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Abstract: We propose a novel diagnostic test to check the goodness-of-fit for

generalized functional regression models. The proposed test does not require

a specification of the distribution, and can be applied to commonly employed

functional regression models. Because it is based on independence in distribution,

it includes mean-based and higher-order moment-based tests as special cases. In

particular, we overcome the problem of the infinite dimensionality of the functional

data by projecting functions along certain directions. Moreover, to avoid bias caused

by the subjective selection of these directions, we integrate over the directions

along which the functional variables project. As a result, the proposed test

simultaneously enhances the local power and overcomes the infinite-dimensionality

problem. A simple implementation procedure is developed. The performance of the

proposed test is evaluated theoretically and using simulation studies. We apply the

proposed procedure to analyze Canadian weather data and Chinese air pollution

data, resulting in several interesting models that achieve higher interpretability and

estimation accuracy than those of existing methods.
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1. Introduction

Functional data analysis (FDA) has attracted considerable attention since

the seminal work of Ramsay (1982). Linear, nonlinear, nonparametric, and

semiparametric models for analyzing functional data have been proposed,

including those of Kokoszka and Reimherr (2017); Horváth and Kokoszka (2012);

Ramsay and Silverman (2002); Hsing and Eubank (2015), and Ferraty and Vieu

(2006), leading to the development of various functional regression techniques

(Yao, Müller and Wang (2005); Li and Hsing (2010); Li, Wang and Carroll

(2010)), and their applications (Horváth and Kokoszka (2012)).

Checking the goodness of fit for a functional regression was first investigated

by Cardot, Ferraty and Sarda (2003), prompting further research on model

checking for functional regressions; for example, see Kokoszka et al. (2008),
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Chiou and Müller (2007), Garćıa-Portugués, González-Manteiga and Febrero-

Bande (2014), Cuesta-Albertos et al. (2019), Lei (2014), Patilea, Sánchez-Sellero

and Saumard (2016), and Lee, Zhang and Shao (2020) for functional linear

regression (FLR) models, and McLean, Hooker and Ruppert (2015) for functional

generalized additive models.

Although existing goodness-of-fit methods have certain useful properties,

such as computational efficiency for parametric functional regression models, or

avoiding imposing error distributions, they have limitations. For example, some

methods may inherit the “curse-of-dimensionality” problem, as in nonparametric

regression, from evaluating the difference between the conditional expectation

under the null and alternative hypotheses, and the expectation of the residual

under the null hypothesis; for example, see Delsol, Ferraty and Vieu (2011) and

Chiou and Müller (2007). Other methods may produce intermittent quantities,

causing the selection of user-chosen quantities, such as bandwidths (Patilea,

Sánchez-Sellero and Saumard (2016); Lei (2014)). To ensure freedom from the

curse of dimensionality, Patilea, Sánchez-Sellero and Saumard (2016) propose a

nonparametric test based on a quadratic form, with univariate nearest-neighbor

smoothing, for either multidimensional or functional covariates. Their test

statistics converge to a standard normal distribution under the null hypothesis,

and exhibit good finite-sample performance. However, their test’s local power

depends on the user-chosen parameter, namely, the bandwidth of the kernel,

and achieves only O((nh1/2)−1/2), with n and h being the sample size and the

bandwidth, respectively. In addition, with the exception of Chiou and Müller

(2007) and McLean, Hooker and Ruppert (2015), existing works focus on linear

functional regression models or specific error distributions. In particular, for

Gaussian error distributions, Lei (2014) proposes an exponential scan test, which

shows to be uniformly powerful over a certain class of smooth alternatives if the

signal-to-noise ratio exceeds the detection boundary.

In addition to the aforementioned limitations, a common problem with these

methods is that they focus on modeling/testing the conditional mean of the

response variable, given the covariates. Suppose Y = E(Y | X) + ε, where

covariate X is function-valued or vector-valued, and ε is the unpredictable part

of Y given X. The following hypothesis is commonly considered in the literature:

H0 : E(ε | X) = 0 almost surely (a.s.), (1.1)

against the nonparametric alternative Prob {E(ε | X) = 0} < 1. To maintain

the local power with the classic parametric rate, O(n−1/2), and to avoid

imposing an error distribution assumption, Lee, Zhang and Shao (2020) propose

a nonparametric test that uses the functional martingale difference divergence

to fully characterize the conditional mean dependence of the response and the

covariates, both of which can be function-valued or vector-valued.
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The mean-based test does not consider the higher-order conditional moment,

which is often of interest for functional data. Notably, the second-order covariance

function is an essential feature in FDA (Ramsay and Silverman (2002); Wang,

Chiou and Müller (2016)). However, the test given in (1.1) cannot check the

goodness of fit for a functional regression model with a covariate-dependence

second-order moment, as we observe in Table 4 for the example of Chinese

air pollution. Specifically, the mean-based hypothesis (1.1) does not detect a

relationship between the air quality index Yi(t) and PM2.5, whereas the proposed

distribution-based test suggests that the variance of the air quality index depends

on PM2.5. On the other hand, our theoretical and numerical results show that

a moment-based test is more powerful than a distribution-based test. Motivated

by these issues, we consider a generalized functional regression test (GFR-test)

that includes moment-based tests and distribution-based tests as special cases,

that is,

H0 : E(L(ε) | X) = E(L(ε)), (1.2)

against the nonparametric alternative Prob {E(L(ε) | X) = E(L(ε))} < 1, where

L is a certain prespecified function. For instance, the proposed test is a mean-

based test when L(ε) = ε, and is a variance-based test when L(ε) = ε2. For

L(ε) = {I(ε < v) : v ∈ R}, where I(·) is an indicator function, the proposed test

becomes the following distribution-based test:

H0 : Fε|X(v) = Fε(v) a.s. ∀v ∈ R, (1.3)

against the nonparametric alternative Prob{Fε|X(v) = Fε(v)} < 1, for some v ∈
R, where Fε(·) and Fε|X(·) denote the distribution function of the random variable

ε and the conditional distribution function of ε given X, respectively.

Within the test framework (1.2), we start with the conditional mean test.

Only if the mean-based test is not rejected do we then apply the independence

test to test whether heterogeneous higher-order moments exist. Following this

strategy, we obtain more precise and insightful information about the model

structure and avoid calculating redundant test statistics. For example, as shown

in Table 3 for the Canadian weather data, both the mean-based test and the

distribution-based test suggest a correlation between rainfall and temperature.

Furthermore, we find that none of the heterogeneous variance models are rejected,

whereas all regression models without an analysis of variance (ANOVA) or a

heterogeneous variance structure are rejected. This result implies heterogeneity

in the rainfall of different climatic zones, and that the variance depends on

temperature. This finding is consistent with the conclusion of Patilea, Sánchez-

Sellero and Saumard (2016), who use ANOVA models to take into account the

variance heterogeneity among climatic zones. Notably, heterogeneous variance

models are more insightful and efficient than ANOVA models in terms of inter-

pretability and accuracy, especially when the number of factor groups increases.
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In this paper, we provide a unified test framework (1.2) for generalized

functional regression models that allows nonlinear functional regression models,

and hence, includes numerous such models as special cases, as described in

Section 2. Furthermore, the framework accommodates not only the independence

test, which is distribution based, but also mean and higher-order moment-based

tests, enabling us to compare the mean-based tests and the independence tests.

Specifically, the theoretical and numerical results show that a moment-based test

is more powerful than an independence test. This finding is understandable,

because a moment-based test will not be rejected if the distribution-based test is

not rejected, yielding a smaller alternative space for moment-based testing than

that of distribution-based testing.

Although some works exist on statistical independence tests for traditional

regression models with scalar or vector variables of finite dimension, for example,

Neumeyer (2009) and Dhar, Bergsma and Dassios (2018), to the best of our

knowledge, there is no statistical independence test for functional regression

models. For such models, the challenge when testing (1.2) is that the conditional

variable X(·), which determines the conditional moment or distribution, is a

function of infinite dimensionality. In this paper, inspired by Escanciano (2006)

and motivated by the established equivalency between E(L(ε)I(X < u)) =

E(L(ε))FX(u),∀u and E [L(ε)I(⟨X,α⟩m ≤ u)] = E(L(ε))F⟨X,α⟩m(u) for any α

and u, given in Proportion 1, we propose a Crámer-von Mises-type test for

(1.2), and overcome the infinite dimensionality problem of the functional data by

projecting the function along various directions. Moreover, to avoid the bias

from the subjective selection of the directions, we integrate over all directions.

