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Abstract: This paper introduces the dimension distribution for a square integrable

function f on [0, 1]s. The dimension distribution is used to relate several definitions

of the effective dimension of a function. Functions of low effective dimension can be

easy to integrate numerically. Many commonly considered quadrature test functions

are sums or products of univariate functions, and as a result have particularly simple

dimension distributions. Recently some high dimensional isotropic integrals have

been successfully treated by quasi-Monte Carlo methods. We show numerically

that one such function in 25 dimensions is very nearly a superposition of functions

of 3 or fewer variables, explaining the success of QMC on that problem. A new

result shows that certain isotropic polynomials of degree n generate integrands that

are exact superpositions of functions of n or fewer variables.
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1. Introduction

The analysis of variance (ANOVA) is a tool devised for the statistical anal-

ysis of designed experiments. It has recently found widespread use in the study

of quasi-Monte Carlo (QMC) integration methods, where it is applied to various

notions of the effective dimension of an integrand. The ANOVA has also been

used in sensitivity analysis of high complexity computer codes to identify impor-

tant subsets of input variables. In both of these settings we have a function f

defined on an s dimensional product domain, which we suppose is [0, 1]s possibly

after some transformation.

This paper introduces a probability measure µ(u) on nonempty subsets u ⊆
{1, . . . , s}, in which µ(u) is proportional to the variance contribution to f of the

subset u of input variables of f . If U is a random µ distributed subset, then

its cardinality, denoted |U | is a random variable. The distribution ν(·) of the

random variable |U | is the dimension distribution of f . Caflisch, Morokoff, and

Owen (1997) defined two notions of the effective dimension of an integral which

may be defined through quantiles of this distribution. Here we present some more

easily computable measures of the effective dimension of a function based on the
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mean and variance of |U |. Simple probability bounds, such as those of Markov

and Chebychev can then be applied to get bounds on the original quantile based

definitions.

The main contribution of this paper is to use the dimension distribution to

analyze test functions commonly used in QMC problems. Many test problems are

constructed as sums or products of one dimensional functions. The dimension

distribution of such test problems is very easy to analyze, and this provides

insight into which test problems should be hard for QMC and which should be

relatively easy.

As Tezuka (2002) notes, good results for QMC methods have been reported

for two classes of functions: functions of low effective dimension, and isotropic

functions. The isotropic functions arise as expectations of functions of ‖X‖ where

X is an s dimensional spherical Gaussian random vector. For such s dimensional

isotropic integration problems, some techniques of Sobol’ (2001) for sensitivity

analysis can be used to study the dimension distribution. One result is that

we are able to show that some isotropic functions studied in the literature are

of low effective dimension. In particular a 25 dimensional function studied in

Papageorgiou and Traub (1997) is shown to be very nearly a superposition of

functions involving 3 or fewer variables.

The ANOVA decomposition of [0, 1]s has been studied by many authors:

Hoeffding (1948) used it in the study of U -statistics; Sobol’ (1969) used it in

the study of quadrature methods, calling it the “decomposition into summands

of different dimensions”; Efron and Stein (1981) used it to prove their famous

lemma on jackknife variances; Takemura (1983) gives an historical account; Owen

(1997a) presents a continuous space version of the nested ANOVA; Hickernell

(1996) presents a reproducing kernel Hilbert space version.

Section 2 introduces the ANOVA decomposition and some sensitivity co-

efficients of Sobol’ (2001), and then the dimension distribution is presented in

Section 3. Section 4 explains why QMC can be much better than MC on in-

tegrands of low effective dimension. Certain classes of functions with simple

dimension distributions are presented in Section 5 and numerical results for ex-

amples considered in the literature are presented in Section 6. In particular

Section 5.3 describes how to get information about the dimension of isotropic

functions through a sensitivity analysis technique. Further, Proposition 3 there

shows that certain isotropic polynomials of degree n < s give rise to s dimensional

integrands that are exactly superpositions of functions depending on n or fewer

variables. Section 6.6 shows that a specific 25 dimensional isotropic integrand is

very nearly a superposition of 3 dimensional functions. Some concluding remarks

are made in Section 7.
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2. ANOVA Decomposition

Let f be a function on [0, 1]s with
∫

f(x)2dx < ∞. Here and elsewhere,

integrals without explicit domains are expectations over [0, 1]s with respect to

the uniform distribution U [0, 1]s. The expectation of f is I = I(f) =
∫

f(x)dx,

and the variance of f is σ2 = σ2(f) =
∫

(f(x) − I)2dx. To avoid trivialities, we

assume that σ2 > 0.

