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Abstract: We propose a novel diagnostic test to check the goodness-of-fit for
generalized functional regression models. The proposed test does not require
a specification of the distribution, and can be applied to commonly employed
functional regression models. Because it is based on independence in distribution,
it includes mean-based and higher-order moment-based tests as special cases. In
particular, we overcome the problem of the infinite dimensionality of the functional
data by projecting functions along certain directions. Moreover, to avoid bias caused
by the subjective selection of these directions, we integrate over the directions
along which the functional variables project. As a result, the proposed test
simultaneously enhances the local power and overcomes the infinite-dimensionality
problem. A simple implementation procedure is developed. The performance of the
proposed test is evaluated theoretically and using simulation studies. We apply the
proposed procedure to analyze Canadian weather data and Chinese air pollution
data, resulting in several interesting models that achieve higher interpretability and
estimation accuracy than those of existing methods.
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1. Introduction

Functional data analysis (FDA) has attracted considerable attention since
the seminal work of Ramsay| (1982)). Linear, nonlinear, nonparametric, and
semiparametric models for analyzing functional data have been proposed,
including those of [ Kokoszka and Reimherr| (2017)); Horvath and Kokoszka, (2012);
Ramsay and Silverman| (2002); Hsing and Eubank| (2015]), and Ferraty and Vieu
(2006), leading to the development of various functional regression techniques
(Yao, Miiller and Wang| (2005); Li and Hsing (2010); Li, Wang and Carroll
(2010)), and their applications (Horvath and Kokoszka| (2012))).

Checking the goodness of fit for a functional regression was first investigated
by |Cardot, Ferraty and Sarda (2003), prompting further research on model
checking for functional regressions; for example, see Kokoszka et al. (2008),
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Chiou and Miiller| (2007)), Garcia-Portugués, Gonzalez-Manteiga and Febrero-
Bande, (2014), Cuesta-Albertos et al.| (2019), Lei (2014), Patilea, Sanchez-Sellero
and Saumard (2016), and Lee, Zhang and Shao (2020) for functional linear
regression (FLR) models, and McLean, Hooker and Ruppert|(2015) for functional
generalized additive models.

Although existing goodness-of-fit methods have certain useful properties,
such as computational efficiency for parametric functional regression models, or
avoiding imposing error distributions, they have limitations. For example, some
methods may inherit the “curse-of-dimensionality” problem, as in nonparametric
regression, from evaluating the difference between the conditional expectation
under the null and alternative hypotheses, and the expectation of the residual
under the null hypothesis; for example, see |Delsol, Ferraty and Vieu| (2011) and
Chiou and Miiller| (2007). Other methods may produce intermittent quantities,
causing the selection of user-chosen quantities, such as bandwidths (Patilea,
Sanchez-Sellero and Saumard, (2016); Lei| (2014)). To ensure freedom from the
curse of dimensionality, Patilea, Sanchez-Sellero and Saumard| (2016|) propose a
nonparametric test based on a quadratic form, with univariate nearest-neighbor
smoothing, for either multidimensional or functional covariates. Their test
statistics converge to a standard normal distribution under the null hypothesis,
and exhibit good finite-sample performance. However, their test’s local power
depends on the user-chosen parameter, namely, the bandwidth of the kernel,
and achieves only O((nh/?)~%/2), with n and h being the sample size and the
bandwidth, respectively. In addition, with the exception of |Chiou and Miiller
(2007) and McLean, Hooker and Ruppert| (2015), existing works focus on linear
functional regression models or specific error distributions. In particular, for
Gaussian error distributions, Lei (2014)) proposes an exponential scan test, which
shows to be uniformly powerful over a certain class of smooth alternatives if the
signal-to-noise ratio exceeds the detection boundary.

In addition to the aforementioned limitations, a common problem with these
methods is that they focus on modeling/testing the conditional mean of the
response variable, given the covariates. Suppose ¥ = E(Y | X) + &, where
covariate X is function-valued or vector-valued, and ¢ is the unpredictable part
of Y given X. The following hypothesis is commonly considered in the literature:

Hy:E(e| X)=0 almost surely (a.s.), (1.1)

against the nonparametric alternative Prob{E(¢ | X) =0} < 1. To maintain
the local power with the classic parametric rate, O(n~'/2?), and to avoid
imposing an error distribution assumption, |Lee, Zhang and Shao (2020) propose
a nonparametric test that uses the functional martingale difference divergence
to fully characterize the conditional mean dependence of the response and the
covariates, both of which can be function-valued or vector-valued.
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The mean-based test does not consider the higher-order conditional moment,
which is often of interest for functional data. Notably, the second-order covariance
function is an essential feature in FDA (Ramsay and Silverman| (2002)); |Wang,
Chiou and Miiller (2016)). However, the test given in (1.1)) cannot check the
goodness of fit for a functional regression model with a covariate-dependence
second-order moment, as we observe in Table 4 for the example of Chinese
air pollution. Specifically, the mean-based hypothesis does not detect a
relationship between the air quality index Y;(¢) and PM2.5, whereas the proposed
distribution-based test suggests that the variance of the air quality index depends
on PM2.5. On the other hand, our theoretical and numerical results show that
a moment-based test is more powerful than a distribution-based test. Motivated
by these issues, we consider a generalized functional regression test (GFR-test)
that includes moment-based tests and distribution-based tests as special cases,
that is,

Ho - E(L(e) | X) = B(L(2)), (1.2)

against the nonparametric alternative Prob {E(L(e) | X) =E(L(¢))} < 1, where
L is a certain prespecified function. For instance, the proposed test is a mean-
based test when L(¢) = e, and is a variance-based test when L(¢) = 2. For
L(e) ={I(e <wv):v e R}, where I(-) is an indicator function, the proposed test
becomes the following distribution-based test:

Hy: F.x(v) =F.(v) as. Yv € R, (1.3)

against the nonparametric alternative Prob{F;|x(v) = F.(v)} < 1, for some v €
R, where F.(-) and F x(-) denote the distribution function of the random variable
¢ and the conditional distribution function of € given X, respectively.

Within the test framework , we start with the conditional mean test.
Only if the mean-based test is not rejected do we then apply the independence
test to test whether heterogeneous higher-order moments exist. Following this
strategy, we obtain more precise and insightful information about the model
structure and avoid calculating redundant test statistics. For example, as shown
in Table 3 for the Canadian weather data, both the mean-based test and the
distribution-based test suggest a correlation between rainfall and temperature.
Furthermore, we find that none of the heterogeneous variance models are rejected,
whereas all regression models without an analysis of variance (ANOVA) or a
heterogeneous variance structure are rejected. This result implies heterogeneity
in the rainfall of different climatic zones, and that the variance depends on
temperature. This finding is consistent with the conclusion of [Patilea, Sanchez-
Sellero and Saumard, (2016), who use ANOVA models to take into account the
variance heterogeneity among climatic zones. Notably, heterogeneous variance
models are more insightful and efficient than ANOVA models in terms of inter-
pretability and accuracy, especially when the number of factor groups increases.
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In this paper, we provide a unified test framework for generalized
functional regression models that allows nonlinear functional regression models,
and hence, includes numerous such models as special cases, as described in
Section 2. Furthermore, the framework accommodates not only the independence
test, which is distribution based, but also mean and higher-order moment-based
tests, enabling us to compare the mean-based tests and the independence tests.
Specifically, the theoretical and numerical results show that a moment-based test
is more powerful than an independence test. This finding is understandable,
because a moment-based test will not be rejected if the distribution-based test is
not rejected, yielding a smaller alternative space for moment-based testing than
that of distribution-based testing.

