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Abstract: This study aims to develop homogeneity tests for high-dimensional mean

vectors and covariance matrices, in which the number of features may be greater

than the sample size. We introduce two categorically weighted statistics to test

the equality of means and of covariance matrices. We establish the asymptotic

distributions of the proposed test statistics under certain mild conditions, and

develop simplified algorithms to facilitate the implementation and application.

Simulation studies demonstrate the satisfactory performance of the proposed tests

in terms of the empirical size and power. We also apply the proposed test procedures

to two microarray data sets.
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1. Introduction

Despite numerous studies on homogeneity tests for distributions or distribu-

tion features (mean vectors or covariance matrices) in different populations, a

crucial remaining problem is establishing whether gene expression levels differ

among predefined patient populations in order to identify a disease’s capital

causal gene. However, in modern biological and financial studies, the data

dimension is often much larger than the sample size. This “large p, small n”

paradigm poses a considerable challenge to classical homogeneity tests, which

were originally designed for fixed-dimensional problems.

This study focuses on homogeneity tests for high-dimensional mean vectors

and covariance matrices. Assume that homogeneity tests for means, consider R

groups. When R = 2, the traditional Hotelling T2 test is optimal for normally

distributed data when p is fixed. Several extensions of the Hotelling T2 test have

been proposed to accommodate high dimensionality; examples include those of

Bai and Saranadasa (1996), Srivastava and Du (2008), Chen and Qin (2010), Cai,

Liu and Xia (2013), Feng, Zou and Wang (2016), and Chang et al. (2017). When

R > 2, researchers often use a multivariate analysis of variance (MANOVA) to

investigate whether the population mean vectors are the same under the “large

n, small p” paradigm. Cai and Xia (2014) test the equality of multiple high-

dimensional sparse mean vectors under dependency. Recently, Hu et al. (2017)
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proposed a test for the equality of high-dimensional mean vectors based on the

work of Chen and Qin (2010).

Several studies also test covariances based mostly on entropy or a quadratic

loss function. Studies that examine the case of R = 2 include Wolf (2002), Bai,

Jiang and Zheng (2009), Chen, Zhang and Zhong (2010), Li and Chen (2012),

Cai and Ma (2013), Jiang and Yang (2013), Cai and Liu (2016), and Chang et al.

(2017). For R > 2, Zhang et al. (2018) extend the two-sample test for covariances

presented by Li and Chen (2012) , and obtain the asymptotic distribution of the

statistic in a high-dimension case. Zheng et al. (2020) propose a homogeneity test

for high-dimensional covariances, and enhance its power by comparing covariance

matrices. Liu et al. (2017) also propose a two-sample homogeneity test for means

and covariances.

In this study, we consider this kind of homogeneity test from a different

perspective. Assume that Y is a categorical variable with R categories, and X is a

p-dimensional random vector. Cui, Li and Zhong (2015) propose a mean-variance

index defined by MV (X|Y ) = EX[varY F (x|Y )], where F (x|Y ) stands for the

conditional distribution function of X given Y . MV (X|Y ) indicates that X and

Y are independent if and only if the conditional distributions Fr = F (x|Y = r),

for r = 1, . . . , R, are homogenous. Then, the homogeneity test for distributions

can be regarded as an independence test between a categorical variable and

a multivariate random vector. The mean-variance index takes advantage of

the probabilities of the categorical variable, which motivates us to introduce

a categorically weighted index to measure the differences of mean vectors and

covariance matrices among different groups.

To accommodate high dimensionality, we correct the bias by adjusting the

weights, and propose two statistics for testing the mean vectors and covariance

matrices. Moreover, we obtain the asymptotic distributions of the proposed

statistics under certain mild conditions. The proposed tests have four advantages.

(1) They accommodate the high-dimensional setting. (2) No explicit distribution

is imposed on the p-dimensional vectors; hence, our tests have high theoretical

and practical value. (3) The proposed categorically weighted tests optimize the

information of the categorical variable to improve the performance. (4) Simplified

algorithms are proposed to calculate the associated statistics, thereby facilitating

implementation and application.

