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Abstract: We start with a data set recently obtained from a Bruceton test. The

data come from the study of CS-M-3 ignitor in a military experiment and are

analyzed by the up-and-down method of Dixon and Mood (1948). We reexamine

the method and develop a more appropriate inference that takes account of the

special dependent data structure. Two bootstrap confidence interval procedures,

percentile and bootstrap-t, are introduced to find approximate confidence intervals

for the parameters of interest. A simulation study shows that the bootstrap-t, with

proper bias corrections, gives better coverage probability, but is considerably more

computer-intensive than non-bias-corrected versions. This leads to the development

of an importance resampling technique which can reduce the CPU time by a factor

of 10 or more. Finally, we apply the proposed procedure to analyze our data set.

Key words and phrases: Bootstrap, importance resampling, Markov chains, maxi-

mum likelihood estimate, probit model, sequential design, up and down method.

1. Introduction

Table 1.1 summarizes the testing of the CS-M-3 ignitor in an experiment
carried out by the Chung-Shan Institute of Science and Technology in Taiwan.
One wishes to estimate the probability of reliable and safe functioning of com-
ponents. Here, the problem is to determine the reliability and safety of fuse
explosive trains. The test is a destructive one, 1 denotes explosion and 0 de-
notes non-explosion. The x-axis is time and the y-axis denotes the stimulus
level in the log domain of the dosage, with volt as unit. There are 43 items
in the test. The experiment was performed at initial stimulus level .874, with
step size ∆ = .01 through a total of six levels. This is called a Bruceton test
when the data is analyzed by the classical up-and-down method of Dixon and
Mood (1948). (Bruceton is the name of a military installation in Pennsylvania,
see Mood (1998).) For parametric inference on binary data with various stimu-
lus levels, this method is still actively used in Pyrotechnics Sensitivity Analysis
(PSA), and is documented in certain military standards (e.g., MIL-STD-331B,
MIL-STD-322B).
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Table 1.1. Experiment of CS-M-3 ignitor by the Bruceton test.

.884 - - - - - - - - - - - - - - - 1 - - - 1 - - - - - - - - - - - - - - - - - - - - - - -

.874 1 - 1 - - - - - - - - - - - 0 - 1 - 0 - 1 - 1 - - - - - 1 - - - 1 - 1 - - - 1 - - - 1

.864 - 0 - 1 - - - - - - - - - 0 - - - 0 - - - 0 - 1 - - - 0 - 1 - 0 - 0 - 1 - 0 - 1 - 0 -

.854 - - - - 1 - 1 - 1 - - - 0 - - - - - - - - - - - 1 - 0 - - - 0 - - - - - 0 - - - 0 - -

.844 - - - - - 0 - 0 - 1 - 0 - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - -

.834 - - - - - - - - - - 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A Bruceton run can be described as follows. Start from an initial stimulus
level and assume that increasing the stimulus level will increase the explosion
probability. When the response is 0 (non-explosive), we increase the stimulus
level by one unit at the next stage; if the response is 1 (explosive), we decrease
the stimulus level by one unit at the next stage. The process continues until a
certain fixed number of observations is obtained.

An implicit assumption underlying this quantal response model is that there
is an unobservable random variable X with distribution F which represents the
critical value of this item, in the sense that the response at level x, Y (x), takes
the value 1 if and only if X ≤ x. Here Y (x) = 1 or 0 according as the test
item is exploded or not. Although F , the distribution function of the critical
stimulus levels, could be any distribution function, normally a parametric family
is assumed. In particular, two distribution forms have been commonly used, the
probit and the logit, perhaps after a transformation of x. For the probit model,
F (x) is modeled as an integrated normal distribution function

F (x) = P{Y (x) = 1} =
∫ (x−µ)/σ

−∞
1√
2π
e−t2/2dt, (1.1)

where µ and σ are two unknown parameters. For the logit model, F (x) is the
logistic distribution

F (x) = P{Y (x) = 1} =
1

1 + exp{−(x− µ)/σ} , (1.2)

where µ and σ also denote two unknown parameters. Given the data set, the
main objective is to estimate xp, the pth quantile of F , for p close to unity.

A salient feature of the Bruceton test is that observations are concentrated
around stimulus levels that produce the median value of F , and this holds true
irrespective of the choice of the initial stimulus level and without the prior knowl-
edge of the value of the median. When the data in Table 1.1 are observed from the
y-axis, one can see more data points around the median level from a histogram-
like picture. This is an important feature when the value of the location param-
eter is of primary interest. However, for the data set in Table 1.1, the objective
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is to estimate the high quantiles of F . This requires a parametric model. We
assume the probit model and estimate the unknown parameters µ and σ2, and
the quantile xp via extrapolation, i.e., by using the corresponding parametric
form of the underlying distribution.

Under the probit, logit and double exponential distributions, approximate
D-, A- and c-optimal designs can be found in Sitter and Wu (1993) and Chao and
Fuh (1999). The simulation results in Chao and Fuh (1999) show that in most
cases, the up-and-down test exhibits an efficiency level of 70% or more compared
to the best D- or A-optimal design, and this is achieved without prior knowledge
of µ and σ2. With respect to estimation, the up-and-down design is an efficient
means of data collection.

Here we make no attempt to improve the data collection process, since the
data have already been collected. Instead, we take the data as given and proceed
to make the best use of it. A major drawback of the classical analysis is that
the normal approximation intervals used in the Bruceton test may not have
coverage probability close to the nominal values in case of a small to moderate
number of failures. This is easily seen in a small sample simulation study, see
Tables 3.1 and 3.3. We investigate the possibility of using computer-intensive
data analysis methods, such as bootstrap methods, to analyze the data set. It
is found that the bias corrected bootstrap-t, the most computer-intensive of all,
gives the most reliable nominal values. This motivated our search for a better
simulation procedure. Since the event corresponding to the nominal coverage is
a moderate tail event, it is natural to look into large deviation based techniques
for the importance resampling. That operates extra difficulties here, the data
obtained from an up-and-down method follow a Markov chain. To cope with
this, a tilting formula based on the Poisson equation is developed for the actual
simulation. In Section 2, we explore the specific Markovian structure of the data,
and then propose a bootstrap algorithm for the Bruceton test. Simulation studies
for the comparison of the various bootstrap confidence intervals are reported in
Section 3. Our main contribution is reported in Section 4, where we propose
an importance resampling method to facilitate variance reduction of the Monte-
Carlo simulation. In Section 5, we apply the proposed statistical procedure to
analyze the data set in Table 1.1. Conclusion and further remarks are in Section
6. Theoretical issues related to the bootstrap method and importance resampling
are included in the Appendix.