ANOVA is a tool for describing the dependence of f on subsets of the com-

ponents in X. Let u ⊆ {1, . . . , s} denote such a subset. We use |u| for the

cardinality of u and −u for the complementary set {1, . . . , s} − u. A generic

point of [0, 1]s is written X = (X1, . . . , Xs) and Xu denotes the |u|-vector of

components Xj for j ∈ u.

We write [0, 1]u for the domain of Xu. The integral over Xu ∈ [0, 1]u of a

function g(X), is a real valued function that depends on X only through X−u.

For instance
∫

[0,1]{2} x1 + x2dx{2} = x1 + 1/2.

In the ANOVA decomposition, each square integrable function f is written

as a sum

f(X) =
∑

u⊆{1,...,s}

fu(X), (1)

where fu(X) depends on X only through Xu. The ANOVA terms are defined

by:

fu(X) =

∫

X−u

(

f(X) −
∑

v u

fv(X)
)

dX−u (2)

=

∫

X−u

f(X)dX−u −
∑

v u

fv(X). (3)

Using standard conventions f∅(X) = I(f) for all X. In (2) one first subtracts

from f what can be attributed to proper subsets of u and then averages over the

values of X−u. Equation (3) is simpler for some manipulations, but for f > 0

with I � σ, equation (2) may be preferable numerically.

For the decomposition in (2) one can show by induction on |u| that, for

j ∈ u and any X,
∫ 1
0 fu(X)dXj = 0. Then it follows that distinct ANOVA terms

belong to orthogonal spaces: if
∫

f2(x)dx < ∞,
∫

g2(x)dx < ∞ and u 6= v, then
∫

fu(x)gv(x)dx = 0.

From the orthogonality of ANOVA terms it is easy to show that the variance

of f may be written σ2 =
∑

|u|>0 σ2
u where σ2

u = σ2
u(f) =

∫

fu(x)2dx when |u| > 0

and σ2
∅(f) = 0. We use σ2

u to measure the importance of fu. Normalized versions

σ2
u/σ2 are called global sensitivity indices in Sobol’ (2001).
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Sobol’ (2001) presents two ways to quantify the importance of a subset u of

variables to a function f , using certain totals of σ2
u. We write these as

τ 2
u =

∑

v⊆u

σ2
v , and, (4)

τ 2
u =

∑

v∩u6=∅

σ2
v . (5)

The quantity τ 2
u describes the effects on f of Xu alone while τ 2

u includes all the

effects of variables Xu acting in conjunction with others. It is easy to show that

0 ≤ τ 2
u ≤ τ 2

u ≤ σ2 and that τ 2
u + τ 2

−u = σ2. If τ 2
u is small then, as Sobol’ (2001)

describes, the variables Xu may be considered inessential, and perhaps be fixed

at default values.

Theorem 1 below shows how to express τ 2
u and τ 2

u directly in terms of certain

integrals. Sobol’ and Levitan (1999) describe QMC methods for evaluating these

quantities.

Theorem 1. Define f(xu, y−u) to be f(z) where zu = xu and z−u = y−u. Then

τ 2
u =

∫

[0,1]2s−|u|
f(xu, y−u)f(xu, z−u) dxudy−udz−u − I2

τ 2
u =

1

2

∫

[0,1]s+|u|

(

f(yu, x−u) − f(zu, x−u)
)2

dx−udyudzu.

Proof. These are Theorems 2 and 3 of Sobol’ (2001), respectively.

3. Dimension Distribution and Effective Dimension

Caflisch, Morokoff, and Owen (1997) define the effective dimension of a func-

tion in two senses. The function f has effective dimension d in the superposition

sense if
∑

|u|≤d σ2
u ≥ 0.99σ2 and it has effective dimension d in the truncation

sense if
∑

u⊆{1,...,d} σ2
u ≥ 0.99σ2.

The idea of effective dimension appears in Paskov and Traub (1995) where

they remark that their functions are not determined by just a small number of

leading input variables. Sloan and Wozniakowski introduce classes of functions

in which the importance of each input variable X j decays as j increases. Such

functions can have very small truncation dimension relative to their nominal

dimension.

The definitions above capture two notions in which f is almost d dimen-

sional. As Caflisch, Morokoff, and Owen (1997) remark, the choice of 99’th

percentile is arbitrary. Hickernell (1998) makes the threshold quantile a param-

eter in the definition. Owen (1998a) shows by a martingale argument that any
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square integrable function on [0, 1]∞ necessarily has finite effective dimension in

the truncation sense for any threshold less than 100 percent.

