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Abstract: We propose a two-stage method called Spline-Assisted Partial Differential

Equations-based Model Identification that can be used to identify models based

on partial differential equations (PDEs) from noisy data. In the first stage, we

employ cubic splines to estimate unobservable derivatives. The underlying PDE

is based on a subset of these derivatives. This stage is computationally efficient.

Its computational complexity is the product of a constant and the sample size,

which is the lowest possible order of computational complexity. In the second

stage, we apply the least absolute shrinkage and selection operator to identify the

underlying PDE-based model. Statistical properties are developed, including the

model identification accuracy. We validate our theory using numerical examples and

a real-data case study based on an National Aeronautics and Space Administration

data set.

Key words and phrases: Cubic splines, Lasso, model identification, partial

differential equations.

1. Introduction

Partial differential equations (PDEs) are widely used to model physical

processes in fields such as engineering (Wang, Liu and Zhang (2019)), physics

(Xun et al. (2013)), and biology (Lagergren et al. (2020)). In these applications,

there are two classes of technical issues: the forward problem and the inverse

problem. The forward problem studies the properties of functions that PDEs

determine. It has been extensively studied by mathematicians (Olver (2014);

Wang, Yang and Zhu (2014)). Different from forward problems, inverse problems

try to identify PDE-based models from the observed noisy data. Research on the

inverse problem is relatively sparse, and the corresponding statistical property is

notably less known. In this paper, we propose a method for solving the inverse

problem, which we refer to as a PDE identification problem.

With the rise of big data, the PDE identification problem has become

indispensable. A good PDE identification approach offers at least the following

two benefits. First, we can predict future trends using the identified PDE

model, conditional that such a model reflects the underlying processes. Second,
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interpretable PDE models enable scientists to validate/reexamine the underlying

physical/biological laws governing the process.

We propose a new method for the PDE identification problem, called Spline-

Assisted Partial Differential Equation-based Model Identification (SAPDEMI).

SAPDEMI can efficiently identify the underlying PDE model from noisy data D:

D = {(xi, tn, u
n
i ) : xi ∈ (0, Xmax) ⊆ R, ∀ i = 0, . . . ,M − 1, (1.1)

tn ∈ (0, Tmax) ⊆ R, ∀ n = 0, . . . , N − 1} ∈ Ω,

where xi ∈ R is a spatial variable, with xi ∈ (0, Xmax), for i = 0, 1, . . . ,M−1, and

we call M the spatial resolution. The variable tn ∈ R is a temporal variable, with

tn ∈ (0, Tmax), for n = 0, 1, . . . , N − 1, and we call N the temporal resolution. We

use Tmax and Xmax to denote the upper bound of the temporal variable and the

spatial variable, respectively. The variable un
i is a representation of the ground

truth u(xi, tn), contaminated by the noise that follows a normal distribution with

mean zero and stand deviation σ:

un
i = u(xi, tn) + ϵni , ϵni

i.i.d.∼ N(0, σ2). (1.2)

Here, u(x, t) is the ground truth function, which is determined by an underlying

PDE model, and is assumed to satisfy the following equation:

∂

∂t
u(x, t) = β∗

00 +
qmax∑
k=0

pmax∑
i=1

β∗
ki

[
∂k

∂kx
u(x, t)

]i

+
∑

i+j≤pmax
i,j>0

∑
0<k<l
l≤qmax

β∗
ki,lj

[
∂k

∂kx
u(x, t)

]i [
∂l

∂lx
u(x, t)

]j
. (1.3)

The left-hand side of the above equation is the first-order partial derivative of

the underlying function with respect to the temporal variable t, and the right-

hand side is the pmaxth-order polynomial of the derivatives with respect to the

spatial variable x up to the qmaxth total order. For notational simplicity, we

denote the ground truth coefficient vector, β∗ = (β∗
00, β

∗
01 , β

∗
11 , . . . , β

∗
qpmax
max

), as β∗ =

(β∗
1 , β

∗
2 , β

∗
3 , . . . , β

∗
K)

⊤, whereK = 1+(pmax+1)qmax+(1/2)qmax(qmax+1)(pmax−1)!

is the total number of coefficients on the right-hand side. Noted that, in practice,

the majority of the entries in β∗ are zero. For instance, in the transport equation

∂u(x, t)/∂t = a(∂u(x, t)/∂x), with any a ̸= 0, we have only β∗
3 ̸= 0 and β∗

i = 0,

for any i ̸= 3 (see Olver (2014, Sec. 2.2)). Therefore, it is reasonable to assume

that the coefficient β∗ in (1.3) is sparse.

To identify the above model, we need to overcome two technical challenges.

First, the derivatives in (1.3) are unobservable, and need to be estimated from

the noisy observations. Second, we need to identify the underlying model, which

is presumably simple (i.e., sparse) .
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We design our proposed SAPDEMI method as a two-stage method to identify

the underlying PDE models from the noisy data D. The first stage is called the

functional estimation stage, where we estimate all the derivatives from the noisy

data D, including ∂u(x, t)/∂t, ∂u(x, t)/∂x, and so on. In this stage, we first use

cubic splines (Shridhar and Balatoni (1974)) to fit the noisy data D, and then

we approximate the derivatives of the underlying function from the derivatives of

the estimated cubic splines. The second stage is called the model identification

stage, where we apply the least absolute shrinkage and selection operator (Lasso)

(Tibshirani (1996)) to identify the derivatives (or their combinations) that should

be included in the PDE-based models. To ensure accuracy, we develop sufficient

conditions for correct identification and the asymptotic properties of the identified

models. The main tool used in our theoretical analysis is the primal-dual witness

(PDW) method (see Hastie, Tibshirani and Wainwright (2015, Chap. 11)).

