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Abstract: In this work, we propose a longitudinal quantile regression framework

that enables a robust characterization of heterogeneous covariate-response associ-

ations in the presence of high-dimensional compositional covariates and repeated

measurements of both the response and the covariates. We develop a globally

adaptive penalization procedure that can consistently identify covariate sparsity

patterns across a continuum set of quantile levels. The proposed estimation pro-

cedure properly aggregates longitudinal observations over time, and satisfies the

sum-zero coefficient constraint needed for a proper interpretation of the effects of

compositional covariates. We establish the oracle rate of the uniform convergence

and weak convergence of the resulting estimators, and further justify the proposed

uniform selector of the tuning parameter in terms of achieving global model se-

lection consistency. We derive an efficient algorithm by incorporating existing R

packages to facilitate stable and fast computation. Our extensive simulation studies

confirm our theoretical findings. We apply the proposed method to a longitudinal

study of cystic fibrosis children, where the associations between the gut microbiome

and other diet-related biomarkers are of interest.

Key words and phrases: Compositional covariates, globally adaptive penalization,

longitudinal data, quantile regression.

1. Introduction

Compositional data are frequently encountered in a variety of research fields.

Examples include household expenditure compositions in economics, geochem-

ical compositions of rocks in geology, and human microbiome compositions in

medical studies. Compositional data consist of proportions bounded between

zero and one and sum to one, and are often high dimensional. For instance,

human microbiome data are usually captured as percentages (or the relative abun-

dance) of gene sequencing reads (Tyler, Smith and Silverberg (2014)) at a certain
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taxonomy level, and the number of operational taxonomy units (e.g., phyla or

genus) can range over hundreds, thousands, or even millions. With advancements

in technology, an increasing number of studies are collecting such compositional

data repeatedly over time. A common question of substantive interest is how

these longitudinal compositional measurements are associated with other longi-

tudinal biomarkers or clinical outcomes. This poses a regression problem subject

to multiple complications, including a large number of covariates, positiveness

and unit-sum constraints on the covariates, and within-subject dependence of

the longitudinal observations.

To deal with the high dimensionality of the covariates, a notable line of re-

search has been established in the penalization framework (e.g., Meinshausen and

Buhlmann (2006); Zhang and Huang (2008); Kim, Choi and Oh (2008); Lv and

Fan (2009); Fan and Lv (2011)). Extensions to longitudinal settings have also

been developed (e.g., Wang, Zhou and Qu (2012); Zheng et al. (2018)). When

covariates are compositional, given the unit-sum constraint, an increase in one

covariate must induce a decrease in another covariate. Applying traditional pe-

nalization regression methods without accounting for the compositional nature

of the covariates may lead to results that are difficult to interpret. A common

strategy for accommodating compositional covariates is to apply a sensible oper-

ation to the compositional proportions before incorporating them into a regres-

sion model, as in the linear log-contrast model and logistic normal multinomial

regression model (Aitchison (1982); Aitchison and Bacon-shone (1984); Aitchison

(2003); Xia et al. (2013)). Many studies have focused on covariates that are both

compositional and high dimensional. For example, Lin et al. (2014) proposed a

Lasso-penalized method for the linear log-contrast regression model that prop-

erly accounts for the compositional nature of the covariates. Shi, Zhang and Li

(2016) studied an extension of the model of Lin et al. (2014) with a set of linear

constraints. Lu, Shi and Li (2019) generalized the model further to a general-

ized linear log-contrast model, and proposed an l1-penalized likelihood estimation

procedure.

However, few works have proposed methods for high-dimensional composi-

tional covariates in a longitudinal setting. Moreover, most existing approaches

use a mean-based linear regression, which typically confines covariate effects to be

location shifts, and thus can be restrictive for real data. The quantile regression

(Koenker and Bassett (1978)), characterized by its flexibility when assessing co-

variate effects across different quantile levels, has demonstrated promising utility

for identifying and depicting dynamic covariate-response associations that often

provide useful scientific insights. The modeling strategy of the quantile regression
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has been incorporated in analyses of longitudinal data under various perspectives

(e.g., Koenker (2004); Wang and Fygenson (2009); Ma, Peng and Fu (2019)). In

the presence of high-dimensional covariates, many studies (e.g., Li, Liu and Zhu

(2007); Zou and Yuan (2008); Wang, Wu and Li (2012); Zheng, Gallagher and

Kulasekera (2013); Fan, Fan and Barut (2014)) have examined penalized quan-

tile regression methods. These methods model a single or multiple prespecified

quantiles of the response; in other words, are locally concerned. These methods

are subject to inherent problems, such as undesirable variability in the variable

selection results across neighboring quantile levels, and the potential failure to

detect some important variables, owing to an off-target selection of the quantile

levels. To address these limitations, Zheng, Peng and He (2015) proposed the

perspective of globally concerned quantile regression that enables a simultaneous

examination of regression quantiles over a continuum set of quantile levels, and

thus reflects the underlying scientific interest in a more robust way. However,

although it demonstrates improved stability and “power” of variable selection

compared with locally concerned quantile regression approaches, their method is

not suitable for handling either longitudinal data or compositional covariates.

In this work, we develop a globally concerned longitudinal quantile regression

framework that is tailored to evaluate the effects of high-dimensional longitudinal

compositional covariates on longitudinal responses. We consider a longitudinal

linear log-contrast quantile regression model, where quantiles of the longitudi-

nal response are linked to the log contrasts of the corresponding compositional

covariates. To avoid the shortcomings associated with selecting an irrelevant

covariate as the reference in the logcontrasts, we reformulate the model into a

symmetric form with a zero-sum constraint of the coefficients, which ensures sen-

sible interpretations of the effects of the compositional covariates. We propose

a regularization method, in which a globally adaptive Lasso penalty is imposed

on the longitudinal quantile loss function that appropriately aggregates repeated

measurements from the same subject. We adapt the rq.fit.fnc() function in the

existing R package quantreg to facilitate the estimation in the presence of the

zero-sum constraint of the coefficients.

We conduct theoretical studies for the proposed method in the ultrahigh-

dimensional setting, where the number of covariates p may increase exponentially

with the sample size n (i.e., log p = o(nb), for some b > 0), and the number of

relevant covariates s also increases with n. We attain the uniform convergence

rate of the proposed estimator as Op(
√
s log n/n), which is the fastest possi-

ble rate. Because the longitudinal quantile loss function is not differentiable,

to attain this result, we cannot adapt existing works on linear regression-based
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methods for high-dimensional compositional data, such as that of Lin et al.