The proposed approach is both robust and powerful, because it is constructed

based on the distribution, but without prespecifying its form. In particular,

the proposed test is shown to achieve the parametric order O(n−1/2) for the

local power, which even tests based on the conditional moment approach do not

attain (Patilea, Sánchez-Sellero and Saumard (2016)). A simple implementation

procedure is also developed.

The remainder of the paper is organized as follows. Section 2 presents

the Crámer-von Mises-type test for a general model with functional data.

Section 3 presents the asymptotic distributions of the proposed test statistics.

An implementation procedure is introduced in Section 4. The performance of the

proposed statistics is assessed using simulation studies in Section 5. In Section 6,

we apply our proposed method to data on Canadian weather and Chinese air

pollution, resulting in several interesting models. We provide concluding remarks

in Section 7. Technical details, including notation, conditions, and all proofs are

relegated to the Supplementary Material.
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2. Model and Method

Denote ⟨X,β⟩ =
∫
X(t)β(t)dt. We consider the following model:

Y = g (a,Z, ⟨X1, β1⟩, . . . , ⟨Xd, βd⟩, ϵ) , (2.1)

where g(·) is a known link function, Z is a vector of covariates, Xj are functional

covariates with mean zero, and both Z and {Xj}dj=1 are independent of the

random error ϵ. Here, Y is a scalar and the error ϵ has mean zero. Note that Y

can also be a function-valued response, Y (t), in which case, model (2.1) is then

rewritten as

Y (t) = g (a(t),Z(t), ⟨X1, β1(·, t)⟩, . . . , ⟨Xd, βd(·, t)⟩, ϵ(t)) , (2.2)

where ⟨Xj, βj(·, t)⟩ =
∫
Xj(s)βj(s, t)ds, and ϵ(t) is a mean zero process.

Models (2.1) and (2.2) cover most functional regression models as special

cases. First, they include functional linear models (FLMs), including those

with a scalar response (FLMsR): Y = ⟨X,β⟩ + ϵ, a function-valued response

(FLMfR): Y (t) = ⟨X,β(·, t)⟩ + ϵ(t), and a concurrent response (FLMcR):

Y (t) = X(t)β(t) + ϵ(t); see Cai and Hall (2006); Fan and Zhang (2000), and

Hall and Horowitz (2007). Second, they include the partially functional linear

varying-coefficient models of Feng and Xue (2016) and Li, Huang and Zhu (2017):

Y =
∑D

d=1 Zdβd(u) + ⟨X,α⟩ + ϵ and Y (t) =
∑D

d=1 Zdβd(t) + ⟨X,α⟩ + ϵ(t).

Third, they include the generalized functional linear models of Muller and

Stadtmuller (2005) and McLean et al. (2014): Y = g (α+ ⟨X,β⟩) + ϵ. Fourth,

they include the multiple index functional regression models (MiFRMs) of Chen,

Hall and Muller (2011), Ma (2016), Ding et al. (2017), and Tang et al. (2021):

Y =
∑D

d=1 gd(⟨X,βd⟩) + ϵ, and Y = g1(⟨X,β1⟩ + ZTa1) + g2 (⟨X,β2⟩+ZTa2) ϵ,

which are special examples of our models when the link functions are specified

by their estimates.

For the test problem (1.2), we express the scalar residual ε(X;β) and the

function-valued residual εf (X;β)(t) based on models (2.1) and (2.2), respectively,

as

ε(X;β) =̂ m (Y, a,Z, ⟨X1, β1⟩, . . . , ⟨Xd, βd⟩) and

εf (X;β)(·) =̂ m (Y (·), a(·),Z(·), ⟨X1, β1(·)⟩, . . . , ⟨Xd, βd(·)⟩) ,

where X = (X1, . . . , Xd)
T , β = (β1, . . . , βd)

T , m(·) is a known function deter-

mined by g(·), and the superscript f indicates that the variable is function-valued.

For example, for the FLMsR model, the residual ε(Xi;β) := Yi −
∫ 1

0
β(t)Xi(t)dt;

for the FLMfR model, the residual εf (Xi;β) := Yi(·)−
∫ 1

0
β(·, s)Xi(s)ds. Because

the purpose of this study is to determine the effect of functional covariates,

henceforth, we disregard the dependence of ε(X;β) and εf (X;β)(t) on (a,Z),

for notational simplicity.
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Next, the GFR-test problem (1.2) for model (2.1) is rewritten as

H0 : Prob [E{L(ε(X;β)) | X = x} = E{L(ε(X;β))}] = 1,

for some functions β(·),

against the alternative hypothesis

H1 : Prob [E{L(ε(X;β)) | X = x} = E{L(ε(X;β))}] < 1,

for any function β(·).

The test problem is defined for model (2.2), with ε(X;β) replaced with

εf (X;β)(t).

The projection-based distribution-free test statistic. Here, we construct

the projection-based distribution-free (PD) test statistic, and show the associated

theory mainly for a scalar ε. The test and theory for a function-valued ε(t) are

similar, and are discussed next. Throughout this paper, we assume that all

covariates {Xi,j(·)}dj=1 have mean zero. We use ⟨·, ·⟩ to denote the inner product

in L2[0, 1], that is, ⟨W1,W2⟩ =
∫ 1

0
W1(t)W2(t)dt, ∀ W1,W2 ∈ L2[0, 1].

We assume that the covariance function of Xi,j(·) is Σj(s, t) = cov(Xi,j(s),

Xi,j(t)), for j = 1, . . . , d. Mercer’s theorem implies that the spectral decompo-

sition of Σj leads to Σj(s, t) =
∑∞

k=1 θj,kϕk(s)ϕk(t), with uniform convergence,

where θj,k are the eigenvalues and ϕk are the corresponding orthonormal

eigenfunctions (Wang, Chiou and Müller (2016)). According to the Karhunen–

Loève (KL) theorem, we have Xi,j(t) =
∑∞

k=1⟨Xi,j, ϕk⟩ϕk(t) =
∑∞

k=1 ξij,kϕk(t),

where ξij,k ξij,k are pairwise, uncorrelated, mean-zero functional principal

component scores (FPCs) of Xi,j, with variance V ar(ξij,k) = θj,k. Furthermore,

for a nonrandom p-dimensional vector αj = {αj,k}pk=1 ∈ Rp, we define the

product of the covariate function Xi,j(t) and αj as the product of Xi,j(t) and an

element of L2[0, 1], for example, Mj(t) =
∑∞

k=1⟨Mj, ϕk⟩ϕk(t), with coordinates

⟨Mj, ϕk⟩ = αj,k for k ≤ p and ⟨Mj, ϕk⟩ = 0 for k > p in the basis B = {ϕk(·), k ≥
1}, that is, ⟨Xi,j,αj⟩m := ⟨Xi,j,Mj⟩ =

∑p
k=1 ξij,kαj,k. Using this definition,

we overcome the problem of the infinite dimensionality of the function Xi,j(t)

by projecting function Xi,j(t) along the direction αj. As long as αj includes

all directions, from Proposition 1, all information about Xi,j(t) is captured by

⟨Xi,j,αj⟩m, ∀αj. Let Xi = {Xi,j(·)}dj=1, β = {βj(·)}dj=1 and α = {αj}dj=1.

Denote ⟨Xi,α⟩m :=
∑d

j=1⟨Xi,j,αj⟩m and F⟨X,α⟩m(u) = Prob (⟨Xi,α⟩m ≤ u).

The following proposition plays a key role in motivating our methods.

Proposition 1. We use U,Xj ∈ L2[0, 1], for j = 1, . . . , d, as random functions.