Now consider choosing a subset U ⊆ {1, . . . , s} at random with Pr(U = u) =

µ(u) = σ2
u/σ2. The size of this random U may be measured either through its

cardinality or through the maximum of its elements’ indices. These then become

random variables through which a dimension distribution of f may be defined.

Definition 1. The dimension distribution of f (in the superposition sense) is

the probability distribution of |U | when Pr(U = u) = σ2
u/σ2. It has probability

mass function ν(d) = νS(d) =
∑

|u|=d σ2
u/σ2, d = 1, . . . , s.

Definition 2. The dimension distribution of f in the truncation sense is the

probability distribution of max{j | j ∈ U} when Pr(U = u) = σ2
u/σ2. It has

probability mass function νT(d) =
∑

max{j|j∈u}=d σ2
u/σ2, d = 1, . . . , s.

The function f has superposition dimension d if the 99’th percentile of ν is

at most d. Similarly f has truncation dimension d if the 99’th percentile of νT is

at most d. The mean dimension of f in the superposition sense is

D = DS =

∑

|u|>0 σ2
u|u|

∑

|u|>0 σ2
u

. (6)

The mean dimension of f in the truncation sense is

DT =

∑

|u|>0 σ2
u max{j | j ∈ u}
∑

|u|>0 σ2
u

. (7)

These mean dimensions are the expectations of |U | and maxj∈U respectively. The

mean dimension is often simpler to compute than are quantiles of the dimension

distribution. Variances of these two dimension distributions can also be defined

in straightforward ways.

4. Effective Dimension and Quasi-Monte Carlo

A low superposition dimension can help to explain why QMC rules work

better than MC on problems of high nominal dimension. Here we outline the

connection, using notions of (t,m, s)-nets and elementary intervals in base b

from Niederreiter (1992), and a new notion called the active dimension of an

elementary interval.

Definition 3. Let s ≥ 1 and b ≥ 2 be integers. An elementary interval in base

b is a subinterval of [0, 1)s of the form

E =
s
∏

j=1

[

aj

bkj
,
aj + 1

bkj

)

(8)
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for integers kj and aj satisfying kj ≥ 0 and 0 ≤ aj < bkj .

An elementary interval with some kj = 0 can be considered less than fully

s-dimensional. We take the number of nonzero kj as a definition of the active

dimension of an elementary interval:

Definition 4. The active dimension of the elementary interval E in (8) is d =

d(E) =
∑s

j=1 1kj>0.

Definition 5. Let t ≤ m be a nonnegative integer. A finite sequence of bm

points from [0, 1)s is a (t,m, s)-net in base b if every elementary interval in base

b of volume bt−m contains exactly bt points of the sequence.

Let us say that the set E is “balanced by a (t,m, s)-net” if it is guaranteed by

Definition 5 to have nVol(E) points of the net in it where n = bm is the number

of points of the net and Vol(E) is the s dimensional volume of E. The set E in

Definition 3 has s dimensional volume Vol(E) = b
−
∑s

j=1
kj . It is balanced by the

net in Definition 5 if and only if m ≥ t +
∑s

j=1 kj .

It is well known that low dimensional coordinate projections of QMC rules

tend to be very well equidistributed while higher dimensional projections tend

not to be unless n is large. An elementary interval of active dimension d has
∑s

j=1 kj ≥ d, and so no such interval is balanced by the net unless n ≥ bt+d.

For (t,m, s)-nets there is no equidistribution among projected points X u
i for

u ⊆ {1, . . . , s} beyond that implied by equidistribution of projected points X v
i

with v ⊂ u, unless n ≥ bt+|u|.

Now let f(x) =
∑

u fu(x) where fu depends on x only through xu. Then the

quadrature error in a QMC rule X1, . . . , Xn satisfies the bound

∣

∣

∣

1

n

n
∑

i=1

f(Xi) − I
∣

∣

∣ ≤
∑

|u|>0

Dn,|u|(X
u
1 , . . . , Xu

n)‖fu‖, (9)

where Dn,|u| is a discrepancy for n points in [0, 1)|u| and ‖fu‖ is a compatible

norm. There are many choices of discrepancy and corresponding norms. See for

example Hickernell (1998). Formula (9) appears in Caflisch, Morokoff, and Owen

(1997) and several versions are presented in Hickernell (1998).

The bound in (9) can be used to explain why QMC can be so much better

than MC on functions of low superposition dimension. Suppose that the QMC

rule has much smaller projected discrepancies Dn,|u| than MC typically has when

u is small and that the integrand f has small higher dimensional parts as mea-

sured by ‖fu‖ when |u| is large. Then all terms in (9) are small for QMC, while

the terms for small |u| can be large for MC. It is possible that the values of Dn,|u|

for small |u| can appear to follow an asymptote of n−1+ε for practical sample sizes

n, even when the full s dimensional discrepancy does not. In such cases the error
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(9) will have empirical behavior that appears to be O(n−1+ε) for practical sample
sizes, even though a worst case analysis could show that the rate O(n−1+ε) has
to set in when n ≥ exp(s).

