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Abstract: Clustered survival data often arise in biomedical research. When the

outcome depends on the size of the cluster, the cluster size is said to be informative.

Many studies assume a noninformative cluster size, even though it may not always

be true. We propose a test for the assumption of informative cluster size in clustered

survival data with right censoring. We use standard martingale results to obtain

the asymptotic distribution of the test statistic. Simulation studies show that

the proposed test works well under various scenarios. To illustrate the proposed

approach, we consider several applications: periodontal data, a multicentric study

of patients with liver disease, and a recent data set of patients with metastatic

cancer treated using immunotherapy.
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1. Introduction

Clustered data are often encountered in biomedical research. Observations

are organized within groups of various sample sizes, and while clusters are

assumed to be independent, units within the same cluster are correlated because

of some common shared features. Several methods have been proposed to handle

clustered data, such as the frailty model and marginal models, but they assume

that the outcome is unrelated to the sample size of the clusters. However,

this assumption is not always valid, in which case the cluster size is said to

be informative. For instance, consider the time to tooth loss in one individual

with periodontal disease. Because the subject may already have lost some teeth

from the disease, the time to loss in the individual (cluster) is linked to that

individual’s number of teeth (cluster size). Another example can be found in

studies of men with lymphatic filariasis, which is characterized by one or more

nests of adult filarial worms in the scrotum (Williamson et al. (2008)). Ideally,

effective treatment would kill the worms in all of the nests. The nest-specific time

to clear the worms is longer in men with multiple nests than in men with one

nest. Moreover, informative cluster size (ICS) might be detected in a multicentric

study or meta-analysis in which the size of the study is linked to the magnitude
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of the treatment effect.

The recent increase in interest on how to handle informative cluster size

(Zhang et al. (2015); Chiang and Lee (2008); Pavlou and R. (2013)) had

yielded several approaches. Hoffman, Sen and Weinberg (2001) proposed

the within-cluster resampling (WCR) method, in which independent data sets

are created by randomly sampling one observation from each cluster, with

replacement. Williamson, Datta and Satten (2003) considered a generalized

estimating equation method inversely weighted by the cluster sample sizes. Cong,

Yin and Shen (2007) investigated the WCR method for clustered survival data

by analyzing the resampled data sets using a Cox model. They also generalized

the marginal models weighting the score function by using the inverse of the

cluster sample size. Williamson et al. (2008) estimated the marginal distribution

for multivariate survival data with ICS using cluster-weighted Weibull and Cox

models. However, these methods all rely on the ICS assumption, without testing

it in the study.

In practice, it is usually not possible to know in advance whether the ICS

assumption is suitable for a particular data set. Although appropriate methods

exist to handle this issue, unnecessarily allowing for ICS leads to a substantial

loss of efficiency (Benhin, Rao and Scott (2005)). Therefore, assessing whether

the cluster size is informative is fundamentally important for the decision on the

statistical approach analysis. Although the nature of the the link between the

cluster sample size and the outcome is interesting, we focus on a test for detecting

informative cluster size to avoid possible bias in the analysis.

Benhin, Rao and Scott (2005) employed a Wald-type test for the ignorability

of the cluster size in the estimating equations framework for linear and logistic

regression models. Nevalainen, Oja and Datta (2017) introduced a test for ICS

using a balanced bootstrap to estimate the null distribution. However, in survival

analysis, testing procedures are limited to ad-hoc procedures that compare the

marginal distributions between strata defined by the cluster size (Meddis et al.

(2020)). We aim to provide a more general method for testing for ICS in right

censored survival data. To do this, we consider two definitions for the estimator of

the cumulative hazard function. The asymptotic distribution of the test statistic

is obtained using standard martingale results.

The rest of this paper is organized as follows. In Section 2, we discuss

the problem of informative cluster size and describe possible target populations

in clustered data. We further introduce a new method for tetsing for ICS in

right censored survival data, and provide the asymptotic distribution of the test

statistic. In Section 3, we present a simulation study to assess the power of

the test. In Section 4, we illustrate the usefulness of the method in several

applications. Section 5 concludes the paper.
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2. Methodology

2.1. Notations and assumptions

Let Tik and Cik be the time-to-event and the censoring time for unit i in

cluster k, with K clusters with sample size Nk and N =
∑

kNk. We observe the

failure time T̃ik = min{Tik, Cik} and the indicator of the event ∆ik = I(Tik ≤ Cik),
where ∆ik = 1 if the event occurs, and zero otherwise. Let (G1, G2, . . . , GK) be a

sample of K independent and identically distributed (i.i.d.) observations, where

each Gk represents a cluster consisting of {Nk, (T̃1k,∆1k), . . . , (T̃Nkk,∆Nkk)}. We

assume that Tik and Cik are independent for all i, k and that Tik are independent

between clusters, but that within cluster k, (T1k, T2k, . . . , TNkk) can be correlated.

