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Abstract: This study aims to develop homogeneity tests for high-dimensional mean
vectors and covariance matrices, in which the number of features may be greater
than the sample size. We introduce two categorically weighted statistics to test
the equality of means and of covariance matrices. We establish the asymptotic
distributions of the proposed test statistics under certain mild conditions, and
develop simplified algorithms to facilitate the implementation and application.
Simulation studies demonstrate the satisfactory performance of the proposed tests
in terms of the empirical size and power. We also apply the proposed test procedures
to two microarray data sets.
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1. Introduction

Despite numerous studies on homogeneity tests for distributions or distribu-
tion features (mean vectors or covariance matrices) in different populations, a
crucial remaining problem is establishing whether gene expression levels differ
among predefined patient populations in order to identify a disease’s capital
causal gene. However, in modern biological and financial studies, the data
dimension is often much larger than the sample size. This “large p, small n”
paradigm poses a considerable challenge to classical homogeneity tests, which
were originally designed for fixed-dimensional problems.

This study focuses on homogeneity tests for high-dimensional mean vectors
and covariance matrices. Assume that homogeneity tests for means, consider R
groups. When R = 2, the traditional Hotelling T? test is optimal for normally
distributed data when p is fixed. Several extensions of the Hotelling T? test have
been proposed to accommodate high dimensionality; examples include those of
Bai and Saranadasa/ (1996)), [Srivastava and Du (2008), Chen and Qin| (2010), Cai,
Liu and Xia| (2013)), Feng, Zou and Wang| (2016)), and |Chang et al. (2017). When
R > 2, researchers often use a multivariate analysis of variance (MANOVA) to
investigate whether the population mean vectors are the same under the “large
n, small p” paradigm. |Cai and Xial (2014) test the equality of multiple high-
dimensional sparse mean vectors under dependency. Recently, Hu et al.| (2017)
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proposed a test for the equality of high-dimensional mean vectors based on the
work of |Chen and Qin/ (2010).

Several studies also test covariances based mostly on entropy or a quadratic
loss function. Studies that examine the case of R = 2 include Wolf| (2002), Bali,
Jiang and Zheng| (2009), |Chen, Zhang and Zhong (2010)), Li and Chen| (2012),
Cai and Ma| (2013)), Jiang and Yang) (2013])), |Cai and Liu/ (2016), and |Chang et al.
(2017). For R > 2, Zhang et al.| (2018]) extend the two-sample test for covariances
presented by [Li and Chen| (2012) , and obtain the asymptotic distribution of the
statistic in a high-dimension case. |Zheng et al.| (2020) propose a homogeneity test
for high-dimensional covariances, and enhance its power by comparing covariance
matrices. Liu et al. (2017 also propose a two-sample homogeneity test for means
and covariances.

In this study, we consider this kind of homogeneity test from a different
perspective. Assume that Y is a categorical variable with R categories, and X is a
p-dimensional random vector. |Cui, Li and Zhong| (2015]) propose a mean-variance
index defined by MV (X|Y) = Ex[vary F(x|Y)], where F(x|Y") stands for the
conditional distribution function of X given Y. MV (X|Y) indicates that X and
Y are independent if and only if the conditional distributions F, = F(x|Y = r),
for r = 1,..., R, are homogenous. Then, the homogeneity test for distributions
can be regarded as an independence test between a categorical variable and
a multivariate random vector. The mean-variance index takes advantage of
the probabilities of the categorical variable, which motivates us to introduce
a categorically weighted index to measure the differences of mean vectors and
covariance matrices among different groups.

To accommodate high dimensionality, we correct the bias by adjusting the
weights, and propose two statistics for testing the mean vectors and covariance
matrices. Moreover, we obtain the asymptotic distributions of the proposed
statistics under certain mild conditions. The proposed tests have four advantages.
(1) They accommodate the high-dimensional setting. (2) No explicit distribution
is imposed on the p-dimensional vectors; hence, our tests have high theoretical
and practical value. (3) The proposed categorically weighted tests optimize the
information of the categorical variable to improve the performance. (4) Simplified
algorithms are proposed to calculate the associated statistics, thereby facilitating
implementation and application.

