oP (1), S̃D(x) = n−1/2∑D(Yi− Ỹi)I(Xi < x)+oP (1) and S̃∗

D(x) =
n−1/2∑D(Y ∗

i − Ỹ ∗
i )I(Xi < x) + oP (1) uniformly for x ∈ R̄

⊗p.

Proof. We only prove the first two equations here. Write

SD(x) = n−1/2
∑

XT
i θ̂∈D

εiI(Xi < x)

+n−1/2
∑

XT
i θ̂∈D

[
g(XT

i θ0) − ĝθ0
(XT

i θ0)
]
I(Xi < x)

+n−1/2
∑

XT
i θ̂∈D

[
ĝθ0

(XT
i θ0) − ĝθ̂(X

T
i θ̂)

]
I(Xi < x)

∆= RA + RB + RC ,

n−1/2
∑
D

(Yi − Ŷi)I(Xi < x)

= n−1/2
∑
D

εiI(Xi < x) + n−1/2
∑
D

[
g(XT

i θ0) − ĝθ0
(XT

i θ0)
]
I(Xi < x)
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+n−1/2
∑
D

[
ĝθ0

(XT
i θ0) − ĝθ̂(X

T
i θ̂)

]
I(Xi < x)

∆= R1 + R2 + R3. (A.27)

We have by Lemma A.3,

RA − R1 = n−1/2
n∑

i=1

Ii(θ̂)εiI(Xi < x) = oP (1) (A.28)

uniformly for x ∈ R̄
⊗p. By Lemma A.1, we have

RB−R2 = n−1/2
n∑

i=1

Ii(θ̂)
[
g(XT

i θ0) − ĝθ0
(XT

i θ0)
]
I(Xi < x)

= n−1/2
n∑

i=1

Ii(θ̂)g(θT
0 Xi)µθ0(θ

T
0 Xi)(θ̂ − θ0)I(Xi < x)

−1
2
n−1/2h2

n∑
i=1

Ii(θ̂)g′′(XT
i θ0)I(Xi < x)

−n−3/2
n∑

j=1

εj

n∑
i=1

Kh(XT
j θ0−XT

i θ0)Ii(θ̂)f−1
θ0

(XT
i θ0)I(Xi < x)+oP (1).

By Lemma A.3, the first term on the right hand side above is oP (1). By Lemma
A.3 of Xia and Li (1999), the second term on the right hand side is oP (1). Hence

RB − R2 = oP (1) (A.29)

uniformly for x ∈ R̄
⊗p. By Lemma A.1 we have

ĝθ̂(v) = gθ̂(v) + g′
θ̂
(v)(θ0 − θ̂)T µθ̂(v) +

1
2
g′′
θ̂
(v)h2

+
1

nfθ̂(v)

n∑
i=1

Kh(XT
i θ̂ − v)εi + OP (h3(log n)1/2)

uniformly for v ∈ D. Hence,

ĝθ0
(v) − ĝθ̂(v)

=
[
g(v) − gθ̂(v)

]
+

1
2

[
g′′(v) − g′′

θ̂
(v)
]
h2

+n−1
[
f−1

θ0
(v) − f−1

θ̂
(v)
] n∑

i=1

Kh(XT
i θ0 − v)εi + g′

θ̂
(v)(θ̂ − θ0)T µθ̂(v)

+
1

nfθ̂(v)

n∑
i=1

[
Kh(XT

i θ0 − v) − Kh(XT
i θ̂ − v)

]
εi + OP (h3(log n)1/2).
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By (C2) and (C6), we have n−1[f−1
θ0

(v)−f−1

θ̂
(v)]

∑n
i=1 Kh(XT

i θ0−v)εi =OP (n−1+τ

h−1/2(log n)1/2). Following the proof of Lemma A.2 of Xia and Li (1999), we have∑n
i=1[Kh(XT

i θ0 − v)−Kh(XT
i θ− v)]εi = OP ((nhn−1/2+τ log n)1/2) uniformly for

θ ∈ B and v ∈ D. By (4.9) and (4.10) of Härdle, Hall and Ichimura (1993), we
have g(XT

i θ0) − gθ̂(X
T
i θ̂) = (θ0 − θ̂)T [Xi − E(Xi|XT

i θ0)]g′(XT
i θ0) + OP (n−1+2τ )

and
g′′(XT

i θ0) − g′′
θ̂
(XT

i θ̂) = OP (n−1/2+τ ) (A.30)

uniformly for XT
i θ̂ ∈ D. Combining the last five equations above, we have

ĝθ0
(XT

i θ0) − ĝθ̂(X
T
i θ̂) = g′(XT

i θ0)
[
Xi − E(Xi|XT

i θ0)
]T

(θ0 − θ̂) + OP (n−1+2τ )
(A.31)

uniformly for XT
i θ̂ ∈ D . By Lemma A.3, (A.31) and assumption (C6), we have

RC−R3 = n−1/2
n∑

i=1

Ii(θ̂)
{
ĝθ0

(XT
i θ0) − ĝθ̂(X

T
i θ̂)

