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Abstract: Penalized likelihood models are widely used to simultaneously select vari-

ables and estimate model parameters. However, the existence of weak signals can

lead to inaccurate variable selection, biased parameter estimation, and invalid in-

ference. Thus, identifying weak signals accurately and making valid inferences are

crucial in penalized likelihood models. We develop a unified approach to identify

weak signals and make inferences in penalized likelihood models, including the spe-

cial case when the responses are categorical. To identify weak signals, we use the

estimated selection probability of each covariate as a measure of the signal strength

and formulate a signal identification criterion. To construct confidence intervals,

we propose a two-step inference procedure. Extensive simulation studies show that

the proposed procedure outperforms several existing methods. We illustrate the

proposed method by applying it to the Practice Fusion diabetes data set.

Key words and phrases: Adaptive Lasso, de-biased method, model selection, post-

selection inference.

1. Introduction

In the big data era, massive data are collected with large-dimensional co-

variates. However, only some of the covariates might be important. To select

the important variables and estimate their effects on the response variable, vari-

ous penalized likelihood models have been proposed, such as the penalized least

squares regression model (Tibshirani (1996); Zou and Hastie (2005); Tibshirani

et al. (2005); Yuan and Lin (2006); Zou (2006); Zhang (2010)), penalized logis-

tic regression model (Park and Hastie (2008); Zhu and Hastie (2004); Wu et al.

(2009)), and penalized Poisson regression model (Lambert and Eilers (2005); Jia,

Xie and Xu (2019)).

To achieve model selection consistency or the variable screening property for

a high-dimensional problem, a common condition is the “beta-min” condition,
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which requires the nonzero regression coefficients to be sufficiently large (Zhao

and Yu (2006); Huang and Xie (2007); van de Geer, Bühlmann and Zhou (2011);

Tibshirani (2011); Zhang and Jia (2022)). Therefore, classical methods for vari-

able selection often focus on strong signals that satisfy such a condition. However,

if the “beta-min” condition is violated, the important variables and unimportant

variables may be inseparable, and the true important variables might not be se-

lected, even if the sample size goes to infinity (Zhang (2013)). In finite samples,

the estimators shrink the true regression coefficients, owing to the penalty func-

tion. When the signal strength is weak, its coefficient is more likely to shrink to

zero (Shi and Qu (2017); Liu, Xu and Li (2020)). Inaccurate variable selection

and biased parameter estimation could lead to a poor post-selection inference, for

example, the estimation of the confidence intervals could be inaccurate. Thus,

both strong and weak signals need to be considered. Identification and inference

for weak signals can also help discover potentially important variables in prac-

tice. For example, in genome-wide association studies (GWAS), overlooked risk

factors for a disease may be recovered by incorporating weak signals (Liu, Xu

and Li (2020)).

For linear regression models, studies have been done on weak signals. In

more extreme cases, Jin, Zhang and Zhang (2014) assumed all signals were in-

dividually weak and proposed graphlet screening for variable selection. Zhang

(2017) proposed the perturbed lasso, where signals were strengthened by adding

random perturbations to the design matrix. However, these methods focused

only on variable selection consistency, and did not aim to identify weak signals

or provide statistical inference. For weak signal identification and inference, Shi

and Qu (2017) proposed a weak signal identification procedure in finite samples,

and introduced a two-step inference method for constructing confidence intervals

after signal identification. However, their derivation relies on a crucial assump-

tion that the design matrix is orthogonal, which may not hold in practice. On the

other hand, Li et al. (2019) took advantage of the correlations between covariates,

detecting weak signals through the partial correlations between strong and weak

signals. However, they did not study weak signal inference. Recently, Liu, Xu

and Li (2020) proposed a method that combines the bootstrap lasso and a partial

ridge regression for constructing confidence intervals when there are weak signals

in the covariates. However, as stated in their paper, the confidence intervals of

the coefficients, with magnitudes of order 1/
√
n, may be invalid.

To the best of our knowledge, there has been little work on weak signals in

likelihood-based models for categorical responses. One exception is Reangsephet,

Lisawadi and Ahmed (2019), who proposed variable selection methods for logistic
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regression models with weak signals. However, they did not conduct weak signal

identification or inference.

We address these gaps by developing a new unified approach to weak signal

identification and inference in penalized likelihood models, including the special

case when the responses are categorical. Specifically, the estimated probability

of each covariate being selected by the one-step adaptive lasso estimator is used

to measure the signal strength. After signal identification, a two-step inference

procedure is proposed to construct the confidence intervals for the regression

coefficients. The proposed method has several advantages. First, we extend the

method of Shi and Qu (2017) from linear regression models to likelihood-based

models, including generalized linear models. However, our extension is not trivial.

For example, in Shi and Qu (2017), the selection probability has an explicit

expression. For the proposed likelihood-based method, such an explicit expression

does not exist for categorical responses. Thus, we propose a new method to

estimate the selection probability. Second, in Shi and Qu (2017), the selection

probability for the covariate Xj is an increasing function of |βj0|, where βj0 is

the corresponding coefficient of Xj . Under our current general framework, such a

conclusion is not necessarily true. Thus, our signal identification criterion is based

directly on the estimated selection probability, in contrast to Shi and Qu (2017).

We also discuss how each signal’s selection probability is influenced by other

covariates, owing to nonlinear modeling or collinearity among the covariates; in

Shi and Qu (2017), the selection probability of one covariate is independent of

those of other covariates. Third, Shi and Qu (2017) assumed that the design

matrix in a linear regression model is orthogonal, whereas the proposed method

relaxes this constraint. Fourth, the proposed inference method differs from that

of Shi and Qu (2017). Specifically, we construct confidence intervals for the noise

variables as well, whereas their method does not. Simulation results show that our

proposed two-step inference method outperforms the two-step inference method

based on Shi and Qu (2017). In particular, the proposed confidence intervals

achieve accurate coverage probabilities for all signal strength levels.

The remainder of this paper is organized as follows. In Section 2, we introduce

the one-step adaptive lasso estimator and derive the variable selection condition.

In Section 3, we propose the weak signal identification criterion. In Section 4, we

develop a two-step inference procedure for constructing confidence intervals. In

Section 5, we conduct simulation studies to assess the finite-sample performance

of the proposed method. In Section 6, we apply the proposed method to an

analysis of diabetes data. In Section 7, we provide brief concluding remarks.

We provide the technical proofs, implementation details of several methods, and
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some additional results in the Supplementary Material.

2. One-Step Adaptive Lasso Estimator and Variable Selection Condi-

tion

In this section, we introduce the one-step penalized likelihood estimator and

derive the condition for variable selection, which we use later for weak signal

identification and inference.