The rest of this section is organized as follows. In Section 1.1, we review

existing methods related to the PDE identification problem. In Section 1.2, we

summarize our contributions.

1.1. Literature review

A pioneering work in identifying underlying dynamic models from noisy data

is that of Liang and Wu (2008). Their method is also a two-stage method. In the

functional estimation stage, they use a local polynomial regression to estimate the

value of the function and its derivatives. Subsequently, in the model identification

stage, they use the least squares method. Following this work, various extensions

have been proposed.

The first class of extensions modifies the functional estimation stage of Liang

and Wu (2008), and can be divided into three categories. (F1). In the numerical

differentiation category (Wu, Xue and Kumar (2012)), the derivative ∂u(x, t)/∂x

is simply approximated as ∂u(x, t)/∂x ≈ (u(x+∆x, t)− u(x−∆x, t))/(2∆x),

where (x + ∆x, t) and (x − ∆x, t) are the two closest points to (x, t) in the x-

domain. The essence of numerical differentiation is to approximate the first-order

derivative as the slope of a nearby secant line. Although the implementation

is easy, the approximation results can be highly biased, because its accuracy

depends greatly on ∆x: a small value of ∆x yields large rounding errors in

the subtraction (Ueberhuber (2012)), and a large value of ∆x leads to poor

performance when estimating the tangent slope using secants. Thus, this naive

numerical differentiation is not preferred owing to its bias. (F2). In the basis

expansion category, researchers first approximate the unknown functions using

basis expansion methods, and then approximate the derivatives of the underlying

function as those of the approximated functions. There are multiple options for

the choice of bases. The most popular basis is the local polynomial basis (see

Liang andWu (2008); Bär, Hegger and Kantz (1999); Schaeffer (2017); Rudy et al.

(2017); Parlitz and Merkwirth (2000)). Another popular choice is the spline basis
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(see Wu, Xue and Kumar (2012); Xun et al. (2013); Wang, Liu and Zhang (2019)).

Our proposed method belongs here. In this category, the major limitation

of existing approaches is the potentially high computational complexity. For

instance, the local polynomial basis requires computational complexity of order

max{O(M2N), O(MN2)} in the functional estimation stage. However, we show

that our proposed SAPDEMI method requires only O(MN). The sample size of

the dataset D is MN , so it takes at least MN numerical operations to read D.

Consequently, the lowest possible bound, in theory, isO(MN), As achieved by our

proposed SAPDEMI method. (F3). In the machine or deep learning category,

researchers first fit unknown functions using machine/deep learning methods,

and then approximate the derivatives of the underlying functions as those of the

approximated functions. A popular machine/deep learning method is the neural

network (NN) approach. For instance, Srivastava et al. (2020) use an artificial

neural network (ANN). These methods are limited by potential overfitting and

the selection of the hyper-parameters.

The second class of extensions modifies the model identification stage of

Liang and Wu (2008). Here, existing methods fall within the framework

of the (penalized) least squares method, and we can again divide them into

three categories. (M1). In the least squares category, researchers study

ordinary differential equation (ODE) identification (Miao et al. (2009)) and PDE

identification (Bär, Hegger and Kantz (1999); Wu, Xue and Kumar (2012)) ,

althrough they too have problems with overfitting. (M2). In the ℓ2-penalized

least squares category, Xun et al. (2013) andWang, Liu and Zhang (2019) penalize

the smoothness of the unknown function, which is assumed to be in a prescribed

reproducing kernel Hilbert space (RKHS). Essentially, this method falls within

the framework of the ℓ2-penalized least squares method. Although this method

helps to avoid overfitting by introducing the ℓ2-penalty, it has limited power in

terms of “model selection”. (M3). In the ℓ1-penalized least squares method

category, Schaeffer (2017) identifies unknown dynamic models (i.e., functions)

using the ℓ1-penalized least squares method. The author provides an efficient

algorithm, based on the proximal mapping method, but does not discuss the

statistical proprieties of the identified model. Recently, Kang, Liao and Liu (2019)

use a similar method to that of Schaeffer (2017), and demonstrate empirical

successes. However, the derivation of the statistical theory is still missing. Our

study addresses this gap in the literature.

In addition to the ℓ2- or ℓ1-penalized least squares methods, other methods

have been proposed for the model selection stage, but are not as widely used.

Here, examples include the Akaike information criterion (AIC) in Mangan et al.

(2017), smoothly clipped absolute deviation (SCAD) in Lu et al. (2011), and

hard-thresholding in Rudy et al. (2017). The first two approaches may lead to

NP-hard problems in numerical implementation. The last one is ad-hoc, and may

be difficult to analyze. Thus, we do not address these alternative approaches.
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Although our proposed SAPDEMI method applies to the PDE model, other

nonparametric models are possible. Here, we take PDEs as an initial research

project mainly because they are deterministic. Thus, we can compare our

identified model with the true model, and show the model notification accuracy.

As our initial research project, we prefer the PDE to machine learning (ML)

models (e.g., neural network, random forest), because a PDE offers insight into

the physical law. However, the ML models are usually black-box methods

(Loyola-Gonzalez (2019)). We also prefer the PDE to the time series models,

because it behaves like a “continuous version” of a time series model (Perona,

Porporato and Ridolfi (2000); Chen, Ohlssen and Zhou (2018)) at a high level.