The remainder of this paper is organized as follows. Sections 2 and 3

describe the methodology and asymptotic distributions of testing means and

covariances, respectively. Section 4 introduces simplified algorithms to calculate

the test statistics. Section 5 presents Monte Carlo simulations for assessing the

performance of the proposed tests. Applications to gene expression data analysis

are given in Section 6. Technical proofs are provided in the Supplementary

Material.
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2. Homogeneity Test for Mean Vectors

We consider the homogeneity test for mean vectors, that is,

H10 : µ1 = µ2 = · · · = µR = µ, (2.1)

versus the composite alternative H11: µr ̸= µs, for 1 ≤ r < s ≤ R, where

µr = E(X|Y = r), µ = E(X) =
∑R

r=1 prµr, and pr is the probability that X

comes from the rth population.

2.1. Measuring the difference between mean vectors

Similarly to the analysis of Cui, Li and Zhong (2015), we use the variance

of the conditional means of X given Y , varY {E(X|Y )}, to measure the difference

between the mean vectors, as expressed in Definition 1.

Definition 1. The variance of the conditional expectations of X given Y = r,

for r = 1, . . . , R, can be defined by

U(X|Y ) = E(XT

1X2)

{
R∑

r=1

I(Y1 = r)I(Y2 = r)

pr
− 1

}
,

where (X1, Y1) and (X2, Y2) are independent copies of (X, Y ), and I(·) is the

indicator function.

The following lemma shows that Definition 1 is reasonable.

Lemma 1. If X has a finite first moment, then U(X|Y ) = varY {E(X|Y )} ≥ 0,

and the equality holds if and only if the null hypothesis (2.1) is true.

Section S1 of the Supplementary Material shows the proof of Lemma 1. For

observed random samples {(Xk, Yk) : k = 1, 2, . . . , n}, we define

Mn,p =
∗∑

(i,j)

XT

i Xj

{
R∑

r=1

I(Yi = r)I(Yj = r)

p̂r
− 1

}
,

where
∑∗

(i,j) denotes summations over distinct indices, and p̂r = (Nr−1)/(n−1),

with Nr =
∑n

i=1 I(Yi = r). Notably, p̂r is a consistent estimator of pr, and more

importantly, it enables
∑

i ̸=j ci{
∑R

r=1 I(Yi = r)I(Yj = r)/p̂r − 1} = 0, where ci
is any function of the ith sample. The good properties of the estimator p̂r make

our test applicable to high-dimensional data.

Remark 1. Using an elemetary calculation, we obtain

Mn,p =
R∑

r>s

NrNs

{∑Nr

i ̸=j X
T

riXrj

Nr(Nr − 1)
+

∑Ns

i̸=j X
T

siXsj

Ns(Ns − 1)
− 2

∑Nr

i=1

∑Ns

j=1 X
T

riXsj

NrNs

}
,

(2.2)
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where Xri denotes the ith sample of the rth group, that is, Yi = r. We show the

proof in Section S2 of the Supplementary Material. When R = 2, Equation (2.2)

indicates that Mn,p is proportional to the statistic proposed by Chen and Qin

(2010) , which they use to measure the distance between two sample means, that

is, ∥µ1 − µ2∥2. Therefore, our proposed statistic can be regarded as a weighted

summation of the distances between the means in two different categories.

2.2. Main results for the homogeneity test for means

To establish the limiting distribution of Mn,p, we assume the following

conditions.

Condition 1. Suppose that R is fixed, and there exist two positive constants c1
and c2, such that c1/R ≤ min1≤r≤R pr ≤ max1≤r≤R pr ≤ c2/R.

Condition 2. Suppose that the random expression of Xi given Yi = r is Xi|(Yi =

r) = µr + ΓrZi, where µr is the conditional mean vector, Γr is a p × p matrix,

Zi is independent of Yi, and the coordinates of Zi are assumed to be independent

and identically distributed (i.i.d.); the first coordinate, denoted as Zi1, satisfies

E(Zi1) = 0, E(Z2
i1) = 1 and E(Z4

i1) = 3+ △< ∞.

Condition 3. p = p(n) → ∞ as n → ∞; tr(ΣrΣsΣkΣt) = o{tr2(Σ2)}, for

r, s, k, t ∈ {1, 2, . . . , R}.

Condition 4. (µr−µs)
TΣk(µr−µs) = o{n−1tr(Σ2)}, for r, s, k ∈ {1, 2, . . . , R}.