Although some works exist on statistical independence tests for traditional
regression models with scalar or vector variables of finite dimension, for example,
Neumeyer| (2009) and Dhar, Bergsma and Dassios| (2018), to the best of our
knowledge, there is no statistical independence test for functional regression
models. For such models, the challenge when testing is that the conditional
variable X (-), which determines the conditional moment or distribution, is a
function of infinite dimensionality. In this paper, inspired by Escanciano| (2006)
and motivated by the established equivalency between E(L(e)I(X < u)) =
E(L(e))Fx(u),Vu and E[L(e)I((X, o), <u)] = E(L(e))Fix,a),, (u) for any o
and wu, given in Proportion 1, we propose a Cramer-von Mises-type test for
, and overcome the infinite dimensionality problem of the functional data by
projecting the function along various directions. Moreover, to avoid the bias
from the subjective selection of the directions, we integrate over all directions.
The proposed approach is both robust and powerful, because it is constructed
based on the distribution, but without prespecifying its form. In particular,
the proposed test is shown to achieve the parametric order O(n~%/2) for the
local power, which even tests based on the conditional moment approach do not
attain (Patilea, Sanchez-Sellero and Saumard| (2016)). A simple implementation
procedure is also developed.

The remainder of the paper is organized as follows. Section 2 presents
the Cramer-von Mises-type test for a general model with functional data.
Section 3 presents the asymptotic distributions of the proposed test statistics.
An implementation procedure is introduced in Section 4. The performance of the
proposed statistics is assessed using simulation studies in Section 5. In Section 6,
we apply our proposed method to data on Canadian weather and Chinese air
pollution, resulting in several interesting models. We provide concluding remarks
in Section 7. Technical details, including notation, conditions, and all proofs are
relegated to the Supplementary Material.
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2. Model and Method
Denote (X, 8) = [ X (t)3(t)dt. We consider the following model:

Y:g(a,Z, <X1751>>"'7<Xd75d>76)7 (2'1)

where ¢(-) is a known link function, Z is a vector of covariates, X; are functional
covariates with mean zero, and both Z and {Xj};-lzl are independent of the
random error €. Here, Y is a scalar and the error ¢ has mean zero. Note that Y
can also be a function-valued response, Y (¢), in which case, model is then
rewritten as

Y(t) = g(a(t), Z(t), (X1, B1 (-, 1)), - (Xa, Bal-, 1)), €(t)) , (2.2)

where (X fX s)B;(s,t)ds, and €(t) is a mean zero process.

Models and cover most functional regression models as special
cases. First, they include functional linear models (FLMs), including those
with a scalar response (FLMsR): Y = (X, ) + €, a function-valued response
(FLMfR): Y(t) = (X,B(-,t)) + €(t), and a concurrent response (FLMcR):
Y(t) = X(t)5(t) + €(t); see |Cai and Hall (2006)); Fan and Zhang (2000)), and
Hall and Horowitz (2007). Second, they include the partially functional linear
varying-coefficient models of Feng and Xue (2016)) and |Li, Huang and Zhu (2017)):

= P ZiBa(u) + (X,a) + € and Y(t) = S0 ZaBa(t) + (X, ) + €(t).
Third, they include the generalized functional linear models of Muller and
Stadtmuller| (2005) and McLean et al. (2014): Y = g (a+ (X, 8)) + €. Fourth,
they include the multiple index functional regression models (MiFRMSs) of |(Chen,
Hall and Muller| (2011)), Ma/ (2016)), Ding et al.| (2017)), and |Tang et al.| (2021)):
Y =30 9a((X, 8a) + € and YV = (X, 1) + ZTar) + g2 (X, Bo) + Z7as) €,
which are special examples of our models when the link functions are specified
by their estimates.

For the test problem , we express the scalar residual ¢(X;3) and the
function-valued residual e/ (X; 3)(t) based on models and (2.2), respectively,
as

e(X;8)=m(Y,a,Z,(X1,51),...,(Xa4, Ba)) and
H(X;8)() =m (Y (),a(-), Z(), (X1, (), -+, (Xas Bal))

where X = (X1,...,X0)", B = (B1,-.-,64)", m(-) is a known function deter-
mined by ¢(-), and the superscript f indicates that the variable is function—valued.
For example, for the FLMsR model, the residual a(XZ, 6) Y fo X (t)dt;
for the FLMfR model, the residual e/ (X;; 3) : fo s )ds Because
the purpose of this study is to determine the effect of functlonal covariates,
henceforth, we disregard the dependence of £(X;3) and £/(X;3)(t) on (a, Z),
for notational simplicity.
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Next, the GFR-test problem (|1.2) for model ([2.1)) is rewritten as

Ho : Prob [E{L(e(X; 8)) | X = @} = E{L(¢(X;8))}] = 1,

for some functions 3(-),
against the alternative hypothesis

Hy : Prob [E{L(e(X;8)) | X =z} = E{L(e(X;8))}] < 1,
for any function 3(-).

The test problem is defined for model , with £(X;83) replaced with
e (X;B)(1).

The projection-based distribution-free test statistic. Here, we construct
the projection-based distribution-free (PD) test statistic, and show the associated
theory mainly for a scalar e. The test and theory for a function-valued &(t) are
similar, and are discussed next. Throughout this paper, we assume that all
covariates {X; ;(-)}%_, have mean zero. We use (-,-) to denote the inner product
in L2[0,1], that is, (Wi, Wa) = [} Wi()Wa(t)dt, ¥ Wi, W, € L2[0,1].