(2014), which penalizes a smooth least-squares loss function. Instead, we em-

ploy theoretical techniques, including chaining theory (Talagrand (2005)), the

contraction inequality (Ledoux and Talagrand (1991)), and the empirical process

(van der Vaart and Wellner (1996)), as in Zheng, Peng and He (2015). How-

ever, these do not address the longitudinal data structure and the compositional

constraint for high-dimensional covariates. Therefore, we develop new arguments

to account for these special data features. Notably, we properly formulate and

establish a crucial Karush–Kuhn–Tucker (KKT) condition tailored to composi-

tional data, which is new in the literature. In addition, we thoroughly justify that

penalizing the proposed longitudinal quantile loss function, which adopts the sim-

ple working independence assumption, is capable of accommodating longitudinal

data with dependent repeated measures.

Our theoretical studies provide useful results not discussed in existing works

on high-dimensional compositional covariates based on log-contrast models, such

as those of Lin et al. (2014) and Shi, Zhang and Li (2016). For example, our theo-

retical investigation reveals that the asymptotic behavior of the globally adaptive

estimator based on a constrained linear log-contrast quantile regression model is

asymptotically equivalent to its unconstrained counterpart, as long as the refer-

ence variable for the latter is a truly relevant variable, which is usually not known

in advance. In addition, we establish the weak convergence of any linear combi-

nation of the proposed estimator to a Gaussian process. We develop a GIC-type

uniform tuning parameter selector. We show that the proposed estimation and

tuning parameter procedures can correctly identify all globally relevant variables

with probability tending to one (i.e., global model selection consistency).

The remainder of this paper proceeds as follows. In Section 2, we introduce a

globally concerned framework built on a longitudinal linear log-contrast quantile

regression model. Then, we propose a globally adaptive regularization procedure

based on a symmetric model representation with a zero-sum coefficient constraint.

In Section 3, we present the asymptotic studies for the proposed estimation pro-

cedure. In Section 4, we investigate the finite-sample performance of proposed

method using simulations. Finally, we demonstrate our methodology by applying

it to a longitudinal observational study of children with cystic fibrosis (CF).
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2. Methodology

2.1. Longitudinal linear log-contrast quantile regression model

Consider a longitudinal study with n subjects. Let Yi(t), Xi(t), and Wi(t)

denote the longitudinal response, an r × 1 vector of regular covariates with one

as the first component, and a p × 1 vector of compositional covariates at time

t for subject i (i = 1, . . . , n), respectively. A component of Xi(t) may flexibly

represent the value of a time-dependent covariate measured at time t or a sum-

mary of the covariate history up to time t. We consider the setting where r is

fixed and p increases with n, satisfying log p = o(nb), for some b > 0. At each

time point t, the compositional covariates in Wi(t) are subject to the unit-sum

constraint. That is, Wi(t) belongs to the (p − 1)-dimensional positive simplex

Sp−1 = {(w1, . . . , wp) : wj > 0, j = 1, . . . , p;
∑p

j=1wj = 1}. Suppose Yi(t),

Xi(t), and Wi(t) are observed at mi time points, denoted by {t(k)
i , k = 1, . . . ,mi}.

Define a counting process for the observation time as Ni(t) =
∑mi

k=1 I(t
(k)
i ≤ t).

To obtain a comprehensive and flexible view of how the covariates influ-

ence the response, we use quantile regression modeling to formulate the covariate

effects on the τth conditional quantile of Y (t) given X(t) and W(t), which is

defined as QY (t){τ |X(t),W(t)} = inf{y : Pr{Y (t) ≤ y|X(t),W(t)} ≥ τ}. How-

ever, plugging W(t) directly into a regression model is problematic, because the

components of W(t) cannot change freely, owning to the unit-sum constraint,

making it difficult to interpret the coefficients of W(t). To deal with the unit-sum

constraint, we apply the log-contrast (or log-ratio) transformation of Aitchison

and Bacon-shone (1984), which transforms the compositional Wi(t) from Sp−1

to Zpi (t)
.
= {log{Wi1(t)/Wip(t)}, . . . , log{Wi,p−1(t)/Wip(t)}}>, where Wij(t) de-

notes the jth component of Wi(t). The transformation from W(t) to Zpi (t) is

one-to-one and Zpi (t) is freely ranged in Rp−1 without any constraint. A log-

contrast transformation requires selecting a reference covariate. For Zpi (t), the

pth component of W(t), Wip(t), serves as the reference.

We consider the following longitudinal linear log-contrast quantile regression

model:

QYi(t){τ |Xi(t),Wi(t)} = Xi(t)
>α0(τ) + Zpi (t)

>β0,\p(τ) for τ ∈ ∆, (2.1)

where α0(τ) is an r × 1 vector of regression coefficients for Xi(t), β0,\p(τ)
.
=

{β0,1(τ), . . . , β0,p−1(τ)}> is a (p− 1)× 1 vector of regression coefficients for Zpi (t),

and ∆ ⊂ (0, 1) is a set of quantile levels, prespecified to align with the scientific

problem of interest. For example, if we need to identify the variables affecting



1300 MA ET AL.

the center of the response distribution, we can choose ∆ = [0.4, 0.6]. If we are

interested in the upper tail of the response distribution, we can choose ∆ =

[0.75, 0.9]. A subtle drawback of model (2.1) is that any variable selection based

on the model automatically includes Wip(t) as a relevant covariate, even when

Wip(t) is not a relevant variable.

Following the strategy employed in the linear regression setting with com-

positional covariates (Lin et al. (2014); Shi, Zhang and Li (2016)), we define

β0,p(τ) = −
∑p−1

j=1 β0,j(τ), and re-express model (2.1) as

QYi(t){τ |Xi(t),Zi(t)} = Xi(t)
>α0(τ) + Zi(t)

>β0(τ), (2.2)

subject to

p∑
j=1

β0,j(τ) = 0, for τ ∈ ∆.

Here, Zi(t)={log{Wi1(t)}, . . . log{Wip(t)}}>, and β0(τ)={β0,1(τ), . . . , β0,p−1(τ),

β0,p(τ)}>, with β0,j(τ) denoting the jth component of β0(τ). Unlike model (2.1),

model (2.2) takes a symmetric form, and does not require choosing the reference

covariate. The symmetric form of model (2.2) also enables an estimation that

possesses desirable properties such as scale invariance, permutation invariance,

and selection invariance (Aitchison (1982); Lin et al. (2014)).

Many longitudinal quantile regression models studied in literature (e.g., Lip-

sitz et al. (1997); Wang and Fygenson (2009); Sun et al. (2016); Cho, Hong and

Kim (2016); Gao and Liu (2020)) bear similar forms to model (2.1) or (2.2),

but they do not involve the zero-sum coefficient constraint and were investigated

under the locally concerned perspective.

We study a globally concerned framework based on the longitudinal quantile

regression model (2.2), where a covariate is considered relevant if it has nonzero

effects on the conditional quantiles of Y (t) at some, not necessarily all, quantile

levels in ∆. That is, the set of relevant (or active) compositional covariates is

defined as

S∆ = {j ∈ {1, . . . , p} : ∃ τ ∈ ∆, |β0,j(τ)| > 0}.