Condition 1 imposes that pr, for r = 1, 2, . . . , R, must not degenerate; a

similar condition appears in the study of Cui, Li and Zhong (2015). Instead

of imposing a specific parametric distribution of X|Y , the pseudo-independence

assumption is required in Condition 2. The pseudo-independence model was

proposed by Bai and Saranadasa (1996), and is widely used in high-dimensional

theoretical models; see Chen and Qin (2010), Li and Chen (2012), and Zhang

et al. (2018). The eigenvalues of the conditional variance of (X|Y ) are assumed

to satisfy Condition 3, which holds naturally when the conditional covariances

are bounded away from above and zero. We explore the asymptotic properties of

the statistic Mn,p under high dimensionality and local alternatives in Condition

4. This work does not impose any explicit relationships between p and n, and

our test applies to high-dimensional data.

Theorem 1. Under Conditions 1, 2, 3, and either H10 or Condition 4, we have

Mn,p −
∑R

r>s NrNs∥µr − µs∥2√
dn,p

d−→ N (0, 1)

as n, p −→ ∞, where dn,p = 2n(n−1){
∑R

r=1(1−pr)
2tr(Σ2

r)+
∑∗

(r,s) prpstr(ΣrΣs)},
where

d−→ denotes convergence in distribution.
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Theorem 1 establishes the asymptotic normality of Mn,p, without imposing

explicit conditions on the relationship between n and p. Under Condition 3,

dn,p = O(n2p). Furthermore, if the conditional covariances of (X|Y = r) are

equal, that is, Σ1 = · · · = ΣR = Σ, then dn,p = 2n(n − 1)(R − 1)tr(Σ2). Under

H10 in (2.1),
Mn,p√
dn,p

d−→ N (0, 1). (2.3)

We use (2.3) to formulate a test procedure based on Theorem 1; thus, estimating

dn,p is required. Here, we choose the estimators of tr(Σ2
r) and tr(ΣrΣs) proposed

by Li and Chen (2012), and use p̂r = (Nr − 1)/(n − 1) to estimate pr. As

n → ∞, p̂r is consistent, by the law of large numbers, and t̂r(Σ2
r) and

̂tr(ΣrΣs)

are consistent under Conditions 1, 2, and 3 by Theorem 2 in Li and Chen (2012).

Additional details about the algorithm for calculating t̂r(Σ2
r) and ̂tr(ΣrΣs) are

discussed in Section 4. The proposed test rejects H10 at significance level α if

Mn,p ≥ d̂n,p
1/2

zα, where zα is the upper-α quantile of N (0, 1). Theorem 1 also

implies that the proposed test has the asymptotic local power

ΨNew
1,n (µ1, . . . ,µR;α) = Φ

(
−zα +

n
∑

r>s prps∥µr − µs∥2√
dn,p/n2

)
.

When
∑

r>s prps∥µr − µs∥2 has a higher order of
√
p/n, the power converges to

one.

3. Homogeneity Test for Covariance Matrices

In this section, we consider the homogeneity test for covariance matrices,

that is,

H20 : Σ1 = · · · = ΣR = Σ, (3.1)

versus the composite alternative H21: Σr ̸= Σs, for 1 ≤ r < s ≤ R. Here,

Σr = var(X|Y = r) and Σ =
∑R

r=1 prΣr.

3.1. Measuring the difference between covariance matrices

Similarly to the analysis in Section 2, we propose an index to measure

the difference between Σr, for r = 1, 2, . . . , R. The expression of this index

is relatively complex compared with that of U(X|Y ).

Definition 2. The distance between the covariances of R categories is defined

by

V(X|Y ) =
1

4
E {(X1 −X2)

T(X3 −X4)}2 f1234,
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where (Xi, Yi), for i = 1, . . . , 4, are independent copies of (X, Y ), and

f1234=
R∑

r=1

I(Y1 = Y2 = Y3 = Y4 = r)
(1− pr)

p3r
−

∗∑
(r,s)

I(Y1 = Y2 = r)I(Y3 = Y4 = s)

prps
.

The following lemma ensures that Definition 2 is reasonable.

Lemma 2. If X has a finite second moment, then V(X|Y ) ≥ 0, and the equality

holds if and only if the null hypothesis (3.1) is true.