We assume that the covariance function of X; ;(-) is X;(s,t) = cov(X; (s),
X, ;(t)), for j = 1,...,d. Mercer’s theorem implies that the spectral decompo-
sition of 3, leads to X;(s,t) = > pe, 0; xPr(s)¢r(t), with uniform convergence,
where 0, are the eigenvalues and ¢, are the corresponding orthonormal
eigenfunctions (Wang, Chiou and Miller| (2016])). According to the Karhunen—
Loéve (KL) theorem, we have X, ;(t) = Y ;o (Xi;, ou)Ou(t) = Yore &iindn(t),
where &, &i;r are pairwise, uncorrelated, mean-zero functional principal
component scores (FPCs) of X ;,
for a nonrandom p-dimensional vector a; = {o;,}h_; € RP, we define the
product of the covariate function X; ;(¢) and a; as the product of X; ;(¢) and an
element of L?[0,1], for example, M;(t) = > po,(M;, é1)dx(t), with coordinates
(M, ¢r) =y for k < p and (M;, ¢x) = 0 for k > p in the basis B = {¢x (), k >
1}, that is, (X, a)m = (Xi;, M;) = > %_ &k, Using this definition,
we overcome the problem of the infinite dimensionality of the function X ;(t)
by projecting function X; ;(¢) along the direction a;. As long as o includes

with variance Var(§;;,) = 6;. Furthermore,

all directions, from Proposition 1, all information about X; ;(¢) is captured by
(Xijs)m, Vo Let X; = {X;;()}=, B = {5,()}= and a = {oy}i,.

Denote (X, &), := Z?:1<Xm, a;)m and Fix oy, (u) = Prob ((X;, o), <u).
The following proposition plays a key role in motivating our methods.

Proposition 1. We use U, X; € L?*[0,1], for j =1,...,d, as random functions.
For any p, and v € R?, we denote Fiyny, (v) = Prob((U;,vy)m < u), and
Fupyx@) = E[I((U;,¥)m <u)| X]. Neat, the following statements (a) and
(b) are equivalent: (a) Fiuy,.x(-) = Fumy,, () a.s., and (b) Fuy),x.00,.() =
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Fuypy,.() as. Vp > 1, Vo; € SP, forj = 1,...,d, where S* = {a € R? :
a2 = 1} denotes the unit hypersphere in R?.

Proposition 1 indicates that the test problem (1.2)), E[L(e)[(X < u)] =
E(L(e))Fx(u), for any u, is equal to the projected test problem E[L(£)I({X, &),
<u)| =E(L(e))Fix,a),, (1), Va; €SP, for j =1,...,d and any u.

To explicitly express our proposed PD test statistics, we consider three special
formulae of L(¢). For L(¢) = {I(¢ < v) : v € R}, let the empirical version of
F.(v) be F,, .(v) =n~* X" I(e(X;; B) <w). For ascalar ¢(X;; 3), we define the
independence test statistic

n

Mo (Bs yu,0) =02 ST (e(X 8) < v) = Fue(0)] T (X, @) < ).

i=1

To avoid a subjective selection of «, which may cause the test to be
inconsistent (Escancianol (2006)), we consider integrating all possible a. In
particular, we consider the following PD independence test statistic

To®) = [ [[ (os(8: 00,00 B, () % F(dv)de

where F), (x a),,(u) is the empirical version of Fix a,, ().

Remark 1. For a function-valued &/ (X; 3)(t), we induce another p-dimensional
vector v = {y;}_, € RP to project /(X;B)(t) along the direction ~.
Specifically, using the KL expression, we have ¢/ (X;; 8)(-) = > r, €i x¢x(+). For
any fixed v, the projection of the residual (e/(X;3),7)m is a scalar, with an
empirical marginal distribution of the form F,, .5 . (v) =n~' >0, I({e/(X;; B),
YVim <v) =n"t30 T (Y h_, eixyi <v). Consequently, the PD independence
test for the function-valued response model is constructed similarly to the
test for the scalar response model , as shown in the Supplementary Material.

When L(g) = ¢, a conditional mean-based test for hypothesis (|1.1)) is

ToalB) = [ [ (0alBi))” P, (du)de

with M, u(B;a,u) = n~ V23" e(Xy; 8) xI ((Xi, @) < u) . |Garcia-Portugués,
Gonzalez-Manteiga and Febrero-Bande| (2014) also consider this conditional
mean-based test, but without providing theoretical justifications. Note that
if the null hypothesis cannot be rejected based on T),(3), then the null
hypothesis cannot be rejected by T, y(8). Thus, a conditional mean-based
test is more powerful than a distribution-based test, which is supported by our
theoretical and numerical results.

When L(g) = &2, we use M,y(B;c,u) = n~ V23" (e2(X;8) — 02)
I (X, ), <u), Ty, with 02 = n ' 3"  £*(X;;3). Next, the variance-based
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test takes the form

_ / / (Mo (B: 0, 1)) Fy x c, (du)der.
Spd JR

Note that for £(¢) = ¢",r > 2, that is, a higher-order moment-based test, the
calculation of higher-order moments of the residual is usually unstable.

The calculation of T}, ¢, T}, u, and T}, y depends on the residual e(X;; 3), which
involves unknown coefficient functions 3. To make this feasible, we replace 8 with
its estimator B As stated in Section 3, under some conditions, this substitution
does not affect the local power up to the order. For completeness, we briefly
introduce the estimation for 8 in model .

We define the loss functions as ¢(¢(X; 3)), where £(z) is a nonnegative known
function of z, such as the least-squares solution £(x) = z?. We establish the
covariance of X, ;(t) as E (X, ;(t)X;;(s)) = > 0;10k(s)or(t), for j = 1,....,4d,
and X;;(t) has the empirical expression Xij(t) = 3, & ndr(t) E;jp, with

—122 X (DX (s) = X, 0,60i()bi(t), for j = 1,...,d. We assume that

B;(t) = X, Jkgbk( ), 7 =1,...,d and denote 8 = (a,b{,...,bl)", where b; =
{b;, k}k , forj=1,...,d. Next we estimate 6 by solving the equation U(O) =
Z:ng( (K,m))Di = 0, with respect to 8, where m; = (a,b? 5117--'7bd£z ),
N = (a,bT&, ... by, {(x) = dl(x)/dx is the first derivative of ¢(x), D; =
(mo(Ye, %:), ma (Yi, 0:) (€)7o ma(Yi, 1) (&)™) T, mo(Yi,ms) = Om(Yi, m;) /0,
m;(Yi,m;) = 0m(Y;,m:)/0(bj &), and &; = {&nticy, forj = 1,...,d, D;.
We denote the solution to U (0 ) 0 as 0. Next, we estimate f3;(t) as
Bi(t) = K biron(t), for j = 1,...,d, the validity of which we justified in
Section 3.

3. Theoretical Property for the PD-Test Statistic

Here, we focus on the PD distribution-based test, and leave the mean-based
test to the Supplementary Material. Other specific formulae of £(-) may be
obtained similarly. Let ¢ = Kd + 1. W denote w = (w;)"_, := ({(m(Y;,m;)))1;,
V = Diag{s?,.... @2}, D = {D;}, and D = {({(m(Y;,n,)))/*Di}1,

n x g-dimensional matrices, I' = lim, ... D'V D/n = {Ty,;}1<k, l<qf r =
limy (D" D/n) = (Tr1<hices E = 070 = (Ga)isjbses and 31 1@1/2 G
= (1. The following conditions are needed to establish the asymptotic properties

for model ([2.1]).