2.2. Target population

When we have clustered data, the cluster sample size may provide infor-

mation about the outcome. The cluster sizes may vary because of the study

design used to collect the data, that is, because of an inherent feature of the

data, or because of missing data. In the case of missing observations, we might

be interested in the effect on the outcome for the complete cluster (i.e., observed

and missing observations), and thus assumptions on the censoring are needed

for inference. We assume there is independent censoring, and do not discuss

the problem of missing data. In this context two marginal analyses that might

be of interest (Hoffman, Sen and Weinberg (2001); Seaman, Pavlou and Copas

(2014b)). One makes an inference for the population of all observed members

(AOM), thus referring to a random individual in the observed population. The

second, makes an inference for the population of typical observed members of

a typical cluster (TOM), thus referring to a random individual belonging to a

random cluster of the observed population. In the first case, larger clusters

contribute more to inference, because equal weights are given to all observed

members. In the second, clusters are equally weighted. For the AOM, the

analysis provides an interpretation for a unit randomly sampled from the overall

observed population. A TOM analysis has a cluster-based interpretation, that is

an interpretation for a randomly selected unit sampled from a randomly selected

cluster. Asymptotically, the two marginal analyses reach the same conclusion if

the cluster size is unrelated to the outcome (Seaman, Pavlou and Copas (2014a)).

However, they differ, in general, in the presence of ICS.

For each cluster k, let r be the index of a randomly selected member of the

observed cluster. As in Seaman, Pavlou and Copas (2014b), we define eAOM =

E[NkTr|Nk ≥ 1]/E[Nk|Nk ≥ 1] and eTOM = E[Tr|Nk ≥ 1]. When E[Tr|Nk =

n] = E[Tr|Nk ≥ 1] we have noninformative cluster size (NICS), otherwise the

cluster size is informative (Hoffman, Sen and Weinberg (2001)). In general, ICS

refers to any violation of the condition P(Tik ≤ t|Nk = n) = P(Tik ≤ t) ∀n.

Under NICS, the two marginal analyses coincide (eTOM = eAOM). However, this
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is not true, in general, when the cluster size is informative. Thus, when choosing a

method for analysis, it is important to specify in advance which target population

would best address the scientific question.

2.3. Definition of the test

Let Nik(t) = I(T̃ik ≤ t,∆ik = 1) be the counting process at time t, with

intensity λik(t) = αik(t)Yik(t), where Yik(t) = I(T̃ik ≥ t) represents the at-risk

process and α(t) is the hazard function. Given the cumulative intensity function

Λik(t) =
∫ t
0
λik(s)ds, we define Mik(t) = Nik(t)−Λik(t), or equivalently dNik(t) =

αik(t)Yik(t)dt+ dMik(t). The quantity Mik(t) is not a martingale with respect to

the joint filtration generated by all the times, because of the correlation within

the clusters. However, it is a martingale with respect to the filtration Fik(t) =

σ{Nik(u), Yik(u) : 0 ≤ u ≤ t}. Moreover, we define the Nelson-Aalen estimator of

the cumulative hazard function A(t) =
∫ t
0
α(s)ds for the two marginal analyses

as follows:

ÂTOM(t) =

∫ t

0

dNTOM(s)

YTOM(s)

ÂAOM(t) =

∫ t

0

dNAOM(s)

YAOM(s)

where ÂTOM(t) estimates the number of events for a typical observed member,

and ÂAOM(t) estimates the number of events for all observed member populations.