For any p, and γ ∈ Rp, we denote F⟨U,γ⟩m(u) = Prob (⟨Ui,γ⟩m ≤ u), and

F⟨U,γ⟩m|X(u) = E [I (⟨Ui,γ⟩m ≤ u) | X] . Next, the following statements (a) and

(b) are equivalent: (a) F⟨U,γ⟩m|X(·) = F⟨U,γ⟩m(·) a.s., and (b) F⟨U,γ⟩m|⟨X,α⟩m(·) =
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F⟨U,γ⟩m(·) a.s. ∀p ≥ 1, ∀αj ∈ Sp, for j = 1, . . . , d, where Sp = {α ∈ Rp :

∥α∥2 = 1} denotes the unit hypersphere in Rp.

Proposition 1 indicates that the test problem (1.2), E [L(ε)I(X ≤ u)] =

E(L(ε))FX(u), for any u, is equal to the projected test problem E[L(ε)I(⟨X,α⟩m
≤ u)] = E(L(ε))F⟨X,α⟩m(u), ∀αj ∈ Sp, for j = 1, . . . , d and any u.

To explicitly express our proposed PD test statistics, we consider three special

formulae of L(ε). For L(ε) = {I(ε < v) : v ∈ R}, let the empirical version of

Fε(v) be Fn,ε(v) = n−1
∑n

i=1 I(ε(Xi;β) ≤ v). For a scalar ε(Xi;β), we define the

independence test statistic

Mn,F(β;α, u, v) = n−1/2
n∑

i=1

[I (ε(Xi;β) ≤ v)− Fn,ε(v)] I (⟨Xi,α⟩m ≤ u) .

To avoid a subjective selection of α, which may cause the test to be

inconsistent (Escanciano (2006)), we consider integrating all possible α. In

particular, we consider the following PD independence test statistic

Tn,F(β) =

∫
Spd

∫∫
R2

(Mn,F(β;α, u, v))
2
Fn,<X,α>m

(du)× Fn,ε(dv)dα,

where Fn,⟨X,α⟩m(u) is the empirical version of F⟨X,α⟩m(u).

Remark 1. For a function-valued εf (X;β)(t), we induce another p-dimensional

vector γ := {γj}pk=1 ∈ Rp to project εf (X;β)(t) along the direction γ.

Specifically, using the KL expression, we have ϵf (Xi;β)(·) =
∑∞

k=1 ei,kϕk(·). For
any fixed γ, the projection of the residual ⟨εf (Xi;β),γ⟩m is a scalar, with an

empirical marginal distribution of the form Fn,⟨εf ,γ⟩m(v) = n−1
∑n

i=1 I(⟨εf (Xi;β),

γ⟩m ≤ v) = n−1
∑n

i=1 I (
∑p

k=1 ei,kγk ≤ v) . Consequently, the PD independence

test for the function-valued response model (2.2) is constructed similarly to the

test for the scalar response model (2.1), as shown in the Supplementary Material.

When L(ε) = ε, a conditional mean-based test for hypothesis (1.1) is

Tn,M(β) =

∫
Spd

∫
R
(Mn,M(β;α, u))

2
Fn,⟨X,α⟩m(du)dα,

with Mn,M(β;α, u) = n−1/2
∑n

i=1 ε(Xi;β) ×I (⟨Xi,α⟩m ≤ u) . Garćıa-Portugués,

González-Manteiga and Febrero-Bande (2014) also consider this conditional

mean-based test, but without providing theoretical justifications. Note that

if the null hypothesis (1.3) cannot be rejected based on Tn,F(β), then the null

hypothesis (1.1) cannot be rejected by Tn,M(β). Thus, a conditional mean-based

test is more powerful than a distribution-based test, which is supported by our

theoretical and numerical results.

When L(ε) = ε2, we use Mn,V(β;α, u) = n−1/2
∑n

i=1 (ε
2(Xi;β)− σ2

n)

I (⟨Xi,α⟩m ≤ u), Tn,V, with σ2
n = n−1

∑n
i=1 ε

2(Xi;β). Next, the variance-based
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test takes the form

Tn,V(β) =

∫
Spd

∫
R
(Mn,V(β;α, u))2Fn,⟨X,α⟩m(du)dα.

Note that for L(ε) = εr, r ≥ 2, that is, a higher-order moment-based test, the

calculation of higher-order moments of the residual is usually unstable.

The calculation of Tn,F, Tn,M, and Tn,V depends on the residual ε(Xi;β), which

involves unknown coefficient functions β. To make this feasible, we replace β with

its estimator β̂. As stated in Section 3, under some conditions, this substitution

does not affect the local power up to the order. For completeness, we briefly

introduce the estimation for β in model (2.1).

We define the loss functions as ℓ(ε(X;β)), where ℓ(x) is a nonnegative known

function of x, such as the least-squares solution ℓ(x) = x2. We establish the

covariance of Xi,j(t) as E (Xi,j(t)Xi,j(s)) =
∑

k θj,kϕk(s)ϕk(t), for j = 1, . . . , d,

and Xi,j(t) has the empirical expression X̂i,j(t) =
∑

k ξ̂ij,kϕ̂k(t) ξ̂ij,k, with

n−1
∑n

i=1 X̂i,j(t)X̂i,j(s) =
∑

k θ̂j,kϕ̂j(s)ϕ̂k(t), for j = 1, . . . , d. We assume that

βj(t) =
∑

k bj,kϕk(t), j = 1, . . . , d and denote θ = (a, bT1 , . . . , b
T
d )

T , where bj =

{bj,k}Kk=1, for j = 1, . . . , d. Next, we estimate θ by solving the equation U(θ) :=∑n
i=1 ℓ̇(m(Yi, η̂i))D̂i = 0, with respect to θ, where ηi = (a, bT1 ξi1, . . . , b

T
d ξid),

η̂i = (a, bT1 ξ̂i1, . . . , b
T
d ξ̂id), ℓ̇(x) = dℓ(x)/dx is the first derivative of ℓ(x), D̂i =

(m0(Yi, η̂i),m1(Yi, η̂i)(ξ̂i1)
T , . . . ,md(Yi, η̂i)(ξ̂id)

T )T , m0(Yi,ηi) = ∂m(Yi,ηi)/∂a,

mj(Yi,ηi) = ∂m(Yi,ηi)/∂(b
T
j ξij), and ξij = {ξij,k}Kk=1, for j = 1, . . . , d, D̂i.

We denote the solution to U(θ) = 0 as θ̂. Next, we estimate βj(t) as

β̂j(t) =
∑K

k=1 b̂j,kϕ̂k(t), for j = 1, . . . , d, the validity of which we justified in

Section 3.

3. Theoretical Property for the PD-Test Statistic

Here, we focus on the PD distribution-based test, and leave the mean-based

test to the Supplementary Material. Other specific formulae of L(·) may be

obtained similarly. Let q = Kd+ 1. W denote ϖ = (ϖi)
n
i=1 := (ℓ̇(m(Yi,ηi)))

n
i=1,

V = Diag{ϖ2
1, . . . , ϖ

2
n}, D = {Di}ni=1 and D̃ = {(ℓ̈(m(Yi,ηi)))

1/2Di}ni=1 as

n × q-dimensional matrices, Γ = limn→∞ DTV D/n := {Γk,l}1≤k,l≤qΓ̃, Γ̃ =

limn→∞(D̃T D̃/n) = (Γ̃k,l)1≤k,l≤q, Ξ = Γ̃−1 = (ζj,k)1≤j,k≤q, and
∑q

k=1 ζ
(1/2)
j,k ζ

(1/2)
k,l

= ζj,l. The following conditions are needed to establish the asymptotic properties

for model (2.1).

(C1) {(Yi, {Xi,j}dj=1)}ni=1 are independent and identically distributed (i.i.d.) ran-

dom vectors with 0 < E|Yi| < ∞.

(C2) ϵi has a zero mean and is independent of {Xi,j(·)}dj=1, and Xi,j(·) ∈ L2[0, 1],

for j = 1, . . . , d. The covariance function of each Xi,j is positive definite

with a spectral decomposition Σj(s, t) =
∑∞

k=1 θj,kϕk(s)ϕk(t), where θj,1 >

θj,2 > · · · and C−1k−α ≤ θj,k ≤ Ck−α, and θj,k − θj,k+1 ≥ C−1k−α−1,
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for α > 1, j = 1, . . . , d, k ≥ 1. Furthermore, the true coefficient function

βj(t) =
∑∞

k=1 bj,kϕk(t), with |bj,k| ≤ C1k
−κ, for k ≥ 1, κ ≥ α+ 2.