Let (x>1 , y1)
>, . . . , (x>n , yn)> be n independent and identically distributed

(i.i.d.) random vectors, where xi = (xi1, . . . , xip)
> is a p × 1 vector of pre-

dictors and yi is a response variable. Assume that yi depends on xi through

a linear combination x>i β0, and the conditional log-likelihood of yi given xi is

`i(γ0) = `i(α0 + x>i β0, yi), where γ0 = (α0,β
>
0 )>, α0 is an unknown true loca-

tion parameter, and β0 = (β10, . . . , βp0)
> is an unknown p × 1 vector of covari-

ate effects. Note that for a likelihood-based model, it is not always possible to

eliminate the location parameter by centering the covariates and the response

variable. For simplicity, assume p < n and p is fixed. Let `(γ) =
∑n

i=1 `i(γ)

denote the log-likelihood. Assume γ(0) is the maximum likelihood estimator of

γ0; then, γ(0) = (α(0),β(0)>)> = argmaxγ`(γ). In matrix notation, we set X =

(x1, . . . ,xn)> = (X1, . . . ,Xp), with Xj = (x1j , . . . , xnj)
> and Y = (y1, . . . , yn)>.

Furthermore, denote x̃i = (1,x>i )> and X̃ = (1,X), where 1 is an n × 1 vector

with all elements equal to one. Throughout this paper, we assume that E(xij) = 0

and Var(xij) = 1, for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, which can be realized

by standardizing the covariate matrix X, in practice.

Assume that some components of β0 are zero. In order to estimate the model

parameters and select important variables simultaneously, we consider the penal-

ized likelihood function `(γ)/n−
∑p

j=1 pλj
(|βj |), where pλj

(·) is a penalty function

controlled by the tuning parameter λj . One popular penalty function is derived

from the adaptive lasso estimator (Zou (2006)), where pλj
(|βj |) = λ|βj |/|β(0)j |.

Maximizing the penalized likelihood function is equivalent to minimizing

− 1

n
`(γ) +

p∑
j=1

pλj
(|βj |) (2.1)

with respect to γ. According to Wang and Leng (2007) and Zou and Li (2008),

if the log-likelihood function has first and second derivatives, then it can be

approximated by a Taylor expansion. Furthermore, the objective function (2.1)
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can be approximated by

Q1(γ) = − 1

2n
(γ − γ(0))> ῭(γ(0))(γ − γ(0)) +

p∑
j=1

pλj
(|βj |), (2.2)

where ῭(·) is the second derivative of function `(·). The one-step penalized like-

lihood estimator is γ(1) = (α(1),β(1)>)> = argminγQ1(γ).

Denote µi(γ) = µi = x̃>i γ and `i{µi(γ)} = `i(x̃
>
i γ, yi). Let D(γ) be an

n × n diagonal matrix with the (i, i)th element Dii(γ) = −∂2`i{µi(γ)}/∂µ2i , for

i = 1, . . . , n. Then, ῭(γ) = −X̃>D(γ)X̃. Furthermore, we assume Dii(γ) is

a continuous function of γ. For simplicity, denote D(γ(0)), D(γ0), Dii(γ
(0)),

and Dii(γ0) as D(0), D0, D
(0)
ii , and D0,ii, respectively. By solving the equation

∂Q1(γ)/∂α = 0, we obtain that

α− α(0) = (1>D(0)1)−11>D(0)X(β(0) − β). (2.3)

Replacing α − α(0) by (2.3) in (2.2), we obtain the following objective function

Q2(β):

Q2(β) =
1

2n
(β − β(0))>X>D†(0)X(β − β(0)) +

p∑
j=1

pλj
(|βj |)

=
1

2n
(β − β(0))>X>D?(0)>D?(0)X(β − β(0)) +

p∑
j=1

pλj
(|βj |),

(2.4)

where D†(0) = D(0)−D(0)1(1>D(0)1)−11>D(0) and D?(0) = (D(0))1/2−(D(0))1/2

1(1>D(0)1)−11>D(0). Denote D†0 = D0−D01(1>D01)−11>D0 and D?
0 = D

1/2
0 −

D
1/2
0 1(1>D01)−11>D0, correspondingly.

We focus mainly on weak signal identification using the one-step adaptive

lasso estimator. However, our method can be extended to other penalized like-

lihood estimators. Following the idea of Zou and Li (2008), the algorithm for

computing the one-step adaptive lasso estimator γ(1) is as follows:

Step 1. Create the working data by X? = D?(0)XW and Y ? = D?(0)Xβ(0),

where W = diag{|β(0)1 |, . . . , |β
(0)
p |}.

Step 2. Apply the coordinate descent algorithm to solve

β̂? = argmin
β

 1

2n

n∑
i=1

y?i − p∑
j=1

x?ijβj

2

+ λ

p∑
j=1

|βj |

 , (2.5)
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where β̂? = (β̂?1 , . . . , β̂
?
p)>, y?i is the ith element of Y ? and x?ij is the

(i, j)th element of X?.

Step 3. Obtain the value of β(1) = (β
(1)
1 , . . . , β

(1)
p )> using β

(1)
j = β̂?j |β

(0)
j |, for

j = 1 . . . , p.

Step 4. Obtain the value of α(1) as α(1) = (1>D(0)1)−11>D(0)X(β(0) − β(1)) +

α(0).

From the above algorithm, if β̂?j 6= 0, then the covariate Xj will be selected.

According to (2.5), by using the coordinate descent algorithm, we obtain that

β̂?j = s


∑n

i=1

(
y?i −

∑
k 6=j x

?
ikβ̂

?
k

)
x?ij∑n

i=1(x
?
ij)

2
,

nλ∑n
i=1(x

?
ij)

2

 ,

where s(z, r) = sgn(z)(|z| − r)+. Then, the condition for β̂?j 6= 0 (β
(1)
j 6= 0) is∣∣∣∣∣∣

∑n
i=1

(
y?i −

∑
k 6=j x

?
ikβ̂

?
k

)
x?ij∑n

i=1(x
?
ij)

2

∣∣∣∣∣∣ > nλ∑n
i=1(x

?
ij)

2
. (2.6)

For each i ∈ {1, . . . , n} and s ∈ {1, . . . , n}, let d
(0)
is be the (i, s)th element of

D?(0). Then the variable selection condition (2.6) is equivalent to∣∣∣∣∣∣
n∑
i=1

(
n∑
s=1

d
(0)
is xsj

)2

(β
(0)
j )2 +

∑
k 6=j

n∑
i=1

(
n∑
s=1

d
(0)
is xsk

)(
n∑
s=1

d
(0)
is xsj

)
β
(0)
j (β

(0)
k − β

(1)
k )

∣∣∣∣∣∣
> nλ. (2.7)

Similarly to the proof in Zou and Li (2008), we obtain that if the tuning

parameter λ satisfies the conditions of
√
nλ → 0 and nλ → ∞, then the one-

step adaptive lasso estimator enjoys model selection consistency, and the nonzero

one-step adaptive lasso estimators have the property of asymptotic normality.