In fact, the weighted counting process and at-risk process are defined as:

NTOM(t) =
1

K

∑
k

1

Nk

∑
i

Nik(t)

YTOM(t) =
1

K

∑
k

1

Nk

∑
i

Yik(t)

where units within a cluster are equally weighted by the inverse of the cluster

sample size, and

NAOM(t) =
1

N

∑
k

∑
i

Nik(t)

YAOM(t) =
1

N

∑
k

∑
i

Yik(t)

where equal weights are given to each unit, regardless of the cluster to which they

belong. The above estimators are consistent estimators for the cumulative hazard

functions even though the data are clustered and the observations are dependent

within each cluster (Ying and Wei (1994)).

Let τ be the follow-up time. In order to define the null hypothesis of the
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test, we rely on the fact that under NICS, the two marginal analyses coincide:

H0 : αTOM(t) = αAOM(t) ∀t ∈ [0, τ ]

H1 : αTOM(t∗) 6= αAOM(t∗) in t∗ ∈ [0, τ ].

The proposed test statistic is

Z(τ) =

∫ τ

0

L(t){dÂTOM(t)− dÂAOM(t)},

where L(t) = YAOM(t)YTOM(t)/K is a weight function defined to ensure

convergence. Under the null hypothesis, Z(τ)/
√
K asymptotically tends to a

Gaussian distribution with mean zero and covariance matrix V.

2.3.1. Proof of asymptotic distribution

By definition:

Z(τ) =

∫ τ

0

L(t)

(
dNTOM(t)

YTOM(t)
− dNAOM(t)

YAOM(t)

)
,

where dNh(t) = dMh(t) + αh(t)Yh(t)dt.

Therefore

Z(τ) =

∫ τ

0

L(t)

(
dMTOM(t) + αTOM(t)YTOM(t)

YTOM(t)

)
−
(
dMAOM(t) + αAOM(t)YAOM(t)

YAOM(t)

)
=

∫ τ

0

L(t)

(
dMTOM(t)

YTOM(t)
− dMAOM(t)

YAOM(t)

)
+

∫ τ

0

L(t)
{
αTOM(t)− αAOM(t)

}
dt.

Under the null hypothesis αTOM(t) = αAOM(t) ∀t ∈ [0, τ ], and by the

definition of Nh(t), dMTOM(t) =
∑

k(1/Nk)
∑

i dMik(t) and dMAOM(t) =∑
k

∑
i dMik(t).

We specify L(t) = YAOM(t)YTOM(t)/K, and obtain

Z(τ) =

∫ τ

0

L(t)

YTOM(t)

K∑
k=1

1

Nk

Nk∑
i=1

dMik(t)−
∫ τ

0

L(t)

YAOM(t)

K∑
k=1

Nk∑
i=1

dMik(t)

=

∫ τ

0

YAOM(t)

K

K∑
k=1

1

Nk

Nk∑
i=1

dMik(t)−
∫ τ

0

YTOM(t)

K

K∑
k=1

Nk∑
i=1

dMik(t)

We can interchange the sums and the integral:

Z(τ) =
K∑
k=1

1

Nk

Nk∑
i=1

∫ τ

0

YAOM(t)

K
dMik(t) −

K∑
k=1

Nk∑
i=1

∫ τ

0

YTOM(t)

K
dMik(t)
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=
K∑
k=1

1

Nk

∫ τ

0

YAOM(t)

K
dMk(t) −

K∑
k=1

∫ τ

0

YTOM(t)

K
dMk(t)

where Mk(t) =
∑Nk

i=1Mik(t). Thus, the statistic can be rewritten as

Z(τ)
1√
K

=
1√
K

K∑
k=1

∫ τ

0

(
YAOM(t)

NkK
− YTOM(t)

K

)
dMk(t).

Because of the dependence between observations, we cannot use to the usual

martingale theory to prove the asymptotic normality. However, we assume that

observations are correlated within a cluster, and the Nk is finite. Thus {Tik}
is an m-dependent sequence (with m = maxk{Nk}) because {Ti1, Ti2, . . . , TiNk

}
and {Ti1, Ti2, . . . , TiN ‘

k
} are independent classes of random variables for k 6= k

′
.

Applying the same argument as in the proof of Theorem 2 of Ying and Wei (1994),

the process (1/
√
K)
∑K

k=1

∫ τ
0
dMk(t) converges weakly to a zero-mean Gaussian

process UZ(t).

