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S1 Proofs of main results

Proof of Proposition [l We provide the proof of the generalized version
of Proposition 1 which allows different basis functions among processes.
The univariate orthonormal basis representation for each random process
is X; = 32, 04bjy. Recall that G(s,t) = E{X(s)X(t)"} € RP*? and

[ G(s,t)¢,(s)ds = Mg, (t). Then we have
{[etomeish = 3 [anix e x0m i

- Z/ZZcov(ﬁj/l/,Qjm)bjw(S)bjm(t)¢kj’(5)d5

I'=1 m=1

= DS conlt Bynbnt) [ byl ()

'=110'=1m=1

= At (1) (S1.1)
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Denote ug; = fT bii(t)r;(t)dt. Multiplying both sides by b;(¢) and

then integrating both sides over ¢ yields

S5 S corlbyrtin) [ bt [ bu(s)un(s)ds = N [ ba(oy )t

§'=11=1m=1

p o
E E COV(ej’l’aHjl)ukj’l’ = /\kukjl.

ji=11=1

Combining (S1.1)) and (S1.2)), the eigenfunctions ¥, are
o0
wk_](t) = Zukﬂbﬂ(t), te T,j = 1,...,]9,/{7 =1,2,....
1=1

Obviously, Y27, D72, uiy = Land 37°_ 3% upjiupy = 0 for k # . And

the scores are

M = < X (t), 1, (t) > = 30 [ X0y (t)dt
= Y0 S 2 Oubu () (t)dt = 2 O

]

For convenience, we suppress the subscript H in inner product and norm

operations when there is no ambiguity:.

(S1.2)

Proof of Theorem [T Recall that X; = 25\21 0,y and G(s, 1) = E{X (s) X (t)"},

A\ and 17)k are corresponding eigenvalues and eigenfunctions respectively.
First we provide the bound of |||G' — G|||> which is important in the sequel.

IG=GIE < [ [ 303 G600~ Gyplo ) s

Jj=1j'=1
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S1. PROOFS OF MAIN RESULTS

_ / / D0 D HER ()% (8) — BX(5)X (1) st

(1)} dsdt

A
M-
M-
N
\ ‘
—
ey
=
=
T
B

+ [0 - Xﬂs)}ﬁdsdt)

< BIX|PEIX - X|*+ B|X|*E|X - X[ (S13)

Use the notations I, and I defined in Lemma [S1] Denote the event
{I- cIcCI}by A, By Lemma Sl we have P(limsup 4,) = 1. Under

the weak [, sparsity, || X||? = O(1). On the event A,, we have

EIX -X|* < > oh <) (m'o%acan) Aoty

Gl il
an [e'e)

= Z Z n+ Z Vi =1+1I.
Jj=11=N;+ Jj=gn+1

It is obtained that I1 = O(g}fw 7). Based on the weak [, sparsity and

Lemma [I] we have

In 1 ] 2a/(2a+1)
2 ogp
[= Y j e (E = ) .
Jj=1

Next we consider the following cases about the first term I based on

relationship between two types of sparsity ¢ and « to obtain the final results.

o If g(2a+1) > 2, then I = [{m (log p/n) 1/2}2a/(2a+1) 95_2/‘1(2““)] =
Olgn~ 2/q) Combining I and II yields E|| X — X||> = (gi_z/q).
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o If g(2a+ 1) = 2, then

gn
I = {m—l(logp/n)l/Q}Qa/(2a+1) Zj—l -0 [{m—l(logp/n)l/Q}Qa/(Qa—I—l) 10g(gn)} .

