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Abstract: Multinomial logistic regression models are popular in multicategory classi-

fication analysis, but existing models suffer several intrinsic drawbacks. In particu-

lar, the parameters cannot be determined uniquely because of the over-specification.

Although additional constraints have been imposed to refine the model, such mod-

ifications can be inefficient and complicated. In this paper, we propose a novel

and efficient simplex-based multinomial logistic regression technique, seamlessly

connecting binomial and multinomial cases under a unified framework. Compared

with existing models, our model has fewer parameters, is free of any constraints,

and can be solved efficiently using the Fisher scoring algorithm. In addition, the

proposed model enjoys several theoretical advantages, including Fisher consistency

and sharp comparison inequality. Under mild conditions, we establish the asymp-

totical normality and convergence for the new model, even when the numbers of

categories and covariates increase with the sample size. The proposed framework

is illustrated by means of extensive simulations and real applications.

Key words and phrases: Asymptotics, classification, Fisher consistency, kernel learn-

ing, MLR, simplex coding scheme.

1. Introduction

Logistic regression (LR) is the most frequently used regression model for

analysis of categorical outcomes (Cramer (2003); Yee (2015); Fang and Yi (2021);

Mo and Liu (2021)). LR has been widely applied in epidemiology, biology,

economics, and the social sciences, among others (Hosmer, Lemeshow and Stur-

divant (2013); Lemeshow and Hosmer (2014)). LR models can be divided into

two types based on the number of categories, binomial LR and multinomial

LR (MLR). The MLR model is also known as the conditional maximum en-

tropy model in natural language processing (Berger, Della Pietra and Della

Pietra (1996); Malouf (2002)), and as the softmax regression in neural networks
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(Ng et al. (2013); Goodfellow, Bengio and Courville (2016)).

The statistical theory of binomial LR is well established, whereas modeling

and inference for MLR is more complicated. There have been numerous attempts

to generalize the original binomial LR to the multinomial case; see McCullagh

and Nelder (1989), Hastie, Tibshirani and Friedman (2009), and Tutz (2011). For

a k-categorical regression problem, a natural approach is to estimate k regression

functions, one for each category. The unknown parameters in these functions are

typically jointly estimated using a maximum likelihood or Bayesian updating.

As shown in Bühlmann and van de Geer (2011, Sec. 3.3.3), such an extension

is over-specified, with unidentifiable parameters. In general, k − 1 functions are

sufficient to determine a k-categorical LR model. For instance, the binomial

LR (k = 2) is defined by a single regression function. Therefore, additional

restrictions are needed on the regression functions to make the model identifi-

able. Roughly speaking, there are two common schemes. The first prespecifies a

reference category and sets its regression function to zero, and the second uses

a sum-to-zero constraint on the k functions (Hastie, Tibshirani and Wainwright

(2015, Sec. 3.3)). Both extensions subsume the binomial LR as a special example,

and are introduced in Section 3. However, the extra constraints complicate the

parameter estimation and theoretical analysis. Specifically, the reference-based

MLR does not treat all categories equally, and the explicit sum-to-zero constraint

increases the computational cost. In addition, the relationship between these two

constrained MLR (CMLR) models is not entirely clear.

A powerful method for circumventing the explicit constraints is to use sim-

plex coding. The basic idea is to construct a k-vertex simplex structure in a

(k − 1)-dimensional Euclidean space, where each vertex represents one cate-

gory. The covariate vector of each instance is then mapped to a point in this

(k−1)-dimensional space. In other words, only k−1 regression functions need to

be estimated under the simplex coding scheme, and the non-identifiability issue

is resolved automatically, without further constraints on these k − 1 functions.

Therefore, simplex coding for multiclass learning is expected to have lower com-

putational complexity in model training (Hill and Doucet (2007); Lange and Wu

(2008); Mroueh et al. (2012)). Such a scheme is also called angle-based classi-

fication by Zhang and Liu (2014), Zhang et al. (2018), and Fu, Zhang and Liu

(2018), because the predicted label of a new observation corresponds to the ver-

tex that has the smallest angle with the mapped (k − 1)-dimensional point of

the covariates. This geometric interpretation makes the coding scheme easy to

understand.
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The first objective of our study is to remove the cumbersome constraints

in existing MLR models, and propose a novel MLR model using the delicate

simplex structure, called simplex-based MLR (SMLR). Inheriting from simplex

coding, the redundancy of the categorical space is removed and the representa-

tion of the regression functions is identifiable. Hence, the resulting SMLR model

has a clear geometric explanation, and is computationally efficient in terms of

parameter estimation. Compared with regular CMLRs, the SMLR model en-

joys more parsimonious parameter specification. Specifically, the SMLR model

avoids the subjective selection of a reference category, gets rid of the sum-to-zero

constraint, and provides a symmetric insight on all categories by treating them

equally. With fewer parameters, the likelihood estimation of the SMLR solves

an unconstrained optimization problem, which can be implemented efficiently

using the Fisher scoring algorithm. The proposed SMLR can be treated as a

unified framework recovering CMLRs, but the parameters involved have different

interpretations.