It is clear that Sτ
.
= S{τ} ⊂ S∆ when τ ∈ ∆. The globally concerned perspec-

tive warrants a global sparsity assumption, that is, s
.
= |S∆| = o(n), for model

identifiability purposes, where | · | denotes the cardinality.

2.2. Globally adaptive L1 penalized estimation

The observed longitudinal data can be generally formulated as {(Yi(t)dNi(t),

Xi(t)dNi(t),Zi(t)dNi(t)), i = 1, . . . , n}. When p is fixed, model (2.2) without the
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zero-sum coefficient constraint can be estimated by minimizing the longitudinal

quantile loss function,

Q(α,β; τ) =
1

n

n∑
i=1

∫ ∞
0

ρτ{Yi(t)−Xi(t)
>α− Zi(t)

>β}dNi(t),

where ρτ (t) = t(τ − I{t ≤ 0}) is the τth quantile loss function. From the defi-

nition, Q(α,β; τ) takes an equal weight summation of the quantile loss function,

assessed at all within-subject observation time points. This mimics the idea of

constructing a generalized estimating equation (GEE) for longitudinal data under

the working independence assumption (Liang and Zeger (1986)). The same strat-

egy is adopted in existing works on longitudinal quantile regressions (e.g., Wang

and Fygenson (2009); Sun et al. (2016)). Estimations based on Q(α,β; τ), like

the GEE approach, can properly accommodate longitudinal data with correlated

repeated measures.

We propose applying the adaptively weighted L1 regularization to Q(α,β; τ)

to address the high dimensionality of Zi(t). This renders a regression coefficient

estimator γ̂(τ) as a solution to the following constrained minimization problem:

γ̂(τ)
.
= (α̂(τ)>, β̂(τ)>)>= argmin

α,β,
∑p
j=1 βj=0

(
Q(α,β; τ) + λ

p∑
j=1

ωj(τ)|βj |

)
. (2.3)

Aligning with the perspective of globally concerned quantile regression, λ is a

tuning parameter that is constant over τ and controls for the global sparsity

over τ ∈ ∆, namely, S∆. Here, ωj(τ) is a nonnegative adaptive weight function

that gauges the importance of Zij(t), the jth component of Zi(t), for j = 1, . . . , p.

The adaptive weights may take the following forms: (w1) ωj(τ) = 1/|β̌j(τ)|; (w2)

ωj(τ) = 1/
(

supτ∈∆ |β̌j(τ)|
)
; (w3) ωj(τ) = 1/

∫
∆ |β̌j(τ)|dτ , where β̌(τ) is a uni-

formly consistent estimator of β0(τ). As discussed in Zheng, Peng and He (2015),

(w2) and (w3) are globally adaptive weights that capture the global impact of

a covariate, and may be theoretically and empirically preferable. A uniformly

consistent estimator β̌(τ) can be obtained by directly adapting the approach of

Belloni and Chernozhukov (2011) to high-dimensional longitudinal compositional

data (i.e., solving the minimization problem (2.3) with the penalty term and tun-

ing parameter selector presented by Belloni and Chernozhukov (2011)). This can

be justified by slightly modifying the proof of Theorem 1 (Section 3), combined

with the techniques of Belloni and Chernozhukov (2011).

To solve the constrained minimization problem in (2.3), we first write the

objective function as a classical quantile loss function. Let ej be a p-dimensional
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vector with the jth component equal to one and all others equal to zero, for

j = 1, . . . , p. In addition, for any integer m ≥ 2, denote the m-vector of ones and

zeros by 1m and 0m, respectively. Because ρτ (u) + ρτ (−u) = |u|,

λ

p∑
j=1

ωj(τ)|βj | =
p∑
j=1

{ρτ (Y ∗j −X∗j
>α− Z∗j

>β) + ρτ (Y ∗p+j −X∗p+j
>α− Z∗p+j

>β)},

where (Y ∗j ,X
∗
j ,Z

∗
j )=(0,0r, λωj(τ)ej) and (Y ∗p+j ,X

∗
p+j ,Z

∗
p+j)=(0,0r,−λωj(τ)ej).

Letting γ = (α>,β>)>, we then formulate the equality constraint
∑p

j=1 βj = 0 as

two inequality constraints,
∑p

j=1 βj ≥ 0 (or expressed as (0>r,1
>
p)
>γ ≥ 0 in matrix

form) and−
∑p

j=1 βj ≥ 0 (or expressed as (0>r,−1>p)
>γ ≥ 0 in matrix form). Then,

the quantile regression problem in (2.3) with the linear inequality constraints can

be solved using the existing function rq.fit.fnc() in the R package quantreg, and

the augmented data set {Yi(t(k)
i ),Xi(t

(k)
i ),Zi(t

(k)
i ), k = 1, . . . ,mi; i = 1, . . . , n},

coupled with {(Y ∗j ,X∗j ,Z∗j ), (Y ∗p+j ,X∗p+j ,Z∗p+j), j = 1, . . . , p}.
The set of relevant compositional covariates, S∆, is estimated by

Ŝ∆
.
= {j ∈ {1, . . . , p} : ∃ τ ∈ ∆, |β̂j(τ)| > 0}.

2.3. Tuning parameter selection

Tuning parameter selection plays an important role in variable selection.

In the globally concerned setting, a critical idea is to set λ as a common tuning

parameter across all τ ∈ ∆ as a means to control the overall model complexity and

avoid overall fitting. We adapt the generalized information criterion (GIC) (Nishii

(1984); Fan and Tang (2013)) to the setting of globally concerned longitudinal

quantile regression with compositional covariates.

Specifically, we propose the following uniform selector of the tuning param-

eter by minimizing

GIC(λ) =

∫
∆

log σ̂λ(τ)dτ + (|Ŝλ| − 1)φn,

where Ŝλ = {j ∈ {1, . . . , p} : supτ∈∆ |β̂j,λ(τ)| 6= 0},

σ̂λ(τ) =
1

n

n∑
i=1

∫ ∞
0

ρτ{Yi(t)−Xi(t)
>α̂λ(τ)− Zi(t)

>β̂λ(τ)}dNi(t),

and φn is a sequence converging to zero with n. Here, β̂j,λ(τ), α̂λ(τ), and β̂λ(τ)

represent the proposed estimates for βj(τ), α(τ), and β(τ), respectively, with

the tuning parameter fixed at λ. A popular choice of φn is n−1 log(p) log(log(n)).
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Note that the model size pertaining to the compositional covariates is |Ŝλ| − 1,

owning to the zero-sum constraint.

As shown in Theorem 3, with a properly chosen φn and a reasonable upper

bound imposed on the model size, the proposed tuning parameter λ̂, which is the

minimizer of GIC(λ) with respect to λ, can consistently identify the true model

S∆. In other words, with probability tending to one, Ŝλ̂ = S∆.