5. Additive, Multiplicative, and Isotropic Functions

Multivariate functions defined in a simple way through one or more univari-
ate functions are widely used as test functions for quadrature. Their simplicity
often allows one to compute the desired integral in closed form. The ANOVA
can also simplify for such functions. Here we consider several cases.

5.1. Additive functions

Additive functions of the form f(x) =
∑s

j=1 gj(x
j) have a particularly simple

ANOVA decomposition. Letting µj =
∫ 1
0 gj(z)dz and γ2

j =
∫ 1
0 (gj(z) − µj)

2dz we
easily find that f∅ =

∑s
j=1 µj, f{j}(x) = gj(x

j) − µj, and fu(x) = 0, for |u| > 1,
and so σ2

u = 0 unless |u| = 1 in which case σ2
{j} = γ2

j . The mean dimension of f

is one in the superposition sense. In the truncation sense it is σ−2∑s
j=1 jγ2

j .

5.2. Multiplicative functions

Functions of the product form

f(x) =
s
∏

j=1

gj(x
j) (10)

are widely used as test functions. Letting µj and σ2
j be as in Section 5.1 we find

that

fu(x) =
∏

j∈u

[gj(x
j) − µj]

∏

j 6∈u

µj, and,

σ2
u =

∏

j∈u

γ2
j

∏

j 6∈u

µ2
j . (11)

Hickernell (1996) has this result explicitly and it also seems clear that Sobol’
(1993) used it in some examples.

The denominator in both mean dimensionalities is simply the variance of f .
For product functions it may be written

σ2 =
s
∏

j=1

(µ2
j + γ2

j ) −
s
∏

j=1

µ2
j . (12)

Proposition 1. For the product function (10), the mean dimension in the su-

perposition sense is

D =

∑s
j=1 γ2

j /(γ2
j + µ2

j)

1 −∏s
j=1 µ2

j/(γ
2
j + µ2

j)
. (13)
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Proof. Consider s independent random variables j1, . . . , js ∈ {0, 1} with Pr(jr =

1) = γ2
r/(γ2

r + µ2
r) ≡ pr. Let U = {r | jr = 1} be a random subset of {1, . . . , s}

determined by the jr. Then σ2
u/σ2 is equal to the conditional probability Pr(U =

u | U 6= ∅), as may be verified by direct calculation from (11) and (12). Finally

D may be written

E(|U | | U 6= ∅) =
s
∑

r=1

Pr(jr = 1 and U 6= ∅)/Pr(U 6= ∅)

=

( s
∑

r=1

pr

)

/

(

1 −
s
∏

r=1

(1 − pr)

)

,

as required.

Many test functions have µj = 0 for some or even all j. The assumption

that σ2 > 0 rules out the possibility that µj = γj = 0. Suppose that µj = 0 for

j = 1, . . . , r where 1 ≤ r ≤ s, and that µj 6= 0 if j > r. Then (13) simplifies

to, D = r +
∑s

j=r+1 γ2
j /(γ2

j + µ2
j), and the consequence of µj = 0 is generally to

increase the mean dimension.

Markov’s inequality bounds the fraction of σ2 attributable to d and higher

dimensional ANOVA components by ν([d, s]) ≤ D/d. A related inequality, re-

sembling Chebychev’s, is ν([d, s]) ≤ d−2∑s
j=1 ν(j)j2, which uses the mean square

of the dimension distribution.

Proposition 2. For the product function (10), the mean square dimension in

the superposition sense is

∑s
j=1 pj(1 − pj) + (

∑s
j=1 pj)

2

1 −∏s
j=1(1 − pj)

, (14)

where pj = γ2
j /(γ2

j + µ2
j).

Proof. As in Proposition 1, introduce s independent random variables j1, . . . , js

∈ {0, 1} with Pr(jr = 1) = γ2
r/(γ2

r +µ2
r) ≡ pr. The calculation proceeds as there,

except that we compute E(|U |2 | U 6= ∅).
The following sampling scheme can be used to generate a random set U with

probability proportional to σ2
u. For j ∈ 1, . . . , s let j be in U with probability

pj = γ2
j /(γ2

j + µ2
j ), making all decisions independently. If the resulting U is not

empty accept it. Otherwise, keep generating such sets U until the first non-empty

one, and accept that one.