2. Markov Chain Representation and Bootstrap Confidence Intervals

To estimate µ, σ and xp in the probit model (1.1) using the up-and-down
method, we first represent the data described in Table 1.1 as a Markov chain.
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The idea of Markov chain representation to study non-parametric estimation
in the up-and-down method originated with Derman (1957). For further work
along this line, see Wetherill (1963) and Wetherill and Glazebrook (1986) and the
references therein. Recently, Thomas (1994) used a Markov chain representation
with a slightly different model to investigate the ignition sensitivity of thermal-
battery heat pellets. The utility of the Markov chain representation can be
described as follows. For the up-and-down method, by the intrinsic relation
between the stimulus level X and the response variable Y , we can reproduce the
data set {(Xt, Yt), t = 1, . . . , n − 1,Xn} from the ordered set of stimulus levels
{Xt, t = 1, . . . , n}, and the latter can be formulated as a Markov chain with the
specific transition probability matrix P described in (2.1) below. Therefore, in
the analysis that follows, we can ignore the values of the Y ’s and concentrate
on the X’s; the classical method of maximum likelihood estimate in parametric
Markov chains can be applied to make point estimation. The statistical inference
for ergodic Markov chains is well documented in Anderson and Goodman (1957),
Billingsley (1961), and Basawa and Prakasa Rao (1980).

Now consider the data set (x, y) = {(x0, y0), . . . , (xn, yn)} produced by the
up-and-down method, where xt is the stimulus level for the tth component and yt

is the response value for the tth component. Recall that yt is 0 or 1, representing
“non-explosive” or “explosive” respectively. For ease of exposition, suppose there
are five stimulus levels a0, . . . , a4 with ai < aj for i < j. Let mj be the number
of explosive units, and nj be the number of non-explosive units at stimulus level
j. The likelihood function is

Ln((µ, σ2)) = Ln((µ, σ2)|(x, y)) = K
4∏

j=0

p
nj

j (1 − pj)mj ,

where pj = Φ((aj−µ)/σ) for the probit model (1.1), pj = (1+exp{(aj−µ)/σ})−1

for the logit model (1.2), and where K is some constant.
For given x values, the conditional likelihood is simply a product but the

sampling distribution of the maximum likelihood estimates of µ and σ2 depends
on x (see (5.2), (5.5) and (A.7) below), and the x′s are not independent due to
the up-and-down design.

Now, it is easy to see that {Xt, t = 1, . . . , n} forms a Markov chain on a state
space {a0, . . . , a4} with transition probability matrix

P =




p0 1 − p0 0 0 0
p1 0 1 − p1 0 0
0 p2 0 1 − p2 0
0 0 p3 0 1 − p3

0 0 0 p4 1 − p4



. (2.1)
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In practice, only 4 to 7 different levels are used in testing, see Section 5 for details.
Based on an approximation of the likelihood function, Dixon and Mood

((1948), Equations (1) and (2)) derived approximate maximum likelihood esti-
mates of µ, σ and xp, for the probit model (1.1). Hampton, Blum and Ayres
((1973), Equations (23) and (24)) derived approximate maximum likelihood es-
timates for the logit model (1.2). Consistency and asymptotic normality of the
estimates follows from standard theory (see Billingsley (1961)).

Although the asymptotic normality of MLE’s can be used to find approx-
imate confidence intervals of µ, σ and xp, coverage probabilities are often far
from their nominal values. In addition, difficulty in computing the asymptotic
variance-covariance matrix makes this approach less suitable for application. The
bootstrap method is an alternative, and perhaps better, technique for this type
of problem. It is known that in the i.i.d. setting, bootstrap confidence intervals
are not only asymptotically more accurate than the classical normal approxima-
tion intervals, they are also more correct (see Efron and Tibshirani (1993)). In
the case of ergodic finite state parametric Markov chains, these properties are
expected to be valid as well (see Fuh and Lai (1998)).

The bootstrap (Efron (1979)) was designed for i.i.d. settings to evaluate the
sampling distribution of an estimate. In particular, it can be used to estimate
the bias and variance of an estimate, and to produce confidence intervals. The
application of bootstrap methods to Markov chains is discussed by Kulperger
and Prakasa Rao (1990), Athreya and Fuh (1992), Datta and McCormick (1993)
and Fuh (1993). In these papers, asymptotic properties have been verified for
various bootstrap methods in the nonparametric case. Little is known, however,
about the parametric case except for the i.i.d. setup. Here we propose a boot-
strap algorithm for parametric Markov chains, and introduce two procedures
(percentile and bootstrap-t) to give approximate confidence intervals. The para-
metric bootstrap-t is second-order accurate. The percentile procedure is very
easy to implement but is only first-order accurate. Theoretical studies of the
bootstrap methods is given in Appendix 1.

Bootstrap algorithms:

Let x = {x0, . . . , xn} be a realization of the Markov chain {Xt; t ≥ 0}
with transition probability P = (pij(θ)), where θ = (θ1, . . . , θp) is a vector of
unknown parameters. Let θ̂ be the maximum likelihood estimate (MLE) of
θ. The bootstrap algorithm to approximate the sampling distribution Hn of
R(x, θ) :=

√
n(θ̂ − θ) is as follows.