3. Weak Signal Definition and Identification

3.1. Weak signal definition

Suppose a model contains both strong and weak signals. Without loss of

generality, assume the covariate matrix X consists of three components, that

is, X = {X(S),X(W ),X(N)}, where X(S), X(W ), and X(N) represent the sub-

sets of strong signals, weak signals, and noise variables, respectively. Following
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Shi and Qu (2017), we use the selection probability of each covariate to measure

the signal strength. Specifically, for any penalized model selection estimator

β̂ = (β̂1, . . . , β̂p)
>, we define Pd,j as the probability of selecting the covariate

Xj , that is, Pd,j = P (β̂j 6= 0), j ∈ {1, . . . , p}. For the one-step adaptive lasso

estimator β(1) = (β
(1)
1 , . . . , β

(1)
p )>, based on the variable selection condition (2.7),

Pd,j does not have an explicit form. However, in the Supplementary Material S1,

we show that Pd,j can be approximated by P ∗d,j , where

P ∗d,j = Φ

−
√
λE(D0,ii)/[E(D0,iix2ij)E(D0,ii)− {E(D0,iixij)}2] + βj0√

{E(X̃>D0X̃)}−1j+1,j+1


+Φ

−
√
λE(D0,ii)/[E(D0,iix2ij)E(D0,ii)− {E(D0,iixij)}2]− βj0√

{E(X̃>D0X̃)}−1j+1,j+1

. (3.1)

Intuitively, in the derivation of the selection probability, we can omit the terms of

(S2) and (S3) in the Supplementary Material S1, and simplify the calculation us-

ing asymptotic theory. Then we can relax the orthogonality assumption required

in Shi and Qu (2017). We require the following mild assumption to ensure (3.1)

is valid.

Assumption 1. For each i ∈ {1, . . . , n} and j ∈ {1, . . . , p}, P (D0,ii > 0) = 1,

E(D0,ii) <∞, E(D0,iix
2
ij) <∞, and E(X̃>D0X̃) is positive definite.

The condition P (D0,ii > 0) = 1 implies that the conditional log-likelihood

function of yi given xi, `i{µi(γ)}, is a concave function of µi(γ). This is a

necessary condition for the uniqueness of the maximum likelihood estimator γ(0).

In addition, according to the Cauchy–Schwarz inequality, this also ensures that

E(D0,iix
2
ij)E(D0,ii) − {E(D0,iixij)}2 > 0. The conditions of E(D0,ii) < ∞ and

E(D0,iix
2
ij) <∞ guarantee that all expectations of random variables in (3.1) are

bounded for finite n. The positive-definite condition of E(X̃>D0X̃) is a necessary

condition for the asymptotic normality of the maximum likelihood estimator γ(0),

and ensures {E(X̃>D0X̃)}−1j+1,j+1 > 0.

For a deeper understanding of P ∗d,j , we first study the asymptotic properties

of P ∗d,j . When βj0 = 0,

P ∗d,j = 2Φ

−
√
nλE(D0,ii)/[E(D0,iix2ij)E(D0,ii)− {E(D0,iixij)}2]√

{E(X̃>D0X̃)/n}−1j+1,j+1

 .
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Under Assumption 1, [E(D0,iix
2
ij)E(D0,ii)− {E(D0,iixij)}2]/E(D0,ii) and {E(X̃>

D0X̃)/n}−1j+1,j+1 are both positive and bounded. If nλ→∞, then P ∗d,j → 0.

When βj0 6= 0,

P ∗d,j = Φ

−√n
[√

λE(D0,ii)/[E(D0,iix2ij)E(D0,ii)− {E(D0,iixij)}2]− βj0
]

√
{E(X̃>D0X̃)/n}−1j+1,j+1


+Φ

−√n
[√

λE(D0,ii)/[E(D0,iix2ij)E(D0,ii)− {E(D0,iixij)}2] + βj0

]
√
{E(X̃>D0X̃)/n}−1j+1,j+1

 .

If
√
nλ→ 0, then P ∗d,j → 1 under Assumption 1.

These asymptotic properties of P ∗d,j are consistent with the conclusion that

the one-step adaptive lasso estimator enjoys model selection consistency if λ

satisfies the conditions of
√
nλ→ 0 and nλ→∞.

In the following, we study the finite-sample properties of P ∗d,j . To illustrate,

we first consider three special cases, where the likelihood-based model is taken

as a linear regression model, a logistic regression model, and a Poisson regression

model, respectively.

Case One: Linear regression model

We first illustrate the simplest case under the linear regression model setting.

Let yi = α0 + x>i β0 + εi, where εi
i.i.d.∼ N (0, σ2); then, D0,ii = 1/σ2. If we assume

corr(xij , xik) = 0 for any k, k 6= j, then

P ∗d,j = Φ

(
βj0 −

√
λσ

σ/
√
n

)
+ Φ

(
−βj0 −

√
λσ

σ/
√
n

)
.

Note that if the tuning parameter λ is replaced by λShi = λσ2, then P ∗d,j has the

same form as that in Shi and Qu (2017), where the covariate matrix is assumed

to be orthogonal. In this case, P ∗d,j does not depend on γ−j0 , where γ−j0 stands

for the components in γ0 other than βj0. In addition, given any values in P ∗d,j
except βj0, P

∗
d,j is a symmetric function of βj0 and increases with |βj0|. Thus,

both P ∗d,j and |βj0| can be used to measure the signal strength of Xj , as shown

in Shi and Qu (2017).
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Figure 1. The plots for P ∗d,1 as β10 varies under three different cases in linear regres-
sion models. In case 1, the correlation structure of X is taken to be the independence
correlation structure; in case 2, the correlation structure of X is taken to be the AR(1)
correlation structure with ρ = 0.5; in case 3, the correlation structure of X is taken to
be the exchangeable correlation structure with ρ = 0.5. In all cases, n = 100, p = 5,
λ = 0.2, σ = 1, and β10 varies between −1 and 1, with a step size of 0.05.

However, if corr(xij , xik) 6= 0; for some k, k 6= j, then

P ∗d,j = Φ

 βj0 −
√
λσ

σ
/[√

n
√
{corr(X̃)}−1j+1,j+1

]
+Φ

 −βj0 −
√
λσ

σ
/[√

n
√
{corr(X̃)}−1j+1,j+1

]
 .

Thus, P ∗d,j also depends on the correlations between covariates. Given any values

in P ∗d,j except βj0, P
∗
d,j is still a symmetric function of βj0 and an increasing

function of |βj0|. However, under different correlation structures of X̃, the shape

of P ∗d,j can vary with the value of βj0. Therefore, both the value of |βj0| and the

correlation structure of X̃ influence the signal strength of Xj , as illustrated in

Figure 1.

Case Two: Logistic regression model

Under the logistic regression model setting,

E(yi|xi) = pi =
exp(α0 + x>i β0)

1 + exp(α0 + x>i β0)
.