(C1) {(V;, {X;;}9_1)}7, are independent and identically distributed (i.i.d.) ran-
dom vectors with 0 < E|Y;| < oc.

(C2) € has a zero mean and is independent of {X;;(-)}_,, and X; ;(-) € L?[0,1],
for j = 1,...,d. The covariance function of each X, ; is positive definite
with a spectral decomposition X;(s,t) = > 7 0; xdr(s)dr(t), where 6, >

0j2 > -~ and C7'k™ < 0, < Ck™, and 0;5, — 0,41 > C7Hk77Y,
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fora>1,57=1,...,d,k > 1. Furthermore, the true coefficient function
ﬁj(t) = 220:1 bj’quk(t), Wlth |bj’}€| S Clk_n, fOI’ k Z 1, K Z o+ 2.

(C3) E (w;D; | X;) = 0. There exist constants ¢, ¢;, and ¢, satisfying E (@?) <
c2 < 00, and 0 < ¢ < infl(m(Y;,m;)) < supl(m(Yi,m:)) < ¢, < 0.

(C4) m(-) has continuous bounded first-order derivatives, ||D|. < ¢ < oo, and
T is positive definite and has a bounded maximum eigenvalue.

(C5) Kn~Y/@s+a=1) is hounded away from zero and infinity as n — oo. The
following equations hold: Zl,kg,ks,kFlE(Di.,klDi,kzDi,ksDi,k4Ck1,k2<ka,k4)
= 0(n/q2), Zzh,,,,kg:l E (Di,kl Di,ngi,k5Di,k7) E (Di,k2 Di,k4 Di,kf, Di,k:g) Ck:l,k2
Chs s Chs ko Chn ks = 0(n?@?), where ¢ = K(d + 1).

(C6) F(X;(t)) is a measurable function of {X; ;(t)}_, satisfying 0 < sup,_,.,
E[F(X;(t))] < oo, and the link function g, defined in (3.1) under the
alternative hypothesis has continuous bounded first-order derivatives.

(C7) {oi, I =1,...,n} are i.i.d. with mean zero and variance one. For all ¢, p; is
independent of (Y;, X;). Furthermore, €;0; and ¢; have the same distribution
function.

Conditions (C1)-(C4) are general conditions that are readily satisfied in
practice. Condition (C5) ensures that B does not affect the convergence rate.
In particular, under conditions (C3)—(C5), we have n(6 — 8)TT'(8 — 8) = O,(q).
Furthermore, following expression (17) and the last second expression on Page
2434 in [Dou, Pollard and Zhou (2012), ¢=K(d + 1) =< n/@%te=1 leads to
the estimation error fol(Bj (t) — B;(1)%dt = O,(n~3=2/(e+2:=1) " Following
expression (4.6) in (Cai and Hall (2006), ¢ =< n'/?**2=1 Jeads to the prediction
error E((z, ;) — (x, 8;))? = O(n~(rte=2)/(e+2:-1)) for any fixed function z(t) =
S oo TRdi(t), with |z,| < Ck=/2 for j = 1,...,d. When the prediction error
and estimation error have the above rate, substituting 3, with ,é does not change
the convergence property of the proposed test statistics or the order of the local
power. Furthermore, with K = nl/(2s+=1)_the estimation rate of §; is not of the
optimal rate n~(*=D/(2+2%) "which requires K,,; < n'/(“*2%)_ Instead, we require
K = n'/@rte=D "which is larger than K,,,. We require a larger K to ensure a
parametric order for the local power of the proposed statistics, which is standard
in the semiparametric literature, where a smaller bandwidth or a larger number
of principal components is required to reduce the bias and obtain the parametric
convergence rate for the parameters. Moreover, when the proposed model
degenerates to the FLMsR, condition (C5) is identical to the conditions in |Muller
and Stadtmuller| (2005). Condition (C6) is a general condition for the alternative
hypothesis. Condition (C7) is imposed to ensure the validity of the bootstrap
procedure. Specifically, if € follows a symmetric distribution, then a two-point
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distribution p; = —1/1 with probability 0.5 satisfies condition (C7). For any r,
P(eioi <1)=0.5P(¢; <r)+0.5P(e; > —r) =ple; <r).

Remark 2. In the Supplementary Material, we list the conditions (C1{-C5f) for
the function-valued outcome model. By imposing a direction -y, we project the
function €/ (X; B)(t) along ~, that is, (¢/(X;3),~)m, which is a scalar. Because
we allow the dimension p to diverge to infinity for the scalar response model,
the theoretical results of the proposed statistics for the function-valued response
model are similar to those for the scalar response model. Therefore, conditions
(C1f)—(C5f) are similar to conditions (C1)—(C5), with the exception that the
number of parameters in the function-valued response is ¢;=K?d + K, owing to
the approximation of §;(s, t), which is larger than g=Kd+ K for 3(t) in the scalar
response model. To ensure that the proposed statistics converge in distribution
and have a parametric order of local power, we require a stronger condition,
k > a+3, for ;(s,t) in the function-valued response model, instead of k > a+2
required in condition (C2).

We define A(X;;a,u) = I (X5, 00, < u) — Fixay,, () A(-) and o, =
{o,;}9_,, with a,.; € RP. Next, we establish the asymptotic distribution of the
proposed test statistic if the true parameters are known for model (2.1)).

Theorem 1. Under conditions (C1) and (C2) and the null hypothesz's (L.3),
if p = o(n), for any m € R, Prob(T,s(By) < m)— Prob(Ty, , < m) — 0,
where T, p = [gpu [[2 (M3, p(ot,u,v))?FL(dv) Fix ay,, (du)de, and MY, (-, -, -)
is a Gaussian process with zero mean and covam’ance function K((oue,u1,v1),
(g, u2,v2)) = A{E[I(e; <v1)I(e; <wa)]— Fo(v1)F.(v2)} E(A(X:; a1e,u1)
A(Xi;aQ,MUQ))-

Corollary S.2 in the Supplementary Material explores the asymptotic distri-
bution of the proposed mean test T, u(Bo). Directly comparing T,  and T,
is not possible because the former depends on the distribution of e, whereas
the latter depends on its moment. However, under certain situations, a strict
inequality holds between the two statistics. Specifically, the limiting distribution
for the mean-based statistic is described as follows: for any m € R, Prob(T;, x(80)
< m) — Prob(T2, ,, < m) — 0, where T2 ,, := [ [ (M, (0, u))*Fix o,
(du)de, and E[(MY, 5/ (cx, u))2] = E(€})F(x,a),,(u). From Theorem 1, we have

E[[r (MY, (o, u,v))?Fe(dv)] = [ E[(MY, p(o,u,v))?|F(dv) = [, F.(v
FL(0)) Fu(d0) Fix ay, (u)(1 = Flx () < 0.25Fx o, (). When E(e) > 0.25,
it is easy to determine that E(TY, ) < E(TY, ,/), which indicates that the
distribution-based statistic tends to generate smaller values and, as a result, is
less powerful than the mean-based statistic. Next, we establish the asymptotic
distribution of test statistics with estimated parameters.