(1) With P̂n =: P (θ̂) as its transition probability, generate a Markov chain real-
ization of n steps x∗ = {x∗0, . . . , x∗n}. Call this a bootstrap sample, and let θ̂∗

be the MLE of θ based on x∗.
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(2) Approximate the sampling distribution Hn of R(x, θ) by the conditional dis-
tribution H∗

n of R(x∗, θ̂n) =
√
n(θ̂∗ − θ̂) given x, which can be done by

Monte-Carlo simulation .
Later, we compare two procedures (percentile and bootstrap-t, with and

without bias correction) to give approximate confidence intervals for the param-
eters θ (= µ, σ2, or xp in our case) of interest. For the percentile bootstrap
confidence interval, we repeatedly generate bootstrap samples x∗ according to
the above bootstrap algorithm, and replications θ̂∗ = θ(x∗) are computed. Let
Ĝ be the cumulative distribution function of θ̂∗. The 1 − 2α percentile interval
is defined by the α and 1 − α percentiles of Ĝ:

[θ̂l, θ̂u] = [Ĝ−1(α), Ĝ−1(1 − α)] = [θ̂∗(α), θ̂∗(1−α)].

The bootstrap-t estimates the percentiles of a studentized statistic T =
√
n(θ̂ −

θ)/σ̂ by bootstrapping, where σ̂2 is the variance estimator. Each x∗ gives a pair
(θ̂∗, σ̂∗), yielding T ∗ =

√
n(θ̂∗ − θ̂)/σ̂∗, a bootstrap replication.

In the Bruceton test, data were originally designed to estimate the location
accurately, and the approximate MLE is a complicated function of the sample
averages (see (5.5)). That makes the variance estimator σ̂2 systematically bi-
ased downward (see Hampton, Blum and Aryes (1973)), and hence a modified
technique is required for more accurate interval estimation. A general approach
in the bootstrap literature is to apply nested levels of bootstrap sampling. In
principle, a nested bootstrap might involve more than two levels, but in practice
the computational burden would ordinarily be too large for more than two levels
to be worthwhile, and we use with two. In the first level, a resample size B1 is
used to compute percentiles; resample size B2 is needed to estimate the bias of
standard error. Hence the overall number of bootstrap samples is B = B1×B2, a
formidable number needed for interval estimation. This idea leads us to study a
bias corrected bootstrap-t algorithm in Section 3 and an importance resampling
technique in Section 4 for efficient Monte-Carlo simulation. General treatment for
the nested bootstrap algorithm can be found in Chapters 5 and 12 of Efron and
Tibshirani (1993) and Sections 3.9, 4.5 and 5.6 of Davison and Hinkley (1997).

3. A Simulation Study

3.1. Design of the simulations

A small sample comparison for bootstrapping confidence intervals of the
up-and-down test is presented in this section. We compare all the approximate
confidence intervals (normal approximation, percentile and bootstrap-t, with and
without bias-correction) for the parameters µ, σ and xp, in the probit model
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(1.1). The performance of this comparison is based on coverage probability and
average length of the corresponding confidence intervals. The nominal coverage
probability for the confidence intervals is .95 in all cases. The results are shown
in Tables 3.1 to 3.4, in which three factors are used:
(1) Sample sizes of n = 50 and 100.
(2) Step sizes of ∆ = .8σ, 1.0σ, 1.2σ and 1.5σ.
(3) With and without bias correction (to be discussed below) for the standard

deviation estimator.

For this simulation study, we consider (1.1) with µ = 0, σ = .02 and x.999 =
.0168. The original sample is simulated from an ergodic Markov chain with
transition probability matrix

P =




.00003 .99997 .00000 .00000 .00000 .00000

.00621 .00000 .99379 .00000 .00000 .00000

.00000 .15866 .00000 .84134 .00000 .00000

.00000 .00000 .69146 .00000 .30854 .00000

.00000 .00000 .00000 .97725 .00000 .02275

.00000 .00000 .00000 .00000 .99977 .00023



,

and stationary distribution π = (.211, .241, .217, .186, .146)t, where t denotes
transpose. The bootstrap replication size for the ordinal bootstrap confidence
intervals is B = 2000. The true 95% interquantile range (t.025, t.975) is given for
reference, endpoints were obtained (with step size ∆ = 1.2σ) from the appropri-
ate quantiles of the empirical distributions based on a large simulation (180,000
replications for each case). Computations were performed using FORTRAN-77
programs on the IBM workstation 397 of the Institute of Statistical Science,
Academia Sinica, Taipei, Taiwan, ROC. The pseudo-random numbers were gen-
erated by using IMSL routines. All tests were compared on the basis of the same
random numbers, samples of different size were nested.

In the bootstrap-t confidence interval, we need a variance estimator for each
parameter. An approximate variance estimator formula for µ̂ and σ̂ is discussed
on page 121 and shown in Figure 2 of Dixon and Mood (1948). Here we use the
approximate formula in the Fortran program provided by McMains (1984).

From a pilot Monte-Carlo investigation, it has been shown that the MLE’s
in the Bruceton test, based upon the assumption of either a probit model or
a logit model, gives a biased estimate of the standard deviation. For the logit
model, a simulation study by Hampton, Blum and Aryes (1973) showed that the
bias decreases as the sample size increases and the bias is greater as the product
of the standard deviation and the step size σ∆ increases, that is, as the step
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becomes small with respect to the value of 1/σ. A bias correction used in a
standard Bruceton test (see MIL-STD-1512 and MIL-STD-1576) is to multiply
the variance estimator σ̂ by 1.059. In this study, based on the idea of a nested
bootstrap, we propose a data driven bias-corrected interval estimate for σ̂ in (5.5)
as follows.

Bias-corrected bootstrap confidence interval for σ̂

Let θ̂ = (µ̂, σ̂), where µ̂ is given in (5.3).
(1) With P̂ =: P (θ̂) as its transition probability, generate the b1th original

bootstrap x∗ = {x∗0, . . . , x∗n}, and let θ̂∗ be the MLE of θ based on x∗,
b1 = 1, . . . , B1.