2.4. Grid-based approximation

With finite sample sizes, minimizing (2.3) for all τ ∈ ∆ yields estimates

that are exactly piecewise constant functions of τ . However, although the exact

breakpoints of these piecewise constant functions can be identified by adapting

the procedure of Koenker and d’Orey (1987) and Portnoy (1991), the computation

expense can be overwhelming in the ultrahigh-dimensional cases. Therefore, we

approximate α̂(·) and β̂(·) using piecewise constant functions that jump only

at the grid points of a prespecified sufficiently fine τ -grid in ∆ to alleviate the

computation burden. Let Sn denote the τ -grid in ∆, for τ0 < τ1 < . . . < τM(n),

and define the size of Sn as ‖Sn‖ = max{τk − τk−1 : k = 1, . . . ,M(n)}. The grid-

based approximations are given by α̂Sn(·) =
∑M(n)

k=1 α̂(τk)I(τk−1 < τ ≤ τk), and

β̂Sn(·) =
∑M(n)

k=1 β̂(τk)I(τk−1 < τ ≤ τk). With a certain smoothness assumption

for α0(·) and β0(·), we can show that (α̂Sn(·)>, β̂Sn(·)>)> and (α̂(·)>, β̂(·)>)> have

the same convergence rate and asymptotic distribution if ‖Sn‖ converges to zero

at the rate o((ns)−1/2).

3. Theoretical Results

Without loss of generality, we assume that r, the number of usual covariates,

is finite. Let S∆ = {1, . . . , s} and use Sc∆ = {s+1, . . . , p} to denote the collection

of all irrelevant compositional variables. We allow the number of compositional

covariates pn
.
= p and the true model size sn

.
= s to increase with the sample size

n. For ease of presentation, we often omit the subscript n when it is clear from

the context.

Let Vi(t)=(Xi(t)
>,Zi(t)

>)>and γ(τ)=(α(τ)>,β(τ)>)>, satisfying
∑p

j=1 βj(τ)

= 0. Thus, γ0(τ) = (α0(τ)>,β0(τ)>)>. We decompose Zi(t) into (Zia(t)
>,Zib(t)

>)>

and Vi(t) into (Via(t)
>,Vib(t)

>)>, where Zia(t) = (Zi,1(t), . . . , Zi,s(t))
>, Via(t) =

(Xi(t)
>,Zia(t)

>)>, and Vib(t)=Zib(t)=(Zi,s+1(t), . . . , Zi,p(t))
>. Similarly, β(τ)=

(βa(τ)>,βb(τ)>)> and γ(τ) = (γa(τ)>,γb(τ)>)>, where βa(τ) = (β1(τ), . . . , βs(τ))>,

γa(τ) = (α(τ)>,βa(τ)>)>, and γb(τ) = βb(τ) = (βs+1(τ), . . . , βp(τ))>. The

regularity conditions (C1)–(C5) are stated in Section S1 of the Supplementary
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Material.

In Theorem 1, we show that the proposed estimator is uniformly consistent

over ∆ with the convergence rate Op(
√

(r + s) log n/n), which is the fastest pos-

sible and is as good as that of the globally adaptive estimator of Zheng, Peng and

He (2015). For a single τ or a finite number of τ , we establish a faster convergence

rate, Op(
√

(r + s)/n), as stated in Corollary 1.

Theorem 1. Suppose conditions (C1)–(C5) (stated in the Supplementary Ma-

terial) hold. Furthermore, we assume that n/((r + s)3 log2 max{n, r + p}) → ∞
and

sup
j>r+s,δ∈Rr+s−1

E[
∫∞

0 {Vij(t)Vi(t)
>δ}2dNi(t)]

‖δ‖2
= o

(
log max{n, r + p}

(r + s) log n

)
.

If r+ s = o(n1/3), supj∈S∆,τ∈∆ λwj(τ) = Op(
√
n log n), λ/(

√
r + s log max{n, r+

p}) → ∞, and (infj>r+s,τ∈∆wj(τ))−1√n/
√

(r + s) log max{n, r + p} = Op(1),

then the proposed estimator satisfies

sup
τ∈∆
‖γ̂(τ)− γ0(τ)‖ = Op

(√
(r + s) log n

n

)
.

Corollary 1. Suppose the conditions in Theorem 1 hold. Then, the proposed

estimator satisfies

‖γ̂(τ0)− γ0(τ0)‖ = Op

(√
r + s

n

)
.

In Theorem 2, we establish the weak convergence of the proposed estimator.

Theorem 2. Suppose the conditions in Theorem 1 hold. If (r+s)3 log4 n = o(n),

for any given ξ ∈ Rr+s−1 and ‖ξ‖ = 1, we have the following results:

(a) If
√
n/{(r + s) log n} inf1≤j≤s,τ∈∆ |β0j(τ)| → ∞, then

n1/2ξ>
[
Hτ {γ̂(τ)− γ0(τ)}+

λ

n
$(τ)

]
converges weakly to a mean-zero Gaussian process with covariance

Σ(τ, τ ′) = E{hn,ξ,τ (V(t), Y )hn,ξ,τ ′(V(t), Y )}
−E{hn,ξ,τ (V(t), Y )}E{hn,ξ,τ ′(V(t), Y )},

where hn,ξ,τ (V(t), Y ) =
∫∞

0 ξ>V(t)ψτ{Y (t) − V(t)>γ0(τ)}dN(t), ψτ (u) =

τ − I(u < 0),
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Hτ =

(
E[
∫∞

0 ft,τ {0|Vi(t)}Via(t)Via(t)
>dNi(t)] 0

0 0

)
,

$(τ) =
(
0>r, (ω(τ) ◦ sign(β0(τ)))>,0>p−s

)>
, ◦ denotes the Hadamard product,

and ω(τ) = (ω1(τ), . . . , ωp(τ))>;

(b) If supτ∈∆ n
−1/2{

∑
j∈Sτ λw

2
j (τ)}1/2 = op(1), then n1/2ξ>Hτ {γ̂(τ)− γ0(τ)}

converges weakly to a mean-zero Gaussian process with covariance Σ(τ, τ ′).

To establish the asymptotic properties of the GIC tuning parameter selector,

we assume the following condition (C5+), which is an enhanced version of (C5)

presented in the Supplementary Material:

(C5+) (a)

0 < Λmin := inf
δ∈R`,`≤r+κ,δ 6=0

δ>E[
∫∞

0 Vi(t)Vi(t)
>dNi(t)]δ

‖δ‖2

≤ sup
δ∈R`,`≤r+κ,δ 6=0

δ>E[
∫∞

0 Vi(t)Vi(t)
>dNi(t)]δ

‖δ‖2
:= Λmax <∞.