}
I(Xi < x)

= n−1/2(θ0 − θ̂)T
n∑

i=1

{
Ii(θ̂)g′(XT

i θ0)
[
Xi − E(Xi|XT

i θ0)
]
I(Xi < x)

}

+OP (n− 1
2
+2τ ′

)

= oP (1) (A.32)

uniformly for x ∈ R̄
⊗p. The first equation in Lemma A.4 follows from (A.28),

(A.29) and (A.32). By (A.15), we have

n−1/2
[ ∑

XT
i θ̂∈D

−
∑
D

]
BiI(Xi < x)

= n−1/2h2
n∑

i=1

Ii(θ̂)g′′
θ̂
(XT

i θ̂)I(Xi < x)

+n−3/2
n∑

i=1

Ii(θ̂)f−1

θ̂
(XT

i θ̂)I(Xi < x)
n∑

j=1

K ′′
h(XT

j θ̂ − XT
i θ̂)εj

+OP (n1/2h3(log n)1/2). (A.33)

The first term on the right hand side above is oP (1) by Lemma A.3. The second
term on the right hand side above is also oP (1) by (A.18). Therefore the second
equation of Lemma A.4 follows immediately from the first equation and (A.33).

Proof of Theorem 1. By Lemma A.4 and (A.27), we have

SD(x) = R1 + R2 + R3 + oP (1) (A.34)
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uniformly for x ∈ R̄
⊗p. By Lemma A.1, we have

R2 = −1
2
h2n−1/2

∑
D

g′′(XT
i θ0)I(Xi < x) − n−1/2

∑
D

[
{nfθ0(X

T
i θ0)}−1

×
n∑

j=1

Kh(XT
j θ0 − XT

i θ0)εjI(Xi < x)
]
+ oP (1)

∆= R21 + R22 + oP (1). (A.35)

By the Law of Large Numbers, we have

R21 = −1
2
h2n1/2E

{
g′′(XT

i θ0)ID(Xi < x)
}

+ oP (1). (A.36)

By Lemma A.2 of Xia and Li (1999), we have

R22 = −n−1/2
n∑

j=1

{
n−1

∑
D

Kh(XT
j θ0 − XT

i θ0)f−1
θ0

(XT
i θ0)I(Xi < x)

}
εj

= −n−1/2
n∑

j=1

E
{
ID(Xj < x)|XT

j θ0

}
εj + oP (1). (A.37)

It follows from (A.35), (A.36) and (A.37) that

R2 = −BD(x) − n−1/2
n∑

j=1

E
{
ID(Xj < x)|XT

j θ0

}
εj + oP (1). (A.38)

By (A.31) and condition (C6) and its remarks, we have

R3 = n−1/2(θ0 − θ̂)T
∑
D

g′(XT
i θ0){Xi − E(Xi|XT

i θ0)}I(Xi < x) + oP (1)

= −n−1
∑
D

g′(XT
i θ0){Xi−E(Xi|XT

i θ0)}I(Xi < x)n−1/2
n∑

j=1

�n(Xj , g, θ0)εj

+oP (1)

= −E[g′(XT θ0){X − E(X|XT θ0)}ID(X < x)]n−1/2
n∑

i=1

�(Xi, g, θ0)εi + oP (1).

From (A.38), (A.39), the definition of R1 and (A.34), it follows that

SD(x) + BD(x)

= n−1/2
n∑

i=1

[
ID(Xi <x)−E{g′(XT θ0)(X−E(X|XT θ0))ID(X <x)}T �(Xi, g, θ0)

−E{ID(Xi < x)|XT
i θ0}

]
εi + oP (1).
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It is easy to see that any finite dimensional distribution of SD(x) + BD(x) tends
to that of Q(x). The proof of tightness in D(R̄⊗p) of the summation on the right
hand side above is very standard. Now, we give the details for the first part
when the marginal distribution of X is uniform on [0, 1] as discussed in the proof
Lemma A.3. We use the definition in Bickel and Wichura (1971). Suppose that
B and C are two disjoint blocks and they are pairs of neighbors in [0, 1]⊗p. Let
L(A) =

∫
x∈A σ2(x)f(x)dx for any Borel set A ∈ [0, 1]⊗p. We have

E
[
{n−1/2

n∑
i=1

ID(Xi ∈ B)εi}2{n−1/2
n∑

i=1

ID(Xi ∈ C)εi}2
]

≤ L(B)L(C) ≤ {L(B ∪ C)}2.