(2) With P̃ =: P (θ̂∗) as its transition probability, generate the B2 second-level
bootstrap x∗∗ = {x∗∗0 , . . . , x∗∗n }. Let ˆbiasB2 = σ̂∗/σ̂∗∗ be the bootstrap bias
estimator of the bias of σ̂; define σ̄∗ = σ̂∗ ˆbiasB2 .

(3) The bias-corrected bootstrap is obtained from B1 bootstrap replications of√
n(σ̂∗ − θ̂)/σ̄∗.

The following notation is used in Tables 3.1-3.4 below: CIa – confidence
interval of a; CP – coverage probability; n – sample size; AL – average length; NA
– normal approximation; ∆ – step size; P – percentile method; Bt – Bootstrap-t
method; T–True.

3.2. Simulation results

Note from Tables 3.1-3.4 that when the sample size is 50, the coverage prob-
abilities of the bootstrap-t confidence interval for the location parameter µ is
pretty convincing for all step sizes from .8σ to 1.5σ, although the average length
is a bit wider than that of normal approximation. The coverage probabilities
for bootstrap-t confidence interval of σ (with bias correction) are around .930
for ∆ = 1.2σ, better than the classical normal approximation. The same holds
for the bootstrap-t confidence interval for x.999. We also observe that the per-
formance of bootstrapping confidence interval (without bias correction) for σ
and x.999 is worse than that of the bias-corrected (multiply by 1.059) normal
approximation.

When the sample size n is 100, the Bruceton test provides more reliable
confidence intervals, especially for estimating σ and the .999th quantiles. In the
case ∆ = 1.2σ, the coverage probability of normal approximation goes to .919
for σ and .920 for x.999, while the coverage probability of bootstrap-t (with bias
correction) goes to .939 for σ and .934 for x.999. Thus, the bootstrap-t again
provides a better interval estimation for the .999th quantile. This is consistent
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with the general belief that the bootstrap-t confidence intervals is second-order
accurate.

In general, coverage probabilities for the bootstrap methods with bias cor-
rection are better than those of the normal approximation. Also, the bootstrap-t
slightly outperforms the percentile method. For estimating the high percentile
xp, we need to have n larger than 100 and, at the same time, to use the bias
corrected bootstrap-t method.

Table 3.1. Comparison of approximate confidence intervals for n = 50. CIµ =
(−.0072, .0080), CIσ = (.0107, .0308) and CIx.999 = (.032, .0972).

µ σ x.999

CP AL CP AL CP AL
T (∆ = .8σ) .0152 .0201 .0650
NA .9126 .0145 .8705 .0219 .8748 .0691
P .9153 .0252 .8726 .0160 .8762 .0491
Bt .9518 .0365 .8388 .0293 .8003 .0817
T (∆ = 1.0σ) .0152 .0201 .0650
NA .9167 .0151 .8810 .0207 .8900 .0658
P .9411 .0261 .7619 .0159 .8225 .0496
Bt .9610 .0359 .8471 .0258 .8190 .0726
T (∆ = 1.2σ) .0152 .0201 .0650
NA .9220 .0156 .8958 .0200 .8860 .0637
P .9400 .0232 .8215 .0157 .8388 .0496
Bt .9757 .0303 .8796 .0246 .8281 .0713
T (∆ = 1.5σ) .0152 .0201 .0650
NA .9238 .0164 .8825 .0193 .9033 .0618
P .9312 .0248 .8878 .0165 .8870 .0531
Bt .9674 .0326 .8739 .0261 .8822 .0791

Table 3.2. Comparison of approximate confidence intervals for n = 50 with
bias correction.

µ σ x.999

CP AL CP AL CP AL
P (∆ = .8σ) .9216 .0253 .8752 .0175 .8267 .0533
Bt .9548 .0250 .9158 .0169 .9142 .0566
P (∆ = 1.0σ) .9516 .0264 .8235 .0170 .8522 .0526
Bt .9516 .0245 .9117 .0135 .9124 .0377
P (∆ = 1.2σ) .9536 .0234 .8693 .0166 .8851 .0522
Bt .9684 .0290 .9293 .0221 .9249 .0456
P (∆ = 1.5σ) .9334 .0244 .8993 .0171 .9241 .0547
Bt .9665 .0297 .9130 .0227 .9172 .0707
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Table 3.3. Comparison of approximate confidence intervals for n = 100.
CIµ = (−.0054, .0056), CIσ = (.0129, .0278) and CIx.999 = (.0399, .0862).

µ σ x.999

CP AL CP AL CP AL
T (∆ = .8σ) .0110 .0149 .0463
NA .9279 .0106 .8982 .0159 .9079 .0503
P .9436 .0177 .7738 .0126 .7950 .0387
Bt .9788 .0226 .8556 .0189 .8416 .0546
T (∆ = 1.0σ ) .0110 .0149 .0463
NA .9368 .0109 .9111 .0150 .9223 .0476
P .9434 .0248 .8421 .0125 .8919 .0401
Bt .9602 .0315 .8705 .0167 .8501 .0506
T (∆ = 1.2σ) .0110 .0149 .0463
NA .9367 .0112 .9190 .0144 .9205 .0460
P .9588 .0232 .8471 .0120 .8751 .0403
Bt .9448 .0280 .8937 .0156 .8885 .0491
T (∆ = 1.5σ) .0110 .0149 .0463
NA .9396 .0117 .9295 .0138 .9251 .0444
P .9387 .0152 .9058 .0122 .8719 .0401
Bt .9438 .0175 .8906 .0159 .8928 .0501

Table 3.4. Comparison of approximate confidence intervals for n = 100 with
bias correction.

