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The online Supplementary Material contains six sections. Section S1 derives the approximated

selection probability. Section S2 provide an additional detailed analysis of the approximated

selection probability in finite samples. Section S3 contains a proof for Theorem 1. Section S4

presents the implementation details of several methods. Sections S5 and S6 provide additional

simulation results and information related to the real-data application, respectively.
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S1 Derivation of the Approximated Selection Proba-

bility

In Section 2 of the main paper, we have obtained the following condition

for selecting the covariate Xj, j ∈ {1, . . . , p}:
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We consider the following three formulas respectively,
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is is the (i, s)th element of D?(0), D?(0) = (D(0))1/2 − (D(0))1/21

× (1>D(0)1)−11>D(0) and D(0) is an n×n diagonal matrix with the (i, i)th
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Since (x1, y1), . . . , (xn, yn) are independent and identically distributed ran-

dom vectors, Dii(γ) is a continuous function of γ and the maximum like-

lihood estimator γ(0) P→ γ0 under some regularity conditions, then by
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P→ E(D0,ii). Then
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Therefore, similar to the previous proof,
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If βk0 6= 0, then
√
n(β

(1)
k − βk0)

D→ N (0, [I−1{(γ0)A }]Xk
), where I{(γ0)A }
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According to (S4) and (S5), (S3) is also Op(1/
√
n).

In summary, the condition for selecting the covariate Xj becomes
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By the Central Limit Theorem,
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S2 Additional Detailed Analysis of the Approximated

Selection Probability in Finite Samples

In this selection, we provide an additional detailed analysis of finite-sample

properties of the approximated selection probability P ∗d,j and provide some

plots to illustrate the finite-sample properties of P ∗d,j under three different

kinds of likelihood-based models.
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S2.1 Symmetry of the approximated selection probability

In order to study given any values in P ∗d,j except βj0, whether P ∗d,j is a
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Since D0,ii(βj0,γ
−j
0 ) = −∂2`i{µi(βj0,γ−j0 )}/∂µ2

i with µi(βj0,γ
−j
0 ) = α0 +∑

k 6=j xikβk0+xijβj0, andD0,ii(−βj0,γ−j0 ) = −∂2`i{µi(−βj0,γ−j0 )}/∂µ2
i with

µi(−βj0,γ−j0 ) = α0 +
∑

k 6=j xikβk0− xijβj0, then one of the sufficient condi-

tions for P ∗d,j(βj0) = P ∗d,j(−βj0) is that the distribution of xij is symmetric
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about zero and xij is independent of xik for any k 6= j. Under this condition,

we have E{D0,ii(βj0,γ
−j
0 )} = E{D0,ii(−βj0,γ−j0 )}, E{D0,ii(βj0,γ

−j
0 )x2

ij} =

E{D0,ii(−βj0,γ−j0 )x2
ij}, E{D0,ii(βj0,γ

−j
0 )xij} = −E{D0,ii(−βj0,γ−j0 )xij} and

E{X̃>D0(βj0,γ
−j
0 )X̃} = E{X̃>D0(−βj0,γ−j0 )X̃}. Furthermore, P ∗d,j(βj0) =

P ∗d,j(−βj0).

However, this sufficient condition may not be satisfied in practice and

it is easy to find a case where P ∗d,j(βj0) 6= P ∗d,j(−βj0). So given any values

in P ∗d,j except βj0, P ∗d,j is not necessarily a symmetric function of βj0.

S2.2 Monotonicity of the approximated selection probability

In order to study the monotonicity of the approximated selection probabil-

ity, we need to study the first order derivative of P ∗d,j with respect to βj0.

By calculation,
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and
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1
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∂µ3
n
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}
.

To simplify the proof, we first consider the case where (xi, yi) follows a

logistic regression model, that is,

E(yi|xi) = pi =
exp(α0 + x>i β0)

1 + exp(α0 + x>i β0)
.
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By calculation, D0,ii = pi(1−pi) and D0 = diag{p1(1−p1), . . . , pn(1−pn)}.

Assume p = 2, xi1 and xi2 are independent, E(xij) = 0 and Var(xij) = 1,

j = 1, 2. Denote exp(α0 + xikβk0) as tk, k 6= j. It is easy to show that

δ(0) = 0 and

∂δ(βj0)

∂βj0

∣∣∣∣
βj0=0
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√
λ

n
×

2
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E
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E
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− E
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Therefore,
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∣∣∣∣
βj0=0

= 0 and
∂2P ∗d,j
∂β2

j0

∣∣∣∣
βj0=0

> 0.