5.3. Isotropic functions

A class of isotropic test functions due to Capstick and Keister (1996) and

Keister (1996) have been used as quadrature test functions. Papageorgiou and
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Traub (1997) report good results for quasi-Monte Carlo on these functions, and

Papageorgiou (2001) introduces a radial discrepancy measure for them. Novak,

Ritter, Schmitt, and Steinbauer (1997) apply an interpolatory rule to some such

functions. The isotropic integrals take the form

∫

Rs

h(‖z‖)e−‖z‖2

dz = πs/2
∫

Rs

e−
1

2
‖z‖2

(2π)s/2
h(‖z‖/

√
2)dz (15)

= πs/2
∫

[0,1]s
h

(

√

√

√

√

1

2

s
∑

j=1

[Φ−1(xj)]2
)

dx,

where ‖x‖ =
√

x′x and Φ(x) is the standard normal distribution function. It is

convenient to multiply the s dimensional version of this function by π−s/2. That

is we take the integrand to be

f(x) = π−s/2h

(

√

√

√

√

1

2

s
∑

j=1

[Φ−1(xj)]2
)

(16)

on [0, 1]s. This scale factor π−s/2 does not change σ2
u/σ2 so it does not change

the effective dimension of the integrand.

The value of these radially symmetric integrals can be expressed as univariate

integrals with respect to a χ2
(s) distribution:

∫

[0,1]s
f(x)dx =

∫ ∞

0
h(
√

z/2 )gs(z)dz, (17)

where gs(z) = e−z/2zs/2−1/(Γ(s/2)2s/2) for 0 < z < ∞ is the chi-squared density

function on s degrees of freedom.

The formulas of Sobol’ can be translated using chi-squared variables. From

(4) we can write (τ 2
u + I2)(f) as a triple integral

∫ ∫ ∫

h
(
√

(x + y)/2
)

h
(
√

(x + z)/2
)

g|u|(x)gs−|u|(y)gs−|u|(z)dxdydz (18)

over (0,∞)3 and, after some rearrangement,

τ 2
u =

∫ ∞

0

[
∫ ∞

0

[

h
(

√

(x + y)/2
)

− I(f)
]

gs−|u|(y)dy

]2

g|u|(x)dx. (19)

By symmetry σ2
u depends on u only through |u|. Letting κ2

|u| be this common

value, we may write

τ 2
u =

|u|
∑

j=1

(

|u|
j

)

κ2
j , (20)
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allowing us to solve

κ2
r = τ 2

{1,...,r} −
r−1
∑

k=1

(

r

k

)

κ2
k (21)

for increasingly large r, and then to compute

ν(r) =
1

σ2

(

s

r

)

κ2
r . (22)

If the function h(
√

z/2) used to construct the isotropic function is a low order

polynomial in the chi-squared variable z, then f is necessarily of low effective

dimension. Such an f cannot have σ2
u > 0 for any u with |u| larger than the

degree of the polynomial as shown below.

Proposition 3. Let f(x) be an isotropic integral of the form (16) for which

h(‖x‖/
√

2) = p(‖x‖2) for a polynomial p of degree n where 0 ≤ n < s. Let

u ⊆ {1, . . . , s} with |u| > n. Then fu(x) = 0.

Proof. It suffices to consider monomials p(z) = zn because more general poly-

nomials are linear combinations of monomials.

Then the integrand on the unit cube is f(x) = [
∑s

j=1 Φ−1(xj)2]n. Expanding

the polynomial we find that f is a sum of products of squares of Φ−1(xj) for which

each product has at most n factors.

The practical import of Proposition 3 is that if h(
√

z/2) is close to a low

order polynomial in z, then f has low effective dimension. The natural definition

of close is with respect to a weight function such as exp(−z)zα−1 on [0,∞).

The orthogonal polynomials for this weight function are the associated Laguerre

polynomials (Szego (1975)). Proposition 3 only uses the degree of the polynomial,

so it applies to whatever orthogonal polynomials we might consider.

6. Example Functions

6.1. Hellekalek’s example

Hellekalek (1988) describes some numerical computations with the function

f(x) =
∏s

j=1 g(xj) where, for z ∈ [0, 1], g(z) = zα − 1/(α + 1). Here zα denotes

the α’th power of the scalar z. For this function µj = 0 for all j and γ2
j =

α2/[(2α + 1)(α + 1)2]. The value of α ranges from 1 to 3.

This function has σ2
u = σ21u={1,...,s}. Thus it is fully s dimensional. Its

dimension distribution is a pointmass with ν(d) = 1d=s. The variance of f

decreases exponentially fast as s increases, so numerical work is perhaps better

done on
∏s

j=1 γ−1
j × f .