µ σ x.999

CP AL CP AL CP AL
P (∆ = .8σ) .9521 .0170 .8564 .0135 .8603 .0413
Bt .9509 .0205 .9302 .0176 .9388 .0515
P (∆ = 1.0σ) .9430 .0244 .8851 .0132 .9176 .0416
Bt .9583 .0295 .9444 .0157 .9334 .0481
P (∆ = 1.2σ) .9668 .0235 .8973 .0126 .9180 .0415
Bt .9450 .0276 .9391 .0145 .9337 .0464
P (∆ = 1.5σ) .9516 .0156 .9430 .0126 .9147 .0411
Bt .9576 .0171 .9419 .0144 .9329 .0457

4. Importance Resampling

In Section 2, we proposed a bootstrap algorithm for parametric Markov
chains. There the bootstrap estimate of the expectation of a statistic of interest
s = s(x) is

ê = EP̂n
s(x∗). (4.1)

Typically, it is not easy to compute ê analytically. Instead, we approximate it
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by a Monte-Carlo approximation

êB =
1
B

B∑
b=1

s(x∗b), (4.2)

where each x∗b is a bootstrap sample of size n produced by P̂n. Note that êB → ê
as B → ∞ according to the Law of Large Numbers; furthermore E(êB) = ê and
V ar(êB) = c/B so that the error (standard deviation of êB − ê) goes to zero at
the rate 1/

√
B.

Since highly accurate interval estimation is required in the Bruceton test,
and the bootstrap-t (with bias correction) brings much computation, we look to
develop more efficient Monte-Carlo simulation methods. A natural candidate is
importance resampling. Importance resampling is a scheme to simulate a rare
event under the bootstrap setup. Good references for importance sampling are
Glynn and Iglehart (1989), and Asmussen and Rubinstein (1995).

Suppose x = {x0, . . . , xn} is a realization of an ergodic Markov chain {Xt; t ≥
0} on a finite state space S = {0, . . . , k}, with transition probability P = (pij) and
invariant stationary distribution π. We formulate the problem of approximating
confidence intervals for µ, σ and xp by a bootstrap method with importance
resampling as follows. Let f be a bounded real-valued function defined on the
state space S and let Sn =

∑n
t=1 f(Xt). Let β =

∑
j∈S f(j)πj be the stationary

mean and τ2 = Eπf̄
2(X0)+2

∑∞
t=0Eπ f̄(X0)f̄(Xt+1) be the asymptotic variance,

where f̄(Xt) = f(Xt) − β, and Eπ refers to the expectation of {Xk} when the
initial state {X0} has the stationary distribution π. Here, we want to estimate
the probability of a typical tail event

u = Pπ{g(Sn/n) ≤ an} (4.3)

by simulation, for an = g(β) + aτ/
√
n with a < 0, where g : R → R is a

sufficiently smooth function in a neighborhood of β. Note that in the bootstrap
setting, we simple replace P by P̂n. The appropriate exponential tilting formula
(see Chapter 23 of Efron and Tibshirani (1993) and Chapter 9 of Davison and
Hinkley (1997) for a general discussion) is as follows:

qij = pij exp{− cij√
n
}/

k∑
j=1

pij exp{− cij√
n
}, (4.4)

where cij = (aj +δi−δj)C, aj = (f(j)−β)/(τg′(β)), and C = C(a) > 0 is chosen
to minimize exp(C2)Φ(a−C). Note that C ∼= −a. The vector (δ0, . . . , δk)t is the
solution of the following Poisson equation:



p00 p01 · · · p0k

p10 p11 · · · p1k
...

...
. . .

...
pk0 pk1 · · · pkk







a0

a1
...
ak


 +




1 − p00 −p01 · · · −p0k

−p10 1 − p11 · · · −p1k
...

...
. . .

...
−pk0 −pk1 · · · 1 − pkk







δ0
δ1
...
δk


 = 0. (4.5)
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It is known that the matrix P = (pij) in (4.5) is of rank k, and δi − δj is uniquely
determined for i �= j. The rational of the tilting formula (4.4) will be explained
in detail in Appendix 2.

To demonstrate the power of the importance resampling technique, we use
the following example. Let X = {Xt, t ≥ 0} be a Markov chain on a finite space
S = {1, 2, 3}, with transition probability matrix

P =



.2000 .2000 .6000
.3000 .4000 .3000
.5000 .3000 .2000


 ,

and stationary distribution πP = (.3391, .2957, .3652)t. We are interested in
estimating the probability u = u(a) = Pπ{(Sn − nβ)/

√
nτ ≤ a}, where Sn =∑n

t=1Xt. Here, β = 2.0261, and τ = 0.5807.
For instance, consider a = −2.5758 so Φ(a) = .005 and C(a) = 2.6564. By

using (4.4), we obtain the tilting transition probability matrix

Qa =



.3979 .2641 .3381
.4612 .4081 .1306
.6616 .2635 .0750


 ,

with stationary distribution πQa = (.4746, .3084, .2170)t.
Let û be the estimator of u and r(a) = V arP (û)/V arQa(û) the relative

efficiency of the Monte-Carlo simulation under original probability P with respect
to the tilting formula Qa. Table 4.1 reports values of r(a). The time horizon is
n = 20 and the simulation number is 3000.

Table 4.1. Estimated relative efficiencies r(a) of P relative to Qa.

Φ(a) C(a) r(a)
.005 2.6561 51.31
.010 2.5704 29.56
.025 2.1787 10.74
.050 1.8940 5.92
.100 1.5751 3.82
.500 0.6120 1.73
.900 0.1150 1.11
.950 0.0602 1.11
.975 0.0320 1.02
.990 0.0139 1.03

Note that r(a) is a strictly decreasing function in a, so the importance sam-
pling can be considerably more efficacious for negative a (small probability) than
positive a.



BOOTSTRAP METHODS FOR THE UP AND DOWN TEST 13

Next we compare the ordinary bootstrap-t and the importance resampling
bootstrap-t when generating various confidence intervals by the up-and-down
method. We do the comparison for all the parameters µ, σ and xp in the probit
model (1.1). Linearized maximum likelihood estimates of µ̂, σ̂ and x̂p from (5.3),
(5.5) and (5.6) are used in the tilting formula (4.4).