It means that P ∗d,j obtains a minimum value at βj0 = 0. Furthermore,

there exists two positive constant c1 and c2 such that δ(βj0) ≥ 0 for any

βj0 ∈ [0, c1] and δ(βj0) ≤ 0 for any βj0 ∈ [−c2, 0]. Thus, ∂P ∗d,j/∂βj0 ≥ 0 for

any βj0 ∈ [0, c1] and ∂P ∗d,j/∂βj0 ≤ 0 for any βj0 ∈ [−c2, 0]. In other words,

P ∗d,j is an increasing function of βj0 if 0 < βj0 < c1 and P ∗d,j is a decreasing

function of βj0 if −c2 < βj0 < 0.

Second, we consider the case where (xi, yi) follows a Poisson regression

model, that is,

P (yi = y|xi) =
λyi
y!

exp(−λi),
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where λi = E(yi|xi) = exp(α0 +x>i β0). By calculation, D0,ii = λi and D0 =

diag{λ1, . . . , λn}. Assume p = 2, xi1 and xi2 are independent, E(xij) = 0

and Var(xij) = 1, j = 1, 2. Denote exp(α0 + xikβk0) as tk, k 6= j. Then

∂P ∗d,j
∂βj0

=
nλ

f1j

φ

(
−
√
nλ− βj0

√
nλ

f1j

)
δ(βj0),

with

δ(βj0) =

(√
f1j

nλ
− βj0

2
√
nλf1j

∂f1j
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){
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(
2βj0nλ√

f1j

)
− 1

}
,

f1j =
λE {exp(xijβj0)}

E(tk)
[
E
{

exp(xijβj0)x2
ij

}
E {exp(xijβj0)} − [E {exp(xijβj0)xij}]2

] ,
and
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=
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−
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In particular, if xij follows the standard normal distribution, then

∂P ∗d,j
∂βj0

=nE(tk) exp(β2
j0/2)φ

[
−
√
nλ− βj0

√
nE(tk) exp(β2

j0/2)
]

×


√√√√ 1

nE(tk) exp(β2
j0/2)

+
β2
j0

2
√
nE(tk) exp(β2

j0/2)


×
[
exp

{
2βj0n

√
λE(tk) exp(β2

j0/2)
}
− 1
]
.

Obviously, ∂P ∗d,j/∂βj0 > 0 if βj0 > 0, ∂P ∗d,j/∂βj0 = 0 if βj0 = 0 and

∂P ∗d,j/∂βj0 < 0 if βj0 < 0. Thus, P ∗d,j is an increasing function of βj0 if

βj0 > 0 and P ∗d,j is a decreasing function of βj0 if βj0 < 0.

S3 Proof for Theorem 1

According to (2.4) in the main paper, the objective function about β for

the one-step adaptive lasso estimator is

Q(β) =
1

2n
(β − β(0))>X>D†(0)X(β − β(0)) +

p∑
j=1

λ
|βj|
|β(0)
j |

.
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For βj ≈ β
(1)
j , Q(β) can be approximated by

1

2n
(β − β(0))>X>D†(0)X(β − β(0)) +

p∑
j=1

λ
|β(1)
j |
|β(0)
j |

+
1

2
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λ

|β(0)
j ||β

(1)
j |
{β2

j − (β
(1)
j )2}

=L(β) +
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j=1

λ
|β(1)
j |
|β(0)
j |

+
1

2
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j=1

λ

|β(0)
j ||β

(1)
j |
{β2

j − (β
(1)
j )2},

where L(β) = (β − β(0))>X>D†(0)X(β − β(0))/(2n).

It can be shown easily that there exists a β
(1)
A that is a

√
n-consistent

local minimizer of Q{(β>A ,0>A c)>} and satisfies the following condition:

∂Q(β)

∂βj

∣∣∣∣∣
β=

(
β
(1)
A

0A c

) = 0 for j = 1, . . . , q,

where A = {j : βj0 6= 0, j = 1, . . . , p} and A c = {j : βj0 = 0, j = 1, . . . , p}.

Without loss of generality, assume A = {1, . . . , q} and q ≤ p.