Theorem 2. Under conditions (C1)—(C5) and under the null hypothesis (1.3)),
for any m € R, Prob(T,s(B) < m) — Prob(T,, » < m) — 0, where T, , :=
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Jova [Jre (ML p(at,u,v))? XF(dv)Fix o, (du)da, and MY, . = MY, o + MS, g,
Mg (s ) s a Gaussian process with mean 0 and covariance function
Kl((al,nuhm),(012,o,U2,U2)) = O'F(aLo,Ul,az,o,Uz) X fe(vl)fe(v2)7 and
cov(MY, p(ay e, U1, v1), MG, p(Qae, Un, 02)) = O p(Qe, Un, V1, Qg o, U) fe(02),
where 0%(Qt1 e, U1, Qg 0, Uz) and 0. p(O o, Us, V1, Qae, ) are defined in the
Supplementary Material.

Corollary S.3 in the Supplementary Material presents the asymptotic dis-
tributions of T, y(3). Comparing Corollary S.3 with Theorem 2, under certain
situations, Tn,F(B) has smaller asymptotic mean values, and hence is less powerful
than Tnym(,é). In addition, although substituting B, with B does not change the
convergence property of the proposed test statistics, it increases the variance of
the test statistics because of the additional terms M, . and M
Theorem 2 and Corollary S.3.

Now, we analyze the asymptotic distribution of 7}, r using a sequence of local
1/2

as stated in

oom’

alternatives converging to null at a parametric rate n~ In particular, we

consider the local alternative
HA,n : }/;,n =g <a7 <Xi,17 51)7 ORI <Xi,d7 /8d>7 €, n71/2‘7_‘(X1)) ) (31)

Where g1 (CL, <X'L',17 ﬂl)) ey < 7 d7/8d> €y ) =g (a7 <Xi,1751>7 ey <Xi,d718d>7 ei)v and

F(X;) is a measurable function of {X; ;(t)}7_,.

Theorem 3. Under conditions of (C1)—(C6) and local alternative (3.1), for
any m € 7?, Prob(T #(B) < m) — Prob(T% r < m) — 0, where TS p =
Jopa [ Jr2(ME o0, u,v))? XFe(dv)Fix ), (du)da and (3 is the estimate obtained
from model using data {Y; ., X;}7_, MZ p(o,u,v) = MJ p(o,u,v) —
Dé (e, u,v), (md

D% (e, u,v)
=E {A(Xi; o, u) (”%,(Yz, ;)G (Mi, €,0) F(X;) — Z-Di,jvj> } Je(v),

where my (-, -), i, v; are defined in the Supplementary Material.

Theorem 3 implies that the proposed test achieves the parametric order
O(n=1/2) for the local power. This order is not attainable for tests based on
the local approach, such as that of |Patilea, Sanchez-Sellero and Saumard| (2016)),
which is based on the conditional mean, and hence has order O((nh'/?)~1/2)
where h is the bandwidth.

Remark 3. The fast parametric order O(n~'/2) for the local power in Theorem
3 is attributed to two aspects. First, most mean-based test methods, such
as that of Patilea, Sanchez-Sellero and Saumard (2016)), require calculating a
conditional expectation, leading to the order O((nh'/2)~%/2), because only local
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data are involved. Instead, because E(U | (X, «),,) = E(U) holds if and only
if BUI((X,a),, < u)) = E(U)Fxa), (u) holds, for any v and Voo € SP,
our constructed PD test induces the indicator function I({(X,a),, < u) as a
weight function. Consequently, the proposed PD test calculates the unconditional
expectation E(UI((X, &), < w)), which is estimated based on nonlocal data.
Second, we integrate over all a to avoid any subjective choice on a. This
integration could improve the order to O(n~1/2), even if an integrand is estimated
at a nonparametric rate. In particular, we use a larger K < n!/(@+2:=1) than
the optimal K,,; = O(n'/(®+2%)) to control the bias of Tn,p(,é), and reduce its
variance using integration. As a result, the parametric order of the local power
of T, F(B) is maintained. Similar conclusions are established in the literature.
For example, the convergence rate of the integration in Cai and Hall (2006) is
E((x, B) — (x, Bo))? = O(n~s+a=2)/(a+25-1) "which is faster than the estimation
rate fol (B(t) — B(t))2dt = O, (n~s=2/(+25-1)) established in [Dou, Pollard and
Zhou (2012)) under the condition that © > a +2, a > 1, and K x n!/(e+2s=1),
Notably, the necessity of undersmoothing the nonparametric function to obtain
a root-n-consistent estimation for the parameters using integration is standard

in nonparametric regression; see, Carroll et al.| (1997) and Hastie (2017)).

Corollary S.4 in the Supplementary Material gives the asymptotic
distributions of T, y(B), from which we determine that (D%(c,u,v))?> <
(D$;(a,u))? f2(v). According to Theorem 3, we have [ (D% (a,u,v))?F.(dv) <
(D3 (a,u))? [ f2(v)Fo(dv). When the term [, f2(v)F.(dv) < 1, T% p has a
smaller asymptotic mean than T, ,,; that is, the mean test is more powerful
than the distribution test.

The following local alternative hypothetical models are considered:

HA,n : K,n = g1 (CL, <X7i,1a B1>a R <Xi,d> Bd)? €y nV]:(Xz)) . (32)

Corollary 1. Under the conditions of Theorem 3 and the alternatives (3.2]) with
—1/2 < v <0, we have Prob(T,,y > n) — 1, as n — oo, for any n > 0.

Corollary 1 shows that the statistics T}, r diverge to infinity under the local
alternatives for —1/2 < v < 0 and the global alternative hypothesis for
v = 0, indicating that the statistics have asymptotic power one. Theorem 3 and
Corollary 1 imply that our proposed tests T}, r can detect the alternative models
converging to the null model with rate n”, for —1/2 < v <0.