(C3) E (ϖiDi | Xi) = 0. There exist constants c2, cl, and cu satisfying E (ϖ2
i ) <

c2 < ∞, and 0 < cl ≤ inf ℓ̈(m(Yi,ηi)) ≤ sup ℓ̈(m(Yi,ηi)) ≤ cu < ∞.

(C4) m(·) has continuous bounded first-order derivatives, ∥D∥∞ ≤ c < ∞, and

Γ̃ is positive definite and has a bounded maximum eigenvalue.

(C5) Kn−1/(2κ+α−1) is bounded away from zero and infinity as n → ∞. The

following equations hold:
∑q

k1,k2,k3,k4=1 E (Di,k1
Di,k2

Di,k3
Di,k4

ζk1,k2
ζk3,k4

)

= o(n/q2),
∑q

k1,...,k8=1 E (Di,k1
Di,k3

Di,k5
Di,k7

)E (Di,k2
Di,k4

Di,k6
Di,k8

) ζk1,k2

ζk3,k4
ζk5,k6

ζk7,k8
= o(n2q2), where q = K(d+ 1).

(C6) F(Xi(t)) is a measurable function of {Xi,j(t)}dj=1 satisfying 0 < sup0<t<1

E [F(Xi(t))] < ∞, and the link function gl defined in (3.1) under the

alternative hypothesis has continuous bounded first-order derivatives.

(C7) {ϱi, I = 1, . . . , n} are i.i.d. with mean zero and variance one. For all i, ϱi is

independent of (Yi,Xi). Furthermore, ϵiϱi and ϵi have the same distribution

function.

Conditions (C1)–(C4) are general conditions that are readily satisfied in

practice. Condition (C5) ensures that β̂ does not affect the convergence rate.

In particular, under conditions (C3)–(C5), we have n(θ̂ − θ)⊤Γ̃(θ̂ − θ) = Op(q).

Furthermore, following expression (17) and the last second expression on Page

2434 in Dou, Pollard and Zhou (2012), q=̂K(d + 1) ≍ n1/(2κ+α−1) leads to

the estimation error
∫ 1

0
(β̂j(t) − βj(t))

2dt = Op(n
−(2κ−2)/(α+2κ−1)). Following

expression (4.6) in Cai and Hall (2006), q ≍ n1/(2κ+α−1) leads to the prediction

error E(⟨x, β̂j⟩ − ⟨x, βj⟩)2 = O(n−(2κ+α−2)/(α+2κ−1)), for any fixed function x(t) =∑∞
k=1 xkϕk(t), with |xk| ≤ Ck−α/2, for j = 1, . . . , d. When the prediction error

and estimation error have the above rate, substituting β0 with β̂ does not change

the convergence property of the proposed test statistics or the order of the local

power. Furthermore, with K ≍ n1/(2κ+α−1), the estimation rate of β̂j is not of the

optimal rate n−(2κ−1)/(α+2κ), which requires Kopt ≍ n1/(α+2κ). Instead, we require

K ≍ n1/(2κ+α−1), which is larger than Kopt. We require a larger K to ensure a

parametric order for the local power of the proposed statistics, which is standard

in the semiparametric literature, where a smaller bandwidth or a larger number

of principal components is required to reduce the bias and obtain the parametric

convergence rate for the parameters. Moreover, when the proposed model (2.1)

degenerates to the FLMsR, condition (C5) is identical to the conditions in Muller

and Stadtmuller (2005). Condition (C6) is a general condition for the alternative

hypothesis. Condition (C7) is imposed to ensure the validity of the bootstrap

procedure. Specifically, if ϵ follows a symmetric distribution, then a two-point
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distribution ϱi = −1/1 with probability 0.5 satisfies condition (C7). For any r,

P (ϵiϱi < r) = 0.5P (ϵi < r) + 0.5P (ϵi > −r) = p(ϵi < r).

Remark 2. In the Supplementary Material, we list the conditions (C1f–C5f) for

the function-valued outcome model. By imposing a direction γ, we project the

function ϵf (X;β)(t) along γ, that is, ⟨ϵf (X;β),γ⟩m, which is a scalar. Because

we allow the dimension p to diverge to infinity for the scalar response model,

the theoretical results of the proposed statistics for the function-valued response

model are similar to those for the scalar response model. Therefore, conditions

(C1f)–(C5f) are similar to conditions (C1)–(C5), with the exception that the

number of parameters in the function-valued response is qf =̂K2d+K, owing to

the approximation of βj(s, t), which is larger than q=̂Kd+K for β(t) in the scalar

response model. To ensure that the proposed statistics converge in distribution

and have a parametric order of local power, we require a stronger condition,

κ ≥ α+3, for βj(s, t) in the function-valued response model, instead of κ ≥ α+2

required in condition (C2).

We define ∆(Xi;α, u) = I (⟨Xi,α⟩m ≤ u) − F⟨X,α⟩m(u) ∆(·; ·) and αr,• =

{αr,j}dj=1, with αr,j ∈ Rp. Next, we establish the asymptotic distribution of the

proposed test statistic if the true parameters are known for model (2.1).

Theorem 1. Under conditions (C1) and (C2) and the null hypothesis (1.3),

if p = o(n), for any m ∈ R, Prob(Tn,F(β0) < m) − Prob(T 0
∞,F < m) → 0,

where T 0
∞,F :=

∫
Spd

∫∫
R2(M

0
∞,F (α, u, v))2Fε(dv)F⟨X,α⟩m(du)dα, and M0

∞,F (·, ·, ·)
is a Gaussian process with zero mean and covariance function K((α1,•, u1, v1),

(α2,•, u2, v2)) = {E [I (ϵi ≤ v1) I (ϵi ≤ v2)]− Fϵ(v1)Fϵ(v2)} E(∆(Xi;α1,•, u1)

∆(Xi;α2,•, u2)).

Corollary S.2 in the Supplementary Material explores the asymptotic distri-

bution of the proposed mean test Tn,M(β0). Directly comparing T 0
∞,F and T 0

∞,M

is not possible because the former depends on the distribution of ϵ, whereas

the latter depends on its moment. However, under certain situations, a strict

inequality holds between the two statistics. Specifically, the limiting distribution

for the mean-based statistic is described as follows: for any m ∈ R, Prob(Tn,M(β0)

< m) − Prob(T 0
∞,M < m) → 0, where T 0

∞,M :=
∫
Spd

∫
R(M

0
∞,M(α, u))2F⟨X,α⟩m

(du)dα, and E[(M0
∞,M(α, u))2] = E(ϵ2i )F⟨X,α⟩m(u). From Theorem 1, we have

E[
∫
R(M

0
∞,F (α, u, v))2Fϵ(dv)] =

∫
R E[(M0

∞,F (α, u, v))2]Fϵ(dv) =
∫
R Fε(v)(1 −

Fϵ(v))Fϵ(dv)F⟨X,α⟩m(u)(1 − F⟨X,α⟩m(u)) ≤ 0.25F⟨X,α⟩m(u). When E(ϵ2i ) ≥ 0.25,

it is easy to determine that E(T 0
∞,F ) ≤ E(T 0

∞,M), which indicates that the

distribution-based statistic tends to generate smaller values and, as a result, is

less powerful than the mean-based statistic. Next, we establish the asymptotic

distribution of test statistics with estimated parameters.

Theorem 2. Under conditions (C1)–(C5) and under the null hypothesis (1.3),

for any m ∈ R, Prob(Tn,F(β̂) < m) − Prob(T 1
∞,F < m) → 0, where T 1

∞,F :=
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Spd

∫∫
R2(M

1
∞,F (α, u, v))2 ×Fϵ(dv)F⟨X,α⟩m(du)dα, and M1

∞,F ≡ M0
∞,F + M e

∞,F ,

M e
∞,F (·, ·, ·) is a Gaussian process with mean 0 and covariance function

K1((α1,•, u1, v1), (α2,•, u2, v2)) = σ2
F (α1,•, u1,α2,•, u2) × fϵ(v1)fϵ(v2), and

cov(M0
∞,F (α1,•, u1, v1),M

e
∞,F (α2,•, u2, v2)) = σc,F (α1,•, u1, v1,α2,•, u2)fϵ(v2),

where σ2
F (α1,•, u1,α2,•, u2) and σc,F (α1,•, u1, v1,α2,•, u2) are defined in the

Supplementary Material.