(b)

q′ := sup
δ∈R`,`≤r+κ,δ 6=0

E[
∫∞

0 |Vi(t)
>δ|2dNi(t)]

3/2

E[
∫∞

0 |Vi(t)>δ|3dNi(t)]
> 0,

where R` = {δ = (δ>x, δ
>
z)> : δx ∈ Rr,

∑p
j=1 δzj = 0, ‖δz‖0 ≤ ` − r}, with ‖ · ‖0

denoting the L0 norm.

In addition, we set a model size upper bound, denoted by κ, with s < κ < p,

ξn = min

{
min

1≤j≤r

∫
∆
|α0j(τ)|dτ, min

1≤j≤s

∫
∆
|β0j(τ)|dτ

}
,

which measures the minimal overall effect of the usual and compositional relevant

variables on the conditional distribution. Theorem 3 and Corollary 2 present the

consistency of the tuning parameter selection based on the GIC.

Theorem 3. Suppose the conditions in Theorem 1 and (C5+) hold. Furthermore,

log(r + p)/n = o(φn), φn = o(ξ
5/2
n ), and κn−1 log max{n, r + p} = o(ξ3

n). Then,

P

(
inf

S 6=S∆,|S|≤κ
GIC(S) > GIC(S∆)

)
→ 1.



1306 MA ET AL.

Corollary 2. Under the same conditions as in Theorem 3, if{
inf

j>r+s,τ∈∆
wj(τ)

}−1
√
n√

(r + s) log max{n, r + p}
= Op(1)

and supτ∈∆,j∈Sτ wj(τ) = Op(
√
n/(
√
r + s log max{n, r + p})), then P

(
Ŝλ̂ = S∆

)
→ 1.

For any 1 ≤ l ≤ s, we use Zli(t) to denote the log-ratio transformed Wi(t)

when the reference is the lth component; that is, Zli(t) is the vector Zi(t) −
Zi,l(t)1p, with the lth component removed. We also define Vl

i(t)=(Xi(t)
>,Zli(t)

>)>.

Let γ\l(τ) = (α(τ)>,β\l(τ)>)>, where β\l(τ) = (β1(τ), . . . , βl−1(τ), βl+1(τ), . . . ,

βp(τ))>. Let γ̂\l(τ) be the solution of the following unconstrained minimization

problem:

1

n

n∑
i=1

∫ ∞
0

ρτ{Yi(t)−Vl
i(t)
>γ\l}dNi(t) + λ

p∑
j=1,j 6=l

ωj(τ)|βj |, (3.1)

where γ\l = (α1, . . . , αr, β1, . . . , βl−1, βl+1, . . . , βp)
>. Then, the globally adap-

tive unconstrained estimator γ̂ul (τ) with the lth component as the reference is

(γ̂1,\l(τ), . . . , γ̂r,\l(τ),γ̂r+1,\l(τ), . . . , γ̂r+l−1,\l(τ),−
∑p

k=1,k 6=l γ̂r+k,\l(τ), γ̂r+l+1,\l(τ),

. . . , γ̂r+p,\l(τ))>. We state the asymptotic properties of γ̂ul (τ) in the following the-

orem:

Theorem 4. Under the same conditions as in Theorem 2, if (r+s)3 log4 n = o(n)

and supτ∈∆,j∈Sτ n
−1/2λwj(τ) = op(1), then, for any given ξ ∈ Rr+s−1, ‖ξ‖ = 1,

and 1 ≤ l ≤ s, we have

(a) n1/2ξ>Hτ {γ̂ul (τ)− γ0(τ)} converges weakly to a mean-zero Gaussian pro-

cess with covariance Σ(τ, τ ′) and P (supτ∈∆ ‖γ̂ub,l(τ)‖∞ = 0)→ 1;

(b) n1/2ξ>{γ̂ul (τ) − γ0(τ)} and n1/2ξ>{γ̂(τ) − γ0(τ)}are asymptotically equiva-

lent.

Theorem 4 indicates that the proposed constrained estimator is asymptot-

ically equivalent to an unconstrained estimator that uses a relevant variable as

the reference. However, the latter approach requires preliminary knowledge about

the truly relevant variables, which may not be available in practice.

By our theorems, the technical constraints for s include (r+s)3 log2 max{n, r+
p} = o(n) and (r + s)3 log4 n = o(n). When p = O(na) (a > 0), we can allow s

to be close to, but smaller than o(n1/3), which is the fastest model size growth

rate derived in Welsh (1989) and He and Shao (2000) for an unpenalized quantile
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regression estimator to achieve asymptotic normality. Proofs of the theorems are

provided in the Supplementary Material (Section S4).

4. Simulation Studies

In this section, we carry out simulation studies to evaluate the finite-sample

performance of the proposed method. We consider the sample size n = 100 and

generate Y (t) based on the assumed quantile regression model with r = 4 and

p = 400. Specifically, we generate the longitudinal observation times t
(k)
i , for

k = 1, . . . ,mi, from a standard Poisson process, where mi is the integer part of

2+Ui with Ui ∼ Uniform(0, 2). With r = 4, we generateXi1 from Uniform(0, 1)

and Xi2 from Bernoulli(0.5). For each observed time point t = t
(k)
i , we first

generate a p-dimensional vector Z̃i(t) = (Z̃i1(t), . . . , Z̃ip(t))
> from a multivariate

normal distribution Np(0,Σ), where Σ = (ρ|i−j|), with ρ = 0.5. Next, we set

Žij(t) = Φ(Z̃ij(t)), for j 6= 7 and Ži7(t) = −Φ(Z̃i7(t)), and then standardize Žij(t)

so that its second moment is equal to one, where Φ(·) is the standard normal

distribution function and j = 1, . . . , p. The standardized Žij(t) (j = 1, . . . , p)

form the covariate vector Zi(t).

To generate the longitudinal responses, we consider the following four setups:

Setup (I): Data are generated from a longitudinal linear model with independent

homogeneous errors,

Yi(t) = −Xi1 +Xi2 − t+ Zi(t)
>b + εi(t),

where b = (1, 0.8, 0.9, 1, 2,−1.5,−4.2, 0, . . . , 0)>, εi(t) ∼ N(0, 1) for any t >

0, and εi(t) and εi(t
′) are independent for t > 0, t′ > 0, and t 6= t′.

Setup (II): Data are generated from a longitudinal linear model with dependent

homogeneous errors,

Yi(t) = −Xi1 +Xi2 − t+ Zi(t)
>b + ai + εi(t),

where b = (1, 0.8, 0.9, 1, 2,−1.5,−4.2, 0, . . . , 0)>, ai ∼ N(0, 1/2), εi(t) ∼
N(0, 1/2) for t > 0, εi(t) and εi(t

′) are independent for t > 0, t′ > 0, and

t 6= t′, and ai and εi(t) are independent for t > 0.