4. Implementation

In this section, we describe how to calculate the test statistics. We use
At = Jopa I(( Xy 0 < (X, a)0)] (X, 0 < (X, @) ,) da, and Cyji(8) =
I(e(X:;8) < e(X;;0)I(e(X;;8) < e(X;8)). After calculations, we obtain
that T,5(8) = n >3, AinCin(B) — 2073, 1 >0 A Cia(B) + n™°
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Dt 2asrss AijnCorsat(B), and Tou(B) = n72 %, 1, e(Xi; B)e(X 5 B) Asji. Note
that A,;; involves pd-dimensional integrals, which require intensive computation.
Calculating A;; follows a volume calculation in a pd-ball. Following simple
algebra (Theorem 4.41 on Page 183 of [Folland (2002))), the integral A;; is
proportional to the volume of a spherical wedge and

&ﬂ:éwuu;mmgu@wwmu@@mga;w@ax

d d
/ (Z Xiqyaq S quyaq )
Spd q=1 q=1
d d
I<Z<Xj,q’ og)m < I(Z<Xl,q> O‘q>m> do

g=1 q=1

:/Sdl< Z&qkaqk<ZZflqkaqk>

=1 k=1 qg=1 k=1

d 4 p
I < Z Z Eig Qg < Z Z §lq,kaq,k> da

q=1 k=1 q=1 k=1

1 [M=

‘B'Q

Agyl)ﬂ.pd/Z—l

I'(pd/2+1)’

where A(J ; is the complementary angle between the vectors (§; —&;) and (§; — &),
with & = (§1,...,&')", ALY = |r — arccos{ 30 _ (X, x — X1, Xje — Xik)p/

il

(¢ZLJXM—XMH¢ZWJXM—XMWﬂLF@isme@mmaMMmm
1 Xkl = /2oy Esr and (X g, X k)p = 2ob_y &ik,s€jk.s- Hence, the computation

of these integrals is simple, regardless of the dimension p.

Because there is no explicit asymptotic null distribution for 7, (3), we
implement the test using a bootstrap procedure. We approximate the asymptotic
null distribution of M, by that of M, = n='/? S (E(X87) < w) —
Fy _(v)] xI((Xi, ) < u), for v,u € R,a; € SP,j = 1,...,d. Here, F; _(v) =
n 'S I(e*(X;;87) < wv), and the sequence {e* (X,,,B s includes the
residuals computed from e*(X;; 8%) = m(Y;*,a*, (X1, 57), ..., (Xia, 53)), where
Y* = g(}/w & (Xz 15 Bl> ’ < % ded) (Xz;:é)gi)v {d*’ {Bj}?zl} is the bootstrap
estimator calculated from the data {(Y;*, X))}, and {p;}7_, satisfies condition
(CT7). For example, 0; uses values of —1 or 1 with a probability of 0.5, for
i=1,.

For the bootstrap test statistic T}, ., we have the following result.

Theorem 4. Under the null hypothesis (2.1)) or the alternative hypothesis (3.2))
with v < 0, if conditions (C1)—(C7) are satisfied, then the conditional distribution
of T}, o converges in distribution to the limiting null distribution of T, r, giving
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Theorem 4 shows that the bootstrap distribution of the test statistic is
equivalent to the asymptotic distribution of the proposed test. The critical value
determined using this method approximates the theoretical value, regardless
of whether the data are derived from the null hypothetical model or
the alternative hypothetical model . Corollary S.5 in the Supplementary
Material shows similar results for the bootstrap mean test statistic T, ,,. The
proposed bootstrap procedure also works for the variance-based test statistic
and other higher-order moment test statistics under condition (C7), using
derivations similar to those in Corollary S.5. However, note that the finite-sample
performance is poor due to the instability caused by estimating the variance or
other higher-order moments. Thus, we suggest using the proposed distribution-
based test and mean-based test in practice, rather than using the higher-order
moment test.

The entire procedure involves two tuning parameters, p and K, which denote
the dimension of the projection parameter «, and the number of principal
component functions, respectively. Because we use both projection parameters
and principal components to capture information from the covariates X, we set
K = p, for simplicity. Larger p and K indicate that more information is captured
from the covariates X, but with a larger variance and heavier computational
burden. We choose K to be the number of principal components such that at
least 95% of the variability of X is captured, which performs well in our numerical
studies.

5. Numerical Studies

In this section, we compare the performance of the proposed PD test
statistics, namely, the distribution-based statistic TJ,F and the mean-based
statistic T,{}M, to that of state-of-the-art tests, including the FMDD of |Lee,
Zhang and Shao (2020)) and the fdapss proposed by Patilea, Sanchez-Sellero and
Saumard, (2016|), both of which are based on the conditional mean.

Example 1 (FLMfR). We consider a model in which the response, Y;, is a
functional response, and the predictor, X;(t), is a univariate functional predictor.
The functional linear model is expressed as follows:

1 1
Yi(t) = / ¢ -B(S,t)Xi(s)ds—i—/ co-B(s, ) X2 (s)ds + {Xi(t)}Pei(t), 1<i<mn,
’ ’ (5.1)
where {X;(t)}7_, are generated independently from Brownian bridges, {e; ()},
follows N (0,0.1%), B(s,t) = exp(s*+t?)/2, and ¢; = 0.25. Setting a homogeneous
scenario (c3 = 0), we consider ¢ = 0 for the null hypothesis, and ¢, =
0.05,n~ %2 n=%/° and 1 for the alternatives.
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Table 1 shows the empirical sizes and power of our proposed test compared
with those of the FMDD and fdapss based on 500 repetitions. For each repetition,
we use 500 bootstrap samples of the original sample to compute the critical value.
Because the FMDD and fdapss are both based on the true value of the coefficient
function fS(+), for comparison, we demonstrate our proposed test using the true
value fy(s,t) and the estimated value 3 (s,t). The number of components K for
each sample is chosen so that the percentage of explained variance is larger than
95%, and p = K.

The upper block of Table 1 presents the percentages of rejections for nominal
levels at 10% and 5% when the sample size is n = 40,100, which suggests
that the empirical size of TiF is slightly larger than the nominal level, because
Bo(s,t) is replaced with its estimator. This result may be attributed to the
small sample size. In addition, our proposed distribution-based statistic T,{’F
and fdapss are slightly conservative for small samples under the null hypothesis,
whereas T, ,{M and FMDD are the opposite. For the power under the alternative
with ¢3 = 0, T,{,M is more powerful than T,{,F, which outperforms fdapss when
the null hypothesis does not hold. These findings are consistent with the
conclusion stated in Theorem 3, and occur because the mean-based test is able to
detect the relationship between the functional covariate and the response when
c3 = 0. In addition, when the alternative part becomes more significant as c,
increases, 7, ,{I performs much better than FMDD in terms of test power.

Furthermore, to consider the effect of the heterogeneous variance, we generate
data with c; = 0,c3 = 0 for the null, and ¢, = 0,c3 = 2 for the alternative. The
bottom-right block of Table 1 presents the results of the test statistics TJ,F and
T,’;M under heterogeneity compared with FMDD and fdapss. The results show that
under model , only the distribution-based test 7, ,{f detects the heterogeneity
from the variance; the mean-based tests T,{,M, FMDD, and fdapss, fail to achieve
this detection.