The tightness follows from the remark below Theorem 3 of Bickel and Wichura
(1971). Therefore we have finished the proof of Theorem 1.

Proof of Theorem 2. By (2.3), (C5) and Lemma A.1, ĝθ̂(v) has a bounded
derivative in probability. The conditions in (C6) hold for the bootstrap model
(3.1). Thus θ̂∗ − θ̂ = (W ∗

n)−
∑n

i=1 w(Xi){Xi −C(Xi, θ̂)}ĝ′θ̂(θ̂TXi)ε∗i + oP (n−1/2),
where W ∗

n = n−1∑n
i=1 w(Xi){Xi − C(Xi, θ̂)}{Xi − C(Xi, θ̂)}T ĝ′

θ̂
(θ̂TXi)2. By

Lemma 8 of Weisberg and Welsh (1994), we have n−1∑n
i=1 w(Xi)[ĝ′θ̂(θ̂

T Xi) −
g′(θT

0 Xi)]2 = oP (1). Using Lemma 11 of Weisberg and Welsh (1994), we have
n−1∑n

i=1 w(Xi)[C(Xi, θ̂) − C(Xi, θ0)]2 = oP (1). Thus n−1∑n
i=1 w(Xi)[{Xi −

C(Xi, θ̂)}ĝ′
θ̂
(θ̂T Xi) − {Xi − C(Xi, θ0)}g′(θT

0 Xi)]2 = oP (1). It follows that

n−1/2
n∑

i=1

w(Xi)
[
{Xi − C(Xi, θ̂)}ĝ′

θ̂
(θ̂T Xi) − {Xi − C(Xi, θ0)}g′(θT

0 Xi)
]
ε∗i

= oP (n−1/2).

Similarly, we have W ∗
n − Wn = oP (1). Therefore

θ̂∗ − θ̂ = (Wn)−
n∑

i=1

w(Xi){Xi − C(Xi, θ0)}g′(θT
0 Xi)ε∗i + oP (n−1/2). (A.39)

By Lemma A.2 and Theorem 1, the first part of Theorem 2 follows. Accord-
ing to (A.34), by the second part of Lemma A.4, we write S∗

D(x) = R∗
1 + R∗

2 +
R∗

3 + oP (1), where R∗
1 = n−1/2∑D ε∗i I(Xi < x), R∗

2 = n−1/2∑D{ĝθ̂(X
T
i θ̂) −

ĝ∗
θ̂
(XT

i θ̂)}I(Xi < x), R∗
3 = n−1/2∑D{ĝ∗θ̂(XT

i θ̂) − ĝ∗
θ̂∗(X

T
i θ̂∗)}I(Xi < x). By

(A.14), we have

R∗
2 = −1

2
h2n−1/2

∑
D

ĝ′′
θ̂
(XT

i θ̂)I(Xi < x)
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−n−1/2
∑
D
{nfθ̂(X

T
i θ̂)}−1

n∑
j=1

Kh(XT
j θ̂ − XT

i θ̂)ε∗jI(Xi < x)

+OP (n1/2h3(log n)1/2).

By Lemma A.2 and (A.30), we have n−1/2∑D ĝ′′
θ̂
(XT

i θ̂)I(Xi < x) = n−1/2∑D
g′′
θ̂
(XT

i θ̂)I(Xi < x) + oP (1) = n1/2E[g′′(XT θ0)ID(X < x)] + OP (nτ ). Therefore

R∗
2 = −BD(x)−n−1/2

∑
D
{nhfθ̂(X

T
i θ̂)}−1

n∑
j=1

Kh(XT
j θ̂−XT

i θ̂)ε∗jI(Xi <x)+oP (1).

(A.40)
Similar to R3, we have

R∗
3 = n−1/2(θ̂ − θ̂∗)T

∑
D

ĝ′
θ̂
(XT

i θ̂){Xi − E(Xi|XT
i θ0)}I(Xi < x) + oP (1)

= −n−1
∑
D

ĝ′
θ̂
(XT

i θ̂){Xi−E(Xi|XT
i θ0)}I(Xi <x)n−1/2

n∑
i=1

�n(Xi, ĝ, θ̂)ε∗i +oP (1).