We obtain that in (3.1), D0,ii = pi(1− pi) and D0 = diag{p1(1− p1), . . . , pn(1−
pn)}. Thus, P ∗d,j not only depends on βj0, but also depends on γ−j0 , the coeffi-
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Figure 2. The plots for P ∗d,1 as β10 varies under three different cases in logistic regression
models. In case 1, X1 and X2 both follow the standard normal distribution, and X1

and X2 are independent; in case 2, X1 and X2 both follow the centralized exponential
distribution with mean zero and variance one, and X1 and X2 are independent; in case
3, X1 and X2 both follow the standard normal distribution, and X1 and X2 have the
correlation of 0.5. In all cases, n = 300, γ0 = (0.3, β10, 0.2)′, λ = 0.05, and β10 varies
between −1 and 1, with a step size of 0.05.

cients of the other covariates. This is a fundamental difference between logistic

regression models and linear regression models in terms of selection probability.

In contrast to linear regression models, xi influences P ∗d,j through the matrix

E[X̃>diag{p1(1−p1), . . . , pn(1−pn)}X̃], rather than through the correlation ma-

trix of X̃, in logistic regression models. In addition, in the Supplementary Mate-

rial S2.1, we show that P ∗d,j is not necessarily a symmetric function of βj0, given

other values in P ∗d,j . Thus, |βj0| cannot be used to measure the signal strength

of Xj instead of P ∗d,j , which differs from Shi and Qu (2017).

In addition, for the logistic regression model, the range of γ0 is bounded so

that pi can satisfy the condition 0 < c1 < pi < c2 < 1, where c1 and c2 are some

positive constants. We show that, given any values in P ∗d,j except βj0, P
∗
d,j is an

increasing function of βj0 if 0 < βj0 < c3, and P ∗d,j is a decreasing function of βj0
if −c4 < βj0 < 0, where c3 and c4 are some bounded positive constants depending

on c1 and c2. Proofs of the above findings are provided in the Supplementary

Material S2.2. We also illustrate these properties in Figure 2. Note that in this

case, the response variable has two categories. However, it can be easily extended

to the case where there are more than two categories.
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Figure 3. The plots for P ∗d,1 as β10 varies under three different cases in Poisson regression
models. In case 1, X1 and X2 both follow the standard normal distribution, and X1

and X2 are independent; in case 2, X1 and X2 both follow the centralized exponential
distribution with mean 0 and variance 1, and X1 and X2 are independent; in case 3,
X1 and X2 both follow the standard normal distribution, and X1 and X2 have the
correlation of 0.5. In all cases, n = 300, γ0 = (0.3, β10, 0.2)′, λ = 0.05, β10 varies between
−0.95 and 0.95, with a step size of 0.05.

Case Three: Poisson regression model

Under the Poisson regression model setting,

P (yi = y|xi) =
λyi
y!

exp(−λi),

where λi = E(yi|xi) = exp(α0 + x>i β0). Then, in (3.1), D0,ii = λi and D0 =

diag{λ1, . . . , λn}. We obtain similar conclusions to those for logistic regression

models, except that P ∗d,j is influenced by xi through the matrix E[X̃>diag{λ1, . . . ,
λn}X̃]. Note that under Assumption 1, the range of γ0 is bounded. Given any

other values in P ∗d,j except βj0, P
∗
d,j is an increasing function of βj0 if 0 < βj0 < c5,

and P ∗d,j is a decreasing function of βj0 if −c6 < βj0 < 0, where c5 and c6 are

some bounded positive constants. The proof for this finding is provided in the

Supplementary Material S2.2. Figure 3 illustrates P ∗d,j .

The finite-sample properties of P ∗d,j under other likelihood-based models can

be analyzed similarly. In general, P ∗d,j is a comprehensive indicator. It shows how

the selection probability of Xj is influenced by γ0, xi, n, and λ in finite samples.

Given other values in P ∗d,j except βj0, P
∗
d,j is not necessarily a symmetric function

of βj0 or an increasing function of |βj0|.
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Based on the above analysis, we propose using P ∗d,j to measure the signal

strength levels directly, rather than using |βj0|. Intuitively, if P ∗d,j is close to one,

then the variable Xj is defined to be a strong signal; if P ∗d,j is close to zero, then

the variable Xj is defined to be a noise variable; if P ∗d,j lies between the strong

and noise levels, then the variable Xj is defined to be a weak signal. Specifically,

we introduce two threshold values, δs and δw. Then the three levels of signal

strength can be defined as
Xj ∈ X(S), if P ∗d,j > δs;

Xj ∈ X(W ), if δw < P ∗d,j ≤ δs;
Xj ∈ X(N), if P ∗d,j ≤ δw,

(3.2)

where 0 < τw ≤ δw < δs ≤ τ s ≤ 1, τw = minj P
∗
d,j , and τ s = maxj P

∗
d,j . Obvi-

ously, it is easier to select a stronger signal using the variable selection process

than it is to select a weaker signal.

3.2. Weak signal identification

In this section, we show how to identify weak signals. Based on the analysis

in Section 3.1, the approximated selection probability P ∗d,j depends on the true

parameter γ0 and the distribution of xi, but they are always unknown in prac-

tice. In the following, we estimate P ∗d,j by plugging in the maximum likelihood

estimator γ(0) and the empirical mean of the random variables in (3.1). That is,

P̂ ∗d,j = Φ

−
√

(nλ
∑n

i=1D
(0)
ii )/{

∑n
i=1D

(0)
ii x

2
ij

∑n
i=1D

(0)
ii −(

∑n
i=1D

(0)
ii xij)

2}+β(0)j√
(X̃>D(0)X̃)−1j+1,j+1


+Φ

−
√

(nλ
∑n

i=1D
(0)
ii )/{

∑n
i=1D

(0)
ii x

2
ij

∑n
i=1D

(0)
ii −(

∑n
i=1D

(0)
ii xij)

2}−β(0)j√
(X̃>D(0)X̃)−1j+1,j+1

.
(3.3)

In practice, we identify the signal strength level of Xj based on P̂ ∗d,j , and in-

troduce two threshold values δ1 and δ2. We denote the identified subsets of strong

signals, weak signals, and noise variables as Ŝ(S), Ŝ(W ), and Ŝ(N), respectively:
Ŝ(S) = {j : P̂ ∗d,j > δ1};
Ŝ(W ) = {j : δ2 < P̂ ∗d,j ≤ δ1};
Ŝ(N) = {j : P̂ ∗d,j ≤ δ2}.