For this test function, quasi-Monte Carlo integration did not produce a mean-

ingful improvement over Monte Carlo integration. Hellekalek remarks that this
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lack of improvement is surprising given results on discrepancies of quasi-Monte

Carlo points. It is less surprising from an effective dimension view. The inte-

grand is of full dimension s and the (t,m, s)-nets applied do not balance any

elementary intervals of dimension s, unless n ≥ bt+s.

6.2. Sobol’s examples

Sobol’ (2001) considers product functions in which gj(x
j) = (|4xj − 2| +

aj)/(1 + aj) for a parameter aj. Elementary calculus gives µj = 1 and γ2
j =

1/[3(1 + aj)
2]. Sobol’ remarks that for aj = 0 the value of gj varies from 0 to 2

and is important, whereas for aj = 3 the value of gj varies from 0.75 to 1.25 and

is unimportant.

Sobol’ considers s = 8 and considers a function in which the first two vari-

ables are important with a1 = a2 = 0, and the final six are not important, having

aj = 3 for j ≥ 3. It is simple to compute σ2
u for all 255 nonempty subsets of

{1, . . . , 8}.

Table 1. ANOVA probabilities of |U | and max(U) for Sobol’s example with

two important and six unimportant variables.

d ν(d) νT(d)

1 9.45× 10−1 0.467

2 5.44× 10−2 0.519

3 1.38× 10−4 0.00225
4 1.48× 10−7 0.00225

5 8.54× 10−11 0.00226

6 2.77× 10−14 0.00226

7 4.80× 10−18 0.00226

8 3.47× 10−22 0.00226

Table 1 shows the entire dimension distribution for Sobol’s example in both

senses. The function is nearly a superposition of univariate functions because

ν(1) = 0.945. Similarly the ANOVA contribution of variables taken three or

more at a time accounts for only 1.38 × 10−4 of the variance of f . The mean

dimension of Sobol’s example function is 1.055 in the superposition sense. The

mean dimension in the truncation sense is 1.580.

Sobol’ (1994) investigates the function f(x) =
∏s

j=1(j + 2xj)/(j + 1). Here

µj = 1 and γ2
j = 1/[3(j + 1)2]. Each input variable xj+1 is less important than

xj. For dimension s = 100, numerical computations based on (13) and (14) give

a mean dimension of 1.085 and a mean square dimension of 1.263.

Chebychev’s inequality for a random variable Y with finite variance is Pr(|Y−
E(Y )| > α

√

Var (Y )) ≤ 1/α2 for α > 0. Applied to the dimension distribution
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of f with α = 13 we find that Pr(|U | > 1.085 + 13 × (1.263 − 1.0852)1/2 ≤ 1/132

so that Pr(|U | > 4.89) ≤ 0.00592. For s = 100, at least 99.418% of the variation

in this function is from its ANOVA components of dimension 4 and smaller.

6.3. Owen’s examples

Owen (1997b) and Owen (1998b) include a discussion of functions f(x) =

12s/2∏s
j=1(X

j − 1/2). This function has I = 0, and σ2 = 1 and its dimension

distribution has ν(s) = 1.

Owen (1997b) studied scrambled (0, s)-sequences in base b. For 1 ≤ λ < b

and m ≥ 0, the first n = λbm points X1, . . . , Xn of such a sequence com-

prise a (λ, 0,m, s)-net in base b, and the scrambled net estimate of I is În =

(1/n)
∑n

i=1 f(Xi). This estimate has E(În)=I and Var (În) = O(n−3 log(n)(s−1))

along the sequence n = λbm → ∞. For f above, Var (În) can be computed ex-

actly. Owen (1998b) develops the approximation Var (În)
.
= 1/n for n ≤ bs

and

Var (În)
.
=

(log n)s−1

n3

λ2

(s − 1)!

(

b2 − 1

log b

)s−1

(23)

for n = λbm ≥ bs. These test functions are fully s dimensional and the im-

provement of QMC over MC sets in at n ≥ bs. For further discussion see Owen

(1997b).

6.4. Roos and Arnold’s examples

Roos and Arnold (1963) studied integrands: f1(X) = (1/s)
∑s

j=1 |4Xj − 2|,
f2(X) =

∏s
j=1 |4Xj − 2|, and f3(X) =

∏s
j=1(π/2) sin(πXj). The function f1 is

additive, so it is purely one dimensional. It has σ2
{j} = 1/3 and ν(d) = 1d=1.