Note that by (A.39) and Lemma A.1, we have

R∗
3 = E[g′(XT θ0){X − E(X|XT θ0)}ID(X < x)]n−1/2

n∑
i=1

�n(Xi, g, θ0)ε∗i + oP (1)

= E[g′(XT θ0){X − E(X|XT θ0)}ID(X < x)]n−1/2
n∑

i=1

�(Xi, g, θ0)ε∗i + oP (1).

From the expressions of R∗
1, R

∗
2 and R∗

3, we have

S∗
D(x) + BD(x)

= n−1/2
n∑

i=1

[
ID(Xi < x)−E{g′(XT θ0)(X−E(X|XT θ0))ID(X <x)}T �(Xi, g, θ0)

−E{ID(Xi < x)|XT
i θ0}

]
ε∗i + oP (1).

It is easy to see that any finite dimensional distribution of S∗
D(x) + BD(x) tends

to that of Q(x). For the tightness, we prove the case as in the proof of Theorem
1. Define Ln(x) = n−1∑n

i=1 ID(Xi < x)ε̂2
i and write Ln(B) as the Borel measure

generated from Ln(x). Let B and C be defined as in the proof of Theorem 1.
We have

E
[
{n−1

n∑
i=1

ID(Xi ∈ B)ε∗i }2{n−1
n∑

i=1

ID(Xi ∈ C)ε∗i }2|(Xj , Yj), j = 1, . . . , n
]

≤ Ln(B)2Ln(C)2 ≤ {Ln(B ∪ C)}2.
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It is easy to check that Ln(x) → L(x) uniformly in x using the same method
as in Lemma A.2. We proved the tightness by the remarks below Theorem 3
of Bickel and Wichura (1971). Therefore S∗

D(x) + BD(x) ⇒ Q(x) in D(R̄p). In
combination with Lemma A.2, the second part of Theorem 2 follows.
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COMMENTS

Lexin Li and Christopher J. Nachtsheim

University of Minnesota

In this paper, the authors develop a goodness-of-fit test for the single-index
model

y = g(θT X) + ε, (1)
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where y is a univariate response, X is a p-dimensional vector of predictors, g(·)
is the unknown link function, θ is the unknown p × 1 vector with ||θ|| = 1, and
ε is the error term assumed to satisfy E (ε |X) = 0. They propose a Cramér-
von Mises test statistic, CV SD, based on nonparametric kernel estimation of θ.
Bootstrapping is then employed both to mimic the null distribution of the test
statistic and to provide a bias correction for the kernel estimate. We applaud
the authors for their interesting work in this important area.

Our purpose in this discussion is to explore the robustness of CV SD and
to compare its performance with a class of sufficient-dimension-reduction-based
tests previously developed by Li (1991) and Cook and Weisberg (1991), with
enhancements by Cook (1998) and others. We begin with a brief introduction to
these techniques.

1. Dimension Reduction Alternatives

The alternative tests that we now describe are based on the theory of suffi-
cient dimension reduction, where the objective is to identify a subspace S of the
predictor space such that

y X |PSX, (2)

where P(·) stands for a projection operator with respect to the standard inner
product. A subspace satisfying (2) is called a dimension reduction subspace.
When the intersection of all subspaces satisfying (2) also satisfies (2), it is called
the central subspace (CS) and denoted by Sy|X . Under some minor conditions
(Cook (1998)), Sy|X exists and its dimension d = dim(Sy|X) is called the struc-
tural dimension of the regression. For the single-index model in (1) it is easy to
see that Sy|X = Span(θ), with d = 1 if we assume no predictor effects in ε.

Cook and Li (2002) also considered situations where only the conditional
mean E (y |X) is of interest. Analogously, the mean dimension reduction sub-
space is defined as subspace S that satisfies

y E (y |X) |PSX. (3)

The intersection of all the mean dimension reduction subspaces is called the
central mean subspace (CMS), denoted as SE(y|X), if the intersection satisfies (3)
also. For single-index model (1), if we impose the additional restriction that
ε X, we then have SE(y|X) = Span(θ).

There are a variety of approaches for estimating Sy|X , for instance sliced
inverse regression (SIR, Li (1991)), and sliced average variance estimation (SAVE,
Cook and Weisberg (1991)). Methods for estimating SE(y|X) include ordinary
least squares (OLS, Li and Duan (1989)), principal Hessian directions (PHD, Li
(1992)), and iterative Hessian transformation (IHT, Cook and Li (2002)). There
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are also inferential methods for testing hypotheses about the structural dimension
d. The testing procedure is generally sequential. That is, we first test hypotheses
d = 0 versus d > 0. If the null hypothesis is rejected, we then test d = 1 versus
d > 1, and so on. The estimate of d is the first integer m such that we fail to
reject the null hypothesis d = m. Obviously, this test procedure includes the test
of single-index model as a special case.