J=1

Combining T and I yields E[| X —X |2 = O [{m~!(log p/n)"/?}?*/2+1 1og(g,)] .

o If ¢(2a + 1) < 2, then we have I = O [{m~!(logp/n)'/?}2/CGa+D],

Combining I and I yields E|| X —X || = O [{m~'(log p/n)/?}2/@et1)]

From the bound on covariance ([S1.3), according to the result of Theorem

1 in Hall and Hosseini-Nasab| (2006), we arrive at the desired results. [

Proof of Theorem[3. Recall that g, denotes the number of retained pro-
cesses. First, we prove that the measurement error is negligible and then it
suffices to quantify the error |||G — G||| on the event A,, where Gji(s,t) =
nt T E(8)E () and dy; = Zfﬁl éijlbl. Observe that

bi(t)dt.

ti
Lk

m
€iji = E Gijk/
k=1

Then we have var(€;;) = 0? > -, { tt:_l bl(t)dt}

-1
2
Denote A = diag(var(éy1),...,var(éin, ), - - -, var(éu), . . ., var(é,n, )) and
A'is a N x N diagonal matrix whose elements are all 1/m where N =
1 N;. Note that

3 {/j bl(t)dt}2 - %

1
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S1. PROOFS OF MAIN RESULTS

/ " / " B bu(s) — bi(6) s

ke1 Y lk—1 Jtr—1
1

bi(t)dt,

<

§M| ~
S—

where the last inequality follows from the Condition [§ Note that from

Lemma , we have N = 0,(g,m?) under Condition . Then we have || A —

1/2
Allp = Op(gn/

m).

On the event A,

116G =GP

IN

//ZZ{GJJ (s,1) — Gy (s, 1)} dsdt

/ / 2 Zl { Xn; F5(8) (1) — n) i F5(8) 0 (1)
+n” wa — EX|(s )f(j/(t)}stdt

4;2 / / [ {x,] 5) — iij(s)}jij/(t)]2dsdt
+4]Zn1/21 / / [ qu Wiy (t i‘ij/(t)}Istdt
+2//§;§; {n—l Anl T (8)Z:0 (1) — EX(s) ~j,(t)}2dsdt
I+11+1I1. (S1.4)

To bound the term I and II, note that

//[ Z{x” — Zy(s )}fijf(t)rdsdt
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n=? (Zn: //{%] — Z45(s) 2'?j,(t)dsdt] 1/2>2
= n7? <zz”; 1235 — Zij | 2 {/fij/(t)2dt}l/2]>2, (51.5)

where the first inequality follows from the triangle inequality. Similarly, we

/ / [ wa Wiyt fij/(t)}rdsdt
= (Z [”fij’_jfij'”w{/f?j(s)ds}l/QDQ. (S1.6)

=1

IN

have

Using Bessel’s inequality and Condition [2| we may prove that

. . 1

So we have I = O,(g,/m?) and IT = O,(g,/m?). To bound the term

n- / / {Z{x” EX()f(j/(t)}}stdt

n=2 / / ZE{% () Ydsdt

“a(}).

where the last equality follows from Condition [2] Thus, combining together

T11,

IN

yields that |||G — G||| = Op(n~"/* + g*m1).
Case 1. If v > 1/(2 — q), the parametric rate dominates while the
discretization error is negligible, |||G — GJ|| = Op(n~"/?). In this case, we

6



S1. PROOFS OF MAIN RESULTS

adopt techniques in Hall and Horowitz (2007) and Kong et al. (2016) to
obtain sharper bounds.

Define A = |||G' — G|||. We find that, for k =1,...,r,,
e — Mot > M — Mepr — 24 > CE 71,
which holds according to Condition @ where A = |||G' — G/||. Denote
Tn={ =M1 >2/2—=V2)A k=1,...,1m,}.

The set J, means that the distance of adjacent ordered eigenvalues does
not fall below 2/(2 — v2)A, P(J,) — 1,n — oo is implied by Condition

10| For some constant C', define the set
Frn= {0 =) 2 <200 —Aiy) 2 < CP2OHD) oy hy =1, Ky # Ko}