(3.4)
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The selections of δ1 and δ2 are crucial to determining the signal type. The

threshold value δ1 is selected to ensure that we can identify strong signals when

the selection probabilities of signals are high. Assume α is a significance level,

and we choose δ1 to be larger than 1 − α, so that the identified strong signals

are strong. The threshold value δ2 is selected to control the false positive rate of

selecting variable Xj . Denote the false positive rate as τ . Then τ can be defined

as

τ = P (j /∈ Ŝ(N) | βj0 = 0,γ−j0 ) = P (P̂ ∗d,j > δ2 | βj0 = 0,γ−j0 ). (3.5)

Thus, δ2 can be estimated based on (3.5). Because the value of γ0 is unknown

in practice, we estimate it using the one-step adaptive lasso estimator γ(1). Fur-

thermore, to make the estimated value of the false positive rate equal to τ based

on the observed data, we take the value of δ2 as the 100(1 − τ)% quantile of

{P̂ ∗d,j : β
(1)
j = 0, j = 1, . . . , p}. Because we intend to recover weak signals given

finite samples, τ is chosen to be larger than zero. However, the value of τ cannot

be too large, because there is a trade-off between recovering weak signals and

including noise variables. In practice, if we want to recover more weak signals,

we can choose a larger τ ; if we want to make the false positive rate lower, we can

choose a smaller τ . In the simulation studies, we perform a sensitivity analysis

for the choice of δ1 and τ .

4. Weak Signal Inference

In this section, we propose a two-step inference procedure for constructing

confidence intervals for the regression coefficients. The procedure consists of two

parts: if a covariate is identified as a strong signal, then its confidence interval

is constructed based on the asymptotic theory for the nonzero one-step adaptive

lasso estimator (Zou and Li (2008)); if a covariate is identified as a weak signal

or a noise variable, then we provide a confidence interval based on the following

inference theory for the maximum likelihood estimator.

Similarly to the theory in Zou and Li (2008), we can obtain the asymptotic

distribution of the one-step adaptive lasso estimator. Without loss of generality,

assume An = {1, . . . , s}, where s is the number of nonzero elements in β(1).

Define Bn = {k : γ
(1)
k 6= 0, k = 1, . . . , p+ 1}, then Bn = {1, . . . , s+ 1}. Although

the one-step adaptive lasso estimator β
(1)
An

is biased, owing to the shrinkage effect

in finite samples, we can construct a de-biased confidence interval for the true

coefficient based on the estimated bias and covariance matrix for β
(1)
An

, as shown

in Theorem 1. The proof of Theorem 1 is given in the Supplementary Material

S3.
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Theorem 1. Denote X>D†(0)X and X̃>D(0)X̃/n as Z(0) and I(0), respectively.

The estimators of the bias and the covariance matrix of β
(1)
An

are given by

b̂ias(β
(1)
An

) = −
{

1

n
Z
(0)
An

+Σλ(β
(0)
An
,β

(1)
An

)

}−1( λ

|β(0)1 |
sgn(β

(1)
1 ), . . . ,

λ

|β(0)s |
sgn(β(1)s )

)>
,

and

ĉov(β
(1)
An

) =
1

n3

{
1

n
Z
(0)
An

+ Σλ(β
(0)
An
,β

(1)
An

)

}−1
Z
(0)
An
{(I(0)Bn

)−1}An
Z
(0)
An

×
{

1

n
Z
(0)
An

+ Σλ(β
(0)
An
,β

(1)
An

)

}−1
,

respectively, where Σλ(β
(0)
An
,β

(1)
An

)=diag{λ/(|β(0)1 ||β
(1)
1 |), . . . , λ/(|β

(0)
s ||β(1)s |)}, Z

(0)
An

is the sub-matrix of Z(0) corresponding to β
(0)
An

, and I
(0)
Bn

is the sub-matrix of I(0)

corresponding to γ
(0)
Bn

.

Based on Theorem 1, if the covariate Xj is identified as a strong signal, then

the 100(1− α)% confidence interval for βj0 can be constructed as

(β
(1)
j − b̂j − zα/2σ̂j , β

(1)
j − b̂j + zα/2σ̂j), (4.1)

where b̂j is the corresponding component of b̂ias(β
(1)
An

) and σ̂j is the positive

square root of the corresponding diagonal component of ĉov(β
(1)
An

).

If the covariate Xj is identified as a weak signal or a noise variable, then the

100(1− α)% confidence interval for βj0 can be constructed as

(β
(0)
j − zα/2σ

(0)
j , β

(0)
j + zα/2σ

(0)
j ), (4.2)

where σ
(0)
j is the positive square root of the corresponding diagonal component

of ĉov(γ(0)) = (X̃>D(0)X̃)−1.

Remark 1. Note that Shi and Qu (2017) did not construct confidence intervals

for the noise variables, whereas we do. As shown in Figure 6 in the simulation

studies, this improves the coverage probabilities for the noise variables and weak

signals. Using the two-step inference method based on Shi and Qu (2017), the

coverage probabilities for the noise variables tend to be lower than 1 − α, and

the coverage probabilities for weak signals tend to be higher than 1− α. This is

because one will construct confidence intervals for the noise variables only when

the noise variables are misidentified as weak signals or strong signals, in which



WEAK SIGNAL IDENTIFICATION AND INFERENCE 773

case the estimated values of the coefficients tend to be far from the true values,

leading to lower coverage probabilities; one will not construct confidence intervals

for the weak signals when the weak signals are misidentified as noise variables,

making the coverage probabilities of the confidence intervals higher. To solve

these problems, we propose constructing confidence intervals for the identified

noise variables as well. As a result, the coverage probabilities of the confidence

intervals become closer to 1− α.

In summary, our proposed confidence interval for βj0 can be written as

(β
(1)
j − b̂j − zα/2σ̂j , β

(1)
j − b̂j + zα/2σ̂j)I{j ∈ Ŝ(S)}

+(β
(0)
j − zα/2σ

(0)
j , β

(0)
j + zα/2σ

(0)
j )I{j ∈ Ŝ(W ) ∪ Ŝ(N)}, (4.3)

which combines both (4.1) and (4.2).

5. Simulation Studies

In this section, we conduct simulation studies to evaluate the finite-sample

performance of the proposed signal identification criterion and two-step inference

procedure. Consider the following logistic regression model:

P (yi = 1 | xi) =
exp(α0 + x>i β0)

1 + exp(α0 + x>i β0)
, i = 1, . . . , n.

We generate the covariate vector xi = (xi1, . . . , xip)
> from a multivariate normal

distribution with mean zero and covariance matrix R(ρ)σ2, where R(ρ) is a

correlation matrix with the AR(1) correlation structure and σ2 = 1. All the

generated covariates are standardized by subtracting their sample means and

dividing by their sample standard deviations. For each setting, we choose n = 350

or 550, p = 25 or 35, ρ = 0, 0.2, or 0.5, and α0 = 0.5. The regression coefficient

vector β0 is set to (1, 1, 0.5, θ, 0, . . . , 0︸ ︷︷ ︸
p−4

)>, which consists of two large coefficients

1, one moderate size coefficient 0.5, one varying coefficient θ, and (p − 4) zero

coefficients. The coefficient θ ranges from zero to one, with a step size of 0.05. In

each simulation setting, we repeat the simulations 500 times. The implementation

details of the one-step adaptive lasso estimators are given in the Supplementary

Material S4.