Similarly to the analysis for testing means, we define

Tn,p =
∗∑

(i1,i2,i3,i4)

1

4
{(Xi1 −Xi2)

T(Xi3 −Xi4)}
2
f̂i1i2i3i4 ,

where
∑∗

(i1,i2,i3,i4)
denotes summations over distinct indices, and

f̂i1i2i3i4 =
R∑

r=1

I(Yi1 = Yi2 = Yi3 = Yi4 = r)
(1− p̂r)

p̂3r

−
∗∑

(r,s)

I(Yi1 = Yi2 = r)I(Yi3 = Yi4 = s)

p̂rp̂s
,

with p̂r = (Nr − 1)/(n− 1) and p̂3r = (Nr − 3)(Nr − 2)(Nr − 1)/(n− 1)3.

3.2. Main results for the homogeneity test for covariance matrices

Theorem 2. Suppose that Conditions 1, 2, and 3 hold. Then, we have

Tn,p − (n− 1)2
∑R

r>s NrNstr {(Σr −Σs)
2}√

δn,p

d−→ N (0, 1)

as p → ∞ and n → ∞, where

δn,p = 4n6


R∑

r=1

(1− pr)
2tr2(Σ2

r) +
∗∑

(r,s)

prpstr
2(ΣrΣs)


+8n7

R∑
r=1

prtr
{
(Σ2

r −ΣrΣ)2
}

+4△n7
R∑

r=1

prtr {ΓT

r(Σr −Σ)Γr ◦ ΓT

r(Σr −Σ)Γr} .
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Theorem 2 establishes the asymptotic normality of Tn,p. Under H20 and

Condition 3, δn,p = 4n6(R− 1){tr(Σ2)}2 = O(n6p2). We define

δ0,n,p = 4n6

{
R∑

r=1

(1− pr)
2tr2(Σ2

r) +
∑
r ̸=s

prpstr
2(ΣrΣs)

}
.

From Theorem 2, we obtain

Tn,p√
δ0,n,p

d−→ N (0, 1),

under H20. To formulate a test procedure based on Theorem 2, we choose

δ̂0,n,p = 4n6

[
R∑

r=1

(1− p̂r)
2

{
t̂r(Σ2

r)

}2

+
∑
r ̸=s

p̂rp̂s
{

̂tr(ΣrΣs)
}2
]
.

The proposed test rejects H20 at significance level α if Tn,p ≥ δ̂0,n,p
1/2

zα. Theorem

2 also implies that the proposed test has asymptotic power

ΨNew
2,n (µ1, . . . ,µR;α) = Φ

[
−
√

δ0,n,p
δn,p

zα +

∑
r>s prpstr {(Σr −Σs)

2}√
δn,p/n8

]
.

When
∑R

r>s prpstr {(Σr −Σs)
2} has a higher order of p/n, the power converges

to one.

4. Implementation

In this section, we introduce two efficient algorithms for our proposed tests

for mean vectors and covariance matrices.

4.1. Testing for mean vectors

When calculating the statistics of two tests, we need to introduce an efficient

algorithm to estimate tr(Σ2
r) and tr(ΣrΣs). We use the estimators of tr(Σ2

r) and

tr(ΣrΣs) proposed by Li and Chen (2012). That is,

t̂r(Σ2
r) =

1

Nr(Nr−1)

∗∑
(i,j)

(XT

riXrj)
2 − 2

Nr(Nr − 1)(Nr − 2)

∗∑
(i,j,k)

XT

riXrjX
T

rjXrk

+
1

Nr(Nr − 1)(Nr − 2)(Nr − 3)

∗∑
(i,j,k,l)

XT

riXrjX
T

rkXrl,

̂tr(ΣrΣs) =
1

NrNs

∑
i

∑
j

(XT

riXsj)
2 − 1

NrNs(Nr − 1)

∗∑
(i,k)

∑
j

XT

riXsjX
T

sjXrk
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− 1

NrNs(Ns − 1)

∗∑
(i,k)

∑
j

XT

siXrjX
T

rjXsk

+
1

Nr(Nr − 1)Ns(Ns − 1)

∗∑
(i,j,k,l)

XT

riXsjX
T

rkXsl.