Define yAOM(t) and yTOM(t) the limits of YAOM(t)/NkK and YTOM(t)/K

respectively, when N → ∞. The quantity
∫ τ
0
|YAOM(t)/(NkK) − YTOM(t)/K| is

bounded away from infinity in N , and

Z(τ)
1√
K

=
1√
K

K∑
k=1

∫ τ

0

(
YAOM(t)

NkK
− YTOM(t)

K

)
dMk(t)

and

Z∗(τ)
1√
K

=
1√
K

K∑
k=1

Nk∑
i=1

∫ τ

0

{
yAOM(t)− yTOM(t)

}
dMik(t)

converge almost surely to the same limit
∫ τ
0
{yAOM(t) − yTOM(t)}dUZ(t) (as in

Lee, Wei and Ying (1993)).

Hence, the statistic converges to a Gaussian with mean zero and covariance

matrix V, asymptotically equivalent to V ∗ = (1/K)
∑

k

∑
j

∑
j′ εjkεj′k with

εjk =
∫ τ
0

(yAOM(t) − yTOM(t))dMjk(t), where dMjk(t) = dNjk(t) − dA(t)Yjk(t).

We can estimate the covariance by replacing dA(t) with d{
∑K

m=1

∑Nm

f=1Nfm(t)}
{
∑K

m=1

∑Nm

f=1 Yfm(t)}−1 and (yAOM(t)−yTOM(t)) with ω̂k(t) =
{
YAOM(t)/(KNk)

− YTOM(t)/K
}

:

ε̂jk = ∆jkω̂k(Tjk)−
K∑
i=1

Ni∑
l=1

∆liω̂k(Tli)Yjk(Tli)∑K
m=1

∑Nm

f=1 Yfm(Tli)
.

2.4. Extension to regression setting

One might be interested in investigating the assumption of the dependence

of the failure times on the cluster sample size given a set of covariates. Let
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Xik denote the covariate values for individual i in cluster k. We define NICS

when P(Tik ≤ t|Xik, Nk = n) = P(Tik ≤ t|Xik) ∀n. The covariates Xik can

include a set of cluster- and/or individual-level covariates. In this context,

we assume Tik is independent of Cik given Xik, and possible correlation in

(T1k, T2k, . . . , TNkk) within each cluster k given the set of covariates. To model

the hazard conditional on the covariates, we consider the Cox model αik(t) =

α0(t) exp(β
′
Xik), and define Mik(t) = Nik(t)−

∫ t
0
α0(s)Yik(s) exp(β

′
Xik)ds. The

proposed nonparametric test can than be extended to a regression setting

by replacing the Nelson-Aalen estimator with the Breslow estimator of the

cumulative baseline hazard function for the two marginal analyses:

ÂTOM(t, β̂) =

∫ t

0

dNTOM(s)

Y TOM(s, β̂)

ÂAOM(t, β̂) =

∫ t

0

dNAOM(s)

Y AOM(s, β̂)
,

where Y AOM(t, β) = (1/N)
∑K

k=1

∑Nk

i=1 Yik(t) exp(β
′
Xik) and Y TOM(t, β) =

(1/K)
∑K

k=1(1/Nk)
∑Nk

i=1 Yik(t) exp(β
′
Xik). The regression coefficients β are

estimated by solving the score function weighted by the inverse of the cluster

sample size (Cong, Yin and Shen (2007)):

U(β) =
K∑
k=1

1

Nk

Nk∑
i=1

∫ τ

0

[
Xik −

∑K
j=1(1/Nj)

∑Nj

l=1 Ylj(t)Xlj exp(β
′
Xlj)∑K

j=1(1/Nj)
∑Nj

l=1 Ylj(t) exp(β′Xlj)

]
dNik(t)

= 0.

The test statistic is

Zx(τ) =

∫ τ

0

Lx(t, β̂)
{
dÂTOM(t, β̂)− dÂAOM(t, β̂)

}
,

Lx(t, β̂) =
Y AOM(s, β̂)Y TOM(s, β̂)

K
.

Under the null hypothesis, we obtain

Zx(τ)
1√
K

=
1√
K

K∑
k=1

∫ τ

0

(
Y AOM(s, β̂)

NkK
− Y TOM(s, β̂)

K

)
dMk(t)

where Mk(t) =
∑Nk

i=1Mik(t) =
∑Nk

i=1Nik(t)−
∫ t
0
α0(s)Yik(s) exp(β

′
Xik)ds.