Figure 4 displays the results for different types of selection probability for X4

when ρ = 0. In Figure 4, the approximated selection probability based on (3.1)

is close to the empirical selection probability, indicating a small approximation
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error from the approximated selection probability. In addition, both the em-

pirical selection probability and the approximated selection probability increase

with θ, implying that a larger value of θ leads to a stronger signal strength. This

observation supports the result in Section 3.1. Although the median of the esti-

mated selection probabilities is not too close to the empirical selection probability

when θ is small, the estimated selection probability still increases with the signal

strength. We can still use the estimated selection probability to identify the signal

strength level. The simulation results for the correlated covariates are provided

in Figures S1 and S2 of the Supplementary Material S5, and the approximated

selection probability is similar to the empirical selection probability. In addition,

the empirical selection probability, approximated selection probability, and esti-

mated selection probability, in general, increase with the value of θ. Thus, we

can also identify the signal strength level based on the value of θ.

We then identify whether a covariate is a strong signal, weak signal, or noise

variable based on the criterion in (3.4). For illustration, we choose δ1 to be

0.99 and τ to be 0.1. Figure 5 represents the empirical probabilities of assigning

the covariate X4 to different signal categories as θ varies and ρ = 0. Figure 5

shows that when θ is close to zero, X4 is more likely to be identified as a noise

variable; when θ is far away from zero and one, the empirical probability of X4

being identified as a weak signal is highest; as θ becomes larger, the empirical

probability of X4 being identified as a strong signal becomes more dominant, and

gradually increases to one. The results for the correlated covariates are given

in Figures S3 and S4 of the Supplementary Material S5, and we have similar

findings. Therefore, our proposed signal identification criterion (3.4) performs

well in practice.

After identifying the signal strength levels, we construct the 95% confidence

intervals based on the proposed two-step inference procedure. We also compare

our method with the two-step inference method based on Shi and Qu (2017),

which does not construct confidence intervals for the identified noise variables.

In addition, we construct confidence intervals based on the asymptotic theory for

the one-step adaptive lasso estimator, as shown in (4.1), the maximum likelihood

estimation method, as shown in (4.2), the perturbation method (Minnier, Tian

and Cai (2011)), the estimating equation-based method (Neykov et al. (2018)),

the standard bootstrap method (Efron and Tibshirani (1994)), the smoothed

bootstrap method (Efron (2014)), the de-biased lasso method (Javanmard and

Montanari (2014); van de Geer et al. (2014); Zhang and Zhang (2014)), and

two different types of bootstrap de-biased lasso methods (Dezeure, Bühlmann

and Zhang (2017)). The number of bootstrap resampling is set to 4,000 for all
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Figure 4. Different types of selection probability for X4 when ρ = 0. Pdem: empirical
selection probability, which is equal to the empirical probability of {θ(1) 6= 0} based on
500 Monte Carlo samples; Pdapproxi: approximated selection probability based on (3.1),
where the expectations in (3.1) are calculated by using the function cubintegrate in R;
Pdest: median of estimated selection probabilities based on (3.3) for 500 Monte Carlo
samples.

bootstrap methods, and the resampling number is set to 500 for the perturbation

method. The implementation details of the estimating equation-based method

and the two types of bootstrap de-biased lasso methods can be found in the

Supplementary Material S4. For the method based on the asymptotic theory for

the one-step adaptive lasso estimator, if a variable is not selected, then we do

not construct a confidence interval for it, because the asymptotic normality is

established only for the selected variables.

Figures 6 and 7 provide coverage probabilities of the 95% confidence intervals

as θ varies and (n, p, ρ) = (350, 25, 0). In Figures 6 and 7, the vertical line on
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Figure 5. Empirical probabilities of assigning the covariate X4 to different signal cate-
gories when ρ = 0.

the left shows whether X4 is more likely to be identified as a noise variable or

a weak signal, and the vertical line on the right distinguishes whether X4 is

more likely to be identified as a weak signal or a strong signal. The threshold

values are obtained from Figure 5. Comparing the proposed two-step inference

method with the two-step inference method based on Shi and Qu (2017), when θ

is small, the former outperforms the latter. When θ is close to zero, the coverage

probability of the asymptotic method is too low and close to zero, while the

perturbation method, standard bootstrap method, smoothed bootstrap method,

and type-I bootstrap de-biased lasso method provide over-coverage confidence

intervals, with coverage probabilities approximating to one. When the signal is

weak, the asymptotic method, perturbation method, standard bootstrap method,

smoothed bootstrap method, and type-I bootstrap de-biased lasso method all

perform poorly, and their coverage probabilities are much lower than 95%. In
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Figure 6. Coverage probabilities of the 95% confidence intervals when (n, p, ρ) =
(350, 25, 0). Proposed: the proposed two-step inference method; OldTwostep: the two-
step inference method based on Shi and Qu (2017), which does not construct confidence
intervals for identified noise variables; Asym: the method based on the asymptotic the-
ory using the one-step adaptive lasso estimator; MLE: the maximum likelihood estima-
tion method; Perturb: the perturbation method; EstEq: the estimating equation-based
method.

addition, the coverage probability of the estimating equation-based method is

slightly lower than 95%. When the signal is stronger, the performance of the

maximum likelihood estimation method, estimating equation-based method, de-

biased lasso method, and type-I bootstrap de-biased lasso method also become

worse. However, the coverage probabilities of the 95% confidence intervals for

the proposed method and the type-II bootstrap de-biased lasso method are close

to 95% under all signal strength levels of θ.

Figure 8 provides the average widths of the 95% confidence intervals as θ

varies and (n, p, ρ) = (350, 25, 0). Note that the widths of the confidence inter-

vals for the two types of two-step inference methods are both very close, while

their coverage probabilities are not similar when θ is small. The width of the

confidence interval using the proposed method is between those of the maximum

likelihood estimation method and the asymptotic method. This is not surpris-

ing, because the proposed method combines the strengths of these two methods.
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Figure 7. Coverage probabilities of the 95% confidence intervals when (n, p, ρ) = (350, 25, 0).
Proposed: the proposed two-step inference method; SdBS: the standard bootstrap method;
SmBS: the smoothed bootstrap method; DeLasso: the de-biased lasso method; BSDe1: the
type-I bootstrap de-biased lasso method; BSDe2: the type-II bootstrap de-biased lasso method.

Although the confidence intervals based on the asymptotic method, perturbation

method, standard bootstrap method, and smoothed bootstrap method are narrow

when θ is close to zero, the coverage probabilities are not accurate, because they

are either too small or too large. When the signal is strong, the widths of the

confidence intervals for the perturbation method, standard bootstrap method,

and smoothed bootstrap method are, in general, larger than that for the pro-

posed method. Although the estimating equation-based method, de-biased lasso

method, and type-I bootstrap de-biased lasso method have shorter confidence

intervals than that of the proposed method, their coverage probabilities of the

confidence intervals decrease as the signal becomes stronger. Overall, the con-

fidence interval for the type-II bootstrap de-biased lasso method is wider than

that of the proposed method.