The second objective of this study is to establish the asymptotic properties of

the MLEs of an SMLR with a diverging number of categories, which is peculiar to

multicategory classification applications. In practical problems, the granularity

of the classification, in terms of the number of categories, is usually determined

based on the size of the available training data (Dekel and Shamir, 2010). For ex-

ample, photo sharing websites allow users to annotate their photos with keywords.

The key task is to recommend keywords whenever new photos are uploaded. As-

suming there are no restrictions on the keywords that may be used, the set of

distinct keywords is likely to grow as additional photos are uploaded to the site.

Similarly, web directory classification with Yahoo! taxonomies yields some rare

categories that are ignored under a small sample size, but are considered for larger

samples (Liu et al. (2005)). Other examples include textual document catego-

rization (Dekel and Shamir (2010)) and the identification of flowers, plants and

products using images (Nilsback and Zisserman (2008); Deng et al. (2010)). The

phenomenon of a diverging number of categories has attracted some attention in

the literature, with most existing studies focusing on algorithmic development,

for example, distributed computing, hierarchical classification, and penalization

techniques. For instance, Deng et al. (2009, 2010) exploited the semantic hier-

archy of categories to obtain more informative image classifiers. Based on the

hierarchical structure of categories, Price, Geyer and Rothman (2019) proposed

a group-fused MLR model that automatically combines the categories. However,

there are a few asymptotic studies of MLR models when the class size increases

with the sample size, probably because the constraint on existing CMLRs makes
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the asymptotic properties difficult to establish. In contrast, when the dimensions

of the covariates and the categories are fixed, the asymptotic properties of MLRs

are well established (Fahrmeir and Kaufmann (1985); van der Vaart (1998); Tutz

(2011)). In this study, we focus on the asymptotics of an SMLR model with

varying category sizes. An important byproduct is that we also establish the

asymptotics under a diverging number of covariates, which has received scant

attention in the literature on MLR models.

The third objective of this study is to show the theoretical advantages of the

SMLR model under certain settings. In particular, we explore kernel learning

for SMLR, which enjoys a faster convergence rate than those of existing MLR

models. Few studies have conducted convergence analysis for kernel MLR under

a diverging number of categories. This study fills this gap by establishing the

consistency of kernel SMLR, while letting the number of categories k go to infinity

at the order of o(n). In addition, we show that the proposed SMLR enjoys

some desirable statistical properties, including Fisher consistency and comparison

inequality, which are fundamental in understanding the nature of the SMLR

model.

The rest of the paper is organized as follows. In Section 2, we introduce

the notation and briefly review regular MLR models. In Section 3, we propose

the SMLR method, and explore its connections with regular MLR models. We

establish the asymptotical results for an SMLR model with a diverging number

of parameters in Section 4. Simulation studies and real applications demonstrate

the performance of the proposed approach in Section 5. Section 6 concludes the

paper. The main proofs are given in the Supplementary Material.

Throughout this paper, 0 and 1 represent vectors of zeros and ones, respec-

tively, ej is the jth column vector of an identity matrix I, the dimensions of

which can be inferred contextually, and diag(u) is a diagonal matrix with entries

determined by a vector u. The vectorization of a matrix A = (aij) ∈ Rm×n is

defined as

−→
A := vec(A) = (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)> ∈ Rmn.

Let ‖A‖2 be the spectral norm, defined as the largest singular value of A. In

general, ‖A‖ :=
√∑

i,j a
2
ij is the Frobenius norm, including the Euclidean norm

of a vector. For a square matrix A, λmax(A) and λmin(A) denote the maximum

and minimum eigenvalues, respectively. For any matrices A and B of the same

dimensions, A � B or B � A denotes A − B is positive semi-definite. A � 0

implies that A is positive definite, where 0 is a matrix of zeros. For A � 0, A1/2
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denotes its symmetric square root, with A = (A1/2)2 and A−1/2 = (A1/2)−1.

The Kronecker product of two matrices A and B is denoted by A⊗B.

2. Review of Regular MLR Models

Consider a multicategory classification problem with k possible categories

Y , {1, 2, . . . , k}. Suppose we are given a set of observations D = {(xi, yi), i =

1, . . . , n}, where xi = (xi1, . . . , xid)
> ∈ X ⊆ Rd is the covariate vector and yi ∈ Y

is the corresponding response category. We define X = (x1, . . . ,xn)> ∈ Rn×d as

the design matrix.