The dimension reduction approaches just described generally make two key
assumptions: (a) the linearity condition, and (b) the coverage condition. Con-
sider SIR as an example. The linearity condition states that the marginal distri-
bution of predictors satisfies

E (X |PSy|X X) = PSy|XX. (4)

This condition implies that the inverse mean subspace SE(X|y) = Span(Σ−1
x

E ((X − E (X)) | y)) is a subspace of the central subspace Sy|X , where Σx is the
covariance matrix of X. Therefore SE(X|y) provides partial estimation of Sy|X .
The coverage condition then requires

SE(X|y) = Sy|X . (5)

That is, it assumes the inverse mean subspace coincides with the central subspace.
Note that the coverage condition fails for models of the form y = (θTX)2 + ε,
where X follows a standard normal distribution and ε is an independent error.

A comprehensive account of the sufficient dimension reduction theory is given
by Cook (1998).

2. SAVE-based Test

Xia et al. carry out extensive simulations to test their method using the
following model.

Example 1. Assume x1, x2 ∼ Normal(0, 1), ε ∼ Normal(0, 1) and y = x1 + x2 +
4e−(x1+x2)2 + a(x2

1 + x2
2)

1/2 + σε.

Note that the coverage condition is not met for this model. SIR is therefore
not applicable, and we employ the SAVE-based permutation test (Cook and
Weisberg (1991), Cook and Yin (2001)) as an alternative to CV SD. When a = 0,
the structural dimension d = 1, and when a �= 0, d = 2. Consider the hypotheses
d = 1 versus d > 1. Table 1 gives rejection rates (per 1, 000 Monte Carlo
replications) for the SAVE-based permutation test with 49 permutations. The
numbers in parentheses are the corresponding values reported by Xia et al. in
their Table 1.
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Table 1. Comparison of Rejection Rates (per 1, 000 Monte Carlo replica-
tions) for SAVE-based Test and CV SD (in parentheses) for Subset of Cases
from Example 1 of Xia et al. (α = 0.05 and optimal bandwidth used for
CV SD)

σ = 0.3 σ = 0.5
n a = 0 a = 0.25 a = 0.5 a = 0 a = 0.25 a = 0.5

50 0.077 (.063) 0.071 (.099) 0.072 (.376) 0.055 (.043) 0.055 (.043) 0.062 (.163)
100 0.067 (.045) 0.136 (.208) 0.272 (.806) 0.055 (.057) 0.120 (.082) 0.225 (.445)
300 0.055 (.043) 0.298 (.856) 0.755 (1.000) 0.062 (.048) 0.207 (.318) 0.615 (.977)

Clearly, when a = 0 and the model is indeed a single-index model, two classes
of tests have comparable Type I error rates. However, when a �= 0 and the model
has dimension greater than 1, the test proposed by Xia et al. has considerably
more power. For example, when n = 300, σ = 0.3, a = 0.5, Xia et al. report the
power of their test is 1.0. In this case the power for the SAVE-based permutation
test is just 0.755, not surprising to us since CV SD has the home field advantage
in this example.

3. SIR-based Test

We next employ a series of six new examples (numbered 2 through 7) in
which the coverage condition (5) is met. This permits the use of SIR-based test
rather than the SAVE-based test in the previous section. Details concerning the
SIR-based test statistic and its asymptotic distribution can be found in Li (1991).
Throughout, we use the authors’ Matlab computer code as published on the web
to carry out our simulations of the CV SD test procedure. Bandwidth h = 0.15
and sample size n = 100 are employed in all test cases. The results are shown in
Table 2.

3.1. Effect of noise

In Examples 2 and 3, the response model takes the following form.

Examples 2 and 3 Assume x1, . . . , x4 ∼ Normal(0, 1), ε ∼ Normal(0, 1) and
y = e0.3 (x1−x2)+1 + σε.

In experimenting with CV SD, it became apparent that its performance can
be affected by the magnitude of σ. Evidence of this is provided in Table 2. In
Example 2, with σ = 1.5 both the SIR-based test and CV SD reject the null
hypothesis that d = 1 at the nominal levels. However, in Example 3 with σ = 3,
CV SD is rejecting the null too frequently, while the SIR-based test continues
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to reject at the nominal levels. This may suggest that CV SD will fail if θ is
ineffectively estimated.