For kl 7é k‘g, |;\k1 - 5\k1| S A < (1 - \/5/2) IIlin]ng]€2 |5\k1 - :\k‘2| giVGS

that

|5‘k1 - S‘kzy = ‘j‘lﬂ - S\kl + 5‘k1 - S‘kzy
> Ay = Aol = [y — A |

> My — M| — A

Then we have P(F,,) — 1 asn — oo. By (5.16) in Hall and Horowitz| (2007)),

~ ~ R N ~ ~ ~T =« ~ o~
one has ||, —4p||* < 243 where 43 = Zl:l;«ék()‘k_)‘l) H e (G-G)y 32
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By Lemma 1 in Kong et al.| (2016), we have
<1 0w 2 [C -G} 2oy, - gypar
Lk
Plugging this into |4, — b, ||> < 202, we find that
L (NS SNRPIR  E R
LIk
As e TDA2 = (1), we have

2
b — Bl <83 (e — A)- {/wk },

L2k

by analogy to (5.22) in Hall and Horowitz (2007), F {Zl #k()\k — )~ {f ’l,[)k (G — G, }2]
O(k*n~') holds uniformly in k = 1,...,7,.

Case 2. If v < 1/(2—q), the discretization error dominates, |||G—G||| =
O (g,l/ 2 m~!). With the result of Theorem 1 in Hall and Hosseini-Nasab

(2006)), the final results are established. O

S2 Theoretical results on recovery

We can represent the trajectories using estimated eigenfunctions. It is of
interest to investigate the theoretical performance of recovered processes.
To provide more insights of the sampling frequency of m on the results, we

directly characterize the discretization error. For recovered curves, one has

8



S2. THEORETICAL RESULTS ON RECOVERY

the following decomposition:
27" — @ille < [l — @illu + |27 — 2" lu + |25 — 27" (|,

where ;" = 271;7;1 ﬁzk'{pkv z" = 227;1 ﬁzk{pk and ;" = ;n:l Nk In the
righthand, the first and second terms can be both viewed as approximation
errors, while the third term is seen as an estimation error. Denote 17;; =<
x;, 17) r >m. Under the weak [, sparsity, we consider the most interesting case
where 0 < ¢ < 1 (Bruckstein et al.,[2009)). For more detailed interpretation,

one can refer to the discussion following Theorems [I] and
Theorem S1 (Approximation Error for recovery under weak l;). Under

the Conditions in Theorem |1, if < ¢k,17;k >y > 0, then uniformly for

Case 1. When q(a+1) > 2,

|7~hk . Uik’ _ Op (ka+1grll/2fl/Q) 7

Tn

&7 — 2l = O, (ry™*2g,*/7).
Case 2. When q(a+1) =2,

ik — k] = Op {kaH( vlogp/n)a/ 2a+1)(10g9 )1/2}
& =@l = O {ra¥/2(m™"/log p/n)*/ 2V (log g,)"/2}
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Case 3. When q(a+1) < 2,

T —nik] = Op {k““( 1ng/n)a/ 2a+1)}>
||53:" — Cl?:"HH = Op {rz+3/2( logp/n)a/ 2a+1)} 7

Moreover,

li — i e = Op (r, ) -

Theorem S2 (Estimation Error for recovery under weak [,). Under Con-
ditions in Theorem@ if < {pk, 17)k >u> 0, then uniformly for k =1,...,ry,,
Case 1. When v > 1/(2 —q),
|7l — Nt = Op(kn™"/% + k*Pm~12),
@ — & ls = Op(ri2n /2 4 et D/2m=112) =1, .

Case 2. When (1 —0)/2 <~y <1/(2—q),

|ﬁzk . ﬁzkz‘ _ Op(k‘aﬂgi/zm_l + ka/Zm—1/2)’

& — &l |l = O, (ra+3/2gt 2m=t 4 @t D/2 U2y G =1,

S3 Proofs of lemmas and auxiliary results

Define two non-random sets I = {(j,0),7 = 1,....,p;l = 1,...,8, :
af-l > mlofa a,} and I = {(4,0),7 = 1,....p;l = 1,...,8, : ‘712'1 >

10



S3. PROOFS OF LEMMAS AND AUXILIARY RESULTS

m~'o%a_a,}. Recall that T = {(j,0),j = 1,....,p;1 = 1,...,8, : 62 >

m~1o?(1+ )}

Lemma S1. For sufficiently large n, I, C Ic LT almost surely.