Corollary S.3 in the Supplementary Material presents the asymptotic dis-

tributions of Tn,M(β̂). Comparing Corollary S.3 with Theorem 2, under certain

situations, Tn,F(β̂) has smaller asymptotic mean values, and hence is less powerful

than Tn,M(β̂). In addition, although substituting β0 with β̂ does not change the

convergence property of the proposed test statistics, it increases the variance of

the test statistics because of the additional terms M e
∞,F and M e

∞,m, as stated in

Theorem 2 and Corollary S.3.

Now, we analyze the asymptotic distribution of Tn,F using a sequence of local

alternatives converging to null at a parametric rate n−1/2. In particular, we

consider the local alternative

HA,n : Yi,n = gl
(
a, ⟨Xi,1, β1⟩, . . . , ⟨Xi,d, βd⟩, ϵi, n−1/2F(Xi)

)
, (3.1)

where gl (a, ⟨Xi,1, β1⟩, . . . , ⟨Xi,d, βd⟩, ϵi, 0) := g (a, ⟨Xi,1, β1⟩, . . . , ⟨Xi,d, βd⟩, ϵi), and
F(Xi) is a measurable function of {Xi,j(t)}dj=1.

Theorem 3. Under conditions of (C1)–(C6) and local alternative (3.1), for

any m ∈ R, Prob(Tn,F(β̌) < m) − Prob(T a
∞,F < m) → 0, where T a

∞,F :=∫
Spd

∫∫
R2(M

a
∞,F (α, u, v))2 ×Fϵ(dv)F⟨X,α⟩m(du)dα, and β̌ is the estimate obtained

from model (2.1) using data {Yi,n,Xi}ni=1, Ma
∞,F (α, u, v) ≡ M1

∞,F (α, u, v) −
Da

F (α, u, v), and

Da
F (α, u, v)

= E

{
∆(Xi;α, u)

(
my(Yi,ηi)ġl(ηi, ϵi, 0)F(Xi)−

q∑
j=1

Di,jυj

)}
fε(v),

where my(·, ·), ġl, υj are defined in the Supplementary Material.

Theorem 3 implies that the proposed test achieves the parametric order

O(n−1/2) for the local power. This order is not attainable for tests based on

the local approach, such as that of Patilea, Sánchez-Sellero and Saumard (2016),

which is based on the conditional mean, and hence has order O((nh1/2)−1/2)

where h is the bandwidth.

Remark 3. The fast parametric order O(n−1/2) for the local power in Theorem

3 is attributed to two aspects. First, most mean-based test methods, such

as that of Patilea, Sánchez-Sellero and Saumard (2016), require calculating a

conditional expectation, leading to the order O((nh1/2)−1/2), because only local
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data are involved. Instead, because E(U | ⟨X,α⟩m) = E(U) holds if and only

if E(UI(⟨X,α⟩m ≤ u)) = E(U)F⟨X,α⟩m(u) holds, for any u and ∀α ∈ Sp,

our constructed PD test induces the indicator function I(⟨X,α⟩m ≤ u) as a

weight function. Consequently, the proposed PD test calculates the unconditional

expectation E
(
UI(⟨X,α⟩m ≤ u)

)
, which is estimated based on nonlocal data.

Second, we integrate over all α to avoid any subjective choice on α. This

integration could improve the order to O(n−1/2), even if an integrand is estimated

at a nonparametric rate. In particular, we use a larger K ≍ n1/(α+2κ−1) than

the optimal Kopt = O(n1/(α+2κ)) to control the bias of Tn,F (β̂), and reduce its

variance using integration. As a result, the parametric order of the local power

of Tn,F (β̂) is maintained. Similar conclusions are established in the literature.

For example, the convergence rate of the integration in Cai and Hall (2006) is

E(⟨x, β̂⟩ − ⟨x, β0⟩)2 = O(n−(2κ+α−2)/(α+2κ−1)), which is faster than the estimation

rate
∫ 1

0
(β̂(t) − β(t))2dt = Op(n

−(2κ−2)/(α+2κ−1)) established in Dou, Pollard and

Zhou (2012) under the condition that κ ≥ α + 2, α > 1, and K ≍ n1/(α+2κ−1).

Notably, the necessity of undersmoothing the nonparametric function to obtain

a root-n-consistent estimation for the parameters using integration is standard

in nonparametric regression; see, Carroll et al. (1997) and Hastie (2017).

Corollary S.4 in the Supplementary Material gives the asymptotic

distributions of Tn,M(β̌), from which we determine that (Da
F (α, u, v))2 ≤

(Da
M(α, u))2f2

ϵ (v). According to Theorem 3, we have
∫
R(D

a
F (α, u, v))2Fϵ(dv) ≤

(Da
M(α, u))2

∫
R f2

ϵ (v)Fϵ(dv). When the term
∫
R f2

ϵ (v)Fϵ(dv) ≤ 1, T a
∞,F has a

smaller asymptotic mean than T a
∞,M ; that is, the mean test is more powerful

than the distribution test.

The following local alternative hypothetical models are considered:

HA,n : Yi,n = gl (a, ⟨Xi,1, β1⟩, . . . , ⟨Xi,d, βd⟩, ϵi, nνF(Xi)) . (3.2)

Corollary 1. Under the conditions of Theorem 3 and the alternatives (3.2) with

−1/2 < ν ≤ 0, we have Prob(Tn,F > η) → 1, as n → ∞, for any η > 0.

Corollary 1 shows that the statistics Tn,F diverge to infinity under the local

alternatives (3.2) for −1/2 < ν < 0 and the global alternative hypothesis for

ν = 0, indicating that the statistics have asymptotic power one. Theorem 3 and

Corollary 1 imply that our proposed tests Tn,F can detect the alternative models

converging to the null model with rate nν , for −1/2 ≤ ν ≤ 0.

4. Implementation

In this section, we describe how to calculate the test statistics. We use

Aijl =
∫
Spd I(⟨Xi,α⟩m ≤ ⟨Xl,α⟩m)I (⟨Xj,α⟩m ≤ ⟨Xl,α⟩m) dα, and Cijl(β) =

I(ε(Xi;β) ≤ ε(Xl;β))I(ε(Xj;β) ≤ ε(Xl;β)). After calculations, we obtain

that Tn,F(β) = n−3
∑

i,j,k,l AijkCijl(β) − 2n−4
∑

i,j,k,l

∑
s AijkCisl(β) + n−5
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i,j,k,l

∑
s1,s2

AijkCs1s2l(β), and Tn,M(β) = n−2
∑

i,j,l ε(Xi;β)ε(Xj;β)Aijl. Note

that Aijk involves pd-dimensional integrals, which require intensive computation.

Calculating Aijl follows a volume calculation in a pd-ball. Following simple

algebra (Theorem 4.41 on Page 183 of Folland (2002)), the integral Aijl is

proportional to the volume of a spherical wedge and

Aijl :=

∫
Spd

I
(
⟨Xi,α⟩m ≤ ⟨Xl,α⟩m

)
I
(
⟨Xj,α⟩m ≤ ⟨Xl,α⟩m

)
dα

=

∫
Spd

I

(
d∑

q=1

⟨Xi,q,αq⟩m ≤
d∑

q=1

⟨Xl,q,αq⟩m

)

I

(
d∑

q=1

⟨Xj,q,αq⟩m ≤ I(
d∑

q=1

⟨Xl,q,αq⟩m

)
dα

=

∫
Spd

I

(
d∑

q=1

p∑
k=1

ξiq,kαq,k ≤
d∑

q=1

p∑
k=1

ξlq,kαq,k

)

I

(
d∑

q=1

p∑
k=1

ξjq,kαq,k ≤
d∑

q=1

p∑
k=1

ξlq,kαq,k

)
dα

=
A

(0)
ijlπ

pd/2−1

Γ(pd/2 + 1)
,

where A
(0)
ijl is the complementary angle between the vectors (ξi−ξl) and (ξj−ξk),

with ξi = (ξ⊤
i,1, . . . , ξ

⊤
i,d)

⊤, A
(0)
ijl =

∣∣π − arccos{
∑d

k=1⟨Xi,k −Xl,k, Xj,k −Xl,k⟩p/

(
√∑d

k=1 ∥Xi,k −Xl,k∥2
√∑d

k=1 ∥Xj,k −Xl,k∥2)}
∣∣, Γ(·) is the gamma function,

∥Xi,k∥ =
√∑p

s=1 ξ
2
ik,s, and ⟨Xi,k, Xj,k⟩p =

∑p
s=1 ξik,sξjk,s. Hence, the computation

of these integrals is simple, regardless of the dimension p.