Setup (III): Data are generated from a longitudinal linear model with indepen-

dent heterogeneous errors,

Yi(t) = −Xi1 +Xi2 − t+ Zi(t)
>b1 + (Xi1 + Zi(t)

>b2)εi(t),
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where b1 = b = (1, 0.9, 0.75, 0.5, 0.8, 1,−4.95, 0, . . . , 0)>, b2 = (0, 0.25, 0, 1,

0, 0,−1.25, 0, . . . , 0)>, εi(t) ∼ N(0, 1) for any t > 0, and εi(t) and εi(t
′) are

independent for t > 0, t′ > 0, and t 6= t′.

Setup (IV): Data are generated from a longitudinal linear model with dependent

heterogeneous errors,

Yi(t) = −Xi1 +Xi2 − t+ Zi(t)
>b1 + (Xi1 + Zi(t)

>b2)(ai + εi(t)),

where b1 = b = (1, 0.8, 0.9, 1, 2,−1.5,−4.2, 0, . . . , 0)>, b2 = (0, 0.2, 0, 0.1,

0, 0,−0.3, 0, . . . , 0)>, ai ∼ N(0, 1/2) and εi(t) ∼ N(0, 1/2) for t > 0, εi(t)

and εi(t
′) are independent for t > 0, t′ > 0, and t 6= t′, and ai and εi(t) are

independent for t > 0.

Under Setups (I) and (II), we can show that

QYi(t){τ |Xi(t),Zi(t)} = Qe(τ)−Xi1 +Xi2 − t+ Zi(t)
>b,

where Qe(τ) is the τth quantile of the standard normal distribution. Under

Setups (III) and (IV), we can show that

QYi(t){τ |Xi(t),Zi(t)} = {−1 +Qe(τ)}Xi1 +Xi2 − t+ Zi(t)
>{b1 + b2Qe(τ)}.

In all setups, the true regression coefficients for Zi(t) satisfy the zero-sum con-

straint at each τ .

We evaluate the finite-sample performance of the proposed globally adaptive

Lasso estimators with weights (w2) and (w3), denoted by AW2 and AW3, respec-

tively. We set ∆ = [0.1, 0.9] and the τ -grid Sn as {0.1 < 0.125 < · · · < 0.9}. We

select the tuning parameter λ using a GIC criterion with φn = log(log n) log p/n,

except for that in the initial estimator. The candidate values for λ include N/4

equally spaced grid points between N/150 and N/15, where N =
∑n

i=1mi is

the total number of longitudinal observations. We adapt the method of Belloni

and Chernozhukov (2011) over ∆ to get the estimator β̌(τ) for calculating the

adaptive weight functions.

We compare AW2 and AW3 with the locally concerned adaptive Lasso esti-

mator at a single predetermined quantile level τ = 0.2, 0.5, or 0.8, denoted by

SS(τ), as well as with the pointwise approach, which simply combines the esti-

mates from SS(τ) over τ ∈ ∆, and is denoted by PS. We also consider four other

benchmark estimation procedures, namely, ALasso (i), ALasso (ii), ALasso (iii),

and ALasso (iv). The ALasso (i) estimators are the unconstrained estimators

obtained by minimizing (3.1), with the reference, the l-th component, chosen
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randomly. The ALasso (ii) estimators are the globally adaptive estimators de-

rived from model (2.2) without considering the zero-sum constraint. That is, the

ALasso (ii) estimators, (α̂(τ)(ii), β̂(τ)
(ii)

), are obtained as

argmin
α,β

{
1

n

n∑
i=1

∫ ∞
0

ρτ{Yi(t)−Xi(t)
>α− Zi(t)

>β}dNi(t) + λ

p∑
j=1

ωj(τ)|βj |

}
.

The ALasso (iii) estimator is obtained by fitting the log-contrast model based

on the relevant variables selected by the ALasso (ii) approach. The ALasso (iv)

estimator is obtained by solving the minimization problem (2.3) without including

the zero-sum constraint, using the selected relevant variables to fit a log-contrast

model, and then selecting the tuning parameter using the GIC criterion and

determining the final estimator.

We assess the variable selection performance of the different methods de-

scribed above in terms of the mean number of correctly identified relevant vari-

ables (NCN), mean number of incorrectly selected variables (NIN), percentage

of under-fitted models (PUF), percentage of correctly fitted models (PCF), and

percentage of over-fitted models (POF). To evaluate the global estimation accu-

racy over τ ∈ ∆, we consider three average estimation errors, AEE`1 , AEE`2 , and

AEE`∞ , where

AEE`q
.
=

1

|∆|

∫
∆
‖β̂(τ)− β∗(τ)‖q dτ.

For SS(τ), we calculate the average estimation errors by extrapolating the coeffi-

cient estimate as the constant value of the whole coefficient function over τ ∈ ∆.

To assess how well the estimated coefficients satisfy the zero-sum constraint, we

adopt the criterion SUM, which is defined as SUM =
∑p

j=1 βj(τ∗), where βj(·) de-

notes the estimated coefficient function and τ∗ = argmaxτ∈∆|
∑p

j=1 βj(τ)|. Better

performance is indicated by NCN closer to seven, the true number of relevant co-

variates, PCF closer to 100%, NIN, PUF, and POF closer to zero, smaller AEE`1 ,

AEE`2 , and AEE`∞ , and SUM closer to or equal to zero.

The simulation results for setups (I)–(IV) are presented in Table S1, Table

S2, Table S3, and Table 1, respectively, where Tables S1–S3 are provided in

the Supplementary Material. Simulation results are summarized based on 300

replicates. As seen from these tables, the proposed estimators with the globally

adaptive weights, AW2 and AW3, perform well in all setups, where the error terms

can be homogeneous or heterogeneous, and can be independent or dependent

across different time points. In all setups, the PCFs based on these estimators

are around or above 85%, and the zero-sum constraint is always met by the
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estimated coefficient functions. As shown by additional simulations reported in

the Supplementary Material (see Tables S4–S5), the PCFs can increase further as

the variance of the longitudinal error decreases. In setups (I) and (II), where the

effects of Z(t) are constant over τ , the estimation accuracy is comparable between

the proposed globally adaptive estimators and the local estimators, SS(τ), for

τ = 0.2, 0.5, 0.8. However, the variable selection based on SS(τ) is more likely

to miss relevant variables, as reflected by the higher PUFs, particularly when

τ = 0.2 or 0.8. In setups (III) and (IV), where the effects of Z(t) are not constant

over τ , SS(τ) performs much worse in terms of variable selection than do AW2

and AW3. This may lead to a deterioration in the average estimation errors

for SS(τ) observed in setups (III) and (IV). In all setups, the pointwise method

produces average estimation errors similar to those of AW2 and AW3. However,

the pointwise method tends to overfit, with a POF equal to 31.7% in setup (I),

26.3% in setup (II), and 23% in setups (III) and (IV).