3.2. Predictor effects in variance

Consider the error term ε in single-index model (1). The authors assume
that E (ε |X) = 0 almost surely. This allows for predictor effects not only in
the conditional mean E (y |X) but also in the conditional variance Var (y |X).
This can be easily seen by considering a univariate response y and p-dimensional
predictors X with E (y |X) finite. Then

y = E (y |X) + (y − E (y |X)) = g(θT X) + ε∗, (6)

where we assume E (y |X) = g(θT X) for some g(·) and θ, and ε∗ = y −E (y |X).
Obviously E (ε∗ |X) = 0 almost surely. We next examine two examples which
are single-index models, while both variance terms depend on θTX.
Example 4. Assume x1, x2 ∼ Normal(0, 1), ε ∼ Normal(0, 1) and y = x1 + x2 +
e(x1+x2)/2 × ε.

Example 5. Assume x1, . . . , x4 ∼ Normal(0, 1), g(X) = e (x1+x2+x3)/2 − 1.5,
p(X) = (1 + e−g(X))−1, and y ∼ Binomial(2, p(X)).

Table 2 displays the rejection rates (per 200 Monte Carlo replications) of two
tests for the null hypothesis d = 1. In both examples, CV SD rejects the true
single-index model too often, while the SIR-based test performs as expected.

Table 2. Comparison of Rejection Rates (per 200 Monte Carlo replica-
tions for CV SD (results in parentheses) and SIR-based test for Examples
2 through 7.

Linearity Predictor H0: d = 1
Discussion Condition Effects in True Ha: d > 1
Example Met? Variance? d α = 0.05 α = 0.1

2 Yes No (small σ) 1 .050 (.060) .110(.130)
3 Yes No (large σ) 1 .060 (.270) .090(.360)
4 Yes Yes 1 .060 (.135) .115(.190)
5 Yes Yes 1 .050 (.195) .080(.270)
6 Yes Yes 2 .720 (.280) .810(.385)
7 No No 1 .215 (.155) .340(.215)

We further consider predictor effects in the variance in Example 6, this time
with structural dimension d = 2. This example is used to assess the power of the
CV SD test relative to that of the SIR-based test.
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Example 6. Assume x1, . . . , x4 ∼ Normal(0, 1), ε ∼ Normal(0, 1) and y =
e0.5 (x1+x2)+1.5 + 0.25(x3 + x4) + e0.85 (x3+x4)+1 × ε.

Note two linear combinations of predictors, θT
1 X = x1 + x2 and θT

2 X =
x3 + x4, are required to characterize the conditional distribution of y |X. Both
are present in the conditional mean E (y |X) but θT

1 X has a stronger effect than
θT
2 X. Meanwhile the conditional variance Var (y |X) depends on θT

2 X. The
results in Table 2 indicate that the power of the CV SD test (e.g., 0.280 for
α = 0.05) is less than half of that for the corresponding SIR-based test (0.720
for α = 0.05).

We note that another advantage of the sufficient-dimension-reduction-based
testing approach, in Example 6, is that a further test of hypotheses d = 2 versus
d > 2 can be conducted when the null d = 1 is rejected in the first stage. Our
simulation shows that the SIR-based test produces rejection rates 0.040 and 0.075
for nominal levels 0.05 and 0.1 respectively. Thus it is clear that SIR-based testing
approach not only correctly tests if a model is single-index, it can simultaneously
test for multi-index model also.

Examples 4, 5 and 6 have shown that heteroscedasticity adversely affects the
performance of the test method proposed by Xia et al. Our conjecture is that the
test procedure works best for model (1) with the restriction that ε is independent
of X. Thus the predictor effects are in the conditional mean E (y |X) only. This
corresponds to the study of the central mean subspace SE(y|X). If this conjecture
is true, the applicability of the proposed test will be limited considerably. On
the other hand, the approaches associated with the estimation and inference of
the central subspace Sy|X such as SIR and SAVE place no restriction on the
conditional distribution of y |X.

3.3. Nonlinearity among predictors

With model (1) and the additional assumption ε X, we now consider a
situation in which the linearity condition is not met. We therefore expect that the
SIR-based test will perform poorly relative to CV SD. We consider the following
example with structural dimension d = 1.

Example 7. Assume x1 ∼ Uniform(0, 1), e ∼ Uniform(−0.3, 0.3), x2 = log(x1)+
e, x3, x4, x5 ∼ Normal(0, 1), ε ∼ Normal(0, 1) and y = e0.5 (x1−x2−x3)+1 + ε.

The results in Table 2 confirm our expectation that the SIR-based test will
not perform well here. For example, the rejection rates for the null d = 1 are
0.215 when α = 0.05 and 0.340 when α = 0.10. We were surprised to see that
the CV SD also rejects the null too often in this example. The rejection rates for
α = 0.05 and α = 0.10 (0.155 and 0.215) are closer than those for the SIR-based
test, but are still significantly different from nominal. Extensions of the sufficient
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dimension reduction approaches when there is nonlinearity among predictors can
be found in Cook and Nachtsheim (1994) and Li (2003).