Furthermore, we prefer the PDE to the Gaussian process (GP) model, because

the GP model restricts its response variables to follow a Gaussian distribution

(Liu et al. (2020); Wei et al. (2018)). Again, although we take the PDE as our

initial research project, we are open to using the aforementioned nonparametric

models in future work.

1.2. Our contributions

Here, we summarize the contributions of our proposed method. (1) In the

functional estimation stage, our proposed SAPDEMI method is computationally

efficient. Specifically, we require computational complexity of order O(MN),

which is the lowest possible order in this stage. In comparison, the aforemen-

tioned local polynomial regression requires computational complexity of order

max{O(M2N), O(MN2)}, which is higher. (2) For our proposed SAPDEMI

method, we establish a theoretical guarantee of the model identification accuracy,

which, to the best of our knowledge, is a novel result. (3) We extend our

method to PDE-based model identification, and compare it with ODE-based

model identification. The latter has more related work, whereas the former is not

yet well understood.

The rest of the paper is organized as follows. In Section 2, we describe the

technical details of our proposed SAPDEMI method. In Section 3, we present our

main theory, including the sufficient conditions for correct identification, and the

statistical properties of the identified models. In Section 4, we conduct numerical

experiments to validate the theory from Section 3. In Section 5, we apply

SAPDEMI to a real-world case study using data downloaded from the National

Aeronautics and Space Administration (NASA). In Section 6, we conclude the

paper and discuss some future research.

2. Proposed Method: SAPDEMI

The proposed SAPDEMI method is a two-stage method for identifying the

underlying PDE model from noisy data D. The first stage is called the functional

estimation stage. Here, we estimate the function and its derivatives from the noisy
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data D in (1.1), and use these as input in the second stage. The second stage is

called the model identification stage, where we identify the underlying PDE-based

model.

In our notation, scalars are denoted by lowercase letters (e.g., β). Vectors

are denoted by lowercase bold face letters (e.g., β), and its ith entry is denoted

as βi. Matrices are denoted by uppercase boldface letter (e.g., B), and its (i, j)th

entry is denoted as Bij. For the vector β ∈ Rp, its kth norm is defined as

∥β∥k :=
(∑p

i=1 |βi|k
)1/k

. For the matrix B ∈ Rm×n, its Frobenius norm is defined

as ∥B∥F =
√∑m

i=1

∑n
j=1 |Bij|2. We write f(n) = O(g(n)) if there exists a G ∈ R+

and an n0 such that |f(n)| ≤ Gg(x), for all n > n0.

This section is organized as follows. In Section 2.1, we introduce the func-

tional estimation stage, and in Section 2.2, we describe the model identification

stage.

2.1. Functional estimation stage

In this section, we describe the functional estimation stage of our proposed

SAPDEMI method. In this stage, we estimate the functional values and their

derivatives from the noisy data D in (1.1). These derivatives include the

derivatives with respect to the spatial/temporal variable x/t. We take derivatives

with respect to the spatial variable x as an example; the derivatives with respect

to the temporal variable t can be derived similarly.

The main tool that we use is the cubic spline. Suppose there is a cubic spline

s(x) over the knots {(xi, u
n
i )}i=0,1,...,M−1 satisfying the properties in McKinley

and Levine (1998): (1) s(x) ∈ C2[x0, xM−1], where C2[x0, xM−1] denotes the sets

of function whose 0th, first, and second derivatives are continuous in [x0, xM−1];

(2) For any i = 1, . . . ,M − 1, s(x) is a polynomial of degree three in [xi−1, xi];

(3). For the two end-points, x0 and xM−1, we have s
′′(x0) = s′′(xM−1) = 0, where

s′′(x) is the second derivative of s(x).

By fitting the data {(xi, u
n
i )}i=0,1,...,M−1 (with a general fixed n ∈ {0, 1, . . . ,

N − 1}) into the above cubic spline s(x), one can solve s(x) as the minimizer of

the following optimization problem:

Jα(s) = α
M−1∑
i=0

wi[u
n
i − s(xi)]

2 + (1− α)

∫ xM−1

x0

s′′(x)2dx, (2.1)

where the first term α
∑M−1

i=0 wi[u
n
i − s(xi)]

2 is the weighted sum of squares for

the residuals, and we take the weight w0 = w1 = · · · = wM−1 = 1. In the

second term, (1 − α)
∫ xM−1

x0
s′′(x)2dx, the function s′′(x) is the second derivative

of s(x), and this term is the penalty of the smoothness. In the above optimization

problem, the parameter α ∈ (0, 1] controls the trade-off between the goodness of

fit and the smoothness of the cubic spline. By minimizing the above optimization
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problem, we obtain an estimate of s(x), together with its first derivative s′(x)

and its second derivative s′′(x). If the cubic spline approximates the underlying

PDE curves well, we can declare that the derivatives of the underlying dynamic

system can be approximated by the derivatives of the cubic spline s(x), that is,

we have ̂u(x, tn) ≈ ŝ(x), ̂∂u(x, tn)/∂x ≈ ŝ′(x), ̂∂2u(x, tn)/∂x2 ≈ ŝ′′(x) (Ahlberg

et al. (1967); Rubin and Graves Jr (1975); Rashidinia and Mohammadi (2008)).

Following a similar procedure to obtain the derivatives with respect to the spatial

variable x, we can get the derivatives with respect to the temporal variable t, that

is, ̂∂u(xi, tn)/∂t, for any i = 0, . . . ,M − 1 and n = 0, . . . , N − 1.