In this simulation study, we take µ = 0, σ = .02, ∆ = 1.5σ = .03 and initial
point .8σ = .016. The nominal coverage probability for the confidence intervals
is .95 in all cases. The average sample size is n = 100 and the results are
summarized in Table 4.2, where B denotes the number of bootstrap replications
and IR refers to importance resampling. Other notations are the same as in
Tables 3.1-3.4.

Table 4.2. Comparison of the approximate confidence intervals for n = 100
with bias correction.

µ σ x.999

CP AL CP AL CP AL
IR (B = 200) .9205 .0182 .9102 .0141 .9101 .0412
IR (B = 400) .9574 .0195 .9502 .0158 .9497 .0436
Bt (B = 4000) .9438 .0175 .9502 .0168 .9398 .0495

Examination of Table 4.2 shows that compared with the ordinary bootstrap
resampling of Section 3, the importance resampling bootstrap method permits a
reduction in replication size of at least 10 to 1 without significant loss of perfor-
mance.

5. CS-M-3 Ignitor

In this section, we illustrate the proposed procedure by applying it to the
data set of Table 1.1. For the test, three choices must be made in advance: the
proper dosage-stimulus transform, the initial step, and the step size.

Test levels are equally spaced stimulus intensities. For best efficiency, the
initial level should be close to the mean. As has been brought out in a previous
study, an initial level some distance away from the mean also tends to bias the
estimate of the mean in small samples.

The choice of the step size ∆ depends on what kind of information is needed
and often entails a compromise. If an estimate of the mean is more crucial than
the estimate of the standard deviation, then ∆ might be σ/4 to σ/2 if the probit
model is assumed, or σ/2 to σ if the logit model is assumed. A better estimate of
the standard deviation with a corresponding sacrifice of an accurate estimate of
the mean would require the use of ∆ about 2σ. Comparable treatment of both
parameters leads to a choice of ∆ about equal to 1.4σ (see Chao and Fuh (1997)).
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Only the data set with 4 to 7 different levels will be used for analysis, since,
if the step size is large compared to the variability parameter, an alternating
two-level pattern may be obtained. On the other hand, a three-level pattern
may evolve when the middle level is close enough to µ that a mixed response can
be expected there, and the other levels are so remote from µ that the probability
of observing all responses on one and all non-responses on the other is very large.
In either of these cases (where the step size is large) we can deduce that we have
found the limits within which µ is located. We may also guess at an upper limit
from the size of the variability parameter. But these estimates and guesses may
not be very informative unless the size of the step is small enough, compared
to the desired accuracy. If the number of different levels is more than eight, it
means that the variability of the experimental ignitor is too large for it to be
used.

For the interval estimation of the unknown parameter xp, we first estimate
the sampling distribution of

√
n(x̂p − xp). The bootstrap version of this is

P ∗{√n(x̂∗p − x̂p) ≤ a|x}, which can be estimated by simulation. In order to
apply (4.4) for more efficient Monte-Carlo simulation, we need to express µ̂ and
σ̂ in linear form. Since xp is a linear combination of µ and σ, we first study the
case of µ and σ and consider the linear approximation of the MLE µ̂ (σ̂) of µ
(σ). By (1) of Dixon and Mood (1948), a linear approximation of µ̂ is

µ̂ = x′ + ∆
(∑k

i=1 i ni

N
+ .5

)
, (5.1)

where x′ is the normalized level corresponding to the lowest level on which the
less frequent event occurs, i is the stimulus level, ni is the number of observed
0′s in i, and N =

∑k
i=1 ni is the total number of 0′s in the sample. Therefore,

µ̂= x′ + ∆
(∑k

i=1 i
( ∑n

t=1 I{Xt−1<Xt,Xt−1=i}
)

∑n
t=1 I{Xt−1<Xt}

+ .5
)

= x′ + ∆
(∑n

t=1Xt−1I{Xt−1<Xt}∑n
t=1 I{Xt−1<Xt}

+ .5
)
. (5.2)

Since the difference between the total number of 1 and the total number of 0
in the Bruceton test is at most k (cf. Wetherill and Glazebrook (1986)), we
substitute

∑n
t=1 I{Xt−1<Xt} by n′ = n/2 and get

µ̂ = x′ + ∆
( 1
n′

n∑
t=1

Xt−1I{Xt−1<Xt} + .5
)
. (5.3)

Similarly, from (2) of Dixon and Mood (1948), a linear approximation of σ̂
is

σ̂ = 1.620∆
(∑k

i=1 i
2 ni

N
−

(∑k
i=1 i ni

N

)2)
. (5.4)
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By a standard Taylor expansion, we approximate (
∑k

i=1 i ni/N)2 by a2
0 + 2a0(∑k

i=1 i ni/N − a0), where a0 = E( 1
n′

∑n
t=1Xt−1I{Xt−1<Xt}) = 1

n′
∑k

i=1 i (1 − pi).
Hence,

σ̂ = 1.620∆
( 1
n′

n∑
t=1

(
X2

t−1 − 2a0Xt−1

)
I{Xt−1<Xt} + a2

0 + .029
)
. (5.5)

Now by definition of x̂p (1.1), we have

x̂p = µ̂+ Φ−1(p)σ̂

= x′ + ∆
1
n′

n∑
t=1

[(
X2

t−1 − 2a0Xt−1

)
Φ−1(p)1.620 +Xt

]
I{Xt−1<Xt}

+.5∆ + Φ−1(p)1.620∆(a2
0 + .029). (5.6)

By considering Sn =
∑n

t=1

[(
X2

t−1 − 2a0Xt−1
)
Φ−1(p)1.620 +Xt

]
I{Xt−1<Xt}, we

can apply (4.4) to bootstrapping the sampling distribution of
√
n(x̂p − xp).