As in the previous section, the quantity (1/
√
K)
∑K

k=1

∫ τ
0
dMk(t) converges

weakly to a Gaussian process UZ(t), and a similar argument leads to the
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asymptotic equivalence between

1√
K

K∑
k=1

∫ τ

0

(
Y AOM(s, β̂)

NkK
− Y TOM(s, β̂)

K

)
dMx

k (t)

and
1√
K

K∑
k=1

Nk∑
i=1

∫ τ

0

wβk (t)dMx
ik(t),

where wβk (t) is the limit of Y AOM(s, β̂)/(NkK)− Y TOM(s, β̂)/K.

Therefore, the statistic Zx(τ)(1/
√
K) converges to a Gaussian with mean

zero and a covariance matrix asymptotically equivalent to (1/K)
∑

k

∑
j

∑
j′

εjkεj′k, with εjk =
∫ τ
0
ωβk (t)dMjk(t), estimated by V̂ x = (1/K)

∑
k

∑
j

∑
j′ ε̂jk ε̂j′k,

where

ε̂jk = ∆jkω̂
β
k (Tjk)−

∑
i

∑
l

∆liω̂
β
k (Tli)Yjk(Tli) exp(β̂Xjk)∑

m

∑
f Yfm(Tli) exp(β̂Xfm)

,

ω̂βk (t) =

(
Y AOM(t, β̂)

KNk

− Y TOM(t, β̂)

K

)
.

3. Simulation Study

To evaluate the power and the nominal level of the test under different

scenarios, we conduct a simulation study in which we fix the type-I error to

5%. The correlated failure times were generated from a frailty model, that

is, from the conditional cumulative distribution function P (T ≤ t|Uk, X) =

1−exp(−UkA0(t) exp(βX)) with the frailty term Uk and a Weibull baseline hazard

function A0(t) = stω(s = 6.31e−6, ω = 4.6). To obtain informative cluster size, we

generate K clusters with sample size Nk ∼ Pois{λ exp(Vk)} where Vk defines the

cluster-specific sample size, and λ represents the expected number of observations

in each cluster if there were no variability. To create the dependence between the

sample size Nk and the failure times Tik, we generate (Uk, Vk) from a multivariate

gamma distribution with unit mean and covariance matrix

Σ =

(
σ2
U ρσV σU

ρσV σU σ2
V

)

The variance σ2
U = 1/θ controls the variability of the time-to-event among the

clusters. The variance σ2
V = 1/γ represents the variability between the clusters

sample sizes. The parameter ρ ∈ [0, 1] is the correlation between the two random

effects, and defines the dependence between Tik and Nk; when ρ = 0, we have

NICS. The strength of ICS depends on θ, ρ and γ: it decreases with larger values

of θ, because the between-cluster time-to-event variability decreases. Defining
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the link between γ and ICS is not straightforward. We suspect that increasing γ

decreases the variability and the ICS. However, there is a trade-off between the

variability of the cluster sample sizes and the magnitude of the difference in the

time-to-event, which also depends on θ (see the Supplementary Material).

We simulate two main settings: a) highly clustered data, with K = 100, λ = 5

and γ = 20, and b) a few large clusters with K = 25, λ = 20, and γ = 3. For both

settings, λ and γ were defined by simulation (over 10,000 replications) to reach

an overall sample size around 1,500. Right censoring is generated by a uniform

distribution, independent of the failure times, with the parameters set to obtain

30% and 80% censoring.

3.1. Simulation plan 1: Without covariates

We fix β = 0 and let θ and γ vary to determine the behavior of the test

in different frameworks. We consider uncensored data, with 30% and 80% right

censoring.

In Figure 1, we provide the empirical power of the test for increasing

correlation ρ. The simulations suggest that the test performs well, reaching

a power of 80% in most scenarios. The results confirm that θ is inversely

proportional to the ICS, showing higher power for θ = 5. Moreover, we decrease

the overall sample size N = 700, 300, varying either the number of clusters (K)

or the cluster sample sizes (λ, γ). A decrease in the sample size does not seem to

degrade the performance, overall (Figure 2). With a smaller λ, a lower θ is needed

to detect ICS because the cluster sample sizes are smaller and the between-cluster

variability is not sufficiently strong. However, for K = 10, even with decreasing

θ, low power is detected. Thus, a sufficient number of clusters is necessary for the

test to be valid. Our simulation results also suggest that censoring does not affect

the performance of the test. However, for heavy censoring, we need a stronger

variability (θ = 1) to reach a good power for N = 700, because of the low number

of events (see Figure 2). Finally, the empirical type-I error is reasonably close to

the nominal level of 5% for scenarios A and B (Table 1). In the Supplementary

the cluster sample size distribution is provided for the simulated settings with

varying of ρ.