The results for the globally adaptive estimators under ALasso (i) show a com-

mon overfitting problem associated with adopting the unconstrained log-contrast

model. This is because the ALasso (i) procedure automatically includes the ref-

erence compositional covariate, which may not be a truly relevant covariate. The

results under ALasso (ii) suggest that the underlying zero-sum constraint of the

coefficients is not satisfied if it is not carefully accounted for in the estimation

procedure. In such a situation, interpreting the resulting coefficient estimates as

the effects of compositional covariates is problematic. The ALasso (iii) approach

renders satisfactory rates of correct fitting, but yields larger estimation errors

compared with those of the proposed method. The ALasso (iv) method tends to

overfit, with the percentages of overfitting above 25%. The enlarged estimation

errors and the overfitting behavior reflect the disadvantage of handling the zero-

sum constraint separately from the model estimation and variable selection. In

summary, the simulation results show the importance of the proposed globally

adaptive estimators, as well as their satisfactory empirical performance.

5. A Real-Data Example

We applied the proposed method to a longitudinal data set from the Feeding

Infants Right... from the STart (FIRST) study. The FIRST study is an ongoing

perspective observational study that has enrolled and followed up on children

with CF from the neonatal period. In this study, various diet-related biomark-

ers were collected repeatedly at prespecified CF care visits. For example, fecal

specimens were collected at approximately 2, 4, 6, 8, and 12 months of age for
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Table 1. Simulation results under Setup (IV) with dependent heterogeneous errors.

AEE`1 AEE`2 AEE`∞ NCN NIN PUF PCF POF SUM

(%) (%) (%)

Proposed

AW2 2.261 1.024 0.694 6.923 0.040 7.7 88.3 4.0 0.000

AW3 2.297 1.041 0.707 6.877 0.017 12.0 86.7 1.3 0.000

SS(0.2) 2.828 1.275 0.841 6.110 0.007 57.3 42.0 0.7 0.000

SS(0.5) 1.908 0.863 0.577 6.670 0.017 29.0 69.3 1.7 0.000

SS(0.8) 2.623 1.206 0.829 6.273 0.023 43.3 54.7 2.0 0.000

PS 2.277 1.034 0.702 6.970 0.257 3.0 74.0 23.0 0.000

ALasso (i)

AW2 2.456 1.067 0.706 6.917 1.030 8.0 0.7 91.3 0.000

AW3 2.491 1.084 0.718 6.860 1.010 13.3 0.7 86.0 0.000

ALasso (ii)

AW2 2.326 1.064 0.725 6.913 0.033 8.7 88.3 3.0 1.916

AW3 2.352 1.076 0.734 6.857 0.017 14.0 84.3 1.7 -2.315

ALasso (iii)

AW2 2.549 1.146 0.770 6.913 0.033 8.7 88.3 3.0 0.000

AW3 2.668 1.199 0.811 6.857 0.017 14.0 84.3 1.7 0.000

ALasso (iv)

AW2 2.294 1.030 0.685 6.963 0.380 3.7 63.7 32.7 0.000

AW3 2.305 1.035 0.690 6.957 0.347 4.3 65.0 30.7 0.000

each child. Gut microbiome composition data were then extracted from the fe-

cal specimens using 16S rRNA gene pyrosequencing, and comprise the relative

abundance of 364 unique genera subject to the unit-sum constraint. The level of

calprotectin, a biomarker for inflammation in the gastrointestinal (GI) tract, was

also tracked over time, and recorded in units of micrograms per gram of stool.

In our analysis of the FIRST data set, the specific question of interest is how

the gut microbiome composition is associated with the calprotectin level over

time. Identifying the subcompositional bacterial taxa linked to the variations in

calprotectin can provide useful insights into the early CF disease mechnisam.

The final data set includes 135 subjects and a total of 328 longitudinal

records, after excluding seven children with a low birth weight. Table S6 in the

Supplementary Material presents the basic summary statistics by gender, number

of longitudinal records, and calprotectin levels. The results show that 56% of the

subjects are boys, and about 50% of the subjects have three or four longitudinal

records. Furthermore, the calprotectin levels present a skewed distribution, with

the median (= 64.5) considerably smaller than the mean (= 111.2). In this case,

adopting longitudinal quantile regression modeling can deliver a more compre-
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hensive and robust view about how the gut microbiome composition influences

calprotectin levels.

In our analysis, we implement the proposed globally adaptive methods with

the adaptive weights (w2) and (w3) and ∆ = (0.2, 0.8] (denoted by AW2 and

AW3, respectively), the locally concerned adapive-Lasso method SS(τ) with τ =

0.2, 0.3, . . . , 0.8, and the pointwise method (denoted by PS), which is a union set

for SS(τ), with τ = 0.2, 0.225, . . . , 0.8. We include gender as a regular covari-

ate. The compositional covariates are the relative abundance of the 364 genera

measured from the gut microbiome samples. We exclude six genera that have

a relative abundance below the detection limit in all samples. In addition, we

replace all non-detectable relative abundance with an extremely small constant

10−20, which is much smaller than the minimum nonzero relative abundance cap-

tured in our data set, 4.418 × 10−6. For the tuning parameter selection, the

candidate values of λ include N/4 equally spaced grid points between N/150 and

N/15, where N = 328. To avoid selecting boundary λ, φn in the GIC is chosen

as log(log n) log p/(20n) for the globally concerned and locally concerned quantile

regressions. Estimates below 10−4 are shrunk to zero.

To evaluate each method, we compute the prediction errors as follows. We

first randomly split the 135 subjects into a training set of size 120 and a testing set

of size 15. We apply the method to the training data set and obtain the estimator

of (α0(τ)>,β0(τ)>)>, denoted by (α̂train(τ)>, β̂train(τ)>)>. Then, we calculate the

prediction error in the testing set as

PE(∆) =

∑
i∈T

∫
∆

∫∞
0 ρτ{Yi(t)−Xi(t)

>α̂train(τ)− Zi(t)
>β̂train(τ)}dNi(t)dτ∑n

i=1 1{i ∈ T }
,

where T denotes the test set. For SS(τ), we calculate PE(∆) by treating the

coefficient estimate as a constant-valued function over τ ∈ ∆.

Table 2 lists the genus sets selected using the different methods. The aver-

age prediction errors (PEs) and the corresponding standard deviations (within

parentheses) are also presented. The PE calculations are based on 200 random

splits of the training and test sets. Table 2 shows that the selected genus sets vary

considerably across the locally concerned methods, SS(τ), with different choices

of τ . These observations suggest that some genera may have varying effects on

different quantiles of calprotectin level, and, may also, in part, reflect the variable

selection instability associated with SS(τ) (Zheng, Peng and He (2015)). For ex-

ample, the genus “g115” may only affect median calprotectin, but not the lower

or upper quantiles. In contrast, the proposed globally concerned methods give
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Table 2. Analysis of the FIRST data set.