Then, we obtain

t̂r(Σ2
r) =

1

Nr(Nr − 3)

∑
i ̸=j

Ar
ijA

r
ij, (4.1)

where Ar
ij = ar

ij − ar
i/(Nr − 2) − ar

j/(Nr − 2) + ar/(Nr − 1)/(Nr − 2), with

ar
ij = ∥Xri −Xrj∥2/2, ar

i =
∑Nr

k=1 a
r
ik, and ar =

∑Nr

k=1

∑Nr

l=1 a
r
kl.

Similarly,

̂tr(ΣrΣs) =
1

(Nr − 1)(Ns − 1)

Nr∑
i=1

Ns∑
j=1

{
(Xri −Xr)

T(Xsj −Xs)
}2

, (4.2)

where Xt =
∑Nt

i=1 Xti/Nt, for t = 1, 2, . . . , R. Because the proofs of Equations

(4.1) and (4.2) require complicated calculations, we omit them here. Interested

readers can derive them through numerical calculations.

4.2. Testing for covariance matrices

As indicated in Subsection 4.1, δ̂0,n,p can be calculated straightforwardly.

Hence, we discuss only the calculation of Tn,p in the following. We write

Dr =
1

4

∗∑
(i,j,k,l)

{(Xri −Xrj)
T(Xrk −Xrl)}2 ,

Drs =
1

4

∗∑
(i,j)

∗∑
(k,l)

{(Xri −Xrj)
T(Xsk −Xsl)}2 .

Then, Tn,p =
∑R

r=1 Dr(1 − p̂r)/p̂
3
r −

∑∗
(r,s) Drs/(p̂rp̂s). Similarly to the analysis

for Equations (4.1) and (4.2), we obtain

Dr = (Nr − 1)(Nr − 2)
∗∑

(i,j)

Ar
ijA

r
ij,

Drs = NrNs

Nr∑
i=1

Ns∑
j=1

{
(Xri −Xr)

T(Xsj −Xs)
}2

.

Using the derivations, the two statistics and the associated parameters are

expressed in the form of order two. Hence, these statistics are easy to calculate.
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Table 1. Empirical sizes of the NEW.mean, dCov, HHG, and HBWW tests for means at
a significance level of 5% in Example 1.

n p R = 3 R = 4

NEW.mean dCov HHG HBWW NEW.mean dCov HHG HBWW

Case 1: ε ∼ N (0, Ip)

100 50 0.043 0.033 0.042 0.036 0.060 0.043 0.047 0.057

100 0.056 0.049 0.045 0.051 0.064 0.049 0.031 0.060

150 0.047 0.043 0.040 0.039 0.063 0.043 0.061 0.053

200 0.062 0.051 0.035 0.057 0.045 0.038 0.072 0.040

200 50 0.065 0.041 0.059 0.062 0.056 0.044 0.058 0.057

100 0.058 0.048 0.057 0.059 0.063 0.043 0.047 0.066

150 0.056 0.042 0.055 0.058 0.047 0.048 0.058 0.048

200 0.058 0.047 0.051 0.062 0.060 0.047 0.045 0.060

Case 2: ε ∼ N (0,Σ)

100 50 0.067 0.047 0.046 0.065 0.055 0.044 0.046 0.049

100 0.059 0.041 0.061 0.050 0.055 0.041 0.051 0.053

150 0.061 0.041 0.051 0.056 0.065 0.042 0.049 0.056

200 0.058 0.044 0.044 0.055 0.054 0.051 0.048 0.055

200 50 0.051 0.048 0.055 0.054 0.066 0.044 0.040 0.068

100 0.063 0.057 0.048 0.068 0.056 0.048 0.049 0.059

150 0.050 0.047 0.042 0.046 0.048 0.041 0.047 0.046

200 0.061 0.057 0.042 0.059 0.052 0.041 0.044 0.055

5. Simulation Study

We design several simulation experiments to evaluate the performance of the

two proposed tests by comparing them with other tests. Here, R is designed to

be three or four, with probabilities P1 = (0.4, 0.4, 0.2) or P2 = (0.3, 0.3, 0.2, 0.2),

respectively. We choose n = 100 or 200, and p ranges from 50 to 400.