A nice property of the cubic spline is that there is a closed-form solution for

(2.1). First, the value of the cubic spline s(x) at the point {x0, x1, . . . , xM−1},
that is, ŝ = (ŝ(x0), ŝ(x1), . . . , ̂s(xM−1))

⊤, can be solved as

ŝ = [αW + (1− α)A⊤MA]−1αWun
: . (2.2)

The above closed-form estimation can be used to approximate the func-

tion that corresponds to the underlying PDE model, that is, ŝ ≈ f̂ =

( ̂u(x0, tn), ̂u(x1, tn), . . . , ̂u(xM−1, tn))
⊤. Here, W = diag(w0, . . . , wM−1) ∈ RM×M ,

vector un
: = (un

0 , . . . , u
n
M−1)

⊤ ∈ RM , and the matrices A ∈ R(M−2)×M and

M ∈ R(M−2)×(M−2) are

A =



1

h0

−1

h0

− 1

h1

1

h1

. . . 0 0 0

0
1

h1

−1

h1

− 1

h2

. . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . .
1

hM−3

−1

hM−3

− 1

hM−2

1

hM−2


, (2.3)

M =



h0 + h1

3

h1

6
0 . . . 0 0

h1

6

h1 + h2

3

h2

6
. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . .
hM−3

6

hM−3 + hM−2

3


, (2.4)

respectively, with hi = xi+1 − xi, for i = 0, 1, . . . ,M − 2.

For the mathematical derivation of (2.2) from (2.1), and the derivation of

first- and second-order derivatives, please refer to the Supplementary Material

S2.

The advantage of the cubic spline is that its computational complexity is

only a linear polynomial of the sample size MN .
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Table 1. Pros and cons of the cubic spline and the local polynomial regression in the
functional estimation stage (assume that pmax, qmax,K ≪ M,N).

Method Cubic spline Local polynomial regression
Pros Computational complexity is O(MN) Derivatives up to any order
Cons If higher-than-2 order is required, need

extensions beyond cubic splines.
Computational complexity is
max{(M2N), O(MN2)}

Proposition 1. Given the data D in (1.1), if we use the cubic spline in (2.1) in

the functional estimation stage, the computation complexity is of order

max{O(pmaxMN), O(K3)},

where pmax is the highest polynomial order in (1.3), M/N is the spatial/temporal

resolution, and K is the number of covariates in (1.3).

The proof can be found in the online Supplementary Material S10.1.

As suggested by Proposition 1, when pmax,K ≪ M,N (which is often the

case in practice), it only requires O(MN) numerical operations in the functional

estimation stage. This is the lowest possible order of complexity in this stage,

because MN is exactly the sample size of D, and reading the data is a task of

order O(MN). Therefore, it is very efficient to use a cubic spline, because its

computational complexity achieves the lowest possible order of complexity.

By way of comparisons, we discuss the computational complexity of the local

polynomial regression, which is widely used in the literature (Liang and Wu

(2008); Bär, Hegger and Kantz (1999); Schaeffer (2017); Rudy et al. (2017);

Parlitz and Merkwirth (2000)). This computational complexity is max{O(M2N),

O(MN2), O(pmaxMN), O(K3)}, which is much higher than ours for a generalized

polynomial order pmax. Specifically, if one restricts the local polynomial regression

method to the same order as that of the cubic spline, its computational complexity

is

max{O(M2N), O(MN2), O(K3)},

which is still higher than that of the cubic spline method in Proposition 1.

The related proposition and proof are available in Supplementary Materials S10.

We summarize the pros and cons of the cubic spline and the local polynomial

regression in Table 1.

2.2. Model identification stage

In this section, we discuss the model identification stage of our proposed

SAPDEMI method. In this stage, we identify the PDE model in (1.3).

Note that the model in (1.3) can be regarded as a linear regression model with

a response variable that is the first-order derivative with respect to the temporal

variable t, that is, ∂u(x, t)/∂t, and the covariates are the derivative(s) with
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respect to the spatial variable x, including ∂u(xi, tn)/∂x, ∂
2u(xi, tn)/∂x

2, . . . ,

(∂2u(xi, tn)/∂x
2)

pmax . Because we have MN observations in the data set D in

(1.1), the response vector is of length MN :

∇tu =

(
̂∂u(x0, t0)

∂t
, . . . ,

̂∂u(xM−1, t0)

∂t
, . . . ,

̂∂u(xM−1, tN−1)

∂t

)⊤

, (2.5)

and the design matrix is of dimension MN ×K:

X = ( x̂0
0, x̂

0
1, . . . , x̂

0
M−1, x̂

0
1, . . . , x̂

N−1
M−1 )

⊤ ∈ RMN×K . (2.6)

For the above design matrix X, its (nN + i + 1)st row is x̂n
i = (1, ̂u(xi, tn),

̂∂u(xi, tn)/∂x, ̂∂2u(xi, tn)/∂x2, ( ̂u(xi, tn))
2, . . . , ( ̂∂2u(xi, tn)/∂x

2)pmax)⊤. The K

components of x̂n
i are candidate terms in the PDE model. Note that all of the

derivatives listed in (2.5) and (2.6) are estimated from the functional estimation

stage described in Section 2.1.