The coverage probabilities and average widths of the 95% confidence inter-

vals under all simulation settings are summarized in Tables S1–S4 of the Sup-

plementary Material S5. For each simulation setting, we select three different

values of θ, under which X4 is identified as a noise variable, weak signal, and

strong signal, respectively. In summary, the findings from the simulation setting
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Figure 8. Average widths of the 95% confidence intervals when (n, p, ρ) = (350, 25, 0).
Proposed: the proposed two-step inference method; OldTwostep: the two-step inference
method based on Shi and Qu (2017), which does not construct confidence intervals for
identified noise variables; Asym: the method based on the asymptotic theory using the
one-step adaptive lasso estimator; MLE: the maximum likelihood estimation method;
Perturb: the perturbation method; EstEq: the estimating equation-based method; SdBS:
the standard bootstrap method; SmBS: the smoothed bootstrap method; DeLasso: the
de-biased lasso method; BSDe1: the type-I bootstrap de-biased lasso method; BSDe2:
the type-II bootstrap de-biased lasso method.

of (n, p, ρ) = (350, 25, 0) still hold under other simulation settings when ρ = 0.

By comparison, the average widths of the confidence intervals for all methods

decrease with the sample size and increase with the correlations between the co-

variates. When X4 is not a strong signal, regardless of the correlations among

covariates, the confidence intervals for the asymptotic method have relatively low

coverage probabilities. When X4 is a strong signal, if ρ is 0 or 0.2, the asymp-

totic method provides accurate confidence intervals, but if ρ increases to 0.5,

the performance of the asymptotic method deteriorates. However, the coverage

probabilities of the confidence intervals for the proposed method are still close to

95% under all simulation settings.

In order to see whether the performance of the proposed method is sensitive

to the choice of the threshold values δ1 and τ , we also consider other combinations
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of threshold values. For example, when (n, p, ρ) = (350, 25, 0), we set τ as 0.1 and

choose δ1 to be 0.96, 0.97, 0.98, or 0.99, which is larger than 1 − α = 0.95. The

empirical probabilities of assigning the covariate X4 to different signal categories

are shown in Figure S5 of the Supplementary Material S5. As the value of δ1
becomes larger and the value of θ is fixed, the empirical probability of identifying

X4 as a weak signal becomes larger, and that of identifying X4 as a strong signal

becomes smaller if θ is not sufficiently large. Furthermore, the empirical proba-

bility of identifying X4 as a noise variable does not change. This is because of the

proposed signal identification criterion. Figures S6–S7 in the Supplementary Ma-

terial S5 show the corresponding coverage probabilities and average widths of the

95% confidence intervals for the proposed two-step inference method. As shown,

the coverage probability becomes larger as δ1 increases and θ is between 0.6 and

0.75, and the average width becomes larger as δ1 increases and θ is between 0.15

and 0.75. This is not surprising because when δ1 increases, the probability of

using the maximum likelihood method to construct the confidence intervals be-

comes larger. As shown in Figures 7 and 8, when θ is not too large, the coverage

probability and average width of the confidence interval based on the maximum

likelihood method is higher than that based on the asymptotic method. However,

as δ1 varies, the changes of the coverage probability and average width are not

large.

We also consider another situation where δ1 is set to 0.99 and τ is chosen to

be 0.05, 0.1, 0.15, or 0.2. Figure S8 in the Supplementary Material S5 shows the

empirical probabilities of assigning the covariate X4 to different signal categories

in this situation. Here, we find that as τ increases, the empirical probability of

identifying X4 as a weak signal is larger, and that of identifying X4 as a noise

variable is smaller if θ is not too large. The empirical probability of identifyingX4

as a strong signal remains the same. This is consistent with the proposed signal

selection criterion. However, because the proposed two-step inference method

uses the same confidence interval construction method for the identified noise

variables and weak signals, the confidence interval does not change with the

value of τ , as shown in Figures S9–S10 of the Supplementary Material S5.

We also examine whether the performance of the proposed method is sensitive

to the total number of weak signals. We reset the regression coefficient vector β0

to be (1, 1, 0.5, θ, 0.3, . . . , 0.3︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
p−q−4

)>, where q is taken to be 0, 1, 2, or 3. For

illustration, let (n, p, ρ) = (350, 25, 0), δ1 be 0.99, and τ be 0.1. Based on the

signal identification criterion, all the q covariates corresponding to the coefficient

0.3 are weak signals if θ ranges from zero to one. If the covariate X4 is identified
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as a weak signal, then the total number of weak signals is q + 1; otherwise it is

q. The empirical probabilities of assigning the covariate X4 to different signal

categories are shown in Figure S11 of the Supplementary Material S5, which are

not sensitive to the value of q. Figures S12–S13 in the Supplementary Material

S5 respectively show the coverage probabilities and average widths of the 95%

confidence intervals for the proposed two-step inference method, showing that

when θ is small, the average width increases with the value of q, while the coverage

probability does not change monotonously with the value of q. In addition, as

q varies, the variations of average width and coverage probability are not large.

Thus, the performance of the proposed method is quite robust to the total number

of weak signals.

6. Real-Data Application

To illustrate the performance of the proposed method, we apply it to a data

set in the Practice Fusion diabetes study, which was provided by Kaggle as part of

the “Practice Fusion Diabetes Classification” challenge (Kaggle (2012)). The data

set consists of de-identified electronic medical records for over 10,000 patients.

There are a total of 9,948 patients in the training data, including a binary variable

indicating whether a patient is diagnosed with Type 2 diabetes mellitus (T2DM),

or not. In this analysis, we aim to determine the most important risk factors for

the incidence of T2DM, which can be used to identify patients with a high risk

of T2DM.

We first extract 119 predictors from the predictors selected by the first-place

winner in the Kaggle competition by removing some highly correlated predic-

tors (details can be found in https://www.kaggle.com/c/pf2012-diabetes/

overview/winners). These predictors can be divided into six categories: basic

information, transcript records, diagnosis information, medication information,

lab result, and smoking status. Detailed information about these predictors can

be found in Table S5 in the Supplementary Material S6. One outlying patient

is also removed owing to inaccurate information on the predictors. All the pre-

dictors are standardized beforehand. We adopt the following logistic regression

model to fit the data set:

P (yi = 1 | xi) =
exp

(
α+

∑p
j=1 xijβj

)
1 + exp

(
α+

∑p
j=1 xijβj

) , i = 1, . . . , n,

where p = 119 and n = 9947.

https://www.kaggle.com/c/pf2012-diabetes/overview/winners
https://www.kaggle.com/c/pf2012-diabetes/overview/winners
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We first obtain the one-step adaptive lasso estimates of the regression coef-

ficients following the tuning parameter selection procedure given in the Supple-

mentary Material S4. We then identify whether a predictor is a strong signal,

weak signal, or noise variable based on criterion (3.4). Here, we choose δ1 to

be 0.99 and τ to be 0.1. From all the predictors, we identify 18 strong signals,

32 weak signals, and 69 noise variables. The 18 strong signals are all selected

by the one-step adaptive lasso estimator, indicating consistency between it and

our method for strong signal selection. Among the 32 weak signals, 24 are also

selected by the one-step adaptive lasso estimator, while the other eight predictors

are only identified by our method. These eight additional predictors include (1)

the number of times being diagnosed with herpes zoster, hypercholesterolemia,

hypertensive heart disease, respiratory infection, sleep apnea, and joint pain, re-

spectively; (2) the number of transcripts for cardiovascular disease; and (3) the

number of diagnoses per weighted year. The relationships between these eight

predictors and diabetes have also been studied by other researchers. For exam-

ple, Papagianni, Metallidis and Tziomalos (2018) reviewed studies on associations

between herpes zoster and diabetes mellitus, and found that herpes zoster and

T2DM were likely to coexist for the same patient.