The remainder of this paper is organized as follows. Sections 2 and 3
describe the methodology and asymptotic distributions of testing means and
covariances, respectively. Section 4 introduces simplified algorithms to calculate
the test statistics. Section 5 presents Monte Carlo simulations for assessing the
performance of the proposed tests. Applications to gene expression data analysis
are given in Section 6. Technical proofs are provided in the Supplementary
Material.
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2. Homogeneity Test for Mean Vectors

We consider the homogeneity test for mean vectors, that is,

Hig:py =py="=pp=p, (2.1)

versus the composite alternative Hyy: p,. # p,, for 1 < r < s < R, where
p, = EX|Y =7), p = E(X) = 3% p.u,, and p, is the probability that X
comes from the rth population.

2.1. Measuring the difference between mean vectors

Similarly to the analysis of |Cui, Li and Zhong| (2015), we use the variance
of the conditional means of X given Y, vary {E(X|Y)}, to measure the difference
between the mean vectors, as expressed in Definition 1.

Definition 1. The variance of the conditional expectations of X given Y = r,
for r =1,..., R, can be defined by

UX|Y) = B(XTX,) {i Ih=nla=r) 1} ,

br

r=1

where (X1,Y]) and (Xs,Y5) are independent copies of (X,Y), and I(-) is the
indicator function.

The following lemma shows that Definition 1 is reasonable.

Lemma 1. If X has a finite first moment, then U(X|Y) = vary{E(X|Y)} >0,
and the equality holds if and only if the null hypothesis (2.1)) is true.

Section S1 of the Supplementary Material shows the proof of Lemma 1. For
observed random samples {(Xy,Y:) : k =1,2,...,n}, we define

* R
1Y, =r)I(Y; =
anP:ZXiTXj{Z (Y; T)A(J r)_1}7
(4,7)

r=1

where 37/, . denotes summations over distinct indices, and p, = (N, —1)/(n—1),
with N, = Y1 | I(Y; = r). Notably, p, is a consistent estimator of p,, and more
importantly, it enables >, A 1Y, = r)I(Y; = 1)/p, — 1} = 0, where ¢,
is any function of the ith sample. The good properties of the estimator p, make
our test applicable to high-dimensional data.

Remark 1. Using an elemetary calculation, we obtain

R Nr ~e1 Ns ~e1 Ny N T
Mn,p _ Z N,.N, {Zi;ﬁj Xm‘er + Zi;ﬁj XsiXSj Zi:l Zj:l XriXSj } :

N, (N, —1) " N,(N,-1) N, N,

>S5

(2.2)
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where X,; denotes the ¢th sample of the rth group, that is, Y; = r. We show the
proof in Section S2 of the Supplementary Material. When R = 2, Equation
indicates that M, , is proportional to the statistic proposed by Chen and Qin
(2010) , which they use to measure the distance between two sample means, that
is, ||, — po]|?. Therefore, our proposed statistic can be regarded as a weighted
summation of the distances between the means in two different categories.

2.2. Main results for the homogeneity test for means

To establish the limiting distribution of M, ,, we assume the following
conditions.

Condition 1. Suppose that R is fixed, and there exist two positive constants c;
and Co, such that Cl/R S minlSTSR Pr S maxi<r<Rr Pr S CQ/R.

Condition 2. Suppose that the random expression of X; given'Y; = r is X;|(Y; =
r) = w, + I',Z;, where p, is the conditional mean vector, T, is a p X p matriz,
Z; is independent of Y;, and the coordinates of Z; are assumed to be independent
and identically distributed (i.i.d.); the first coordinate, denoted as Z;, satisfies
E(Zy) =0, E(Z%) =1 and E(Z}) = 3+ A< 0.

Condition 3. p = p(n) — o0 as n — oo; tr(2,T,X;%,) = o{tr* ()}, for
r,s, k.t € {1,2,...,R}.

Condition 4. (p, — ) Sk (i, — p,) = o{n='tr(X*)}, forr,s, k € {1,2,..., R}.

Condition 1 imposes that p,, for r = 1,2,..., R, must not degenerate; a
similar condition appears in the study of (Cui, Li and Zhong (2015). Instead
of imposing a specific parametric distribution of X|Y', the pseudo-independence
assumption is required in Condition 2. The pseudo-independence model was
proposed by Bai and Saranadasa (1996), and is widely used in high-dimensional
theoretical models; see |Chen and Qin| (2010)), Li and Chen| (2012), and Zhang
et al.| (2018). The eigenvalues of the conditional variance of (X|Y) are assumed
to satisfy Condition 3, which holds naturally when the conditional covariances
are bounded away from above and zero. We explore the asymptotic properties of
the statistic M, , under high dimensionality and local alternatives in Condition
4. This work does not impose any explicit relationships between p and n, and
our test applies to high-dimensional data.