We also conducted simulations on the same functional response setting, but
with {¢;(t)}7_, following a non-Gaussian distribution, such as Pareto noise with a
finite second moment and Brownian bridges. Results similar to those in Table 1
are obtained, and are relegated to the Supplementary Material. We also list the
computation times of the different methods in Table 2 of the Supplementary
Material, which shows that the mean-based tests are much faster than the
distribution-based test, and for the mean-based tests, the proposed test T,{’M is
faster than FMDD, but slower than fdapss.

We also conduct a simulation for the scalar response in the Supplementary
Material, Example 1.2, with conclusions similar to those for the obtained
functional response.
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Table 1. Simulation results for Example 1 based on the proposed test, FMDD, and fdapss
under model 1) The rows of By and 5 show the results based on using the true £y(s,t)
and the estimated value S(s,t), respectively.

Level=10% Level=5% Level=10% Level=5%
test B n=40 n=100 n=40 n=100 n=40 n=100 n=40 n =100
co=0,c3=0 02:71’2/5,03:()

By 0.076 0.083 0.022 0.030 0.808 1.000 0.542 1.000
. 5 0.106 0.086 0.060 0.049 0.992 1.000 0.956 1.000
Bo  0.104 0.105 0.052 0.058 1.000 1.000 1.000 1.000
M 5 0.106 0.094 0.060 0.046 1.000 1.000 1.000 1.000
FMDD S, 0.118 0.138 0.052 0.066 0.832 1.000 0.530 0.996
fdapss fBp 0.080 0.100 0.028 0.049 0.502 0.969 0.366 0.952
co =0.05,c3=0 co=1,c3=0
Bo  0.208 0.582 0.122 0.384 0.994 1.000 0.906 1.000
’ 5 0.418 0.510 0.274 0.294 0.998 1.000 0.988 1.000
Bo  0.690 0.986 0.562 0.976 1.000 1.000 1.000 1.000
' 5 0.754 0.998 0.624 0.990 1.000 1.000 1.000 1.000
FMDD [y 0.148 0.118 0.072 0.052 0.888 1.000 0.554 1.000
fdapss (o 0.065 0.132 0.022 0.079 0.823 1.000 0.691 1.000
co=n"Y2¢3=0 co=0,c3 =2

Bo  0.638 0.970 0.386 0.920 0.988 1.000 0.948 1.000
. 5 0.956 0.984 0.898 0.938 0.970 1.000 0.920 1.000
7t Bo  1.000 1.000 1.000 1.000 0.028 0.044 0.008 0.014
M B 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000
FMDD [y 0.748 0.986 0.486 0.960 0.298 0.969 0.064 0.952
fdapss [y 0.212 0.511 0.134 0.450 0.080 0.069 0.000 0.029

Example 2. (MiFRM). In this simulation example, we consider a type of
MiFRM model for ¢ € [0,1], Yi(t) = g(c18(t) Xi(t)) +cag(B(t) X2(t)) + X7 (¢)es(t),
where X;(t) and ¢;(t) are generated as shown in Example 1, §(t) = exp(—4(t —
0.3)%), g(t) = exp(t)/(1 +exp(t)), and ¢; = 0.25, (ca,¢3) = (0,0) for the null,
and (cg,c3) = (0,2),(1,0),(1,2) for the three alternative model scenarios. The
results with f(t) given and based on 500 simulations are presented in Table 2
for the test statistics T, ,{f, T,’;M, and fdapss. Table 2 shows that the empirical
sizes of T, ,{I and T,’;M are closest to the nominal size, which is less true for fdapss.
The power of TZ;M and FMDD is almost zero for ¢ = 0 and ¢3 = 2, because the
link function for the mean part takes a logistic form, the variation of which is
weak. This problem is alleviated to some extent by fdapss by the standardization
process. As long as the null hypothesis of the conditional mean does not hold,
T 7{7M performs best. When the null hypothesis of the conditional mean cannot be
rejected, but the model contains heterogeneous variance (corresponding to ¢z = 0
and ¢z = 2), T7{7F and FMDD can detect the heterogeneity.



PROJECTION-BASED TEST FOR FUNCTIONAL REGRESSION 1989

Table 2. Simulation results for Example 2 based on the proposed test, fdapss, and FMDD.
The caption is the same as that of Table 1.

Level=10% Level=5% Level=10% Level=5%
test n=40 n=100 n=40 n=100 n=40 n=100 n=40 n =100
62:0, 6320 02207 0322

TJ’F 0.088 0.090 0.027 0.040 0.234 0.240 0.132 0.180
Tf:M 0.098 0.096 0.062 0.042 0.000 0.000 0.000 0.000
FMDD 0.131 0.138 0.076 0.066 0.006 0.002 0.004 0.002
fdapss  0.065 0.086 0.022 0.030 0.021 0.095 0.011 0.040
co=1, c3=0 co=1, c3=2
TWJ;F 0.495 0.980 0.127 0.900 0.639 1.000 0.408 0.980
Tf;M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FMDD  0.992 1.000 0.986 1.000 0.994 1.000 0.988 1.000
fdapss  0.541 1.000 0.405 1.000 0.843 1.000 0.746 1.000

6. Real-data examples

In this section, we apply the proposed PD test to check the goodness of fit
of several models for two data sets: Canadian weather data, and Chinese air
pollution data.

6.1. Analysis of Canadian weather data

The Canadian weather data are obtained from the R package fda. The
data consist of the daily mean temperature and rainfall registered at 35 weather
stations in Canada from 1960 to 1994. For detailed explanations of the data,
refer to [Ramsay and Silverman| (2002)). Specifically, in this data set, the stations
are classified into four climatic zones, namely, Atlantic, Pacific, Continental, and
Arctic, leading to functional ANOVA models. The aim of this analysis is to
assess the validity of six models: FLMcR, FLM{R, FLMcR coupled with ANOVA
(FLMcR 4+ ANOVA), FLMfR coupled with ANOVA (FLMfR + ANOVA),
FLMcR with heterogeneous variance (FLMcRw), and FLM{R with heterogeneous
variance (FLMfRw). The first four types of models are also analyzed in Patilea,
Sanchez-Sellero and Saumard| (2016)).

Table 3 contains the p-values for testing the goodness of fit of the models
based on the proposed tests T,’;F and T,’;M and the conditional mean tests fdapss
and FMDD, where the response Y;;(t) and the covariate X;;(t) represent the
logarithm of the rainfall and temperature, respectively, at station ¢ of climate
zone j on day t. The results are based on 500 bootstrap replicates, and both the
response Y;;(t) and the covariates X;;(t) are centralized so that no models include
the intercept term. From Table 3, with the first four types of models, we draw
the same conclusions presented in [Patilea, Sanchez-Sellero and Saumard, (2016)).
That is, there exists a varying correlation between rainfall and temperature, with
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Table 3. Canadian weather data: the p-values for testing the goodness of fit of various
models, and the results are based on using the estimated coefficient value.