Because there is no explicit asymptotic null distribution for Tn,F(β), we

implement the test using a bootstrap procedure. We approximate the asymptotic

null distribution of Mn,F by that of M∗
n,F = n−1/2

∑n
i=1[I(ε

∗(Xi; β̂
∗) ≤ v) −

F ∗
n,ε(v)] ×I(⟨Xi,α⟩m ≤ u), for v, u ∈ R,αj ∈ Sp, j = 1, . . . , d. Here, F ∗

n,ε(v) =

n−1
∑n

i=1 I(ε
∗(Xi; β̂

∗) ≤ v), and the sequence {ε∗(Xi; β̂
∗)}ni=1 includes the

residuals computed from ε∗(Xi; β̂
∗) = m(Y ∗

i , â
∗, ⟨Xi,1, β̂

∗
1⟩, . . . , ⟨Xi,d, β̂

∗
d⟩), where

Y ∗
i = g(Yi, â, ⟨Xi,1, β̂1⟩, . . . , ⟨Xi,d, β̂d⟩, ε(Xi; β̂)ϱi), {â∗, {β̂∗

j }dj=1} is the bootstrap

estimator calculated from the data {(Y ∗
i ,Xi)}ni=1, and {ϱi}ni=1 satisfies condition

(C7). For example, ϱi uses values of −1 or 1 with a probability of 0.5, for

i = 1, . . . , n.

For the bootstrap test statistic T ∗
n,F , we have the following result.

Theorem 4. Under the null hypothesis (2.1) or the alternative hypothesis (3.2)

with ν ≤ 0, if conditions (C1)–(C7) are satisfied, then the conditional distribution

of T ∗
n,F converges in distribution to the limiting null distribution of Tn,F, giving
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{Yi,Xi}ni=1.

Theorem 4 shows that the bootstrap distribution of the test statistic is

equivalent to the asymptotic distribution of the proposed test. The critical value

determined using this method approximates the theoretical value, regardless

of whether the data are derived from the null hypothetical model (2.1) or

the alternative hypothetical model (3.2). Corollary S.5 in the Supplementary

Material shows similar results for the bootstrap mean test statistic T ∗
n,M . The

proposed bootstrap procedure also works for the variance-based test statistic

and other higher-order moment test statistics under condition (C7), using

derivations similar to those in Corollary S.5. However, note that the finite-sample

performance is poor due to the instability caused by estimating the variance or

other higher-order moments. Thus, we suggest using the proposed distribution-

based test and mean-based test in practice, rather than using the higher-order

moment test.

The entire procedure involves two tuning parameters, p and K, which denote

the dimension of the projection parameter α, and the number of principal

component functions, respectively. Because we use both projection parameters

and principal components to capture information from the covariates X, we set

K = p, for simplicity. Larger p and K indicate that more information is captured

from the covariates X, but with a larger variance and heavier computational

burden. We choose K to be the number of principal components such that at

least 95% of the variability ofX is captured, which performs well in our numerical

studies.

5. Numerical Studies

In this section, we compare the performance of the proposed PD test

statistics, namely, the distribution-based statistic T f
n,F and the mean-based

statistic T f
n,M, to that of state-of-the-art tests, including the FMDD of Lee,

Zhang and Shao (2020) and the fdapss proposed by Patilea, Sánchez-Sellero and

Saumard (2016), both of which are based on the conditional mean.

Example 1 (FLMfR). We consider a model in which the response, Yi, is a

functional response, and the predictor, Xi(t), is a univariate functional predictor.

The functional linear model is expressed as follows:

Yi(t) =

∫ 1

0

c1 ·β(s, t)Xi(s)ds+

∫ 1

0

c2 ·β(s, t)X2
i (s)ds+ {Xi(t)}c3ϵi(t), 1 ≤ i ≤ n,

(5.1)

where {Xi(t)}ni=1 are generated independently from Brownian bridges, {ϵi(t)}ni=1

follows N(0, 0.12), β(s, t) = exp(s2+t2)/2, and c1 = 0.25. Setting a homogeneous

scenario (c3 = 0), we consider c2 = 0 for the null hypothesis, and c2 =

0.05, n−1/2, n−2/5, and 1 for the alternatives.
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Table 1 shows the empirical sizes and power of our proposed test compared

with those of the FMDD and fdapss based on 500 repetitions. For each repetition,

we use 500 bootstrap samples of the original sample to compute the critical value.

Because the FMDD and fdapss are both based on the true value of the coefficient

function β(·), for comparison, we demonstrate our proposed test using the true

value β0(s, t) and the estimated value β̂(s, t). The number of components K for

each sample is chosen so that the percentage of explained variance is larger than

95%, and p = K.

The upper block of Table 1 presents the percentages of rejections for nominal

levels at 10% and 5% when the sample size is n = 40, 100, which suggests

that the empirical size of T f
n,F is slightly larger than the nominal level, because

β0(s, t) is replaced with its estimator. This result may be attributed to the

small sample size. In addition, our proposed distribution-based statistic T f
n,F

and fdapss are slightly conservative for small samples under the null hypothesis,

whereas T f
n,M and FMDD are the opposite. For the power under the alternative

with c3 = 0, T f
n,M is more powerful than T f

n,F, which outperforms fdapss when

the null hypothesis (1.1) does not hold. These findings are consistent with the

conclusion stated in Theorem 3, and occur because the mean-based test is able to

detect the relationship between the functional covariate and the response when

c3 = 0. In addition, when the alternative part becomes more significant as c2
increases, T f

n,F performs much better than FMDD in terms of test power.

Furthermore, to consider the effect of the heterogeneous variance, we generate

data with c2 = 0, c3 = 0 for the null, and c2 = 0, c3 = 2 for the alternative. The

bottom-right block of Table 1 presents the results of the test statistics T f
n,F and

T f
n,M under heterogeneity compared with FMDD and fdapss. The results show that

under model (5.1), only the distribution-based test T f
n,F detects the heterogeneity

from the variance; the mean-based tests T f
n,M, FMDD, and fdapss, fail to achieve

this detection.

We also conducted simulations on the same functional response setting, but

with {ϵi(t)}ni=1 following a non-Gaussian distribution, such as Pareto noise with a

finite second moment and Brownian bridges. Results similar to those in Table 1

are obtained, and are relegated to the Supplementary Material. We also list the

computation times of the different methods in Table 2 of the Supplementary

Material, which shows that the mean-based tests are much faster than the

distribution-based test, and for the mean-based tests, the proposed test T f
n,M is

faster than FMDD, but slower than fdapss.

We also conduct a simulation for the scalar response in the Supplementary

Material, Example 1.2, with conclusions similar to those for the obtained

functional response.
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Table 1. Simulation results for Example 1 based on the proposed test, FMDD, and fdapss
under model (5.1). The rows of β0 and β̂ show the results based on using the true β0(s, t)

and the estimated value β̂(s, t), respectively.