Theorem 1. Under Conditions 1, 2, 3, and either H,y or Condition 4, we have

MH,P - Z§>s NTNSHH’T - u’s||2

VA p

asn,p — oo, whered,, , = 2“(71—1){2?:1(1—Pr)2t7’(272n)+z>(km) prpstr(X,25)},

d o
where — denotes convergence in distribution.

45 N(0,1)
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Theorem 1 establishes the asymptotic normality of M,, ,, without imposing
explicit conditions on the relationship between n and p. Under Condition 3,
d,, = O(n?p). Furthermore, if the conditional covariances of (X|Y = r) are
equal, that is, £, = --- = Bz = ¥, then d,,, = 2n(n — 1)(R — 1)tr(X?). Under
HlO in " M

e 4y N(0,1). (2.3)
Vdn
We use (2.3) to formulate a test procedure based on Theorem 1; thus, estimating
d, p is required. Here, we choose the estimators of tr(X?) and tr(X,X,) proposed

by [Li and Chen| (2012), and use p, = (N, — 1)/(n — 1) to estimate p,. As

—

n — 00, P, is consistent, by the law of large numbers, and tr(X?) and tr(32,X,)

T

are consistent under Conditions 1, 2, and 3 by Theorem 2 in|Li and Chen| (2012).

Additional details about the algorithm for calculating tr(X?) and tr(X,X,) are
discussed in Section 4. The proposed test rejects Hyy at significance level « if
—1/2

M,, > d,., Zz., where z, is the upper-a quantile of A'(0,1). Theorem 1 also
implies that the proposed test has the asymptotic local power

Ny o DeDs|| ey — usll2>

/12

When Y prps|lp, — p,||* has a higher order of /p/n, the power converges to
one.

UV (g, pgia) = @ (‘za +

3. Homogeneity Test for Covariance Matrices

In this section, we consider the homogeneity test for covariance matrices,
that is,
H20:21:---:ZR:E, (31)
versus the composite alternative Hy: X, # X, for 1 < r < s < R. Here,
¥, =var(X|Y =7) and T = 3% p, =,

3.1. Measuring the difference between covariance matrices

Similarly to the analysis in Section 2, we propose an index to measure
the difference between 3., for r = 1,2,...,R. The expression of this index
is relatively complex compared with that of U (X]Y).

Definition 2. The distance between the covariances of R categories is defined
by

V(X‘Y> - iE {(X1 - Xz)T(X3 - X4)}2 fi234,
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where (X;,Y;), for i =1,...,4, are independent copies of (X,Y), and

1—np, IV =Yo=r)I(Ys=Y,=5
f1234—zl—}/1— }/23 Y;L:T)( 3p)_z ( 1 2 ) (3 4 )
p'r (T,S) p?"p@
The following lemma ensures that Definition 2 is reasonable.
Lemma 2. If X has a finite second moment, then V(X|Y) > 0, and the equality
holds if and only if the null hypothesis (3.1)) is true.

Similarly to the analysis for testing means, we define

* 1 ) )
Tnm = Z Z {(X’il - Xi2) (X’is - Xi4)}2 fi1i2i3i47

(41,%2,3,14)

where > 7. . . . denotes summations over distinct indices, and
(i1,92,13,14) 5

(-7
—1 P

Y, =Y,=r)I(Y, =Y, =5s)
- Z DrDs

R
filigim Z Y, =Y,=Y,=Y,=1)

(r,s)
with p, = (N, —1)/(n — 1) and pAf = (N, = 3)(N, —2)(N, —1)/(n — 1)3.
3.2. Main results for the homogeneity test for covariance matrices

Theorem 2. Suppose that Conditions 1, 2, and 3 hold. Then, we have

Top — (n = 1) 330 NN, tr{(2

VOnp

r = %)% 45 N(0,1)

as p — oo and n — oo, where

R
Opp = 4n° {Z(l — )2t (20) + Zp,,pghz (2.2, )}

r=1 (r,s)

R
+8n" Y ptr{(Z - 3,%)°}

r=1

R
+4ARTY " p,tr{T5(8, — BT, o T)(8, — )T, } .

r=1
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Theorem 2 establishes the asymptotic normality of 7, ,. Under Hy, and
Condition 3, 4, , = 4n°(R — 1){tr(X*)}? = O(n°p?). We define