Example 1 (Test for means.). We compare the proposed test for means

(NEW.mean) with the distance covariance (dCov) test developed by Székely,

Rizzo and Bakirov (2007), the rank of distance test (HHG) proposed by Heller,

Heller and Gorfine (2013), and the HBWW test suggested by Hu et al. (2017).

The distances of Yi and Yj when applying the dCov and HHG tests are defined as

one if they are different, and zero otherwise. We randomly generate a categorical

random variable Y from R classes. Then, for each given Yi = r, the ith

predictor Xi is generated by letting Xi = µr + ξi, where ξi, for i = 1, . . . , n,

are random errors following N (0, Ip) or N (0,Σ), with Σ = (0.5|i−j|). We set

µ1 = signal ∗ (1, 2, 3, 0, . . . , 0)T/
√
14, µ2 = signal ∗ (1, . . . , 1, 0, . . . , 0)T/

√
p/2, and

µr = 0, for r ̸= 1, 2. The tests are repeated 1,000 times to simulate the power.

Table 1 shows the empirical sizes of the proposed test (NEW.mean) and the

related tests (dCov, HHG, and HBWW). As shown in Table 1, the empirical sizes

in all tests maintain the 5% nominal level. Figures 1 and 2 depict the empirical

power of the tests when ε ∼ N (0, Ip). As the “signal” increases, the proposed

test outperforms the three other tests, and dCov and HBWW tests exhibit similar
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Test for means with n=100, p=100, and R=3
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Figure 1. Performance of tests for means with different (n, p) and R = 3.

performance. The HHG test is the least effective in terms of detecting difference

between the means of the R groups, implying that considering only the rank of

a distance leads to a severe loss of information on distance. For example, when

(n, p) = (100, 200), R = 3, and signal = 1.4, the empirical power of the proposed

test reaches as high as 67.3%. In contrast, the dCov and HBWW tests have

power of 56.2% and 51.0%, respectively, and the HHG test has power of only

7.0%. Figure 3 displays the empirical power as p increases. The proposed test

consistently outperforms the other tests.

Example 2 (Test for covariance matrices). We compare our proposed test

for covariances (NEW.cov) with the distance covariance (dCov) test developed

by Székely and Rizzo (2004) and Székely, Rizzo and Bakirov (2007), the rank of

distance test (HHG) proposed by Heller, Heller and Gorfine (2013), the ZBHW

test suggested by Zhang et al. (2018), and the ZLGY test introduced by Zheng

et al. (2020). We randomly generate a categorical random variable Y from R
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Figure 2. Performance of tests for means with different (n, p) and R = 4.

classes. Then, for each given Yi = r, the ith predictor Xi is generated by letting

Xi = Σ1/2
r Zi, where Zi, for i = 1, . . . , n, are random errors following N (0, Ip).

Set Σ1 = 3Ip+signal ∗η1η
T

1 , Σ2 = 3Ip+signal∗diag(w1, . . . , wp), and Σr = 3Ip,

for r ̸= 1, 2, where η1 = (3, 3, 3, 0, . . . , 0)T and wi
i.i.d.∼ Unif(−3, 3).

Table 2 presents the empirical sizes of the tests. As n and p approach infinity,

the sizes of the five tests are close to the 5% nominal level. Figures 4 and 5 show

the empirical power of the tests. As the “signal” increases, the proposed test

outperforms the four other tests. Unlike the test for means, the HHG test for

covariances performs much better than the dCov test, which has power of around

5%. For example, when (n, p) = (100, 200), R = 3, and signal = 0.7, the empirical

power of the proposed test reaches as high as 80.1%. In contrast, the ZBHW test

has power of around 67.4%, the ZLGY test has power of around 62.8%, and the

HHG test has power of only around 36.8%. Figure 6 displays the empirical power

as p increases. Again, the proposed test consistently outperforms the other tests.
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Figure 3. Performance of tests for means with different p values.