Proof. Recall that 6% = var(6;;). Observe that

by = /T SGUGLEDS /tkl{a:z-j<tk>—mij<t>}bz<t>dt+aﬂ

= Oiji + ziji + €ij1

We have 9~iﬂ = 0iji + 25 and 63 = 073 + var(zi;) 4+ cov(0y1, 2i51). Under the
Lipschitz condition, we have var(z;;;) = O(m™2). So 63 = 03+ O(m™?) +

J

O(oji/m). First we state the results from [Johnstone| (2001)) that
pr{x; <n(l—e€)} < exp(—ne?/4), 0<e<1,
pr{x? >n(l+¢)} < exp(—3ne?/16), 0<e<1/2.
Denote M, < X2 /n where x < y means that x has the same distribution as

y. |I| denotes the cardinality of set I. Then,

Py = pr(l; 1)
= pr [{(j,l) el : 6J2-l <mlo*(1+ an)}}
< Yner Pr{ch <mTlo*(1+an)}, subadditivity
= Ygpers PriMn < (1 +an)/(1+mé} /o)), 65 ~ (m™to® +63)x; /n
< L [pr{M, < (1 +an)/(1+ (14 o(1)aran)}
= |LIpr(M, < 1—e,) < |I; | exp(—ne; /4),

11
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where €, = {a;(1 + o(1)) — 1}, /{1 + (1 + o(1))ara,} and the second
inequality holds because 67 /0% — 1 for all (5,1) € I, under Condition .
We have ne2 ~ {(a; — 1)2a2log(ps,)}/(1 + aya,)? > (ar — 1)%a’ log(ps,)
where o is slightly smaller than of. Let o] = (ay — 1)?a//4, then P, <
Lo

(psy) . If ap > V12, then o[ > 3 for suitable ay > 2. Similarly, we

have

Pr = pr(l ¢ L)

IN

Z(J’J)%LT pr{&?l >mto?(1+ )}

IN

et P > m 021 a,)/(m 10 + )}, 6%~ (im0 + 32N

IN

psnpr{M, > (1+ ay,)/(1+ (a— + o(1))an)}

IN

psppr(M, >1+¢€),

< ps,exp(—3ne?/16),
where €/, = {1 —o0(1) —a_}a,/{1+ (o(1) + a_)a,} and the third inequality
holds because m(6% — 0%) = o(ay) for all (5,1) ¢ I under Condition .
We have ne? ~ {(1 —a_)*adlog(ps,)}/(1 +a_a,)* > (1 — a_)?a’ log(psy,)
where o is slightly smaller than of. Let o = 3(1 — a_)?a//16, then
P < (ps,)'7°". If ap > /12, then o” > 2 for suitable 0 < a_ < 1—+/8/9.

By a Borel-Cantelli argument, the result follows from the bounds on P

and P O

Proof of Lemma (1] Tt is straightforward to obtain the bounds on cardinality

12



S3. PROOFS OF LEMMAS AND AUXILIARY RESULTS

of I and I} based on sparsity assumptions. Combing Lemma yields

the final results. OJ

Proof of Theorem[S1]. For the approximated scores 7,

Mk — k] = | < Zi, Py, >u — < Ty Py >H |
= |<§3i7{bk_¢k>H+<iI~3i—mi7¢k>H|
< @[y, — il + |2 — 24

For the approximated curves ",

Tn

x| = Z(rfhkﬂ)k — Niktpy)
k=1
Z Uzk({Pk — )
k=1

n n 1/2
< Z ’nzkm"/)k - wk” + {Z(ﬁlk _ 77ik)2} .
k=1

k=1

&

IN

_|_

> (i — i)
i

Under the weak [, sparsity ||&;|| = O,(1). According to Theorem |1} we

establish the final results. O]

Proof of Theorem[S3. For the estimated scores, we have
i = 1] < @allllhx — il + 05 (8,7 — 0;7).

where uy, is the kth eigenvector of ¥ = E(6 fBIT) and the inequality follows
from Proposition [T, To quantify the second term in the righthand, we have
1651 — éiﬂ| = 0,(m~Y?) for all j,1 by simple calculation.