Note that β
(1)
A is a consistent estimator, then

∂L(β)

∂βj

∣∣∣∣∣
β=

(
β
(1)
A

0A c

) +
λ

|β(0)
j ||β

(1)
j |

β
(1)
j

=
∂L(β)

∂βj

∣∣∣∣∣
β=

(
β
(1)
A

0A c

) +
λ

|β(0)
j |

sgn(β
(1)
j )

=
∂L(β0)

∂βj
+

q∑
`=1

{
∂2L(β0)

∂βj∂β`
+ op(1)

}
(β

(1)
` − β`0)

+
λ

|β(0)
j |

sgn(βj0) +
λ

|β(0)
j ||β

(1)
j |

(β
(1)
j − βj0) = 0.

(S8)
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Denote X>D†(0)X as Z(0), then according to (S8),

√
n

{
1

n
Z

(0)
A + Σλ(β

(0)
A ,β

(1)
A )

}
×

[
β

(1)
A − β0,A +

{
1

n
Z

(0)
A + Σλ(β

(0)
A ,β

(1)
A )

}−1

b(β0,A ,β
(0)
A )

]

=−
√
n
∂L(β0)

∂βA
=

1√
n

Z
(0)
A (β

(0)
A − β0,A ),

(S9)

where Σλ(β
(0)
A ,β

(1)
A ) = diag{λ/(|β(0)

1 ||β
(1)
1 |), . . . , λ/(|β

(0)
q ||β(1)

q |)} and b(β0,A ,β
(0)
A )

= (λ× sgn(β10)/|β(0)
1 |, . . . , λ× sgn(βq0)/|β(0)

q |)>. According to the Central

Limit Theorem,
√
n(β

(0)
A − β0,A )

D→ N (0, {(I0,B)−1}A ), where B = {k :

γk0 6= 0, k = 1, . . . , p + 1}. Furthermore, according to the Slutsky’s Theo-

rem, the asymptotic bias of β
(1)
A is

bias(β
(1)
A ) = −

{
1

n
Z0,A + Σλ(β0,A ,β0,A )

}−1

b(β0,A ,β0,A ),

where Z0 = E(X>D†0X). The asymptotic covariance matrix of β
(1)
A is

cov(β
(1)
A ) =

1

n3

{
1

n
Z0,A + Σλ(β0,A ,β0,A )

}−1

Z0,A {(I0,B)−1}A Z0,A

×
{

1

n
Z0,A + Σλ(β0,A ,β0,A )

}−1

.

If λ → 0 as n goes to infinity, then bias(β
(1)
A ) → 0 and ncov(β

(1)
A ) →

{(I0,B)−1}A .
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If n is finite, then the bias of β
(1)
A can not be ignored and An is not

necessarily equal to A . Without loss of generality, assume An = {j : β
(1)
j 6=

0, j = 1, . . . , p} = {1, . . . , s}. Then Bn = {k : γ
(1)
k 6= 0, k = 1, . . . , p + 1} =

{1, . . . , s + 1}. Furthermore, the estimators of bias and covariance matrix

of β
(1)
An

are given by

b̂ias(β
(1)
An

) = −
{

1

n
Z

(0)
An

+ Σλ(β
(0)
An
,β

(1)
An

)

}−1

b(β
(1)
An
,β

(0)
An

)

and

ĉov(β
(1)
An

) =
1

n3

{
1

n
Z

(0)
An

+ Σλ(β
(0)
An
,β

(1)
An

)

}−1

Z
(0)
An
{(I(0)

Bn
)−1}AnZ

(0)
An

×
{

1

n
Z

(0)
An

+ Σλ(β
(0)
An
,β

(1)
An

)

}−1

,

where Σλ(β
(0)
An
,β

(1)
An

) = diag{λ/(|β(0)
1 ||β

(1)
1 |), . . . , λ/(|β

(0)
s ||β(1)

s |)} and b(β
(1)
An
,β

(0)
An

) =

(λ× sgn(β
(1)
1 )/|β(0)

1 |, . . . , λ× sgn(β
(1)
s )/|β(0)

s |)>.