Table 2. Empirical sizes of the NEW.cov, dCov, HHG, ZBHW, and ZLGY tests for
covariances at a significance level of 5% in Example 2.

n p R = 3 R = 4

NEW.cov dCov HHG ZBHW ZLGY NEW.cov dCov HHG ZBHW ZLGY

100 50 0.050 0.065 0.062 0.041 0.039 0.058 0.055 0.056 0.058 0.054

100 0.064 0.054 0.041 0.065 0.047 0.055 0.054 0.047 0.052 0.047

150 0.051 0.053 0.049 0.039 0.031 0.040 0.047 0.062 0.033 0.031

200 0.062 0.038 0.062 0.043 0.033 0.054 0.059 0.053 0.050 0.039

200 50 0.060 0.054 0.047 0.046 0.043 0.060 0.068 0.057 0.060 0.050

100 0.051 0.062 0.043 0.055 0.046 0.061 0.056 0.027 0.042 0.037

150 0.060 0.049 0.039 0.048 0.039 0.056 0.045 0.054 0.056 0.041

200 0.032 0.069 0.035 0.027 0.027 0.051 0.050 0.045 0.050 0.039

6. Application

6.1. Application 1

We apply the proposed test to a gene expression data set collected by Koh

et al. (2014) to identify gene sets with significant differences in their mean vectors
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Figure 4. Performance of tests for covariances with different (n, p) and R = 3.

and covariances over time. The data set contains data on 11 pregnant women

at four stages, namely, three stages during pregnancy (i.e., the first, second, and

third trimesters) and one stage after delivery (i.e., postpartum). The microarray

gene expression data in this data set were measured repeatedly, using 33,297

genes for each pregnant woman at the four stages. Based on their biological

functions, the genes were defined using gene ontology (GO), yielding 3,910 GO

terms. The data set is obtained from http://www.ncbi.nlm.nih.gov/sites/

GDSbrowser?acc=GDS5088. For each GO term, our aim is to test whether the

mean vectors and covariance matrices of the gene expression data are the same

during the four stages. Table 3 shows the GO terms detected as significant by the

NEW.mean, dCov, HHG, HBWW, NEW.cov, ZBHW, and ZLGY tests. The gene

set GO:0008499 is detected as significant only by the proposed NEW.mean test,

and GO:0070513 and GO:0043008 are detected as significant only by the dCov

test. A possible reason for this finding is that the proposed NEW.mean test is

designed to detect the difference between mean vectors, whereas the dCov test

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS5088
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS5088
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Figure 5. Performance of tests for covariances with different (n, p) and R = 4.

focuses on identifying the variation of distribution functions. The NEW.mean

and HBWW tests identify 12 GO terms as significant. Of these, GO:0050786

and GO:0005212 are also detected by the dCov and HHG tests, respectively, and

GO:0005179 is identified as significant by the dCov and HHG tests.

In addition, our proposed NEW.cov test and the ZBHW test identify 12

other GO terms as significant gene sets for covariance matrices. However, the

dCov and HHG tests fail to identify any of them. Note that the ZLGY test

identifies 219 significant GO terms, of which the trace-based term identifies

nine, and the maximum norms detect the rest. This finding implies that using

dimension reduction or feature screening methods can further enhance the power

for detecting significant gene sets under sparse alternatives. It also motivates a

promising extension of our tests to incorporate dimension reduction or feature

screening.
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Table 3. Significant GO terms obtained by the different tests at a significance level of
5%.

GO term No. of genes Satisfied test(s) GO term No. of genes Satisfied test(s)

GO:0004869 36 NEW.mean GO:0008200 11 NEW.cov/ZBHW/ZLGY

GO:0070513 17 dCov GO:0008378 11 NEW.cov/ZBHW/ZLGY

GO:0043008 10 dCov GO:0047617 14 NEW.cov/ZBHW

GO:0008499 15 NEW.mean/HBWW GO:0015267 12 NEW.cov/ZBHW

GO:0008083 171 NEW.mean/HBWW GO:0004012 15 NEW.cov/ZBHW/ZLGY

GO:0019864 13 NEW.mean/HBWW GO:0032393 17 NEW.cov/ZBHW/ZLGY

GO:0015254 15 NEW.mean/HBWW GO:0019870 10 NEW.cov/ZBHW/ZLGY

GO:0015204 10 NEW.mean/HBWW GO:0070410 17 NEW.cov/ZBHW

GO:0015250 16 NEW.mean/HBWW GO:0016712 10 NEW.cov/ZBHW/ZLGY

GO:0048037 18 NEW.mean/HBWW GO:0033038 19 NEW.cov/ZBHW/ZLGY

GO:0005524 13 NEW.mean/HBWW GO:0030275 10 NEW.cov/ZBHW/ZLGY

GO:0016594 14 NEW.mean/HBWW GO:0030109 16 NEW.cov/ZBHW/ZLGY

GO:0050786 11 NEW.mean/dCov/HBWW

GO:0005212 20 NEW.mean/HHG/HBWW

GO:0005179 92 NEW.mean/dCov/HHG/HBWW

6.2. Application 2

Here, we apply the proposed tests to a gene expression data set collected by

Taylor et al. (2007) in a study to identify gene sets with significant differences