Next, we use the Lasso to identify the nonzero coefficients in (1.3):

β̂ = argmin
β

1

2MN
∥∇tu−Xβ∥22 ,+λ∥β∥1, (2.7)

where λ > 0 is a turning parameter that controls the trade-off between the

sparsity of β and the goodness of fit. Given the ℓ1 penalty in (2.7), β̂ is sparse,

that is, only a few of its entries are likely to be nonzero. Accordingly, we can

identify the underlying PDE model as

∂

∂t
u(x, t) = x⊤β̂, (2.8)

where x = (1, u(x, t), ∂u(x, t)/∂x, ∂2u(x, t)/∂x2, (u(x, t))
2
, . . . , (∂2u(x, t)/∂x2

)pmax)⊤ ∈ RK . To solve equation (2.7), one can use the coordinate descent method

(Beck and Tetruashvili (2013); Tseng (2001)); see the online Supplementary

Material S4.

3. Theory on Statistical Properties

The theoretical evaluation is performed from two aspects. (S1). First, we

check whether our identified PDE model contains derivatives that are included

in the “true” underlying PDE model. This is called the support set recovery

property. Mathematically, we check whether supp(β̂) ⊆ supp(β∗), where β̂ is the

minimizer of (2.7), β∗ is the ground truth, and supp(β) = {i : βi ̸= 0, ∀ i, 1 ≤
i ≤ K}, for a general vector β ∈ RK . However, the support recovery depends on

the choice of the penalty parameter λ: a large value of λ leads to supp(β̂) = ∅
(empty set), whereas a small value of λ results in a nonsparse β̂. A proper
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selection of λ hopefully leads to the correct recovery of the support set recovery,

that is, we have supp(β̂) ⊆ supp(β∗). We discuss the selection of λ to achieve the

above goal in Theorem 1. (S2). Second, we are interested in an upper bound

of the estimation error of our estimator. Specifically, we consider ∥β̂S − β∗
S∥∞,

where S = supp(β∗), and the vectors β̂S and β∗
S are subvectors of β̂ and β∗,

respectively, and contain only elements with indices that are in S. An upper

bound of the above estimation error is discussed in Theorem 2.

This section is organized as follows. In Section 3.1, we present the conditions

for the theorems. In Section 3.2, we state two theorems.

3.1. Conditions for the theorems

In this section, we introduce the conditions we use for our theorems. We begin

with three frequently used conditions in ℓ1-regularized regression models. These

conditions provide sufficient conditions for exact sparse recovery (see Hastie,

Tibshirani and Wainwright (2015, Chap. 11)). Subsequently, we introduce three

conditions that are widely used in cubic spline-based functional estimation (see

Silverman (1984, (2.5)-(2.8))).

Condition 1 (Mutual Incoherence Condition). For some incoherence pa-

rameter µ ∈ (0, 1] and Pµ ∈ [0, 1], we have P
(∥∥X⊤

ScXS(X
⊤
SXS)

−1
∥∥
∞ ≤ 1− µ

)
≥

Pµ , where the matrix XSc is the complement of XS.

Condition 2 (Minimal Eigenvalue Condition). There exists some constant

Cmin > 0 such that Λmin

(
(1/NM)X⊤

SXS
)
≥ Cmin, almost surely. Here, Λmin(A)

denotes the minimal eigenvalue of a square matrix A ∈ Rn×n. This condition

can be considered a stronger version of the invertibility condition (see Hastie,

Tibshirani and Wainwright (2015, Chap. 11)).

Condition 3 (Knots c.d.f. Convergence Condition). Suppose the sequence

of the empirical distribution function over the design points a = x0 < · · · <

xM−1 = b, with different sample size M , is denoted as FM(x), that is, we have

FM(x) = (1/M)
∑M−1

i=0 ⊮{xi ≤ x}. Then, there exists an absolutely continuous

distribution function F on [a, b] such that FM → F uniformly as M → +∞.

Here, ⊮{A} is the indicator of event A. A similar condition holds for the temporal

variable: suppose the sequence of the empirical distribution function over the

design points ā = t0 < · · · < tN−1 = b̄, with different sample size N , is denoted

as GN(x). Then, there exists an absolutely continuous distribution function G on

[ā, b̄] such that GN → G uniformly as N → +∞.

Condition 4 (Knots p.d.f. Convergence Condition). Suppose the first

derivatives of the functions F and G (defined in Condition 3) are denoted as

f and g, respectively. Then we have
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0 < inf
[x0,xM−1]

f ≤ sup
[x0,xM−1]

f < +∞ and 0 < inf
[t0,tN−1]

g ≤ sup
[t0,tN−1]

g < +∞,

and f and g also have bounded first derivatives on [x0, xM−1], [t0, tN−1].

Condition 5 (Gentle Decrease of Smoothing Parameter Condition).

Suppose that ζ(M) = sup[x0,xM−1]
|FM − F |. The smoothing parameter α in (2.1)

depends on M in such a way that α → 0 and α−1/4ζ(M) → 0 as M → +∞. A

similar condition also holds for the temporal variable.

3.2. Main theory

In the first theorem, we develop the lower bound of λ to realize the correct

recovery of the support set, that is, S(β̂) ⊆ S(β∗).

Theorem 1. Given the data in (1.1), suppose the conditions in Lemma S6.1 and

Corollary S6.1 (see the online Supplementary Material S6) hold, as do Condition

1 - 5. If we take M = O(N), then there exists a constant C(σ,∥u∥L∞(Ω)) > 0 that is

independent of the spatial resolution M and the temporal resolution N . Thus, if

we set the cubic spline smoothing parameter with the spatial variable x in (2.1)

as α = O((1+M−4/7)−1), set the cubic spline smoothing parameter with temporal

variable t as ᾱ = O((1 +N−4/7)−1), and set the turning parameter

λ ≥ C (σ, ∥u∥L∞(Ω))

√
K log(N)

µN3/7−r
(3.1)

to identify the PDE model in (2.7), for some r ∈ (0, 3/7), with sufficient large

N , then with probability greater than Pµ − O
(
Ne−Nr)︸ ︷︷ ︸
P ′

, we have S(β̂) ⊆ S(β∗).