The functions f2 and f3 both have product form, and both have values

µj = µ and γj = γ independent of j. For such functions σ2
u = γ2|u|µ2(s−|u|) and

σ2 = (µ2 + σ2)s − µ2s. Both f2 and f3 have µ = 1, so that σ2
u = γ2|u| and

σ2 = (1 + σ2)s − 1. The mean dimension s, γ2(1 + γ2)s−1/[(1 + γ2)s − 1], is

approximately sγ2/(1 + γ2) for large s. For f2 we find γ2 = 1/3 while for f3 we

find γ2 = π2/8 − 1
.
= 0.2337.

Test problems f2 and f3 have mean dimensionality that grows nearly linearly

with s. The argument in the proof of Proposition 1 shows that the dimension

distribution for f2 is the binomial distribution with parameters s and γ2/(1+γ2),

conditioned to be nonzero.

Table 2 shows the dimension distribution of f2 and f3 when s = 10. The

function f2 has little structure beyond dimension 6 and f3 has little beyond

dimension 5.
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Table 2. The dimension distribution ν(d) is shown for two of Roos and
Arnold’s example functions: f2 and f3 with s = 10.

d f2 f3

1 0.199 0.326

2 0.298 0.343
3 0.265 0.214

4 0.155 0.0874

5 0.0619 0.0245

6 0.0172 0.00477

7 0.00327 0.000637
8 0.000409 0.0000559

9 0.0000303 0.0000029

10 0.00000101 0.0000000678

6.5. Genz’s examples

Widely used families of test functions were proposed by Genz (1984). All

except the first and third functions are of product form:

f2(X) =
s
∏

j=1

(

a−2
j + (Xj − uj)

2
)

(Product Peak);

f4(X) = exp
(

−
s
∑

j=1

a2
j (X

j − uj)2
)

(Gaussian);

f5(X) = exp
(

−
s
∑

j=1

aj |Xj − uj|
)

(C0);

f6(X) = exp
(

−
s
∑

j=1

ajX
j
)

1X1>u1
1X2>u2

(Discontinuous).

The values uj and aj are parameters providing different members of each family

of functions. To generate test functions the uj are sampled from the U(0, 1)

distribution. The aj are positive variables also generated at random. It is thought

that larger values of aj will make the problem harder.

For product functions the effective dimension tends to be higher for larger

values of pj = γ2
j /(γ2

j +µ2
j). If the pj are all near 0 then the effective dimension is

nearly 1 and conversely if the pj are all near 1 the effective dimension is nearly s.

For f4, f5, and f6 as aj → ∞ we find pj → 1. Thus if all of the aj are

large enough then these functions are of essentially full dimension s. For f2, as

aj → ∞ we find using symbolic computation in Mathematica that

pj →
4 − 15uj + 15u2

j

9 − 45uj + 90u2
j − 90u3

j + 45u4
j

∈
[

4

9
,
5

9

]

,
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so the hard cases for f2 are only of approximate dimension s/2.

Suppose that one wants to test quadrature rules on a set of problems of

varying nominal dimension s with nearly constant mean dimension D. Then one

can arrange for pj to be close to D/s. For functions f4 and f5 (and also f2 if

D/s ≤ 4/9) one can sample uj ∼ U(0, 1), then solve γ2
j /(γ2

j + µ2
j) = D/s for aj.

For f6 the variables u1 and u2 affect how spiky the function is. Because

lima1→0 p1 = 1 − u1 the parameter u1 (respectively u2) makes a small difference

to the effective dimension of f6 when a1 (respectively a2) is small. But for large

values of a1 the value of u1 makes little difference to p1.

6.6. Keister’s examples

Capstick and Keister (1996) consider the isotropic integral with h(z) =

cos(z). In this case, the integral (15) can be expressed in terms of some special

functions and evaluated by Mathematica (Wolfram (1999)). Papageorgiou and

Traub (1997) consider the case s = 25. For s = 25, Mathematica computes the

integral of (15) to be approximately −1.3569140978979188×106 and, after scaling

by πs/2, we find that I
.
=−0.82828337794550358 and σ2 .

=0.048330759722972670.

If Z ∼ χ2
(25) then 3.97 ≤ Z ≤ 75.87 with probability greater than 1 − 10−6,

and 1.40 ≤
√

Z/2 ≤ 6.16, also with probability greater than 1−10−6. The cosine

function does not go through even one full period between 1.4 and 6.16 and so

it is quite nearly a low order polynomial over this range. In view of Proposition

3 we might therefore expect low effective dimension for this problem.