13
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Under weak [, sparsity, we assume o > 1/2 and we consider the most
interesting case where 0 < ¢ < 1. We have |lug|[; = O(k%?), then we have
|ﬂg(0¢f - éz[)| = Op(ka/Qm_l/z)‘

We have ||&;|| = O,(1) under weak [, sparsity. According to the results

in Theorem [2| we establish results in Theorem O

S4 Processes under the [, sparsity

We consider the case where only a small fraction of processes contain signals
and the rest do not. Here the [y sparsity is in the sense of ||V]|o = g < p.
It is assumed w.l.o.g. that the first g processes contain signals with com-
parable energies and V; = 0, for j = g+ 1,...,p. Moreover, the variances

of coefficients for these g processes satisfy (2.2)).

S4.1 Regularity conditions

Conditions |51 and [52|concern the approximation error and estimation error,
respectively, under the [y sparsity. Note that under the [y setting, we do not
require g to be finite generally. Thus, there exists a little difference about

those conditions under these two settings.

a/(2a+1)
Condition S1. r®*lg (m_lx/logp/n) =o(1)

Condition S2. max {r¢tlgm=1, ratlgn=1/2} = o(1).

14



S4. PROCESSES UNDER THE Ly SPARSITY

To ensure that the g significant processes are consistently estimable,

under the [y case, the signals should not be too small.

Condition S3. minje(; .. g Max; O'JZZ > m~ty/logp/n.

S4.2 Theoretical results under the [, sparsity

In this section, we provide theoretical results for estimating multivariate

eigenfunctions under the [, sparsity.

Lemma S2. Under the ly sparsity, Conditions[IHg, JH7 and[S3, there exists
~1/(2a+1)

a constant C > 0 such that N; < C (m‘ﬂ/logp/n) almost surely

forj=1,...,9 and N; 30 forj=g+1,...,p.

Lemma implies the consistent selection property, that is, all the g
processes, and only those, are selected almost surely as n — oo. Without
additional assumptions on the energy, it is clear that N;,j =1,..., g share

the same order. From the proof of Theorems [S3|and [S4] we also know that

|G(s,t) — G(s,1)|lu = O, {g(m‘lx/logp/n)“/@"‘“) +gn 24 gm‘l} :

These three parts in the rates of convergence correspond to bias caused by
thresholding, covariance estimation error and discretization error, respec-
tively. Consequently, the rates of convergence for estimated eigenfunctions

are obtained, and presented as approximation and estimation error, respec-

15
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tively.

Theorem S3 (Approximation Error). Under ly sparsity, if Conditions J@

cmd hold and < zpk,{pk >p> 0, then uniformly for k=1,... r,,

~ a/(2a+1)
%), — Yillu =0 {k““g (m’lx/logp/@ } . a.s.

The approximation error is caused by excluding the small variances in
the subset selection step. Due to the correct selection property, this error is
associated with g, the number of retained coefficients N; and the variance
decaying rate a. To be specific, the term (m’ﬂ/@) a/(MH), that is,
N %, is determined by excluding coordinates with small variances and the
additional term k%*! is attributed to the increasing error of approximat-
ing higher order eigenelements ¥,k = 1,...,r,. Next we quantify the
estimation error, where we consider two cases depending on whether the
discretization error can be asymptotically negligible. Recall that v quanti-
fies the sampling rate m = O(n?), where v > (1—3)/2 and p = O{exp(n”)}

for0 < 8 < 1.

Theorem S4 (Estimation Error). Under ly sparsity, if Conditions [1H8,

hold and < v:bk, 1,7)k >u> 0, then uniformly fork =1,... r,, we have

the following.

16



S4. PROCESSES UNDER THE Ly SPARSITY

Case 1. When v > 1/2,
145 = ¥l = Op (kgn™7%).
Case 2. When (1 —p)/2 <~y <1/2,
1 = Will = O, (K 1gm™").