in mean vectors and covariances over time. In this study, 69 patients with

the hepatitis C virus were treated for up to 48 weeks using a specific clinical

protocol. Their peripheral blood mononuclear cells were collected before treat-

ment (day 0), and on days 1, 2, 7, 14, and 28 during treatment. The original

data set is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE7123. The microarray gene expression data were measured using 22,283

genes for each patient repeatedly at six stages, defined using GO, based on the

biological function of these genes. There are 1,218 GO terms, and a given gene

can be a member of multiple GO terms. Further details about the data can be

found in Taylor et al. (2007).

Before applying our tests, we preprocess the data by removing 11 individuals

with an absent Microarray Suite 5.0 signal transcript, and keep 58 individuals

with gene expression arrays at all six stages. We apply the NEW.mean test, dCov

test, HHG test, HBWW test, NEW.cov test, ZBHW test, and ZLGY test to the

585 GO terms, with minimums of 10 genes. Let X
(g)
ri |Yi = r (i = 1, 2, . . . , 58, r =

1, 2, . . . , 6, g = 1, 2, . . . , 585) be the gene expression data for the gth GO term of

the ith individual at the rth period, where r = 1, 2, . . . , 6 represents day 0, 1, 2,

7, 14, and 28, respectively. For each GO term, we test whether the means µ(g)
r

and covariance matrices Σ(g)
r are the same across r = 1, 2, . . . , 6. Table 4 shows

the various numbers of GO terms detected as significant by tests.

In all six stages, the NEW.mean and HBWW tests identify 525 and 524 GO

terms, respectively, as significant, where the New.mean test detects GO:0005721,

but the HBWW test does not. The dCov and HHG tests simultaneously

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7123
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7123
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Table 4. Number of significant GO terms detected by different tests at a significance
level of 5%.

NEW.mean HBWW dCov HHG NEW.cov ZBHW ZLGY

Day 0, 1, 2, 7, 14, and 28 525 524 543 475 264 263 297

Day 0 and 1 525 525 535 447 297 296 310

Day 1 and 2 138 137 149 78 42 42 39

Day 2 and 7 315 311 395 248 126 126 123

Day 7 and 14 41 41 48 21 157 157 145

Day 14 and 28 55 54 40 26 122 122 122

identify only 459 of the 524 GO terms as significant. For the covariance

matrices, the NEW.cov, ZBHW, and ZLGY tests identify 264, 263, and 297 GO

terms, respectively, as significant, where the NEW.cov and ZLGY tests detect

GO:0000792, but the ZBHW test fails to do so.

After identifying the significant GO terms, we apply the tests on binary

segmentation to identify the changes over time. As shown in Table 4, most of

the identified changes in the mean vectors and the covariance matrices occurred

within days zero and one. However, during the treatment, more GO terms are

detected as having significant changes in means between days two and seven.

In contrast, more significant changes are identified in the covariance matrices

between days 7 and 14. These findings complement the results of Taylor et al.

(2007), who observed that the majority of genes altered expression.

7. Conclusion

This study develops two categorically weighted tests for means and covariance

matrices in high dimensions. Simulation studies and applications demonstrate the

satisfactory performance of our tests. However, the present study has limitations,

providing opportunities of future work in this area. While our proposed tests

accommodate the high-dimensional setting, they are affected adversely by an

increasing dimension, as shown in Figures 3 and 6. Therefore, they cannot deal

with ultrahighdimensional problems. Moreover, the two tests are less powerful in

detecting sparse signals of means and covariance matrices, which may be corrected

using dimension reduction or feature screening.

Supplementary Material

All technical proofs are provided in the Supplementary Material.
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