Here, K is the number of columns of the design matrix X in (2.7), and µ and Pµ

are defined in Condition 1.

The proof of the above theorem can be found in the Supplementary Material

S10, along with several lemmas, the conditions of which are standardized in

cubic splines. The above theorem provides the lower bound of λ to realize the

correct recovery of the support set. As indicated by (3.1), the lower bound is

affected by several factors. First, it is affected by the temporal resolution N :

as N increases, there is greater flexibility in tuning the penalty parameter λ.

Second, the lower bound in (3.1) is affected by the incoherence parameter µ: if

µ is small, then the lower bound increases. This is because a small µ means that

the feature variable candidates are similar to each other. This phenomenon is

called multicollinearity. In this case, we have a very limited choice in terms of

selecting λ. However, we cannot increase the value of µ, because this is decided

by the data set D (see Condition 1). Third, the lower bound in (3.1) is affected

by the number of columns of the matrix X. If its number of columns is very

large, then it requires a larger λ to identify the significant feature variables from
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among potential feature variables.

Note too that the probability Pµ − P ′ converges to Pµ as N → +∞. This

limiting probability Pµ is determined by the data D (see Condition 1). Thus,

when N is very large, our proposed SAPDEMI method can realize S(β̂) ⊆ S(β∗)

with probability close to Pµ.

In the second theorem, we develop an upper bound for the estimating error.

Theorem 2. Suppose the conditions in Theorem 1 hold. Then with probability

greater than 1−O(Ne−Nr

) → 1, there exists an Ṅ > 0, such that when N > Ṅ ,

we have ∥∥∥β̂S − β∗
S

∥∥∥
∞

≤
√
KCmin

(√
KC(σ,∥u∥L∞(Ω))

log(N)

N3/7−r
+ λ

)
,

where K is the number of columns of the matrix X, S := {i : β∗
i ̸= 0, ∀i =

1, . . . ,K} and the vectors β̂S, and β∗
S are subvectors of β̂ and β∗, respectively,

that contain only those elements with indices that are in S. The theorem shows

that when N → +∞, the error bound convergences to 0.

The proof can be found in the Supplementary Material S10. The previous

theorem shows that the estimation error bound for the ℓ∞-norm of the coefficient

error in (3.2) consists of two components. The first component is affected by

the temporal resolution N and the number of feature variable candidates K. As

N → +∞, this first component converges to zero without an explicit dependence

on the feature variable selected from (2.7). The second component is
√
KCminλ.

When N increases to +∞, this second component also converges to zero. This is

because, as stated in Theorem 1, when N → +∞, the lower bound of λ, which

realizes the correct support recovery, converges to zero. Thus, the accuracy of

the coefficient estimation improves as we increase N .

By combining Theorems 1 and 2, we find that when the minimum absolute

value of the nonzero entries of β∗ is sufficiently large, with an adequate choice of

λ, we can guarantee the exact recovery. Mathematically, when mini∈S |(β∗
S)i| >√

KCmin(
√
KC(σ,∥u∥L∞(Ω))(log(N)/N3/7−r) + λ), where (β∗

S)i refers to the ith

element in the vector β∗
S , we have a correct signed support of β̂. This helps

when selecting the penalty parameters λ. In addition, the plot of the solution

paths helps with the selection of the penalty parameters λ; see Section 4.

4. Numerical Examples

We conduct numerical experiments to verify the computational efficiency and

the statistical accuracy of our proposed SAPDEMI method.

Our examples are based on (1) the transport equation, (2) the inviscid

Burgers’ equation, and (3) the viscous Burgers’ equation. We select these

three PDE models as representatives, because they all play fundamental roles in

modeling physical phenomena and demonstrate characteristic behaviors of a more



PDE IDENTIFICATION FROM NOISY DATA 1473

complex system, such as dissipation and shock formation (Haberman (1983)). In

addition to wide applications, they cover a wide range of categories, including

the first-order PDE, second-order PDE, linear PDE, and nonlinear PDE, which

cover most of the PDEs frequently seen in practice. Furthermore, the difficultly of

identifying the above PDE models increases from the first example—the transport

equation—to the last example—the viscous Burgers’ equation. We set pmax = 2

and qmax = 2 in (1.3) for the three numerical examples (see the full formula of

the full model in the Supplementary Material S11), that is, we identify the PDE

model from the full model.

In terms of computational efficiency, the results of these three examples are

the same, so we present only the result for the first example. We also verify

Conditions 1 - 5 for the above three examples. The details of the verification are

provided in the Supplementary Material S12.

4.1. Example 1: transport equation

The PDE problem studied in this section is the transport equation. It is a

linear first-order PDE model. Given its simplicity and straightforward physical

meaning, it is widely used to model the concentration of a substance flowing in a

fluid at a constant rate, For example, it can model a pollutant in a uniform fluid

flow that is moving with velocity a (Olver (2014, Sec. 2.2)):
∂

∂t
u(x, t) = a

∂

∂x
u(x, t), ∀ 0 ≤ x ≤ Xmax, 0 ≤ t ≤ Tmax;

u(x, 0) = f(x).
(4.1)

Here, a ∈ R is a fixed nonzero constant, known as the wave speed. In this section,

we set a = −2, f(x) = 2 sin(4x), Xmax = 1 and Tmax = 0.1. Given these settings,

there is a closed-form solution, u(x, t) = 2 sin(4x− 8t).