The correct selection property implied by Lemma [S2] makes it sufficient
to consider the estimation error of a small set of retained processes. Note
that the estimation error does not involve the term NV;, as we quantify
the discretization error of retained coefficients via retained processes using
Bessel’s inequality. The sampling rate v plays an important role in the
rates of convergence, which exhibits the phase transition phenomenon at
~v = 0.5. For more detailed interpretation, one can refer to the discussion

following Theorems [1] and [

Theorem S5 (Approximation Error for recovery under ly). Under Condi-

tions in Theorem if <y, ":/)k >u> 0, then uniformly fork=1,...,r,,
o = 0pfi (o),
Moreover,

i — 2" [lw = Op (973" -

17
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Theorem S6 (Estimation error for recovery under ly). Under Conditions
n Theorem if < 17)k, {pk >u> 0, then uniformly for k=1,... r,,

Case 1. When v > 1/2,
ik — ] = O, (/{:93/27171/2 i k,a/ngq/z) 7
&0 — &7l = O (rS2g 2 4 oD g ) i1,
Case 2. When (1 —5)/2 <~y <1/2,
i — 7| = O, (k““g?’/Qm*l 4 ka/29m71/2) ’
& — & |z = Oy (ri™®2g* 2 m=" 4 ¢V 2gm=1%) i=1,.. n.

It is straightforward to quantify the approximation error based on The-
orem [S3] For estimation error, we need to carefully investigate both the
discretization and measurement errors. Basically, the first term in the rates
of convergence mainly depend on the estimation of eigenfunctions, and the
additional term is attributed to the measurement error. For consistent es-

timators of scores and recovery, we assume o > 1/2.

S4.3 Proofs under the [, sparsity

Proof of Lemma[S3. Tt is straightforward to obtain the bounds on cardinal-
ity of I~ and I7 based on sparsity assumptions. Combing Lemma yields

the final results. O

18



S4. PROCESSES UNDER THE Ly SPARSITY

Proof of Theorem[S3. On the event A, based on the [, sparsity, we have

preus

1 [logp\™"

E 2 L < il

x-S e 3 - ode( 1)
(D¢l D&

According to the result of Theorem 1 in |Hall and Hosseini-Nasab) (2006),

1/2
4y, — || < 82k [//ZZ{G” (s,8) — Gjjr (s,t)}zdsdt] .

Jj=1j4=1

So, with (S1.3), we have

=l = 0 {1l (™ Viogpm) L. .

Proof of Theorem[Sj. Recall that g, denotes the number of retained pro-
cesses. Under the weak [, sparsity, we consider to bound the terms in ([S1.4))

replacing g by g,. Combining (S1.5) and (S1.7)), using Cauchy-Schwarz in-

equality and Chebyshev’s inequality, we may prove that

[ = ZZ / / [ Z{% ()} (1) i

Jj=1j=1

= Oy(g°m™

With (| and , we have IT = O,(¢*m~?). Using Cauchy-Schwarz
inequality, we deduce that 111 = O,(g*>n~"'). Thus, we obtain |||G — G||| =
O,(gn=Y2 + gm™1).

Case 1. If v > 1/2, the parametric rate dominates while discretization
error is negligible, |[|G' — G||| = O,(gn="/?).

19
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With similar arguments as proof of Theorem 2, we have e — :\k+1 >
Ck='k=1,...,r,and ||12’k—7:bk||2 <8 Zz:z;&k(;\lf_;\l)f2 {f {PE(G - é){bl}Qa
by analogy to (5.22) inHall and Horowitz (2007), E {Zl:l#k(j‘k —\)72 {f &Z(é’ — G){bl}2] =
O(k*¢*>n™') holds uniformly in k = 1,...,7,.