Let πy(x) be the conditional probability that the response category is y for

the given covariate x. Note that y must take one and only one class label from Y.

We need the sum-to-one condition
∑k

y=1 πy(x) = 1 to reflect this implicit nature

of a multinomial regression. Under this condition, only k − 1 free probabilities

are informative, and the rest are redundant. For the observations D, the joint

distribution is
∏n
i=1 πyi(xi). To link the probability {π1, . . . , πk} to the covariate

x, a generic MLR model considers the multinomial-Poisson transformation (Baker

(1994); Lang (1996))

πy(x) =
ex
>θy∑k

j=1 e
x>θj

, x ∈ X , y = 1, . . . , k, (2.1)

where θ = (θ1, . . . ,θk) ∈ Rd×k is the regression coefficient matrix and θj ∈ Rd

is the jth column vector. Model (2.1) can be interpreted as a neural network

(Ripley (1996)). Based on the observations D, the log-likelihood function for

(2.1) is

`n(θ) = log

{
n∏
i=1

πyi(xi)

}
=

n∑
i=1

x>i θyi −
n∑
i=1

log

(
k∑
j=1

ex
>
i θj

)
. (2.2)

Note that if we add a common vector b ∈ Rd to each θj , the probabilities

in (2.1) remain unchanged and `n(θ+ b1>k ) = `n(θ). Therefore, the MLR model

(2.1) is not identifiable with over-specified θ. In fact, θ has k − 1 free columns,

because there are k − 1 free informative conditional category probabilities. This

problem may be readily resolved by adopting some restrictions on θj , leading to

the constrained MLR (CMLR).

Two customary constraints are used in the literature to refine the parameters.

The first is to choose a reference category, denoted by r ∈ Y, and set θr as

the zero vector 0, leading to the reference-based MLR (CMLR1); see Anderson



2468 FU ET AL.

(1972), Anderson and Blair (1982), Albert and Anderson (1984), Böhning (1992),

Krishnapuram et al. (2005), and Hastie, Tibshirani and Friedman (2009), among

others. As a result, the CMLR1 estimator is given by

θ̂rb = argmax
θ

`n(θ), s.t. θr = 0. (2.3)

The other is a sum-to-zero constraint
∑k

j=1 θj = 0, leading to the symmetric

constrained MLR (CMLR2), which has been studied by Friedman, Hastie and

Tibshirani (2000), Zhu and Hastie (2004, 2005), Friedman, Hastie and Tibshirani

(2010), Zahid and Tutz (2013b), and Hastie, Tibshirani and Wainwright (2015),

among others. Consequently, the estimator for the CMLR2 model is defined as

θ̂sc = argmax
θ

`n(θ), s.t.

k∑
j=1

θj = 0. (2.4)

Note that the total number of parameters in (2.3) or (2.4) is dk, and the exact

number of free parameters is d(k − 1), owing to the extra constraints. Com-

prehensive discussions on MLRs can be found in Tutz (2011, Sec. 8), Hosmer,

Lemeshow and Sturdivant (2013, Sec. 8), Yee (2015), and the references therein.

The above-mentioned CMLRs have some inherent deficiencies. On the one

hand, when the reference category for CMLR1 alters, the estimated parame-

ters and the corresponding interpretation change as well. As a result, CMLR1

lacks systematic insights on the categories, and the choice of reference category

is subjective and confusing in practice, especially with an increasing number of

categories. On the other hand, as shown in Zhang and Liu (2014), the explicit

sum-to-zero constraint in CMLR2 can be theoretically inefficient and computa-

tionally expensive. We next propose a competent MLR formulation with appeal-

ing properties that is free of constraints on the parameters.

3. Simplex-Based MLR

In this section, we formulate a novel and efficient simplex-based MLR (SMLR)

in Section 3.1, develop the estimation procedure for the SMLR model in Section

3.2, and compare the proposed SMLR with existing MLRs in Section 3.3.

3.1. Methodology

To address the limitations in existing CMLRs, we borrow from recent mul-

ticategory classification studies (Zhang and Liu (2014); Zhang et al. (2018); Fu,

Zhang and Liu (2018)), and propose an attractive simplex-based MLR model. A
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well-designed simplex in a (k − 1)-dimensional Euclidean space plays a central

role in reducing the parameter redundancy. To begin with, consider k vertices

{wj ∈ Rk−1, j = 1, . . . , k}

wj =


(k − 1)−1/21k−1, if j = 1

−(1 + k1/2)

(k − 1)3/2
1k−1 +

(
k

k − 1

)1/2

ej−1, if 2 ≤ j ≤ k
, (3.1)

where 1 and ej are vectors in Rk−1. One can verify that each wj has Euclidean

norm 1 and W1k =
∑k

j=1 wj = 0. Denote the matrix of vertex vectors as

W , (w1, . . . ,wk) ∈ R(k−1)×k. Clearly, W is of full row rank k − 1. Note that

alternative constructions of the simplex exist, such as those of Hill and Doucet

(2007) and Mroueh et al. (2012). However, we can always connect W with those

simplices using proper linear transformations in Rk−1, and then show that they

are equivalent.