3.2. Simulation plan 2: Regression setting

Here, we fix θ = 5 and assess the performance of the test by generating

a continuous covariate with a normal distribution N(0, 1). The covariate is

generated independently of the cluster sample size. Thus, the ICS is not due

to the introduction of X.

We simulate the data for β = 0.5 and 1.5 (Hazard ratio: 1.6 and 4.5) with

no censoring, with 30% and 80% right censoring. We decrease the sample size

to N = 700, 300, as in Simulation 1. Similar results are obtained, with the test
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Figure 1. Power of the test for increasing correlation ρ for both scenarios considering
different values of θ, γ and censoring. Each scenario is based on 1,000 replications, with
α = 0.05. Scenario A: highly clustered data (K = 100, λ = 5); scenario B: a few big
clusters (K = 25, λ = 20).

performing well, overall (Figure 3). The low power of the test when K = 10 is

confirmed. The nominal level is provided in Table 2.

4. Application

In this section we apply the test for ICS in different settings. Note that we

are not interested in the subsequent analysis of the data, but rather in supporting

our the theoretical findings and simulations.
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Figure 2. Power of the test for increasing correlation ρ for both scenarios with smaller
sample size, varying K,λ, and censoring. Each scenario is based on 1,000 replications,
with α = 0.05.

4.1. Dental data

Here, we consider data of patients treated at the Creighton University School

of Dentistry from August 2007 to March 2013. The data are available in

the MST package in R as Teeth (Calhoun et al. (2018)). The analysis aims to

construct multivariate survival trees to predict tooth loss. Data were collected

for 5,336 patients with periodontal disease, yielding data on 65,228 teeth. We

then excluded individuals with only one tooth, resulting in a sample size of 65,034

teeth. The average patient age is 58 years. Of the patients, 51% are women, 9%

have diabetes mellitus, and 23% are smokers. The number of teeth that fell out

is 4,334, with a median tooth loss time of 0.556 [0.003, 5.594] years. Several teeth
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Figure 3. Power of the test for increasing correlation ρ with X ∼ N(0, 1) for both
scenarios considering different values of N,K, β and censoring. Each scenario is based
on 1,000 replications, fixing α = 0.05.

and individual characteristics are also provided in the data set, but we do not

take them into consideration.

We suspect ICS exists because the number of teeth (cluster size) in each

individual (cluster) is linked to the disease and, thus, a tooth is more likely

to fall out in an individual with a smaller cluster size. The test shows clear

evidence of ICS with a test statistic of 8.932 (p-value=0). We provide a plot

of the Kaplan-Meier estimator of the survival function at each cluster sample

size at the median time (Figure 4). The further suggests the existence of ICS:

the tooth loss time is longer in individuals with more teeth (e.g., bigger cluster

sample sizes). For instance, the probability of a tooth not falling out before the

median time in individuals with 13 teeth is higher than that in individuals with
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Figure 4. Estimated survival functions at the median failure time t = 0.556 years for an
increasing cluster sample size. The confidence intervals for each probability are provided.

seven teeth. The assumption of ICS seems to be reasonable for these data. Thus,

for the consequent analysis it would be appropriate to employ the WCR method

(Cong, Yin and Shen (2007)) or the multivariate survival model proposed by

Williamson et al. (2008).

4.2. Multicentric data

We consider data from a multicentric study of patients with the liver disease

primary biliary cirrhosis (PBC). The original study was a randomized clinical

trial conducted in six European hospitals between 1983 and 1987. The data are

provided in the pec package in R as Pbc3 (Gerds (2009)). A total of 349 patients

were randomized to treatment with either Cyclosporin A (176 patients) or a

placebo (173 patients) to study the effect of treatment on the composite outcome

failure of medical treatment, defined as either death or liver transplantation. The

data are characterized by 75% censoring, where 90 patients experienced the event,

with a median time of 21 months [0.8, 62].