Level=10% Level=5% Level=10% Level=5%

test β n = 40 n = 100 n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

c2 = 0, c3 = 0 c2 = n−2/5, c3 = 0

T f
n,F

β0 0.076 0.083 0.022 0.030 0.808 1.000 0.542 1.000

β̂ 0.106 0.086 0.060 0.049 0.992 1.000 0.956 1.000

T f
n,M

β0 0.104 0.105 0.052 0.058 1.000 1.000 1.000 1.000

β̂ 0.106 0.094 0.060 0.046 1.000 1.000 1.000 1.000

FMDD β0 0.118 0.138 0.052 0.066 0.832 1.000 0.530 0.996

fdapss β0 0.080 0.100 0.028 0.049 0.502 0.969 0.366 0.952

c2 = 0.05, c3 = 0 c2 = 1, c3 = 0

T f
n,F

β0 0.208 0.582 0.122 0.384 0.994 1.000 0.906 1.000

β̂ 0.418 0.510 0.274 0.294 0.998 1.000 0.988 1.000

T f
n,M

β0 0.690 0.986 0.562 0.976 1.000 1.000 1.000 1.000

β̂ 0.754 0.998 0.624 0.990 1.000 1.000 1.000 1.000

FMDD β0 0.148 0.118 0.072 0.052 0.888 1.000 0.554 1.000

fdapss β0 0.065 0.132 0.022 0.079 0.823 1.000 0.691 1.000

c2 = n−1/2, c3 = 0 c2 = 0, c3 = 2

T f
n,F

β0 0.638 0.970 0.386 0.920 0.988 1.000 0.948 1.000

β̂ 0.956 0.984 0.898 0.938 0.970 1.000 0.920 1.000

T f
n,M

β0 1.000 1.000 1.000 1.000 0.028 0.044 0.008 0.014

β̂ 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000

FMDD β0 0.748 0.986 0.486 0.960 0.298 0.969 0.064 0.952

fdapss β0 0.212 0.511 0.134 0.450 0.080 0.069 0.000 0.029

Example 2. (MiFRM). In this simulation example, we consider a type of

MiFRM model for t ∈ [0, 1], Yi(t) = g(c1β(t)Xi(t))+c2g(β(t)X
2
i (t))+Xc3

i (t)ϵi(t),

where Xi(t) and ϵi(t) are generated as shown in Example 1, β(t) = exp(−4(t −
0.3)2), g(t) = exp(t)/(1 + exp(t)), and c1 = 0.25, (c2, c3) = (0, 0) for the null,

and (c2, c3) = (0, 2), (1, 0), (1, 2) for the three alternative model scenarios. The

results with β(t) given and based on 500 simulations are presented in Table 2

for the test statistics T f
n,F, T

f
n,M, and fdapss. Table 2 shows that the empirical

sizes of T f
n,F and T f

n,M are closest to the nominal size, which is less true for fdapss.

The power of T f
n,M and FMDD is almost zero for c2 = 0 and c3 = 2, because the

link function for the mean part takes a logistic form, the variation of which is

weak. This problem is alleviated to some extent by fdapss by the standardization

process. As long as the null hypothesis of the conditional mean does not hold,

T f
n,M performs best. When the null hypothesis of the conditional mean cannot be

rejected, but the model contains heterogeneous variance (corresponding to c2 = 0

and c3 = 2), T f
n,F and FMDD can detect the heterogeneity.
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Table 2. Simulation results for Example 2 based on the proposed test, fdapss, and FMDD.
The caption is the same as that of Table 1.

Level=10% Level=5% Level=10% Level=5%

test n = 40 n = 100 n = 40 n = 100 n = 40 n = 100 n = 40 n = 100

c2 = 0, c3 = 0 c2 = 0, c3 = 2

T f
n,F 0.088 0.090 0.027 0.040 0.234 0.240 0.132 0.180

T f
n,M 0.098 0.096 0.062 0.042 0.000 0.000 0.000 0.000

FMDD 0.131 0.138 0.076 0.066 0.006 0.002 0.004 0.002

fdapss 0.065 0.086 0.022 0.030 0.021 0.095 0.011 0.040

c2 = 1, c3 = 0 c2 = 1, c3 = 2

T f
n,F 0.495 0.980 0.127 0.900 0.639 1.000 0.408 0.980

T f
n,M 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FMDD 0.992 1.000 0.986 1.000 0.994 1.000 0.988 1.000

fdapss 0.541 1.000 0.405 1.000 0.843 1.000 0.746 1.000

6. Real-data examples

In this section, we apply the proposed PD test to check the goodness of fit

of several models for two data sets: Canadian weather data, and Chinese air

pollution data.

6.1. Analysis of Canadian weather data

The Canadian weather data are obtained from the R package fda. The

data consist of the daily mean temperature and rainfall registered at 35 weather

stations in Canada from 1960 to 1994. For detailed explanations of the data,

refer to Ramsay and Silverman (2002). Specifically, in this data set, the stations

are classified into four climatic zones, namely, Atlantic, Pacific, Continental, and

Arctic, leading to functional ANOVA models. The aim of this analysis is to

assess the validity of six models: FLMcR, FLMfR, FLMcR coupled with ANOVA

(FLMcR + ANOVA), FLMfR coupled with ANOVA (FLMfR + ANOVA),

FLMcR with heterogeneous variance (FLMcRw), and FLMfR with heterogeneous

variance (FLMfRw). The first four types of models are also analyzed in Patilea,

Sánchez-Sellero and Saumard (2016).

Table 3 contains the p-values for testing the goodness of fit of the models

based on the proposed tests T f
n,F and T f

n,M and the conditional mean tests fdapss

and FMDD, where the response Yij(t) and the covariate Xij(t) represent the

logarithm of the rainfall and temperature, respectively, at station i of climate

zone j on day t. The results are based on 500 bootstrap replicates, and both the

response Yij(t) and the covariates Xij(t) are centralized so that no models include

the intercept term. From Table 3, with the first four types of models, we draw

the same conclusions presented in Patilea, Sánchez-Sellero and Saumard (2016).

That is, there exists a varying correlation between rainfall and temperature, with
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Table 3. Canadian weather data: the p-values for testing the goodness of fit of various
models, and the results are based on using the estimated coefficient value.

Name of the model Formula p-value

T f
n,M T f

n,F fdapss FMDD

No-effect Yij(t) = ϵij(t) 0.009 0.000 0.000 0.000

Functional ANOVA Yij(t) = αj(t) + ϵij(t) 0.307 0.173 0.226 0.000

No-effect+heterogeneity Yij(t) = Xij(t)ϵij(t) 0.455 0.869 0.407 0.409

FLMcR Yij(t) = Xij(t)β(t) + ϵij(t) 0.046 0.023 0.000 0.000

FLMcR + ANOVA Yij(t) = αj(t) +Xij(t)β(t) + ϵij(t) 0.174 0.367 0.323 0.222

FLMcRw Yij(t) = Xij(t)β(t) +Xij(t)ϵij(t) 1.000 0.980 0.401 0.515

FLMfR Yij(t) =
∫ 1

0
β1(s, t)Xij(s)ds+ ϵij(t) 0.000 0.000 0.000 0.000

FLMfR+ANOVA Yij(t) = αj(t) +
∫ 1

0
β1(s, t)Xij(s)ds+ ϵij(t) 0.782 0.713 0.170 0.695

FLMfRw Yij(t) =
∫ 1

0
β1(s, t)Xij(s)ds+Xij(t)ϵij(t) 1.000 0.771 0.401 0.443
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Figure 1. The estimated β(s, t) in FLMfRw for Canada weather data: the estimated
surface (left), and the functions with the second coordinate fixed at t = 0.25, 0.5, and
0.75, respectively.

the correlation varying across climatic zones. Compared with the conventional

ANOVA models, one extra finding is that heterogeneous variance models in which

the heterogeneity depends on temperature also work well. For model FLMfRw,

Figure 1 shows the estimate of β(s, t) and its pointwise confidence intervals.

As suggested, β(s, t) is not statistically significant, resulting in the FLMfRw

degenerating to the no-effect heterogeneity model. In summary, the results of our

tests on the models suggest that heterogeneity in rainfall exists among different

climatic zones, and can be expressed using simple and explicit heterogeneity

models or using an ANOVA, as in Patilea, Sánchez-Sellero and Saumard (2016).

6.2. Analysis of Chinese air pollution data

The data consist of the daily air quality index (AQI) and PM2.5 in Beijing,

Chengdu, and Guangzhou from 2014 to 2019. Higher AQI values indicate worse

air quality. The data are collected from the air quality monitoring website. Our

purpose is to explore the relationship between AQI(Y ) and PM2.5 (X), which

are observed daily with a data size of 16. We consider three models: the no-effect

model, FLMcR, and FLMcRw. Table 4 lists the p-values based on the proposed

tests, T f
n,F and T f

n,M, and the conditional mean tests, fdapss and FMDD. The
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Table 4. China air pollution data: the p-values for testing the goodness of fit of various
models, with the results based on the estimated coefficient value.