Name of the model Formula p-value
T/, Tl fdapss FMDD
No-effect Vi;(t) = e;(t) 0.009 0.000 0.000 0.000
Functional ANOVA  Yij(t) = a;(t) + e;;(t) 0.307 0.173 0.226  0.000
No-effect+heterogeneity Y;;(t) = X;;(¢)ei;(¢) 0.455 0.869 0.407 0.409
FLMcR Vii(t) = Xi5(1)B(t) + ei(t) 0.046 0.023 0.000 0.000
FLMcR + ANOVA  Yj;(t) = a;(t) + Xy (t) B(t) + €5(2) 0.174 0.367 0.323 0.222
FLMcRw Yij(t) = Xi5(0)B(t) + Xij(t)eij (t) 1.000 0.980 0.401 0.515
FLMIfR Yi(t) = [) Ba(s, t) i (s)ds + €55(1) 0.000 0.000 0.000 0.000
FLMfR+ANOVA  Y,;(t) = oy(t) + [0 Bi(s,t) Xy (s)ds + €;;(t) 0.782 0.713 0.170  0.695
FLMfRw Y (1) = [y Bi(s,0)Xij(s)ds + Xij(t)e (1) 1.000 0.771 0.401  0.443

s
0.2 0.4 0.6 0.8

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
t t t

Figure 1. The estimated ((s,t) in FLM{fRw for Canada weather data: the estimated
surface (left), and the functions with the second coordinate fixed at ¢ = 0.25,0.5, and
0.75, respectively.

the correlation varying across climatic zones. Compared with the conventional
ANOVA models, one extra finding is that heterogeneous variance models in which
the heterogeneity depends on temperature also work well. For model FLMfRw,
Figure 1 shows the estimate of /(s,t) and its pointwise confidence intervals.
As suggested, [(s,t) is not statistically significant, resulting in the FLM{Rw
degenerating to the no-effect heterogeneity model. In summary, the results of our
tests on the models suggest that heterogeneity in rainfall exists among different
climatic zones, and can be expressed using simple and explicit heterogeneity
models or using an ANOVA as in [Patilea, Sanchez-Sellero and Saumard| (2016)).

6.2. Analysis of Chinese air pollution data

The data consist of the daily air quality index (AQI) and PM2.5 in Beijing,
Chengdu, and Guangzhou from 2014 to 2019. Higher AQI values indicate worse
air quality. The data are collected from the air quality monitoring website. Our
purpose is to explore the relationship between AQI(Y) and PM2.5 (X)), which
are observed daily with a data size of 16. We consider three models: the no-effect
model, FLMcR, and FLMcRw. Table 4 lists the p-values based on the proposed
tests, T,f)p and T,{M, and the conditional mean tests, fdapss and FMDD. The
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Table 4. China air pollution data: the p-values for testing the goodness of fit of various
models, with the results based on the estimated coefficient value.

Name of the model Formula p-value
T/, Tl; fdapss FMDD
No-effect Yi(t) = €(t) 0.898 0.010 0.489 0.000
No-effect+heterogeneity Y;(t) = f(X;(t))ei(¢) 0.341 1.000 0.814 0.631
FLMcR Yi(t) = X;(¢)B(t) + €(t) 1.000 0.076 0.142 1.000
FLMcRw Yi(t) = Xi(¢)B(t) + f(Xi(t))e(t) 1.000 0.606 0.408 0.535

results are based on 500 bootstrap replicates. Note that the performance of the
fdapss test depends highly on the selection of the bandwidth, which is rather
sensitive in this example.

As shown in Table 4, the mean-based tests, TJVM, fdapss, and FMDD all
fail to detect the heterogeneous variance expressed by the models of No-effect+
heterogeneity and FLMcRw. The null conditional mean zero assumption is not
rejected, with p-values of 0.898 and 0.489 by T, ,{,M and fdapss, respectively, under
the no-effect model, and with p-values of 1.00, 0.142, and 1.000 by T,{’M, fdapss,
and FMDD, respectively, under the model FLMcR. However, T,{_’F rejects the
null distributional independence assumption, with p-values of 0.010 and 0.076
for the models of no-effect and FLMcR, respectively. This leads to a no-effect +
heterogeneity model and an FLMcRw with the heterogeneous variance taking the
form of f(X;(t)) = X2(t),t € [0,1]. These results indicate that the heterogeneous
variance of AQI can be explained by PM2.5. Furthermore, Figure 2(b) shows the
estimate of 3(t) and its pointwise confidence intervals for FLMcRw. As suggested
in Figure 2(b), we find that the covariate PM2.5 positively affects the daily air
quality index, that is, larger values of PM2.5 tend to cause large values of the
AQI, resulting in worse air quality.

7. Conclusion

We have developed a projection-based procedure for assessing the goodness
of fit of generalized functional regression models. The procedure offers several
features. First, it offers generality, because the proposed test can check the
goodness of fit for a large number of FLLMs, such as the FLMcR,, FLMsR,, FLM{R,
generalized FLM, and functional index models. Secondly, it offers uniformity,
because we provide a unified test framework for functional regression models.
Remarkably, the proposed framework accommodates not only the distribution-
based test, but also the mean-based and higher-order moment-based tests. Based
on our theoretical and numerical results, as long as the null mean hypothesis
does not hold, the mean-based test is more powerful than the distribution-
based test, which is attributed to the unified framework, under some mild
conditions. By following this strategy, we obtain greater insight into the model
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Figure 2. (a): The estimated [(-) and associated 95% confidence bands in
FLMcR+ANOVA for the Canadian weather data. (b): The estimated () and associated
95% confidence bands in FLMcRw for the Chinese air pollution data.

structure and avoid calculating redundant test statistics, thus alleviating the
computational burden. Third, it offers flexibility, because the proposed test is
free of any distribution assumptions, and is constructed based on independence
in distribution, which accounts for the mean-based independence considered in
the literature and any order moment-based independence. Fourth, it provides
the parameter rate of the local alternative. The proposed test has outstanding
power performance under the alternatives, that is, O(n~'/?), in contrast to the
nonparametric order obtained in the literature. Fifth, it offers computational
convenience. The proposed test is free of user-chosen parameters, which enhances
computational expedience and avoids subjective selection.

There are several possible extensions of our method. First, we focus on
generalized functional models with a known link function. Extending this to
the generalized FLM with an unknown link function requires extra effort, and
deserves further exploration. Second, our method requires that the covariates
X are continuous functions. Because there is no KL expansion for discrete
covariates, especially for binary covariates, accommodating discrete covariates
is worthy of further investigation to address specific scientific questions. Third,
the asymptotic distribution of the proposed statistics does not have an easily
handled form. Thus, we use the bootstrap procedure, which generates extra
computational costs. Therefore, finding an alternative method or developing
more efficient algorithms is left for future work.
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Supplementary Material

Supplementary Material contains additional notation, simulation results, and
technique details, including proofs of the theorems.
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