We applied the proposed test for informative cluster size conditional on the

treatment value. We reject the null hypothesis of NICS, with a test statistic

equal to −1.98 (p-value=0.04). The K-M at the median time, varying the cluster

sample size, is also provided in Figure 5. Because of the high censoring (75%),

the weighted marginal survival model is preferable to the WCR methods for the

analysis (Cong, Yin and Shen (2007)).
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Figure 5. Estimated survival function at median failure time t = 21 months for an
increasing cluster sample size in the subgroup of patients that received the treatment.
The confidence intervals for each probability are provided.

4.3. Cancer data: Immunotherapy

We consider a data set of 100 patients with metastatic cancer treated using

immunotherapy at the Institut Curie Comprehensive Cancer Center in Paris.

For each patient, the size of each metastasis is evaluated radiologically from

the treatment initiation to the date of progression of the specific metastasis.

Immunotherapy may have different effects depending on the metastatic site.

Furthermore, the treatment effect may depend on the number of metastases in the

individual, which reflects the burden of the disease. A total of 272 metastases

are examined, and each individual has from two to four metastases. For each

subject, a maximum of five target metastases are considered, as per the Response

Evaluation Criteria in Solid Tumors (RECIST) guideline (Nishino et al. (2010)).

The primary cancer differed in nature, including breast cancer, head-neck cancer,

lung cancer, urological cancer, and others. The principal objective of the study

was gain insight into dissociate responses that are typical of immunotherapy,

notably in the same individual, where the response to the treatment might vary

among metastases.

The individual represents the cluster, and the number of metastases is the

cluster sample size. The outcome of interest is the time to progression, which

depends on the tumor growth. Intuitively, the number of metastases should

affect the outcome. However, this was not confirmed by the proposed test, which

did not reject the null hypothesis of NICS, with a test statistic of −0.85 (p-
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Table 1. Nominal level of the test without covariates. Results are provided for 1,000
replications, with α = 0.05.

α̂

N K λ γ θ cens 0% cens 30% cens 80%

Scenario A

100 5 20 10 0.060 0.049 0.045

100 5 20 5 0.057 0.056 0.0481,500

100 5 40 10 0.020 0.043 0.046

100 2 20 10 0.056 0.052 0.040

50 5 20 10 0.049 0.047 0.038

100 2 20 5 0.055 0.048 0.039
700

50 5 20 5 0.045 0.041 0.036

50 5 3 5 0.063 0.059 0.049
300

50 5 3 10 0.065 0.064 0.052

Scenario B

25 20 3 10 0.052 0.045 0.050

25 20 10 10 0.057 0.052 0.0441,500

25 20 3 5 0.059 0.053 0.042

25 8 3 10 0.069 0.056 0.050

10 20 3 10 0.066 0.064 0.043

25 8 3 5 0.065 0.059 0.049
700

10 20 3 5 0.067 0.058 0.056

10 8 3 5 0.072 0.062 0.041
300

10 8 3 10 0.074 0.065 0.035

Table 2. Nominal level of the test with X ∼ N(0, 1). Results are provided for 1,000
replications, with α = 0.05.

α̂

β N K λ γ θ cens 0% cens 30% cens 80%

25 20 3 5 0.058 0.056 0.052
1,500

100 5 20 5 0.051 0.049 0.053

10 20 3 5 0.066 0.064 0.048
700

50 5 20 5 0.049 0.050 0.052

50 5 3 5 0.057 0.049 0.037

0.5

300
10 8 3 5 0.052 0.055 0.044

25 20 3 5 0.057 0.056 0.050
1,500

100 5 20 5 0.051 0.053 0.054

10 20 3 5 0.057 0.055 0.043
700

50 5 20 5 0.050 0.050 0.049

50 5 3 5 0.053 0.042 0.044

1.5

300
10 8 3 5 0.053 0.060 0.047
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Figure 6. Estimated survival function for different number of metastases (cluster sample
sizes).

value=0.39). However, the number of metastases seems to affect the survival

function for metastasis disease progression (Figure 6). We computed the log-rank

test for the three groups with different cluster sample sizes, finding a significant

difference on survival (pvalue=0.008). This example illustrates a limitation of the

proposed test when the time-to-event variability is not sufficient to detect ICS

(simulation results for K = 100, λ = 2).

5. Discussion

In the presence of clustered data, standard statistical methods implicitly

assume that the size of the clusters is unrelated to the outcome of interest.