The dynamic pattern of the above transport equation is visualized in

Fig. 1, where the subfigures (a), (b), and (c) show the ground truth and noisy

observations under σ = 0.05 and σ = 0.1, respectively. The figure shows that

a larger noise results in the shape of the transport equation being less smooth,

potentially leading to additional difficulties in the PDE model identification.

First, we consider the computational complexity of the functional estimation

stage. We select the local polynomial regression as a benchmark, and visualize

the number of numerical operations of the two methods in Fig. 2, where the

x-axis is log(M) or log(N), and the y-axis is the logarithm of the number of

numerical operations. In Fig. 2, two scenarios are discussed: (1) M is fixed

as 20, and N varies from 200 to 2000; and (2) N is fixed as 20, and M varies

from 200 to 2000. Fig. 2 shows that, as M or N increases, so does the number

of numerical operations in the functional estimation stage. We find that the

cubic splines method needs fewer numerical operations, compared with the local
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(a) truth (b) σ = 0.05 (c) σ = 0.1

Figure 1. Noisy/True curves from (4.1) (M = N = 100).

(a) fixed M = 20 (b) fixed N = 20

Figure 2. Computational complexity of the cubic spline and a local polynomial.

polynomial regression. Furthermore, a simple linear regression of the four lines

in Fig. 2 shows that in (a), the slope of the cubic spline is 0.9998, and as N goes

to infinity, the slope gets closer to one. This validates that the computational

complexity of the cubic splines-based method is of order O(N) when M is fixed.

The result in (b) is similar. Thus, we numerically verify that the computational

complexity of the cubic spline method is of order O(MN). Similarly, for a local

polynomial, we can numerically validate its computational complexity, which is

max{O(M2N), O(MN2)}.
We now verify numerically that with high probability, our SAPDEMI

can correctly identify the underlying PDE models. From the formula of the

transport equation in equation (4.1), we know that the correct feature variable is

∂u(x, t)/∂x, and that other feature variables should not be identified. We discuss

the identification accuracy under different sample sizes and magnitudes of noise.

We find that the accuracy stays at 100%. To explain the high accuracy, we plot

the solution paths in Fig. 3 under different σ, namely, σ = 0.01, 0.1, 1. From Fig.

3, we can increase λ to overcome this difficulty, and thus achieve a correct PDE

identification.



PDE IDENTIFICATION FROM NOISY DATA 1475

(a) σ = 0.01 (b) σ = 0.1 (c) σ = 1

Figure 3. Solution paths in the transport equation under different σ and M = N = 100.
The otation ux is a simplification of ∂u(x, t)/∂x.

4.2. Example 2: inviscid Burgers’ equation

In this section, we investigate the inviscid Burgers’ equation (see Olver

(2014, Sec. 8.4)), which is representative of a first-order nonlinear PDE and

is used frequently in applied mathematics, such as fluid mechanics, nonlinear

acoustics, gas dynamics, and traffic flow. This PDE model was first introduced

by Harry Bateman in 1915, and later studied by Johannes Martinus Burgers in

1948 (Whitham (2011)). The formula of the inviscid Burgers’ equation is listed

below: 
∂

∂t
u(x, t) = −1

2
u(x, t)

∂

∂x
u(x, t)

u(x, 0) = f(x) 0 ≤ x ≤ Xmax

u(0, t) = u(1, t) = 0 0 ≤ t ≤ Tmax

, (4.2)

where we set f(x) = sin(2πx), Xmax = 1 and Tmax = 0.1. Fig. 4(a), (b), and

(c) show the ground truth and noisy observations under σ = 0.05 and 0.1,

respectively. Compared with our first example (transport equation in (4.1)), the

inviscid Burgers’ equation can be regarded an extension from the linear transport

equation to a nonlinear transport equation. Specifically, if we set a in (4.1) as

a = −(1/2)u(x, t), then (4.1) is equivalent to (4.2). In the literature, this PDE

model is considerably more challenging than the linear transport PDE in (4.1):

the wave speed in (4.1) depends only on the spatial variable x, whereas the

wave speed in (4.2) depends on both the spatial variable x and the size of the

disturbance u(x, t). Given the complicated wave speed in (4.2), it can model

more complicated dynamic patterns. For example, larger waves move faster, and

overtake smaller, slow-moving waves.

In this example, SAPDEMI correctly identifies with an accuracy above 99%

(see Fig. 5(a)). The effect of σ is also reflected in Fig. 6, where the length of the

λ-interval for correct identification decreases as σ increases.
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(a) truth (b) σ = 0.05 (c) σ = 0.1

Figure 4. Noisy/True curves from (4.2) (M = 50, N = 50).

(a) example 2 (b) example 3

Figure 5. Curves of successful identification probability.

(a) σ = 0.01 (b) σ = 0.5 (c) σ = 1

Figure 6. Solution paths in the inviscid Burgers’ equation under different σ and M =
N = 100. Here u and ux are simplifications of u(x, t) and ∂u(x, t)/∂x, respectively.

4.3. Example 3: viscous Burgers’ equation

In this section, we investigate the more challenging viscous Burgers’ equation

(see Olver (2014, Sec. 8.4)), which is a fundamental second-order semilinear PDE.