R
Somp = 4n° {Z(l —p)*tr?(22) + Zp,.pstrQ(Z,Zs)} :
r=1 r#s

From Theorem 2, we obtain

T,

\/5Onp

under Hyg. To formulate a test procedure based on Theorem 2, we choose

oy = A0 [i(l ~ )’ {t@)}g + 3 b {tr(ii)ﬂ -

r=1 r#s

45 N(0,1),

—1/2
The proposed test rejects Hy at significance level aif T;, , > 09, p  2a. Theorem

2 also implies that the proposed test has asymptotic power

WY (i) =@ | = [ P20 +

5n,p 1/ 5n,p/n8

When Zis prpstr {(X, — X,)?} has a higher order of p/n, the power converges
to one.

60np Zr>5p7“p5tr{(27“ - 25)2}]

4. Implementation

In this section, we introduce two efficient algorithms for our proposed tests
for mean vectors and covariance matrices.

4.1. Testing for mean vectors

When calculating the statistics of two tests, we need to introduce an efficient
algorithm to estimate tr(X?) and tr(3,3,). We use the estimators of tr(X?) and
tr(3,X,) proposed by [Li and Chen| (2012). That is,

— 1 *

() = —— Y (X"X,.)? - XrX,, XX

I‘( r) Nr(Nr—l) OZJ)( T J) N(N _1 _2 Z

1
X* X, X, X
TNV (N, —2)( Z Xt
(2,5,k,0)

— 1

(22 = ZZXTX >4

(zk) J
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——NTN( ZZXTX XX

(i,k) J

1
XX X0 X s
NN )NV Z
(z 7:k,0)
Then, we obtain
tr(X?) = NN 3 Sy ALAL (4.1)

#J
where A}, = aj; — aj/(N, —]3) —aj/(N, — 2) —ij—var/(]]\f\h — 1)/(N, — 2), with
a;; = X — er||2/2a a; =) pqag, and a” = " > ag.
Similarly,

= 1

tr(z"‘zs) = (Nr N 1)(N 1) ‘ Z {(Xm - X’!‘)T(ij - X8)}2 ) (42)

where X, = Zf\il Xii/Ny, for t = 1,2,..., R. Because the proofs of Equations
(4.1) and (4.2)) require complicated calculations, we omit them here. Interested
readers can derive them through numerical calculations.

4.2. Testing for covariance matrices

As indicated in Subsection 4.1, m can be calculated straightforwardly.
Hence, we discuss only the calculation of T;, , in the following. We write

Z {(Xi — X)) (X — X))},

(z]kl

ZZ{ — X)) (X — X))

(U) (k1)

Then, T,, = 3% D.(1 — p,)/p? — > (rs) Drs/ (prbs). Similarly to the analysis
for Equations (4.1)) and (4.2]), we obtain

D, = (N, —1)(N, — 2) ZATA’“

R
(4,5)

D, = Z - X,)"(Xs; —Xs)}Q-

HMZ

Using the derivations, the two statistics and the associated parameters are
expressed in the form of order two. Hence, these statistics are easy to calculate.
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Table 1. Empirical sizes of the NEW.mean, dCov, HHG, and HBWW tests for means at
a significance level of 5% in Example 1.

n P R=3 R=
NEW.mean dCovn HHG HBWW NEW.mean dCovn HHG HBWW
Case 1: € ~ N(0,1,,)
100 50 0.043 0.033  0.042 0.036 0.060 0.043  0.047 0.057
100 0.056 0.049  0.045 0.051 0.064 0.049 0.031 0.060
150 0.047 0.043  0.040 0.039 0.063 0.043  0.061 0.053
200 0.062 0.0561  0.035 0.057 0.045 0.038  0.072 0.040
200 50 0.065 0.041  0.059 0.062 0.056 0.044  0.058 0.057
100 0.058 0.048  0.057 0.059 0.063 0.043  0.047 0.066
150 0.056 0.042  0.055 0.058 0.047 0.048  0.058 0.048
200 0.058 0.047  0.051 0.062 0.060 0.047  0.045 0.060
Case 2: € ~ N(0,X)
100 50 0.067 0.047  0.046 0.065 0.055 0.044  0.046 0.049
100 0.059 0.041  0.061 0.050 0.055 0.041  0.051 0.053
150 0.061 0.041  0.051 0.056 0.065 0.042  0.049 0.056
200 0.058 0.044  0.044 0.055 0.054 0.051  0.048 0.055
200 50 0.051 0.048  0.055 0.054 0.066 0.044  0.040 0.068
100 0.063 0.057  0.048 0.068 0.056 0.048  0.049 0.059
150 0.050 0.047  0.042 0.046 0.048 0.041  0.047 0.046
200 0.061 0.057  0.042 0.059 0.052 0.041  0.044 0.055