τ Method Selected Genus Sets PE

[0.2, 0.8] AW2 g50 g93 g115 g137 g147 g152 g162 g178 g184 0.5279 (0.0837)

g197 g204 g210 g213 g219 g297 g319 g370

AW3 g50 g93 g115 g147 g152 g162 g178 g197 0.5271 (0.0837)

g204 g210 g213 g219 g297 g319 g370

PS g14 g32 g50 g64 g93 g115 g119 g137 g147 0.5278 (0.0826)

g152 g153 g162 g178 g183 g184 g188 g193 g197

g199 g204 g210 g213 g219 g297 g319 g370

0.2 SS g147 g153 g213 0.7893 (0.1420)

0.3 SS None 0.6833 (0.1206)

0.4 SS g50 g93 g119 g147 g162 g183 0.6135 (0.1038)

g197 g199 g204 g213 g297

0.5 SS g14 g115 g137 g147 g193 g197 0.5855 (0.0976)

g204 g213 g219 g297 g319

0.6 SS None 0.5960 (0.0981)

0.7 SS g147 g152 g178 g184 g197 g204 0.6621 (0.1025)

g213 g297 g319 g370

0.8 SS g32 g147 g152 g162 g178 g197 g204 g213 0.7926 (0.1235)

robust and parsimonious selections of genus sets. For example, the selected genus

sets are almost identical between AW2 and AW3. The selected genera are mostly

also selected by one of the SS(τ). Naively pooling the results from the SS(τ), as

shown by the PS method, leads to selecting an excessive number of genera (i.e.,

26 genera). Some genera selected by SS(τ), but not by AW2 or AW3, are possi-

bly “false positives” as suggested by the apparent overfitting behavior of the PS

method demonstrated in the simulation studies. Moreover, the proposed method

AW3 yields the smallest prediction error. The prediction error of AW2 is close to

the second smallest value. The locally concerned SS(τ) methods produce larger

prediction errors, because they neglect important genera that do not show effects

at the τth quantile, but are relevant to other quantiles. In summary, the proposed

globally adaptive methods strike the best balance between parsimonious variable

selections and accurate predictions, while retaining sensible interpretations by

satisfying the zero-sum constraint of the coefficients.

6. Conclusion

In this work, we develop a globally concerned longitudinal quantile regres-

sion framework that accommodates high-dimensional compositional covariates.

The proposed method achieves the oracle convergence rate and the global model
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selection consistency, while enjoying interpretative advantages.

The longitudinal quantile regression model presented here assumes that no

covariate effects change over time. To accommodate temporal covariate effects,

model (2.1) or (2.2) can be extended with the regression coefficients formulated

as bivariate functions of τ and t. Intuitively, this can be achieved by combining

the proposed method with the strategy of Park and He (2017). That is, the lon-

gitudinal loss function can be modified by incorporating spline approximations of

the regression coefficient functions, with the penalty term adjusted accordingly.

Nevertheless, this approach may be computationally prohibitive because of the

additional high-dimensional layer induced by the spline approximations. Specif-

ically, suppose there are L spline basis functions and L = O(n1/5). Based on

the proposed estimation for model (2.1), the computational complexity is about

O(n2 · p ·M(n)), based on the result of Klee and Minty (1972) for the simplex

algorithm. When considering the spline-based estimation for the extended model

with time-varying coefficients, we expect that the computational intensity will be

roughly equivalent to that of fitting a quantile regression model for a data set with

sample size nM(n) and covariate dimension pL, which is about O(n2M(n)2pL).

Given M(n) = O(n), as suggested by Zheng, Peng and He (2015), tackling the

more flexible model with time-varying coefficients would require O(n6/5) times

the computational effort needed for the proposed model (2.1), which can be com-

putationally prohibitive for high-dimensional applications. How to address such

an obstacle merits future research.

After applying the proposed method to a real data set, assessing the adequacy

of model (2.1) with the prespecified quantile index set ∆ and the selected relevant

variables may be of practical interest. To this end, we can adapt the model-

checking strategy of Peng and Huang (2008), and consider the stochastic process

Kn(τ) = n−1/2
n∑
i=1

∫ ∞
0

W (Vi(t))ψτ{Yi(t)−Xi(t)
>α̂(τ)− Zi(t)

>β̂(τ)}dNi(t)

as an analogue of the martingale-based diagnostic process employed by Peng and

Huang (2008), where ψτ (u) = τ−I(u < 0). Here, W (·) is a known bounded func-

tion and Vi(t) = (Xi(t)
>,Zi(t)

>)>. A lack-of-fit test statistic can be constructed

based on supτ∈∆ |Kn(τ)|. Following the lines of Peng and Huang (2008), the

corresponding p-value can be obtained by using a properly designed resampling

scheme to approximate the distribution of Kn(·) under model assumption (2.1).

Following the idea of the weighted GEE (Liang and Zeger (1986)) and

the quasi-likelihood approach for a median regression (Jung (1996)), we can
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incorporate within-subject correlations of repeated measures to further improve

the estimation efficiency of the proposed method. Specifically, consider a weighted

penalized estimating equation,

n−1/2
n∑
i=1

V>iQi(τ ;α,β)−1Si(τ ;α,β) + λ

p∑
j=1

ωj(τ)sign(βj) = 0,

subject to constraint
∑p

j=1 βj =0, where Vi=(Vi(t
(1)
i ) . . . ,Vi(t

(mi)
i ))>, Si(τ ;α,β)

= (Si1(τ ;α,β), . . . , Si,mi
(τ ;α,β))> with Sik(τ ;α,β) = I(Yi(t

(k)
i )−Xi(t

(k)
i )>α−

Zi(t
(k)
i )>β ≤ 0)− τ , and Qi(τ ;α,β) is a working covariance matrix that approx-

imates the covariance of Si(τ ;α,β). When Qi(τ ;α,β) is an identity matrix Imi
,

solving this estimating equation is equivalent to minimizing (2.3), which adopts

the working independence assumption. However, note that the weighted estimat-

ing equation loses the nice monotonicity property possessed by the unweighted

version. In addition, the covariance of Qi(τ ;α,β) is often unknown in practice,

and its empirical estimate may not be stable when the sample size is not large,

as in the FIRST data set. One possible way to alleviate the computational issue

is to adopt an iterative algorithm in which we first solve the weighted estimat-

ing equation, with the parameters α and β in the weight function Qi(τ ;α,β)−1

fixed, and then update the weight function using the resulting parameter esti-

mates. In this case, the estimating equation in each iteration is still monotone.

Applying this strategy may improve the estimation efficiency, while still being

computationally viable. Investigating such a weighted method is left to future

research.

Supplementary Material

Detailed proofs of the lemmas and theorems and additional simulation studies

are provided in the online Supplementary Material.
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