Name of the model Formula p-value

T f
n,M T f

n,F fdapss FMDD

No-effect Yi(t) = ϵi(t) 0.898 0.010 0.489 0.000

No-effect+heterogeneity Yi(t) = f(Xi(t))ϵi(t) 0.341 1.000 0.814 0.631

FLMcR Yi(t) = Xi(t)β(t) + ϵi(t) 1.000 0.076 0.142 1.000

FLMcRw Yi(t) = Xi(t)β(t) + f(Xi(t))ϵi(t) 1.000 0.606 0.408 0.535

results are based on 500 bootstrap replicates. Note that the performance of the

fdapss test depends highly on the selection of the bandwidth, which is rather

sensitive in this example.

As shown in Table 4, the mean-based tests, T f
n,M, fdapss, and FMDD all

fail to detect the heterogeneous variance expressed by the models of No-effect+

heterogeneity and FLMcRw. The null conditional mean zero assumption is not

rejected, with p-values of 0.898 and 0.489 by T f
n,M and fdapss, respectively, under

the no-effect model, and with p-values of 1.00, 0.142, and 1.000 by T f
n,M, fdapss,

and FMDD, respectively, under the model FLMcR. However, T f
n,F rejects the

null distributional independence assumption, with p-values of 0.010 and 0.076

for the models of no-effect and FLMcR, respectively. This leads to a no-effect +

heterogeneity model and an FLMcRw with the heterogeneous variance taking the

form of f(Xi(t)) = X2
i (t), t ∈ [0, 1]. These results indicate that the heterogeneous

variance of AQI can be explained by PM2.5. Furthermore, Figure 2(b) shows the

estimate of β(t) and its pointwise confidence intervals for FLMcRw. As suggested

in Figure 2(b), we find that the covariate PM2.5 positively affects the daily air

quality index, that is, larger values of PM2.5 tend to cause large values of the

AQI, resulting in worse air quality.

7. Conclusion

We have developed a projection-based procedure for assessing the goodness

of fit of generalized functional regression models. The procedure offers several

features. First, it offers generality, because the proposed test can check the

goodness of fit for a large number of FLMs, such as the FLMcR, FLMsR, FLMfR,

generalized FLM, and functional index models. Secondly, it offers uniformity,

because we provide a unified test framework for functional regression models.

Remarkably, the proposed framework accommodates not only the distribution-

based test, but also the mean-based and higher-order moment-based tests. Based

on our theoretical and numerical results, as long as the null mean hypothesis (1.1)

does not hold, the mean-based test is more powerful than the distribution-

based test, which is attributed to the unified framework, under some mild

conditions. By following this strategy, we obtain greater insight into the model
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Figure 2. (a): The estimated β(·) and associated 95% confidence bands in
FLMcR+ANOVA for the Canadian weather data. (b): The estimated β(·) and associated
95% confidence bands in FLMcRw for the Chinese air pollution data.

structure and avoid calculating redundant test statistics, thus alleviating the

computational burden. Third, it offers flexibility, because the proposed test is

free of any distribution assumptions, and is constructed based on independence

in distribution, which accounts for the mean-based independence considered in

the literature and any order moment-based independence. Fourth, it provides

the parameter rate of the local alternative. The proposed test has outstanding

power performance under the alternatives, that is, O(n−1/2), in contrast to the

nonparametric order obtained in the literature. Fifth, it offers computational

convenience. The proposed test is free of user-chosen parameters, which enhances

computational expedience and avoids subjective selection.

There are several possible extensions of our method. First, we focus on

generalized functional models with a known link function. Extending this to

the generalized FLM with an unknown link function requires extra effort, and

deserves further exploration. Second, our method requires that the covariates

X are continuous functions. Because there is no KL expansion for discrete

covariates, especially for binary covariates, accommodating discrete covariates

is worthy of further investigation to address specific scientific questions. Third,

the asymptotic distribution of the proposed statistics does not have an easily

handled form. Thus, we use the bootstrap procedure, which generates extra

computational costs. Therefore, finding an alternative method or developing

more efficient algorithms is left for future work.
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Supplementary Material

Supplementary Material contains additional notation, simulation results, and

technique details, including proofs of the theorems.
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Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer

Science & Business Media.

Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with an

Introduction to Linear Operators. John Wiley & Sons.

Kokoszka, P., Maslova, I., Sojka, J. and Zhu, L. (2008). Testing for lack of dependence in the

functional linear model. Canad. J. Statist. 36, 207–222.

Kokoszka, P. and Reimherr, M. (2017). Introduction to Functional Data Analysis. Chapman and

Hall/CRC.

Lee, C., Zhang, X. and Shao, X. (2020). Testing conditional mean independence for functional

data. Biometrika 107, 331–346.

Lei, J. (2014). Adaptive global testing for functional linear models. J. Amer. Statist.

Assoc. 109, 624–634.

Li, J., Huang, C. and Zhu, H. (2017). A functional varying-coefficient single-index model for

functional response data. J. Amer. Statist. Assoc. 112, 1169–1181.

Li, Y. and Hsing, T. (2010). Deciding the dimension of effective dimension reduction space for

functional and high-dimensional data. Ann. Statist. 38, 3028–3062.

Li, Y., Wang, N. and Carroll, R. J. (2010). Generalized functional linear models with

semiparametric single-index interactions. J. Amer. Statist. Assoc. 105, 621–633.

Ma, S. (2016). Estimation and inference in functional single-index models. Ann. Inst. Statist.

Math. 68, 181–208.

McLean, M. W., Hooker, G. and Ruppert, D. (2015). Restricted likelihood ratio tests for linearity

in scalar-on-function regression. Stat. Comput. 25, 997–1008.

McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F. and Ruppert, D. (2014). Functional

generalized additive models. J. Comput. Graph. Statist. 23, 249–269.

Muller, H.-G. and Stadtmuller, U. (2005). Generalized functional linear models. Ann. Statist.

33, 774–805.

Neumeyer, N. (2009). Testing independence in nonparametric regression. J. Multivariate Anal.

100, 1551–1566.

Patilea, V., Sánchez-Sellero, C. and Saumard, M. (2016). Testing the predictor effect on a

functional response. J. Amer. Statist. Assoc. 111, 1684–1695.

Ramsay, J. O. (1982). When the data are functions. Psychometrika 47, 379–396.

Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis. Springer Series

in Statistics. Springer-Verlag.

Tang, Q., Kong, L., Ruppert, D. and Karunamuni, R. J. (2021). Partial functional partially

linear single-index models. Statist. Sinica 31, 107–133.

Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016). Functional data analysis. Annu. Rev. Stat.

Appl. 3, 257–295.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005). Functional data analysis for sparse longitudinal

data. J. Amer. Statist. Assoc. 100, 577–590.



PROJECTION-BASED TEST FOR FUNCTIONAL REGRESSION 1995

Guizhen Li

School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130,

China.

E-mail: ligz@smail.swufe.edu.cn

Mengying You

School of Statistics and Information, Shanghai University of International Business and

Economics, Shanghai 201620, China.

E-mail: mengyy@suibe.edu.cn

Ling Zhou

School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130,

China.

E-mail: zhouling@swufe.edu.cn

Hua Liang

Department of Statistics, The George Washington University, Washington, DC 20052, USA.

E-mail: hliang@email.gwu.edu

Huazhen Lin

School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130,

China.

E-mail: linhz@swufe.edu.cn

(Received March 2022; accepted January 2023)

mailto:ligz@smail.swufe.edu.cn
mailto:mengyy@suibe.edu.cn
mailto:zhouling@swufe.edu.cn
mailto:hliang@email.gwu.edu
mailto:linhz@swufe.edu.cn

	Introduction
	Model and Method
	Theoretical Property for the PD-Test Statistic
	Implementation
	Numerical Studies
	Real-data examples
	Analysis of Canadian weather data
	Analysis of Chinese air pollution data

	Conclusion