By using the linear approximate MLE µ̂, σ̂ and x̂p from (5.3), (5.5) and (5.6)
respectively, together with the computer program provided by McMains (1984)
(see also MIL-STD-1512 and MIL-STD-1756), we get µ̂ = .8585, σ̂(with bias
correction)= .0213 and x̂p = .9145 for p = .9990 for the data from Table 1.1.
For bootstrap-t confidence intervals, because of the small sample size (n=43)
and the Markovian binary data structure, B1 = 2, 000 bootstrap replications to
achieve stability of the bias estimate for σ. We took B2 = 10, 000 bootstrap
replications to achieve stability of the interval estimate for xp. For a total of
B = B1 × B2 = 20, 000, 000 bootstrap replications. By using (4.4), a total
of B = 30, 000 bootstrap replications gives the approximate confidence interval
(.8515, .8841) for µ, (.0081, .0290) for σ and (.8909, .9479) for xp. In application,
one uses .9479 plus a safety factor specific to the mission.

6. Concluding Remarks and Future Research

Although the up-and-down method is a classical sequential procedure, it
is still very much in use in pyrotechnics sensitivity analysis. Applications to
biological statistics are in Storer (1989), Whitehead and Brunier (1995) and
Smith, Dutton and Smith (1996). In this paper, we provide a computationally
intensive method, a bias-corrected bootstrap with importance resampling, to
construct approximate confidence intervals for the parameters of interest. Our
experience suggests the following.
(1) The bootstrap method provides a more accurate interval estimation of the

parameters of interest. An importance resampling technique facilitates the
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reduction of variance of the Monte-Carlo simulation for the bootstrap algo-
rithm. Our simulation results indicate that the bootstrap-t (with bias cor-
rection) confidence interval is better than the classical normal approximation
in many respects.

(2) Although the probit model and logit model are in good agreement for quan-
tiles in the .2 to .8 range, extreme quantiles are rather sensitive to model
misspecification (see Wu (1985)). In practice, we can use one of four mod-
els (logit, probit, double exponential and double reciprocal) according to the
engineering experience about the tail behavior of the response curve. As an
alternative, a nonparametric approach is required in which the spacing can
be chosen according to a continuous distribution. In this case, the observed
data is a general state Markov chain with interval censoring.

(3) The problem of degradation is important in the stockpile of pyrotechnics. We
intend to propose a procedure to handle this type of problem.

(4) The Bruceton test is only for a single component. In the development and
evaluation of explosive trains that function by transfer of detonation from
component to component, we need to predict the probability with which
detonation is transferred from the donor, across the interface, to the accep-
tor, and the confidence that can be associated with the estimated transfer
probability. Further investigations are needed in VARICOMP (VARIation
of explosive COMPosition), which is a method for determining detonation-
transfer probabilities. This will involve a multi-dimensional up-and-down
method.
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Appendix 1

We first summarize the results from Fuh and Lai (1998) on second-order
efficiency for bootstrapping Markov chains. Consider an ergodic Markov chain
{Xn, n ≥ 0} on a finite state space D, with transition probability P and invariant
distribution π. Let f be an additive functional from D to Rd. With Sn =∑n

t=0 f(Xt), to establish Edgeworth expansions for bootstrapping Markov chains,
we strengthen Cramér’s (strongly nonlattice) condition to

lim sup
|θ|→∞

|
∫
Ex{exp(iθS1)}dπ(x)| < 1. (A.1)

Let
µ =

∫
ExS1dπ(x), (A.2)
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and
V =: lim

n→∞n−1Eν{(Sn − nµ)(Sn − nµ)t}. (A.3)

Throughout the sequel we let Pν denote the probability measure under which X0

has initial distribution ν.

Proposition 1. (Fuh and Lai (1998))
Let λ > 0 and let r ≥ 3 be an integer. Assume EπS

r−2
1 < ∞ and that S1

is strongly nonlattice. For 0 < α ≤ 1 and c > 0, let Bα,c be the class of all
Borel subsets B of R such that

∫
(∂B)ε φV (y)dy ≤ cεα for every ε > 0, where

φV is the density function of the d-variate normal distribution with mean 0 and
covariance matrix V , ∂B denotes the boundary of B and (∂B)ε denotes its ε-
neighborhood. Suppose that g : Rd → Rp has continuous derivatives of order r
in some neighborhood of µ. Let Jg = (Djgi(µ))1≤i≤p,1≤j≤d be the p× d Jacobian
matrix and let V (g) = JgV J

′
g. Then

sup
B∈Bα,c

|Pν{
√
n(g(n−1S∗

n) − g(n−1Sn)) ∈ B|x} (A.4)

−
∫

B
{φ∗V (g)(y) +

r−2∑
j=1

n−j/2φ∗j,V,g(y)}dy| = o(n−(r−2)/2) a.s.,

where S∗
n is the bootstrap analogy of Sn and φ∗j,V,g is φj,V,g with population mo-

ments replaced by sample moments (Fuh and Lai (1998)).

Now, under the assumed probit model (1.1), the strongly nonlattice condition
(A.1) is automatically satisfied. Next we want to show that µ̂ and σ̂ are smooth
functions of Sn/n. From (9) and (10) of Dixon and Mood (1948), the maximum
likelihood estimates of µ and σ are the roots of

∑
ni(

zi−1

qi−1
− zi
pi

) = 0, (A.5)
∑

ni(
xi−1zi−1

qi−1
− xizi

pi
) = 0, (A.6)

where ni, pi, qi are defined as before, zi = 1√
2πσ

e−
(yi−µ)2

2σ2 and xi = (yi − µ)/σ.
By the Implicit Function Theorem, there exists a neighborhood N of (µ, σ) and
η > 0 such that for Sn/n in N , a thrice continuously differentiable solution of
(A.5) and (A.6)

Tn = g(Sn/n), ||Tn − (µ, σ)|| < η, (A.7)

can be found. This solution is unique. Therefore, by Proposition 1, bootstrap
estimators of

√
n(µ̂ − µ) and

√
n(σ̂ − σ) are second-order efficient. Since xp =
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µ + Φ−1(p)σ is a linear combination of µ and σ, the bootstrap estimator of√
n(x̂p − xp) is also second-order efficient. In Sections 3 and 5, we use the linear

approximation of µ̂ and σ̂ as an initial point. By the classical method of scoring,
a one-step Newton-Rapson method provides an efficient estimator.