4. Conclusions

In this discussion, we have examined the performance of the goodness-of-fit
test proposed by Xia et al. for single-index models. Our simulation results sug-
gest that the performance of the proposed test is adversely affected when the
error variance is large, when there are predictor effects in the variance, and/or
when predictors are nonlinearly related. Alternative testing approaches, based
on the theory of sufficient dimension reduction, avoid many of these difficulties.
Moreover they are capable of identifying the structural dimension of the regres-
sion for both single and multi-index models.
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REJOINDER

Yingcun Xia, W. K. Li, Howell Tong and Dixin Zhang

We welcome the opportunity of an open discussion of our paper. The purpose
of the original paper was quite modest as it was intended only to solve a simple
testing problem using a new approach. The discussion of Professors L. Li and C.
J. Nachtsheim (called LN, hereafter) has, however, widened our perspective and
allowed us to delve deeper into the problem. We are therefore most grateful to
the Editor and the above discussants.

From the point of view of kernel smoothing, our proposed method provides
a data-driven semiparametric test. The method needs no under-smoothing or
over-smoothing of the link functions. For finite samples, our method enjoys a
higher testing power than all the methods we know of.

The concern of LN is that our test is too sensitive in that it may reject H0

too frequently when the conditional variance, σ(x)2, of the model is large. Their
simulations seem to add substance to this concern.
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Bearing in mind the fact that when using kernel smoothing, a reasonable
bandwidth should be proportional to σ(x)2/(p+4) when the N-W estimator or the
local linear smoother is used, where p is the dimension of a link function, we would
not ourselves share their concern. (See, for example, Fan and Gijbles (1996).)
LN’s concern is a product of their choice of the bandwidth. The bandwidth
used by LN for the CV SD test, h = 0.15, is too small for all the examples.
Note also that their examples are with monotone link functions. This choice
of the link functions favours the SIR-type approach because the monotonicity
tends to reduce the curvature of the functions and thus our test would require a
larger bandwidth. Figure 1 shows the optimal bandwidth hopt for the local linear
smoothing of y on θTX in the sense of MISE. Apart from our own example
(Example 1 in LN), the bandwidth h = 0.15 is obviously too small for Examples
2−7.

Figure 1. Visualisation of bandwidth selection for all the Examples based on
500 replications each has sample size n=100. The curves in the panels are
the average of ASE(h) = n−1

∑n
i=1{m̂(θT

0 xi)−m(θT
0 xi)}2. The shaded area

refers to the density function (rescaled) of the selected bandwidths by the
CV method. The solid vertical lines mark the corresponding hopt for each
example. The dash vertical lines mark the bandwidth used by us (Example
1) and LN (Examples 2−7).

One way to obtain a reasonable bandwidth in practice is to apply the cross-
validation bandwidth selection method to the regression of y on θ̂TX, where θ̂ is
the estimate of θ. The shades in Figure 1 show the distribution of the selected
bandwidths using CV methods. Except for Example 4, for which an appropriate
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bandwidth is infinite theoretically, the CV bandwidths for all the other examples
are not far away from the respective hopt. The other bandwidth that has to be
selected is for the estimation of the single-index θ. In the code we put on the
website, we used the average derivative estimation method (Härdle and Stoker
(1989)). Again, if no information about the bandwidth is available then a data
driven bandwidth is suggested. Under this circumstance we can resort to using
the CV bandwidth selection method although it might not be the best approach.
(The CV bandwidth selection method for both steps is now available at the same
website.)

Armed with the above observations, we can now check the examples pro-
vided by LN. Table 1 shows that both CV bandwidths and fixed bandwidths
have reasonable rejection rate for Examples 2−5. Moreover, for a wide range of
bandwidths, e.g., hopt/2 to hopt, the rate changes little. This further indicates
that our test method is robust to the choice of bandwidth provided that it is not
too small or too large. We shall discuss Examples 6−7 below.

Table 1. Rejection rate for Examples 2−7 based on 500 replications with
different bandwidths.