5. Simulation Study

We design several simulation experiments to evaluate the performance of the
two proposed tests by comparing them with other tests. Here, R is designed to
be three or four, with probabilities P, = (0.4,0.4,0.2) or P, = (0.3,0.3,0.2,0.2),
respectively. We choose n = 100 or 200, and p ranges from 50 to 400.

Example 1 (Test for means.). We compare the proposed test for means
(NEW.mean) with the distance covariance (dCov) test developed by [Székely,
Rizzo and Bakirov| (2007)), the rank of distance test (HHG) proposed by [Heller,
Heller and Gorfine (2013), and the HBWW test suggested by [Hu et al. (2017)).
The distances of Y; and Y; when applying the dCov and HHG tests are defined as
one if they are different, and zero otherwise. We randomly generate a categorical
random variable Y from R classes. Then, for each given Y; = r, the ith
predictor X; is generated by letting X; = p, + §;, where &,, for i = 1,...,n,
are random errors following N'(0,I,) or A(0,X), with £ = (0.5"771). We set
p, = signal * (1,2,3,0,...,0)" /14, p, = signal* (1,...,1,0,...,0)"//p/2, and
wu, = 0, for r # 1,2. The tests are repeated 1,000 times to simulate the power.

Table 1 shows the empirical sizes of the proposed test (NEW.mean) and the
related tests (dCov, HHG, and HBWW). As shown in Table 1, the empirical sizes
in all tests maintain the 5% nominal level. Figures 1 and 2 depict the empirical
power of the tests when & ~ N(0,I,). As the “signal” increases, the proposed
test outperforms the three other tests, and dCov and HBWW tests exhibit similar
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Figure 1. Performance of tests for means with different (n,p) and R = 3.

performance. The HHG test is the least effective in terms of detecting difference
between the means of the R groups, implying that considering only the rank of
a distance leads to a severe loss of information on distance. For example, when
(n,p) = (100,200), R = 3, and signal = 1.4, the empirical power of the proposed
test reaches as high as 67.3%. In contrast, the dCov and HBWW tests have
power of 56.2% and 51.0%, respectively, and the HHG test has power of only
7.0%. Figure 3 displays the empirical power as p increases. The proposed test
consistently outperforms the other tests.

Example 2 (Test for covariance matrices). We compare our proposed test
for covariances (NEW.cov) with the distance covariance (dCov) test developed
by [Székely and Rizzo| (2004)) and Székely, Rizzo and Bakirov| (2007), the rank of
distance test (HHG) proposed by Heller, Heller and Gorfine (2013)), the ZBHW
test suggested by |Zhang et al| (2018]), and the ZLGY test introduced by Zheng
et al.| (2020). We randomly generate a categorical random variable Y from R
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Figure 2. Performance of tests for means with different (n,p) and R = 4.

classes. Then, for each given Y; = r, the ith predictor X, is generated by letting
X; = Zi/ZZZ—, where Z;, for i = 1,...,n, are random errors following N(0,L,).
Set 3, = 3I, +signal *m,nT, ¥y = 31, +signal xdiag(w, ..., w,), and X, = 31,
for r # 1,2, where n; = (3,3,3,0,...,0)" and w; R Unif(—3, 3).

Table 2 presents the empirical sizes of the tests. As n and p approach infinity,
the sizes of the five tests are close to the 5% nominal level. Figures 4 and 5 show
the empirical power of the tests. As the “signal” increases, the proposed test
outperforms the four other tests. Unlike the test for means, the HHG test for
covariances performs much better than the dCov test, which has power of around
5%. For example, when (n,p) = (100,200), R = 3, and signal = 0.7, the empirical
power of the proposed test reaches as high as 80.1%. In contrast, the ZBHW test
has power of around 67.4%, the ZLGY test has power of around 62.8%, and the
HHG test has power of only around 36.8%. Figure 6 displays the empirical power
as p increases. Again, the proposed test consistently outperforms the other tests.
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Figure 3. Performance of tests for means with different p values.