S4 Implementation Details of Several Methods

In this section, we introduce the implementation details of several methods

mentioned in the main paper.
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S4.1 One-step adaptive lasso estimator

To obtain the one-step adaptive lasso estimator, we use the function glmnet

in R to solve (2.5). The selection of tuning parameter λ is important. In

finite samples, if λ is too large, the bias of the one-step adaptive lasso esti-

mator will be large and the coverage probability of the confidence interval

constructed based on the asymptotic theory for the one-step adaptive lasso

estimator will be low; if λ is too small, the number of false positives will

be large and the width of the confidence interval will also be large. The

Bayesian information criterion (BIC) and cross-validation (CV) method

are two commonly used tuning parameter selection methods. Based on the

simulation results, λ selected based on the Bayesian information criterion

proposed by Wang and Leng (2007) is much larger than the value of λ

selected by the 5-fold cross-validation method. Denote the values of λ se-

lected by these two methods as λBIC and λCV, respectively. We choose λ to

be (λBIC + λCV)/2 as a trade-off of these two methods.

S4.2 Estimating equation-based method

In our simulation studies and real-data application, we compare the pro-

posed method with an estimating equation-based method, which is pro-

posed by Neykov et al. (2018) and denoted as “EstEq.” We apply their



S4. IMPLEMENTATION DETAILS OF SEVERAL METHODS17

method based on Algorithm 1 in their paper. Using the same notations as

in our paper, the implementation details are as follows:

Step 1: Use the R functions gds and cv gds to get the generalized Dantzig

selector of the regression coefficient γ0 = (α0,β
>
0 )> in a logistic regres-

sion model and denote the estimator as γ̂. That is, solve the following

optimization problem to obtain an estimate γ̂:

γ̂ = arg min ‖γ‖1,

subject to ‖t(γ)‖ =

∥∥∥∥∥− 1

n

n∑
i=1

∂`i(γ)

∂γ

∥∥∥∥∥
∞

=

∥∥∥∥∥− 1

n

n∑
i=1

{yi − pi(γ)}x̃i

∥∥∥∥∥
∞

≤ λ,

where `i(γ) is the conditional log-likelihood function of yi given xi

for a logistic regression model and pi(γ) = exp(x̃>i γ)/{1 + exp(x̃>i γ)},

i = 1, . . . , n. The tuning parameter of the generalized Dantzig selector,

λ, is selected by the 10-fold cross-validation method.

Step 2: Calculate the inverse of T(γ̂) = ∂t(γ̂)/∂γ> = X̃>D(γ̂)X̃/n, where

D(γ̂) = diag{p1(γ̂)(1− p1(γ̂)), . . . , pn(γ̂)(1− pn(γ̂))}. Denote the in-

verse of T(γ̂) as Ω. Define the projection direction for the jth element

of β0, βj0, as v̂j = Ω(j+1)., where Ω(j+1). is the (j+1)th row element of

Ω. Note that in Neykov et al. (2018), the authors used the CLIME es-

timator to estimate the inverse of T(γ̂). However, in our problem, we
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assume n > p and p is fixed, then the inverse of T(γ̂) can be calculated

directly.

Step 3: Use the R function uniroot to solve the sparse projected test function

and denote the estimated value of βj0 as β̃j.

Step 4: Construct a two-sided 100(1− α)% confidence interval for βj0 as

CIj =
(
β̃j − Φ−1(1− α/2)σ̂j/

√
n, β̃j + Φ−1(1− α/2)σ̂j/

√
n
)
,

where σ̂2
j = v̂>j X̃>D(γ̂)X̃v̂j/n.

S4.3 Two types of bootstrap de-biased lasso methods

Motivated by the idea of Dezeure et al. (2017), we establish two xy-paired

bootstrap de-biased lasso methods, which are referred to as “the type-I

bootstrap de-biased lasso method” and “the type-II bootstrap de-biased

lasso method,” respectively. The bootstrap de-biased lasso method is based

on the de-biased lasso method proposed by Zhang and Zhang (2014), Van de

Geer et al. (2014) and Javanmard and Montanari (2014). Following the idea

of Dezeure et al. (2017), the procedure for the type-I bootstrap de-biased

lasso method is as follows:

(i) Based on the original data points (X1, Y1), . . . , (Xn, Yn), calculate the



S4. IMPLEMENTATION DETAILS OF SEVERAL METHODS19

lasso estimator and de-biased lasso estimator of the jth element of β0,

βj0. Denote them as b̂j and β̂j, respectively. Calculate the standard

error of the de-biased lasso estimator, ŝ.e.j.

(ii) Resample (X∗1, Y
∗

1 ), . . . , (X∗n, Y
∗
n ) with replacement from (X1, Y1), . . . , (Xn, Yn)

for B times. For the kth bootstrap sample, calculate the de-biased

lasso estimator b̂∗jk, the standard error for the de-biased lasso esti-

mator ŝ.e.∗jk and T ∗jk = (b̂∗jk − β̂j)/ŝ.e.
∗
jk. Denote the ν-quantile of

{T ∗j1, . . . , T ∗jB} as q∗j;ν .