It is frequently employed to model physical phenomena in fluid dynamics (Bonkile

et al. (2018)) and nonlinear acoustics in dissipative media (Rudenko and Soluian

(1975)). For example, in fluid and gas dynamics, we can interpret the term

ν(∂2u(x, t)/∂x2) as modeling the effect of viscosity (Olver (2014, Sec. 8.4)). Thus,
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(a) true (b) σ = 0.05 (c) σ = 1

Figure 7. Noisy/True curves from (4.3) (M = 50, N = 50).

the viscous Burgers’ equation represents a version of the equations of the viscous

fluid flows, including the celebrated and widely applied Navier-Stokes equations

(Whitham (2011)):
∂u(x, t)

∂t
= −1

2
u(x, t)

∂

∂x
u(x, t) + ν

∂2

∂x2
u(x, t)

u(x, 0) = f(x) 0 ≤ x ≤ Xmax

u(0, t) = u(1, t) = 0 0 ≤ t ≤ Tmax

, (4.3)

where we set f(x) = sin2(4πx) + sin3(2πx), Xmax = 1, Tmax = 0.1 and ν = 0.1.

Fig. 7 shows the corresponding curves, where (a), (b), and (c) are the ground

truth and noisy observations under σ = 0.05 and σ = 0.1, respectively.

Compared with the previous two PDE models (transport equation in (4.1)

and inviscid Burgers’ equation in (4.2)), the above PDE is more complicated

and challenging. This is because the viscous Burgers’ equation involves not only

the first-order derivative, but also the second-order derivatives. Our simulations

provide sufficiently complicated examples.

Based on Fig. 5(b), we conclude that with high probability, our proposed

SAPDEMI can correctly identify the underlying viscous Burgers’ equation, for

the following reasons. When M = N = 200 or 150, the accuracy stays above

90% for all levels of σ ∈ [0.01, 1]. When M = N = 100, the accuracy is above

70% when σ ∈ [0.01, 0.5], and reduces to 50% when σ = 1. This makes sense,

because as shown in Fig. 8, when σ increases from 0.01 to 1, the length of the

λ-interval for correct identification decreases, making it more difficult to realize

a correct identification. Thus, if we encounter a very noisy data set D, a larger

sample size is preferred.

5. Case Study

In this section, we apply SAPDEMI to a real-world data set that is a

subset of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) data set downloaded from NASA. The CALIPSO reports the
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(a) σ = 0.01 (b) σ = 0.5 (c) σ = 1

Figure 8. Solution paths in the viscous Burgers’ equation under different σ and M =
N = 100. The notation uxx and uux stand for u(x, t)(∂u(x, t)/∂x) and ∂2u(x, t)/∂x2,
respectively.

O

(a) observed temperature (b) solution path

Figure 9. Visualization and identification of the CALIPSO data.

monthly mean of temperature in 2017 at 34◦N and 110.9418 meters above the

Earth’s surface over a uniform spatial grid from 180◦W to 180◦E, with equally

spaced 5◦ intervals. The missing data are handled either by direct imputation or

by using the instrument methods (Chen, Xie and Shao (2018); Chen, Shao and

Fang (2021); Chen and Fang (2019); Chen, Fang and Xiao (2018)).

The identified PDE model (N = 12,M = 72), reasonably speaking, is

∂

∂t
u(x, t) = a

∂

∂x
u(x, t) + b

(
∂2

∂x2
u(x, t)

)2

, (5.1)

where the values of a and b can be estimated using a simple linear regression

on the selected derivatives, that is, ∂u(x, t)/∂x and (∂2u(x, t)/∂x2)
2
. The

linear regression suggests reasonable values of a = −0.2505 and b = 1.7648.

Note that we focus on identification, that is, identifying ∂u(x, t)/∂x and

(∂2u(x, t)/∂x2)
2
from many derivative candidates, rather than estimating the

coefficients. Therefore, we use a = −0.2505 and b = 1.7648 as a reference.
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Figure 10. 3D surface plots of the temperatures in 2017/2018.

Because the CALIPSP is a real-world data set, we do not know the ground

truth of the underlying PDE model. Here we provide some justifications.

First, from the solution path in Fig. 9(b), the coefficients of ∂u(x, t)/∂x and

(∂2u(x, t/∂x2))
2
remain nonzeros under λ = 0.05, whereas the other coefficients

are all zero. Second, the identified PDE model in (5.1) fits well to the training

data (see Fig. 10 (a.1)-(a.3)). Third, the identified PDE model in (5.1) predicts

well in the testing data (see Fig. 10 (b.1)-(b.3)). Thus, our proposed SAPDEMI

method performs well in the CALIPSO data set, beacuse it adequately predicts

the feature values in 2018.

6. Conclusion

We have proposed an SAPDEMI method for identifying underlying PDE

models from noisy data. The proposed method is computationally efficient, and

we derive a statistical guarantee on its performance. We realize there are many

promising future research directions, including, but not limited to, incorporating

a multivariate spatial variable (x ∈ Rd with d ≥ 2) (Habermann and Kindermann

(2007)), and the interactions between spatial and temporal variables. In our

paper, we aim at showing the methodology to solve the PDE identification, so we

skip discussing the above future research and our paper should provide a good

starting point for these further research.
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Supplementary Material

There is an online Supplementary Material for this paper, which includes

(1) lemmas to derive the main theory; (2) numerical details of the figures in the

simulation; (3) proofs and other technical details which is not covered in the main

body of the paper due to the page limitation.
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