Next, we construct the 95% confidence intervals using our two-step inference

method, together with all other comparison methods in Section 5. Figure 9

shows the average widths of the confidence intervals for the strong and weak

signals. For both, the widths of the confidence intervals for the two types of two-

step inference methods are the same. For strong signals, the proposed method

and the asymptotic method provide the shortest confidence intervals. For weak

signals, the widths of the confidence intervals based on the proposed method

are smaller than those based on the perturbation method, standard bootstrap

method, smoothed bootstrap method, and two types of bootstrap de-biased lasso

methods.

7. Conclusion

We have proposed a new unified approach for weak signal identification and

inference in penalized likelihood models, including the special case when the re-

sponses are categorical. To identify weak signals, we propose using the estimated

selection probability of each covariate as a measure of the signal strength, and

develop a signal identification criterion based directly on the estimated selec-

tion probability. To construct confidence intervals for the regression coefficients,

we propose a two-step inference procedure. Extensive simulation studies and a
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Figure 9. The average widths of the 95% confidence intervals for the diabetes data set.
Note that the asymptotic method does not construct confidence intervals for all the weak
signals, the result for the weak signals is the average width of the confidence intervals for
the weak signals, which are also selected by the asymptotic method. For the meanings
of the notation, see Figures 6 and 7.

real-data application show that the proposed signal identification method and

two-step inference procedure outperform several existing methods in finite sam-

ples.

The proposed method can be extended to a high-dimensional setting where

p is not fixed. One possible way is to use the de-biased lasso estimator as an

initial estimator for the one-step adaptive lasso estimator, and then leverage the

asymptotic properties of the de-biased lasso estimator to derive the selection

probability. We can also use a penalized method to estimate the inverse of the

information matrix, such as the CLIME estimator (Cai, Liu and Luo (2011)).

In addition, our signal identification and inference framework can be extended

to longitudinal data. For longitudinal data, we can replace the negative log-
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likelihood function with the generalized estimating function in the estimation.

Finally, in the fields of causal inference and econometrics, there is a popular “weak

instrument” problem (Chao and Swanson (2005); Burgess and Thompson (2011);

Choi, Gu and Shen (2018)), which can be considered a weak signal problem. This

is worth further development using our approach.

Supplementary Material

The online Supplementary Material contains six sections. Section S1 derives

the approximated selection probability. Section S2 provide an additional detailed

analysis of the approximated selection probability in finite samples. Section S3

contains a proof for Theorem 1. Section S4 presents the implementation details

of several methods. Sections S5 and S6 provide additional simulation results and

information related to the real-data application, respectively.
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Dezeure, R., Bühlmann, P. and Zhang, C.-H. (2017). High-dimensional simultaneous inference

with the bootstrap. Test 26, 685–719.

Efron, B. (2014). Estimation and accuracy after model selection. Journal of the American Sta-

tistical Association 109, 991–1007.

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC press, Boca

Raton.

Huang, J. and Xie, H. (2007). Asymptotic oracle properties of scad-penalized least squares

estimators. In Asymptotics: Particles, Processes and Inverse Problems (Edited by E. A.

Cator, G. Jongbloed, C. Kraaikamp, H. P. Lopuhaa, and J. A. Wellner), 149–166. Institute

of Mathematical Statistics, Beachwood.



WEAK SIGNAL IDENTIFICATION AND INFERENCE 785

Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-

dimensional regression. The Journal of Machine Learning Research 15, 2869–2909.

Jia, J., Xie, F. and Xu, L. (2019). Sparse poisson regression with penalized weighted score

function. Electronic Journal of Statistics 13, 2898–2920.

Jin, J., Zhang, C.-H. and Zhang, Q. (2014). Optimality of graphlet screening in high dimensional

variable selection. The Journal of Machine Learning Research 15, 2723–2772.

Kaggle (2012). Practice fusion diabetes classification. Data retrieved from Kaggle competition

dataset. http://www.kaggle.com/c/pf2012-diabetes.

Lambert, P. and Eilers, P. H. (2005). Bayesian proportional hazards model with time-varying

regression coefficients: A penalized poisson regression approach. Statistics in Medicine 24,

3977–3989.

Li, Y., Hong, H. G., Ahmed, S. E. and Li, Y. (2019). Weak signals in high-dimensional re-

gression: Detection, estimation and prediction. Applied Stochastic Models in Business and

Industry 35, 283–298.

Liu, H., Xu, X. and Li, J. J. (2020). A bootstrap Lasso + partial ridge method to construct

confidence intervals for parameters in high-dimensional sparse linear models. Statistica

Sinica 30, 1333–1355.

Minnier, J., Tian, L. and Cai, T. (2011). A perturbation method for inference on regularized

regression estimates. Journal of the American Statistical Association 106, 1371–1382.

Neykov, M., Ning, Y., Liu, J. S. and Liu, H.(2018). A unified theory of confidence regions and

testing for high-dimensional estimating equations. Statistical Science 33, 427–443.

Papagianni, M., Metallidis, S. and Tziomalos, K. (2018). Herpes zoster and diabetes mellitus:

A review. Diabetes Therapy 9, 545–550.

Park, M. Y. and Hastie, T. (2008). Penalized logistic regression for detecting gene interactions.

Biostatistics 9, 30–50.

Reangsephet, O., Lisawadi, S. and Ahmed, S. E. (2019). Weak signals in high-dimensional logistic

regression models. In Proceedings of the 13th International Conference on Management

Science and Engineering Management (Edited by J. Xu, S. E. Ahmed, F. L. Cooke and G.

Duca), 121–133. Springer Nature, Cham.

Shi, P. and Qu, A. (2017). Weak signal identification and inference in penalized model selection.

The Annals of Statistics 45, 1214–1253.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society: Series B (Methodological) 58, 267–288.

Tibshirani, R. (2011). Regression shrinkage and selection via the Lasso: A retrospective. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 73, 273–282.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005). Sparsity and smooth-

ness via the fused Lasso. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 67, 91–108.
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