Table 2. Empirical sizes of the NEW.cov, dCov, HHG, ZBHW, and ZLGY tests for
covariances at a significance level of 5% in Example 2.

nop R=3 R=4

NEW.cov dCov HHG ZBHW ZLGY NEW.cov dCov HHG ZBHW ZLGY

100 50  0.050 0.065 0.062 0.041  0.039 0.058 0.055 0.056 0.058  0.054
100 0.064  0.054 0.041 0.065  0.047 0.055 0.054 0.047 0.052  0.047

150  0.051 0.053 0.049 0.039  0.031 0.040 0.047 0.062 0.033  0.031

200  0.062 0.038 0.062 0.043  0.033 0.054  0.059 0.053 0.050 0.039

200 50  0.060 0.054 0.047 0.046  0.043 0.060 0.068 0.057 0.060  0.050
100 0.051 0.062 0.043 0.055 0.046 0.061 0.056 0.027 0.042  0.037

150  0.060 0.049 0.039 0.048  0.039 0.056 0.045 0.054 0.056  0.041

200  0.032 0.069 0.035 0.027  0.027 0.051 0.050 0.045 0.050  0.039

6. Application
6.1. Application 1

We apply the proposed test to a gene expression data set collected by |Koh
et al. (2014)) to identify gene sets with significant differences in their mean vectors
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Figure 4. Performance of tests for covariances with different (n,p) and R = 3.

and covariances over time. The data set contains data on 11 pregnant women
at four stages, namely, three stages during pregnancy (i.e., the first, second, and
third trimesters) and one stage after delivery (i.e., postpartum). The microarray
gene expression data in this data set were measured repeatedly, using 33,297
genes for each pregnant woman at the four stages. Based on their biological
functions, the genes were defined using gene ontology (GO), yielding 3,910 GO
terms. The data set is obtained from http://www.ncbi.nlm.nih.gov/sites/
GDSbrowser?acc=GDS5088. For each GO term, our aim is to test whether the
mean vectors and covariance matrices of the gene expression data are the same
during the four stages. Table 3 shows the GO terms detected as significant by the
NEW.mean, dCov, HHG, HBWW, NEW.cov, ZBHW, and ZLGY tests. The gene
set GO:0008499 is detected as significant only by the proposed NEW.mean test,
and GO:0070513 and GO:0043008 are detected as significant only by the dCov
test. A possible reason for this finding is that the proposed NEW.mean test is
designed to detect the difference between mean vectors, whereas the dCov test
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Figure 5. Performance of tests for covariances with different (n,p) and R = 4.

focuses on identifying the variation of distribution functions. The NEW.mean
and HBWW tests identify 12 GO terms as significant. Of these, GO:0050786
and GO:0005212 are also detected by the dCov and HHG tests, respectively, and
GO:0005179 is identified as significant by the dCov and HHG tests.

In addition, our proposed NEW.cov test and the ZBHW test identify 12
other GO terms as significant gene sets for covariance matrices. However, the
dCov and HHG tests fail to identify any of them. Note that the ZLGY test
identifies 219 significant GO terms, of which the trace-based term identifies
nine, and the maximum norms detect the rest. This finding implies that using
dimension reduction or feature screening methods can further enhance the power
for detecting significant gene sets under sparse alternatives. It also motivates a
promising extension of our tests to incorporate dimension reduction or feature
screening.
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Table 3. Significant GO terms obtained by the different tests at a significance level of
5%.

GO term  No. of genes Satisfied test(s) GO term  No. of genes Satisfied test(s)
G0:0004869 36 NEW.mean G0:0008200 11 NEW.cov/ZBHW /ZLGY
GO:0070513 17 dCov GO:0008378 11 NEW.cov/ZBHW /ZLGY
GO0:0043008 10 dCov GO:0047617 14 NEW.cov/ZBHW
GO:0008499 15 NEW.mean/HBWW GO:0015267 12 NEW.cov/ZBHW
GO:0008083 171 NEW.mean/HBWW G0:0004012 15 NEW.cov/ZBHW /ZLGY
G0:0019864 13 NEW.mean/HBWW G0:0032393 17 NEW.cov/ZBHW /ZLGY
GO:0015254 15 NEW.mean/HBWW G0:0019870 10 NEW.cov/ZBHW /ZLGY
GO:0015204 10 NEW.mean/HBWW GO0:0070410 17 NEW.cov/ZBHW
GO:0015250 16 NEW.mean/HBWW GO0:0016712 10 NEW.cov/ZBHW /ZLGY
GO:0048037 18 NEW.mean/HBWW G0:0033038 19 NEW.cov/ZBHW /ZLGY
GO:0005524 13 NEW.mean/HBWW GO0:0030275 10 NEW.cov/ZBHW /ZLGY
GO:0016594 14 NEW.mean/HBWW G0:0030109 16 NEW.cov/ZBHW /ZLGY
G0:0050786 11 NEW.mean/dCov/HBWW
GO:0005212 20 NEW.mean/HHG/HBWW
GO:0005179 92 NEW.mean/dCov/HHG/HBWW