(iii) Construct a two-sided 100(1− α)% confidence interval for βj0 as

CIj =
(
b̂j − q∗j;1−α/2ŝ.e.j, b̂j − q∗j;α/2ŝ.e.j

)
.

In addition, the procedure for the type-II bootstrap de-biased lasso

method is as follows:

(i) Resample (X∗1, Y
∗

1 ), . . . , (X∗n, Y
∗
n ) with replacement from (X1, Y1), . . . , (Xn, Yn)

for B times. For the kth bootstrap sample, calculate the de-biased

lasso estimator of the jth element of β0, βj0, which is denoted as b̂∗jk.

Denote the ν-quantile of {b̂∗j1, . . . , b̂∗jB} as q∗j;ν .
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(iii) Construct a two-sided 100(1− α)% confidence interval for βj0 as

CIj =
(
q∗j;α/2, q

∗
j;1−α/2

)
.

S5 Additional Simulation Results

In this section, we present additional simulation results under the simulation

settings in Section 5. Figures S1 and S2 display the results for different types

of selection probability for X4 when ρ = 0.2 and 0.5, respectively. Figures

S3 and S4 present the empirical probabilities of assigning the covariate

X4 to different signal categories as the value of θ varies when ρ = 0.2

and 0.5, respectively. Tables S1–S4 show the coverage probabilities and

average widths of the 95% confidence intervals under all simulation settings.

Figures S5–S7 show the simulation results for the proposed method when

the threshold value δ1 varies. Figures S8–S10 show the simulation results

for the proposed method when the threshold value τ varies. Figures S11–

S13 show the simulation results for the proposed method when the total

number of weak signals varies.

S6 Additional Information in Real-data Application

Table S5 shows the candidate predictors used in the real-data application.
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Figure S1: Different types of selection probability for X4 when ρ = 0.2. Pdem: empirical selec-
tion probability, which equals the empirical probability of {θ(1) 6= 0} based on 500 Monte Carlo
samples; Pdapproxi: approximated selection probability based on (3.1), where the expectations
in (3.1) are calculated by using the function cubintegrate in R; Pdest: median of estimated
selection probabilities based on (3.3) for 500 Monte Carlo samples.
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Figure S2: Different types of selection probability for X4 when ρ = 0.5. The meanings of
notations: see Figure S1.
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Figure S3: Empirical probabilities of assigning the covariate X4 to different signal categories
when ρ = 0.2.
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Figure S4: Empirical probabilities of assigning the covariate X4 to different signal categories
when ρ = 0.5.
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Table S1: The coverage probabilities (%) of the 95% confidence intervals when the sample
size is n = 350.

p = 25 p = 35

θ Method ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

0

Proposed 93.8 94.4 96.2 94.6 92.2 94.8
OldTwostep 75.8 76.7 81.4 77.1 66.9 72.3

Asym 3.6 3.8 12.7 4.3 1.4 4.0
MLE 93.8 94.4 96.2 94.6 92.2 94.8

Perturb 100.0 100.0 100.0 100.0 100.0 100.0
EstEq 94.0 94.2 96.6 95.6 92.8 94.8
SdBS 99.8 100.0 99.8 99.8 99.8 99.0
SmBS 100.0 100.0 99.8 100.0 100.0 100.0

DeLasso 95.8 96.0 98.2 96.4 95.2 96.4
BSDe1 99.8 100.0 99.8 100.0 100.0 100.0
BSDe2 94.8 94.4 96.2 95.4 91.8 94.4

0.3

Proposed 94.6 95.2 92.8 95.2 96.4 94.6
OldTwostep 96.9 96.6 92.0 98.0 96.7 92.4

Asym 75.5 71.6 61.5 65.8 69.6 69.3
MLE 92.2 93.4 92.6 92.4 92.0 93.6

Perturb 57.0 55.0 52.0 38.8 49.0 44.0
EstEq 92.2 92.6 93.8 92.6 91.6 94.2
SdBS 72.0 69.6 62.8 53.0 61.0 53.4
SmBS 65.2 64.6 59.8 39.8 49.4 47.8