Appendix 2

Here we use a contiguity argument to derive the tilting formula (4.4) for the
simulation of bootstrapping finite state Markov chains. Following the notation
in Section 4, let {Xn, n ≥ 0} be a finite ergodic Markov chain, f be a bounded
measurable function defined on the state space and Sn =

∑n
t=0 f(Xt). We are

concerned with the Monte-Carlo simulation of the event

P{ 1
n
Sn ≤ an}, (A.8)

with an−β < 0 and an−β = O(1). It is known (cf. Bucklew, Ney and Sadowsky
(1990)) that if there exists α belonging to some interval in R which contains
the origin, such that Tα(h)(i) =

∑k
j=1 exp(αf(j))h(j)pij is finite with T0 = P ,

then the standard technique to estimate (A.8) is through exponential tilting
by first embedding the distribution of pij in the following martingale family
Qα(·) = {qα

ij} with qα
ij = pij exp(αf(j))rα(j)(λ(α)rα(i))−1, where λ(α) is the

largest eigenvalue of the operator Tα, and rα(·) is the associated eigenvector for
λ(α). Let ψ(α) = log λ(α). The point α∗ given by ψ′(α∗) = an is the optimal
point in the sense of minimizing the speed factor defined in Bucklew, Ney and
Sadowsky (1990). Therefore the tilting measure at the optimal point α∗ becomes

qα∗
ij = pijexp{α∗f(j) − ψ(α∗)}rα∗(j)

rα∗(i)
. (A.9)

In statistical applications, one often works with g(Sn/n), where g is a smooth
real-valued function, and considers the event

u =: P{g(Sn/n) ≤ an}, (A.10)

for an = g(β) + aτ/
√
n, with a < 0.

To obtain a tilting formula in this setting, use g(Sn/n) − g(β) ∼= (Sn/n −
µ)g′(β), g′(µ) bounded. From ψ′(α∗) = an and a one-term Taylor expansion of
ψ′(α∗), we have ψ′(0) + α∗ψ′′(0) ∼= an, which implies that α∗ ∼= (an − µ)/σ2 =
a/(

√
nσ), ψ(α∗) ∼= (aµ)/

√
nσ, and rα∗(j) = 1 + (ar′0(j))/

√
nσ, where r′0(i) de-

notes the first derivative of rα(i) with respect to α at the point α = 0.
Hence (A.9) becomes

qij ∼= pije
a√

ng′(β)σ
(f(j)−µ)+ a√

ng′(β)σ
(r′0(j)−r′0(i))

∑k
j=1 pije

a√
ng′(β)σ

(f(j)−µ)+ a√
ng′(β)σ

(r′0(j)−r′0(i))
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=
pije

a√
ng′(β)σ

(aj−r′0(i)+r′0(j))

∑k
j=1 pije

a√
ng′(β)σ

(aj−r′0(i)+r′0(j))
. (A.11)

Assume without loss of generality that g′(β) = 1. Since the vector (rα∗(1), . . . ,
rα∗(k))t is the eigenvector of λ(α∗) associated with the operator Tα∗(·), we have



p11e

α∗f(1) · · · p1ke
α∗f(k)

...
. . .

...
pk1e

α∗f(1) · · · pkke
α∗f(k)






rα∗(1)

...
rα∗(k)


 = λ(α∗)



rα∗(1)

...
rα∗(k)




⇒



p11(1 + af(1)/

√
nτ) · · · p1k(1 + af(k)/

√
nτ)

...
. . .

...
pk1(1 + af(1)/

√
nτ) · · · pkk(1 + af(k)/

√
nτ)







1 + ar′0(1)/
√
nτ

...
1 + ar′0(k)/

√
nτ




∼= (1 + aβ/
√
nτ)




1 + ar′0(1)/
√
nτ

...
1 + ar′0(k)/

√
nτ




⇒ P




(1 + af(1)/
√
nτ)(1+ar′0(1)/

√
nτ)

...
(1+af(k)/

√
nτ)(1+ar′0(1)/

√
nτ )


=




(1+aβ/
√
nτ)(1+ar′0(1)/

√
nτ)

...
(1+aβ/

√
nτ)(1+ar′0(k)/

√
nτ)




⇒ P



af(1)/

√
nτ + ar′0(1)/

√
nτ

...
af(k)/

√
nτ + ar′0(k)/

√
nτ


 =



ar′0(1)/

√
nτ + aβ/

√
nτ

...
ar′0(k)/

√
nτ + aβ/

√
nτ




⇒ (I − P )



r′0(1)/τ

...
r′0(k)/τ


 = P

( 

f(1)/τ

...
f(k)/τ


 −



β/τ

...
β/τ




)
= P



a1
...
ak


 .

Now, let r′0(i)/σ = −δi and get

(I − P )



δ1
...
δk


 = −P



a1
...
ak


 . (A.12)

This is just equation (4.5). Hence we have (4.4). Note that in this derivation
we consider the asymptotic expansion of the large deviation exponential tilting
formula (A.9), where the Perron-Frobenius eigenvalue of the operator Tα(h)(·)
and its associated eigenvector play an important role. By a Taylor expansion of
the eigenvector rα∗(j) for α∗ around 0, it turns out that the optimal parameter
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reduces to the solution of (A.12). When the state space has only one element, this
reduces to the case of independent and identically distributed random variables.
The tilting formula (4.4) is exactly the same as that in Johns (1988), and Do
and Hall (1991). By using the idea of minimizing the (asymptotic) variance of
the Monte-Carlo estimate, we have another argument to derive (4.4). A full
discussion of this importance sampling technique will be published in a separate
paper.
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