6.2. Application 2

Here, we apply the proposed tests to a gene expression data set collected by
Taylor et al.| (2007) in a study to identify gene sets with significant differences
in mean vectors and covariances over time. In this study, 69 patients with
the hepatitis C virus were treated for up to 48 weeks using a specific clinical
protocol. Their peripheral blood mononuclear cells were collected before treat-
ment (day 0), and on days 1, 2, 7, 14, and 28 during treatment. The original
data set is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE7123. The microarray gene expression data were measured using 22,283
genes for each patient repeatedly at six stages, defined using GO, based on the
biological function of these genes. There are 1,218 GO terms, and a given gene
can be a member of multiple GO terms. Further details about the data can be
found in |Taylor et al.| (2007)).

Before applying our tests, we preprocess the data by removing 11 individuals
with an absent Microarray Suite 5.0 signal transcript, and keep 58 individuals
with gene expression arrays at all six stages. We apply the NEW.mean test, dCov
test, HHG test, HBWW test, NEW.cov test, ZBHW test, and ZLGY test to the
585 GO terms, with minimums of 10 genes. Let Xr(f)|YZ- =r(i=12,...,58,r=
1,2,...,6,g =1,2,...,585) be the gene expression data for the gth GO term of
the ith individual at the rth period, where » = 1,2,...,6 represents day 0, 1, 2,
7, 14, and 28, respectively. For each GO term, we test whether the means pu(%
and covariance matrices Zf;q) are the same across 7 = 1,2,...,6. Table 4 shows
the various numbers of GO terms detected as significant by tests.

In all six stages, the NEW.mean and HBWW tests identify 525 and 524 GO
terms, respectively, as significant, where the New.mean test detects GO:0005721,
but the HBWW test does not. The dCov and HHG tests simultaneously
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Table 4. Number of significant GO terms detected by different tests at a significance
level of 5%.

NEW.mean HBWW dCov HHG NEW.cov ZBHW ZLGY
Day 0, 1, 2, 7, 14, and 28 525 524 543 475 264 263 297
Day 0 and 1 525 525 535 447 297 296 310
Day 1 and 2 138 137 149 78 42 42 39
Day 2 and 7 315 311 395 248 126 126 123
Day 7 and 14 41 41 48 21 157 157 145
Day 14 and 28 55 54 40 26 122 122 122

identify only 459 of the 524 GO terms as significant. For the covariance
matrices, the NEW.cov, ZBHW, and ZLGY tests identify 264, 263, and 297 GO
terms, respectively, as significant, where the NEW.cov and ZLGY tests detect
GO:0000792, but the ZBHW test fails to do so.

After identifying the significant GO terms, we apply the tests on binary
segmentation to identify the changes over time. As shown in Table 4, most of
the identified changes in the mean vectors and the covariance matrices occurred
within days zero and one. However, during the treatment, more GO terms are
detected as having significant changes in means between days two and seven.
In contrast, more significant changes are identified in the covariance matrices
between days 7 and 14. These findings complement the results of [Taylor et al.
(2007), who observed that the majority of genes altered expression.

7. Conclusion

This study develops two categorically weighted tests for means and covariance
matrices in high dimensions. Simulation studies and applications demonstrate the
satisfactory performance of our tests. However, the present study has limitations,
providing opportunities of future work in this area. While our proposed tests
accommodate the high-dimensional setting, they are affected adversely by an
increasing dimension, as shown in Figures 3 and 6. Therefore, they cannot deal
with ultrahighdimensional problems. Moreover, the two tests are less powerful in
detecting sparse signals of means and covariance matrices, which may be corrected
using dimension reduction or feature screening.

Supplementary Material

All technical proofs are provided in the Supplementary Material.
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