DeLasso 93.8 94.0 92.8 93.0 93.4 95.0
BSDe1 52.0 58.0 85.6 48.6 60.6 86.4
BSDe2 94.2 94.6 95.0 96.2 95.0 95.2

0.95

Proposed 95.0 93.6 95.0 96.0 93.8 97.2
OldTwostep 95.0 93.6 95.4 96.0 93.8 97.2

Asym 95.0 93.6 91.6 96.0 93.8 92.2
MLE 90.0 91.6 91.2 87.8 87.8 86.8

Perturb 93.2 93.0 97.0 95.4 94.2 96.4
EstEq 90.6 87.4 92.8 89.8 89.4 89.4
SdBS 93.8 93.8 95.6 93.4 93.4 95.6
SmBS 87.2 87.8 90.2 68.6 69.6 74.8

DeLasso 87.6 87.6 90.4 90.4 84.2 89.6
BSDe1 23.0 26.0 34.8 17.8 15.4 26.4
BSDe2 94.8 95.6 97.4 94.4 95.0 95.6

Note: Proposed: the proposed two-step inference method; OldTwostep: the two-step inference
method based on Shi and Qu (2017), which does not construct confidence intervals for identified
noise variables; Asym: the method based on the asymptotic theory using the one-step adaptive lasso
estimator; MLE: the maximum likelihood estimation method; Perturb: the perturbation method;
EstEq: the estimating equation-based method; SdBS: the standard bootstrap method; SmBS: the
smoothed bootstrap method; DeLasso: the de-biased lasso method; BSDe1: the type-I bootstrap
de-biased lasso method; BSDe2: the type-II bootstrap de-biased lasso method.
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Table S2: The coverage probabilities (%) of the 95% confidence intervals when the sample
size is n = 550.

p = 25 p = 35

θ Method ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

0

Proposed 95.4 94.8 95.4 94.6 94.2 95.8
OldTwostep 81.7 77.6 80.0 75.9 76.4 78.9

Asym 4.2 7.6 7.2 1.4 4.2 7.1
MLE 95.4 94.8 95.4 94.6 94.2 95.8

Perturb 99.8 100.0 100.0 100.0 100.0 100.0
EstEq 95.6 93.8 95.6 95.2 95.0 96.8
SdBS 99.8 99.6 99.6 100.0 100.0 100.0
SmBS 99.8 100.0 100.0 100.0 100.0 100.0

DeLasso 96.6 95.4 97.0 96.4 95.8 97.4
BSDe1 99.8 100.0 99.8 100.0 100.0 100.0
BSDe2 95.4 94.6 95.6 95.8 94.2 95.6

0.25

Proposed 94.4 95.6 95.0 95.4 93.8 95.6
OldTwostep 95.8 96.6 94.8 97.0 95.1 94.7

Asym 69.4 63.8 68.2 72.3 69.9 68.5
MLE 94.4 95.6 94.4 93.8 92.0 95.2

Perturb 57.4 52.8 56.2 54.8 55.2 54.6
EstEq 93.6 95.0 93.8 93.4 91.4 94.8
SdBS 68.8 65.2 62.8 65.0 66.8 62.0
SmBS 67.8 66.0 63.6 61.6 62.8 64.4

DeLasso 93.0 94.8 94.4 94.0 93.0 95.8
BSDe1 52.8 57.2 79.2 49.2 57.4 79.6
BSDe2 94.2 96.4 94.8 95.2 96.0 96.0

0.8

Proposed 94.2 94.4 93.8 95.0 95.0 92.2
OldTwostep 94.2 94.4 93.8 95.0 95.0 92.2

Asym 94.2 94.4 90.6 95.0 95.0 89.0
MLE 93.6 94.4 92.6 90.4 89.4 91.2

Perturb 90.2 93.0 97.0 93.8 94.2 95.8
EstEq 92.4 93.0 90.6 90.4 92.4 91.6
SdBS 91.2 93.8 96.2 91.8 91.6 94.2
SmBS 88.4 93.8 94.4 87.0 86.0 91.2

DeLasso 87.0 90.2 89.4 89.0 87.2 90.4
BSDe1 23.0 26.0 41.2 15.8 18.8 33.8
BSDe2 96.4 97.2 94.4 93.8 95.8 95.2