The value of τ 2
u for |u| = 1, . . . , 5 was computed several ways. Because

(19) has a simple iterated form the first methods tried were midpoint rules,

using n equispaced quantiles of the χ2
s−|u| distribution for the inner integral and

n equispaced quantiles of the χ2
|u| distribution for the outer integration. The

computational cost grows as n2. Varying n, the error appeared to be O(1/n),

probably due to the oscillatory nature of the integrand. Table 3 shows values

computed with n = 100, 000 evaluations in each of the inner and outer integrals.

Table 3 also shows values obtained by using a scrambled (0, 14, 3)-net in base

3 (having n = 314 = 4, 782, 969 evaluations) on the three dimensional integral

representation (18). Finally Mathematica with (19) and 25 requested digits of

accuracy was used.

All three methods of computing τ 2
u agree closely for this function. The

methods differ when it comes to estimating κ2
r particularly for larger values of r.

The reason is that for larger r, the binomial coefficients in (21) and (22) become

larger. As a consequence, only the first few κ2
j could be computed accurately.

Table 4 shows estimates of κ2
r, r = 1, . . . , 5, from the three methods used in

Table 3. The table includes some negative values, as might be expected when
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small quantities are estimated as differences of larger quantities subject to nu-

merical error. The values from Mathematica were computed with 25 digits of

accuracy requested. Because it is not certain that this accuracy was attained,

a comparison with the scrambled net answers is made below. That comparison

leaves little doubt about the value of ν(d) for d from 1 to 3.

Table 3. Shown are estimates of 100 × τ 2

u for the isotropic function (17)

with h(·) = cos(·) from three methods described in the text. The methods

are an iterated midpoint rule, a scrambled net, and a combination symbolic-

numeric calculation done with Mathematica.

103 τ 2

u 1 2 3 4 5

Mid 1.36964 2.78103 4.23437 5.73039 7.26980

Net 1.37021 2.78166 4.23504 5.73108 7.27051

Math. 1.37026 2.78172 4.23510 5.73114 7.27057

Table 4. Shown are estimates of κ2

j = σ2

u for |u| = j, for the isotropic

function (17) with h(·) = cos(·) as computed by methods described in the

text.

103κ2

1
105κ2

2
107κ2

3
κ2

4
κ2

5

Mid 1.36964 4.17463 2.07260 5.11450E−7 −5.00549E−7
Net 1.37021 4.12332 6.98281 3.12985E−8 −2.71509E−8

Math. 1.37026 4.11968 7.28342 3.13553E−9 6.51294E−12

Table 5 shows estimates of the dimension distribution of f for s = 25 based

on the values computed by Mathematica. Based on these estimates, over 99%

of the variance in f comes from ANOVA components of dimension 3 or less. So

this function is of effective dimension 3 using the definition of Caflisch, Morokoff,

and Owen (1997). Only about 3×10−8 of the variance is estimated to come from

components of dimension 6 or more.

The scrambled net computations of κ2
j in Table 4 match the Mathematica

ones reasonably well for j ≤ 3, confirming that ν([1, 3]) is very close to 1. It is

also reasonable, though not certain, that most of the remainder of the variance

of f comes from ANOVA components of dimension 4, but it is hard to be sure

that ν(5)
.
= 7.16×10−6 , because a small relative error in ν(4) could imply a large

one in ν(5).

Table 5 also contains values for dimension s = 80. Once again it appears

that most of the variance of f comes from components of dimension 3 or less. In

this instance however most of the variance comes from components of dimension

2 instead of dimension 1. In both of these examples the low effective dimension

of the integrand explains why the quasi-Monte Carlo methods are effective.



16 ART B. OWEN

Table 5. Shown are the values ν(r) representing the fraction of the variance
of the isotropic function described in the text, that is of dimension r for
r = 1, . . . , 5. The final column gives the fraction of variance for dimensions
higher than 5. The examples here have nominal dimensions s = 25 and
s = 80. The values here were computed using Mathematica with 25 digits
of accuracy requested.

s ν(1) ν(2) ν(3) ν(4) ν(5) ν([6, s])

25 0.7088 0.2557 0.03466 0.0008207 7.160E-6 2.999E-8
80 0.06250 0.9107 0.02554 0.001012 0.0002258 7.825E-6

7. Discussion

Effective dimension provides one method for describing the difficulty of

quadrature problems. The ANOVA distribution allows us to compute aspects

of the effective dimension for test problems commonly used in quadrature.

Low effective dimension for f is not sufficient to imply that QMC will be

much better than MC, as easily constructed “spiky” test functions show. The

low dimensional parts fu must also be such that QMC rules will work well on

them. This consideration appears in the bound (9) through the norms applied

to fu.
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