However, this assumption is not always true, in which case, the cluster size is

defined to be informative. In this work, we propose a test for the assumption of

ICS with right censored survival data that can be used as a pre-test to determine

whether to use a standard regression model for clustered survival data, valid under

the NICS assumption, or a method that accounts for the information carried by

the cluster sample size. The test statistic relies on the fact that under NICS, the

marginal analyses for typical observed member and all observed member coincide.

In Section 2, we mention that the variability in cluster sample sizes can

be the result of missing data, notably when clusters have the same size, but

some members are not observed (missing observations). Hoffman, Sen and

Weinberg (2001) and Williamson, Datta and Satten (2003) state that the missing
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completely at random (MCAR) mechanism is equivalent to NICS. Pavlou (2012)

associated NICS with a missing data mechanism, of which MCAR is a special

case, proving the equality of the results for the target populations in three cases

(TOM, AOM, missing data). In this work, we assume that the observed clusters

are complete. Therefore, we do not consider the problem of missing data, and do

not discuss the issue of informative censoring. This is a challenging point that

requires methods able to handle possible dependence between the censoring and

the cluster sample size.

We have provided several applications where ICS is detected. Moreover, the

publication bias that characterizes some meta-analyses also applies to the ICS

problem, because the treatment effect is often linked to the study sample size.

A funnel plot is often used to investigate the presence of publication bias or

others forms of bias in a meta-analysis. It provides information on the treatment

estimate against a measure of the study sample size. It provides a way of

examining the tendency for smaller studies in a meta-analysis to show larger

treatment effects, which is also a problem with ICS.

We also propose an extension of the test to a regression setting. In this case,

the definition of NICS is extended to P(Tik ≤ t|Xik, Nk = n) = P(Tik ≤ t|Xik) ∀n,

and we use the Breslow estimator rather than the Neslon-Aalen estimator. A

simulation study for a continuous covariate is conducted. We do not consider

the regression setting with a binary covariate, because in this scenario, the

nonparametric approach by stratification would be a better option, avoiding the

problem of misspecification.

Our simulation results suggest that the proposed method performs well

overall for both scenarios, with the test exhibiting low power when there are

fewer than 10 clusters and for highly clustered data with small cluster sample

sizes ( k = 100, λ = 2 in the simulation). The proposed test detects whether

there is dependence between the cluster sample size and the outcome. We do not

focus on the nature of the association or on the several possible distributions in

the generating method.

The test relies on the definition of the cumulative hazard estimator. Thus,

extending the method to others survival analysis issues depends on appropriate

modification of the Nelson-Aalen estimator. Moreover, in our simulation and

applications, we refer to unit-level covariates. In the case of cluster-level

covariates, the TOM and AOM definitions are still suitable.

In the simulation study, the covariate is generated independently of the

cluster sample size (X is size-unbalanced). Other cases are possible in which:

i) the cluster sample size affects the covariate distribution, but not the outcome,

and thus the dependence on the cluster sample size is through X, and ii) the

covariate effect varies with the cluster sample size,corresponding to an interaction

between the cluster sample size and the covariate in the survival model. We do

not consider these scenarios because they are related to the issue of informative
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covariate structure and confounding by cluster as discussed in Pavlou (2012).

ICS is defined mainly by the relationship between the cluster sample size and

the outcome. We introduce an extension to a regression setting to show how to

implement he method when the analysis requires adjustment for some covariates.

Informative covariate structure is a related problem that can also occur without

ICS, and it is left to future research.

A test for ICS has been introduced for clustered data for linear regression

models using a balanced bootstrap method, because the distribution of the

statistic under the null is analytically intractable (Nevalainen, Oja and Datta

(2017)). An adaptation of this method to survival data could be employed to

investigate the presence of ICS, but it is characterized by a high computational

cost. Introducing the cluster sample size as a covariate in the regression model

might offer another way to test for ICS. However, unlike for the proposed test,

this would require assuming a specific link between the cluster sample size and

the outcome. Furthermore, adding the cluster sample size to the model would

test for ICS, but the estimated effect would be conditional on the sample size.

Thus, we require a two-step procedure with appropriate methods for handling

ICS are needed to obtain results on the marginal effect.

Supplementary Material

The implementation in R of the proposed method is provided at

github-AMeddis (https://github.com/AMeddis/Informative-Cluster-Size),

together with supplementary material on the simulation results referenced in

Section 3.
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