Note: Proposed: the proposed two-step inference method; OldTwostep: the two-step inference
method based on Shi and Qu (2017), which does not construct confidence intervals for identified
noise variables; Asym: the method based on the asymptotic theory using the one-step adaptive lasso
estimator; MLE: the maximum likelihood estimation method; Perturb: the perturbation method;
EstEq: the estimating equation-based method; SdBS: the standard bootstrap method; SmBS: the
smoothed bootstrap method; DeLasso: the de-biased lasso method; BSDe1: the type-I bootstrap
de-biased lasso method; BSDe2: the type-II bootstrap de-biased lasso method.
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Table S3: The widths (×100) of the 95% confidence intervals when the sample size is
n = 350

p = 25 p = 35

θ Method ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

0

Proposed 55.7 60.0 78.4 58.2 62.7 82.1
OldTwostep 55.9 60.8 79.7 58.6 63.2 82.8

Asym 19.6 21.6 22.3 19.7 18.9 23.3
MLE 55.7 60.0 78.4 58.2 62.8 82.1

Perturb 14.5 14.7 17.6 10.3 11.1 13.9
EstEq 50.4 53.9 70.1 51.1 54.7 71.0
SdBS 22.9 23.6 27.9 17.2 17.9 21.7
SmBS 16.6 16.8 19.4 11.4 11.9 14.3

DeLasso 48.7 51.9 66.8 49.4 52.6 67.5
BSDe1 49.6 52.8 67.7 50.6 54.0 68.9
BSDe2 58.7 63.2 82.8 63.6 69.0 90.6

0.3

Proposed 56.2 60.5 79.5 58.6 63.1 83.8
OldTwostep 56.2 60.6 79.1 58.6 63.0 83.9

Asym 33.5 34.0 35.0 30.2 32.8 35.8
MLE 57.0 61.6 80.7 59.5 64.5 84.9

Perturb 49.6 51.7 55.9 40.5 47.1 50.3
EstEq 51.0 54.8 71.6 51.6 55.4 72.5
SdBS 51.6 53.4 58.4 41.1 45.8 49.5
SmBS 46.0 47.4 50.1 34.6 39.1 40.8

DeLasso 49.4 52.9 68.3 49.7 53.2 68.6
BSDe1 51.2 54.9 70.3 52.7 56.4 72.5
BSDe2 62.8 67.6 88.0 68.8 74.8 98.5

0.95

Proposed 60.9 63.9 73.4 62.0 64.9 75.1
OldTwostep 60.9 63.9 73.3 62.0 64.9 75.1

Asym 60.9 63.8 71.0 62.0 64.8 71.8
MLE 68.6 73.7 93.7 72.9 78.1 100.5

Perturb 67.4 70.4 91.6 71.1 76.1 103.2
EstEq 57.4 61.6 78.9 57.9 61.6 79.3
SdBS 67.6 70.4 87.4 67.2 70.4 86.4
SmBS 60.8 63.6 79.7 57.9 61.0 75.9

DeLasso 53.5 56.8 72.9 53.6 57.0 73.2
BSDe1 56.0 60.2 77.7 58.0 61.8 80.6
BSDe2 84.5 91.8 115.8 100.8 108.1 137.6

Note: Proposed: the proposed two-step inference method; OldTwostep: the two-step inference
method based on Shi and Qu (2017), which does not construct confidence intervals for identified
noise variables; Asym: the method based on the asymptotic theory using the one-step adaptive lasso
estimator; MLE: the maximum likelihood estimation method; Perturb: the perturbation method;
EstEq: the estimating equation-based method; SdBS: the standard bootstrap method; SmBS: the
smoothed bootstrap method; DeLasso: the de-biased lasso method; BSDe1: the type-I bootstrap
de-biased lasso method; BSDe2: the type-II bootstrap de-biased lasso method.
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Table S4: The widths (×100) of the 95% confidence intervals when the sample size is
n = 550

p = 25 p = 35

θ Method ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

0

Proposed 42.7 45.9 59.9 43.7 47.0 61.5
OldTwostep 42.8 46.2 60.3 44.0 47.2 61.6

Asym 14.8 15.3 17.0 13.7 14.7 17.0
MLE 42.7 45.9 59.9 43.7 47.0 61.5

Perturb 12.6 13.3 17.1 9.7 10.8 12.7
EstEq 39.8 42.7 55.5 40.1 42.8 55.8
SdBS 19.4 19.9 25.2 16.0 17.3 20.3
SmBS 15.1 15.3 19.4 11.8 12.9 14.7