Example CV bandwidth Bandwidth h = hopt Bandwidth h = hopt/2
α = 0.05 α = 0.10 α = 0.05 α = 0.10 α = 0.05 α = 0.10

2 0.024 0.090 0.024 0.064 0.032 0.080
3 0.030 0.088 0.028 0.072 0.028 0.080
4 0.042 0.092 0.040 0.088 0.050 0.108
5 0.034 0.072 0.024 0.082 0.036 0.096
6 0.108 0.180 0.074 0.156 0.122 0.194
7 0.160 0.228 0.160 0.226 0.160 0.232

For Example 6, we can write it as y = m1(θT
1 X)+m2(θT

2 X)+σ(θT
2 X)ε. The

signal-noise ratio (S/N) for the first and the second dimensions are, respectively,

(Var {m1(θT
1 X)}

Var {σ(θT
2 X)ε}

)1/2
= 0.40 and

(Var {m2(θT
2 X)}

Var {σ(θT
2 X)ε}

)1/2
= 0.03.

The second S/N is very small for sample size n = 100. See Figure 2. The second
dimension is hard to detect through the conditional mean (signal). However,
the second dimension has a strong effect on the conditional variance. It can be
detected via the conditional variance specification (Xia, Tong and Li (2002)).
Thus, it is not surprising that our method cannot detect the second dimension
with high frequency because our method only concentrates on the conditional
mean. It is also not surprising that the χ2 test based on SIR estimates can
detect the second dimension via the conditional variance. To confirm the fact
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that the χ2 test detects the second dimension through the conditional variance,
we set σ(θT

2 X) ≡ 1. Our simulation results in Table 2 (in the block corresponding
to the row Example 6∗ and the column a = 0.25) suggest that the χ2 test also
has difficulties in detecting the second dimension merely through the conditional
mean.

Figure 2. A typical sample with n = 100 from Example 6.

The nonlinear confounding effect in predictors is a real problem for the es-
timation of the efficient dimension reduction space. See, Li (1997). We believe
that the problem becomes more difficult for testing problems. LN mentioned the
work of Cook and Nachtsheim (1994) about nonlinear confounding in the predic-
tors. However, as far as we know, their main interest is about the estimation of
the directions, and little is discussed about testing. Although our method cannot
solve the testing problem completely, it provides a way to improve the existing
methods.

It is interesting to compare the power using the models provided by LN
when H0 is not true. We are not aware of reports on the power of the tests
used by LN and our examples below are designed only to give us some initial
ideas about the power of these tests. Note that in LN, only Example 6 gives rise
to an alternative Ha. To see the effect of heteroscedasticity, we further extend
Example 4 and consider the following models.

Example 4∗ : y = x1 + x2 + ae(x1−x2)/2 + e(x1+x2)/2ε,

Example 6∗ : y = e0.5(x1+x2)+1.5 + a(x3 + x4) + ε,

where x1, x2, x3, x4 and ε are defined in LN. The parameter a is employed to
control the departure of the model from H0. In all the simulations below, we
use CV bandwidth for our method. For the SIR estimation, we take the num-
ber of slices to be 10. For the permutation test (Cook (1998)), the number of
permutation is set to be 50. We also tried some other settings for the number
of slices and the number of permutations as well as some other testing methods
as implemented by the programs provided in Weisberg (2002). There are no big
differences in the results. The programs by Weisberg (2002) are used for the χ2
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test and the permutation test. Table 2 shows that our method has quite rea-
sonable rejection rates when H0 is true even with heteroscedasticity, while the
power is much higher than the χ2 test and the permutation test. The low power
of the permutation and χ2 tests are somewhat puzzling and we would be happy
to amend our results if we have misunderstood the procedures.

Table 2. Comparisons of rejection rate for Examples 4∗ and 6∗ based on 500
replications.

Md. Metohd
a = 0 a = 0.25 a = 1 a = 2

α=0.05 α=0.10 α=0.05 α=0.10 α=0.05 α=0.10 α=0.05 α=0.10
CV SD 0.042 0.090 0.134 0.254 0.548 0.718 0.562 0.758

4∗ Perm. 0.070 0.124 0.054 0.112 0.062 0.126 0.066 0.126
χ2 0.048 0.094 0.054 0.112 0.052 0.098 0.031 0.082

CV SD 0.042 0.100 0.056 0.126 0.424 0.590 0.800 0.920
6∗ Perm. 0.054 0.106 0.042 0.100 0.182 0.296 0.226 0.360

χ2 0.040 0.090 0.060 0.116 0.136 0.236 0.214 0.336

Conclusions

The method developed in this paper is not intended to compete with the SIR
method in the domain of dimension reduction, although they have something in
common. However, in the common area, all the simulations suggest that our
method is indeed more powerful than existing test methods. The concern of
Professor L. Li and Professor C. J. Nachtsheim does not arise at all as long as
the pilot parameter, h, is not too unreasonable and we have given some guidance
to what constitutes a reasonable choice. This paper considers only single-index
models. Dimension reduction with multi-indices is considered in Xia, Tong, Li
and Zhu (2002).
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