Case 2. If v < 1/2, the discretization error dominates, |||G — G||| =

O,(gm~"). With the result of Theorem 1 in Hall and Hosseini-Nasab| (2006)),

the final results are established. O

Proof of Theorem[S5. Under the I, sparsity, || = O,(g*/?). Based on
Theorem and following similar arguments to prove Theorem [SI| we

obtain final results. O

Proof of Theorem [S6 Note that S\kuiﬂ < 0%. Under [y sparsity, we as-
sume o > 1/2, then we have |u;|; = O(k%?g). Thus, [a}(8,; — 0,;)| =
0, (k*/2gm=1/2).

Moreover, we have |&;|| = O,(¢g'/?) under I, sparsity. According to
the results in Theorem [S4, we establish the final results following similar

arguments in proof of Theorem [S2] O]

S4.4 Simulation under the [, sparsity

Let p = 50, 100, 200 and the number of processes containing signals g = 2,
10, respectively. The underlying true signals ;;(t;5) = > 1y Gijidi(tiji) for

20



S4. PROCESSES UNDER THE Ly SPARSITY

05 06 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06
Quantile Quantile Quantile

(a) (b) (c)
Figure 1: The results for the Iy sparsity setting on sensitivity (a), specificity (b), and

MRSE (c), where p=100, g=10.

j=1,...,9,and the rest x;;(t;;x) = 0. Denote @ = (011,...,015,...,051,...,0,)T.
The coefficients 8; are generated from N(0,C), where C' = VDV with

an orthonormal matrix V' and a diagonal matrix with diagonal entries

D,, =160"73 v =1,...,gs. The dependence between coefficients leads to
correlated processes.

To evaluate the correct selection performance under the [, sparsity, we
use the specificity and sensitivity criteria, defined as Specificity = TN/(T' N+
FP), Sensitivity = TP/(TP 4+ FN), where TP and TN are abbreviations
for true positives and true negatives, respectively, that is, the number of
processes containing signals and the rest processes correctly identified by
our method, similarly FP and FN stand for false positives and false nega-
tives.

Only results with p = 100,9g = 10 are reported, while other results

revealing similar patterns are not presented for conciseness. We use s,, = 54
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Table 1: The MSE with standard errors in parentheses for the first four eigenfunctions
and the comparison of average computation time for a full sample recovery under the [

sparsity with p = 100, where the quantile p = 0.5 in our method.

L) Py P Py

sFPCA  .057(.005) .087(.019)  .127(.038)  .239(.134)

MFPCA  .072(.006) .155(.023)  .286(.043) .493(.116)

Average computation times for recovery (second)

Sn 14 24 34 44
sFPCA 1.220 2.018 3.052 4.440
MFPCA 10.55 28.04 70.04 141.1

in the [y setting for presented results. In the [y sparsity setting, when the
underlying complexity is known, the Specificity and Sensitivity analyses in
Figures and clearly support an adequate choice of p that covers
a broad range to yield correct selection. Moreover, the performance of
recovery is quite stable with suitable p as shown in Figure . The above
findings suggest that a slightly large p is preferred if model parsimony is of
main concern. We see from Table [I] that our method with p = 0.5 clearly
outperforms the HG method.

The design for classification follows the previous generation mechanism

with D,, = 3v=2v = 1,...,95, g = 2, while the mean functions are
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Table 2: The averages of misclassification rates on testing samples with standard errors

in parentheses across different r,, and the average computation time under the [y sparsity.

The square brackets show the average model complexity of the proposed method with

standard errors in parentheses.

Tn
Method Time (second)
2 5 8 12 15
SFPCA  22.80(4.07)  9.95(2.51)  9.84(2.42)  9.97(2.49)  9.94(2.48)
1.92

+LDA  [2.00(.00)] [2.01(.10)]  [2.00(.00)]  [2.00(.00)]  [2.00(.00)]
MFPCA

27.16(4.50) 18.57(4.14) 18.15(4.13) 17.96(4.18) 17.58(4.02) 51.90
+LDA
UFPCA

20.11(6.02) 11.98(6.34) 11.43(5.56) 11.53(5.48) 11.55(5.46) 43.15
+ROAD

generated in the same way as that in the weak [, setting.
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