DeLasso 38.6 41.2 53.2 38.8 41.4 53.5
BSDe1 38.8 41.4 53.1 39.1 41.6 53.6
BSDe2 43.0 46.1 60.3 44.6 48.0 62.9

0.25

Proposed 42.7 46.2 60.6 43.7 47.2 62.3
OldTwostep 42.7 46.2 60.6 43.7 47.2 62.0

Asym 25.7 25.2 28.9 25.8 26.4 27.5
MLE 43.4 46.7 61.2 44.5 48.0 62.9

Perturb 40.7 41.7 47.7 39.1 41.2 46.2
EstEq 40.2 43.1 56.3 40.4 43.3 56.7
SdBS 42.4 43.8 49.8 40.0 41.7 47.8
SmBS 40.2 41.4 46.0 37.3 39.0 43.6

DeLasso 39.0 41.7 54.0 39.2 41.7 54.2
BSDe1 39.9 42.7 54.8 40.4 43.5 55.7
BSDe2 45.1 48.3 62.8 47.3 51.0 66.5

0.8

Proposed 45.5 47.8 54.9 46.1 48.1 54.8
OldTwostep 45.5 47.8 54.9 46.1 48.1 54.8

Asym 45.5 47.8 53.6 46.1 48.1 53.6
MLE 49.4 53.1 68.0 51.1 54.7 70.2

Perturb 50.5 53.3 69.3 51.5 53.5 70.2
EstEq 43.9 47.1 60.8 44.2 47.2 60.9
SdBS 49.3 52.0 66.2 48.9 50.9 64.4
SmBS 48.9 51.6 65.8 47.3 49.6 63.2

DeLasso 41.4 44.2 56.8 41.6 43.9 57.2
BSDe1 42.9 45.8 59.2 43.3 46.7 60.4
BSDe2 54.6 58.6 74.9 59.0 63.2 81.5

Note: Proposed: the proposed two-step inference method; OldTwostep: the two-step inference
method based on Shi and Qu (2017), which does not construct confidence intervals for identified
noise variables; Asym: the method based on the asymptotic theory using the one-step adaptive lasso
estimator; MLE: the maximum likelihood estimation method; Perturb: the perturbation method;
EstEq: the estimating equation-based method; SdBS: the standard bootstrap method; SmBS: the
smoothed bootstrap method; DeLasso: the de-biased lasso method; BSDe1: the type-I bootstrap
de-biased lasso method; BSDe2: the type-II bootstrap de-biased lasso method.
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Figure S5: Empirical probabilities of assigning the covariate X4 to different signal categories
when (n, p, ρ) = (350, 25, 0), τ = 0.1 and the threshold value δ1 varies.
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Figure S6: Coverage probabilities of the 95% confidence intervals for the proposed two-step
inference method when (n, p, ρ) = (350, 25, 0), τ = 0.1 and the threshold value δ1 varies.
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Figure S7: Average widths of the 95% confidence intervals for the proposed two-step inference
method when (n, p, ρ) = (350, 25, 0), τ = 0.1 and the threshold value δ1 varies.
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Figure S8: Empirical probabilities of assigning the covariate X4 to different signal categories
when (n, p, ρ) = (350, 25, 0), δ1 = 0.99 and the threshold value τ varies.
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Figure S9: Coverage probabilities of the 95% confidence intervals for the proposed two-step
inference method when (n, p, ρ) = (350, 25, 0), δ1 = 0.99 and the threshold value τ varies.



34 ZHANG ET AL.

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

4
0

.5
6

0
.5

8
0

.6
0

0
.6

2

θ

W
id

th

τ = 0.05

τ = 0.1

τ = 0.15

τ = 0.2

Figure S10: Average widths of the 95% confidence intervals for the proposed two-step inference
method when (n, p, ρ) = (350, 25, 0), δ1 = 0.99 and the threshold value τ varies.
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Figure S11: Empirical probabilities of assigning the covariate X4 to different signal categories
when (n, p, ρ) = (350, 25, 0), δ1 = 0.99, τ = 0.1 and the total number of weak signals varies.
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Figure S12: Coverage probabilities of the 95% confidence intervals for the proposed two-step
inference method when (n, p, ρ) = (350, 25, 0), δ1 = 0.99, τ = 0.1 and the total number of weak
signals varies.
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Figure S13: Average widths of the 95% confidence intervals for the proposed two-step inference
method when (n, p, ρ) = (350, 25, 0), δ1 = 0.99, τ = 0.1 and the total number of weak signals
varies.
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