The simplex W can be used to reduce the dimension of the categorical space

to k − 1. Consider a k-categorical distribution with P (Y = y) = py > 0 (y ∈
Y), with the sum-to-one condition

∑k
j=1 pj = 1. The conventional multinomial

distribution encodes Y as a one-hot vector in Rk, that is, Y = eY . Here, Y is

redundant, because 1>k Y ≡ 1. Let p = (p1, . . . , pk)
> be the probability vector.

Then, the covariance matrix of Y is diag(p) − pp> (Forbes et al. (2011)).

Without loss of generality, we can encode category j to the jth vertex wj to obtain

another multinomial random vector Z = WY ∈ Rk−1, with P (Z = wj) = P (Y =

ej) = pj . The following proposition states a useful result on the covariance matrix

of Z.

Proposition 1. The covariance matrix of Z = WY is positive definite.

Note that the original Y is redundant with the covariance matrix diag(p)−
pp> � 0. On the other hand, by Proposition 1, the refined category vector

Z = WY has the covariance matrix W{diag(p)−pp>}W> � 0. Therefore, the

simplex W in Rk−1 leads to a refined categorical space without redundancy. We

can use the vertex wj to represent the jth category, a strategy we call simplex

coding.

Next, we use W to remove the explicit sum-to-zero constraint in CMLR2. For

the coefficients θ ∈ Rd×k with
∑k

j=1 θj = 0, we can find a matrix β ∈ Rd×(k−1)

such that θj = βwj , for j = 1, . . . , k. It is obvious that
∑k

j=1 θj =
∑k

j=1 βwj =

β(
∑k

j=1 wj) = 0, using the fact that
∑k

j=1 wj = 0. For example, a possible

choice of β is (1 − 1/k)θW>. The equivalence between θ and βW is shown in
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the following proposition.

Proposition 2. {θ ∈ Rd×k :
∑k

j=1 θj = 0} is equivalent to {βW : β ∈
Rd×(k−1)}.

By Proposition 2, the parameters θ with a sum-to-zero constraint can be

reformulated as βW, without loss of information. By replacing θj in the classical

MLR (2.1) with βwj , the simplex-based MLR model takes the form

π̃j(x) =
ex
>βwj∑k

s=1 e
x>βws

, x ∈ X , j = 1, . . . , k. (3.2)

We can interpret the quantity x>βwj as the inner product 〈β>x,wj〉 in Rk−1.
In other words, we first map a covariate x to a point β>x in Rk−1 using the

coefficient matrix β, and then take the inner product with the encoded ver-

tex wj . Because π̃j(x) is increasing in x>βwj , the predicted rule is ŷ(x) =

arg maxj π̃j(x) = arg maxj{x>βwj}, which is computationally more efficient

than that of the reference-based MLR. In particular, SMLR simply requires com-

puting k individual inner products, whereas the reference-based MLR involves

calculating k probabilities using (2.1). As shown in Zhang and Liu (2014), the

largest inner product rule is equivalent to the least angle rule. Hence, the SMLR

can be treated as an alternative multicategory angle-based classifier.

The proposed SMLR model enjoys a parsimonious model specification with-

out constraints. Each of the CMLRs involves dk parameters under a linear con-

straint, whereas SMLR requires only d(k − 1) parameters. Note that βW plays

the same role as θ in existing MLRs. Under the factorization βW, the k−1 rows

of W can be viewed as latent outcome variables, and each row has a loading on

each of the k categories. The k − 1 columns of β specify parameter vectors for

these latent outcome variables.

To further interpret the parameters of SMLR and investigate their relation-

ships with the CMLRs, we examine the log-odds forms. For a CMLR1 model

with a reference category r (that is, θr ≡ 0), we have

log

{
πj(x)

πr(x)

}
= x>θj , j = 1, . . . , k.

Clearly, θj depends on the selection of the reference category, and different selec-

tions yield different interpretations of the parameters of CMLR1. On the other

hand, the parameter interpretation for CMLR2 is related to the median response

(Tutz (2011)), which is defined as the geometric mean
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GM(x) =
∏k

j=1
{πj(x)}1/k.

Then, for CMLR2 with the constraint
∑k

j=1 θj = 0, we have

log

{
πj(x)

GM(x)

}
= x>θj , j = 1, . . . , k.

Therefore, θj shows the effects of x on the comparison of Y = j with the geometric

mean response GM(x). Similarly, we can define the simplex-based geometric

mean

SGM(x) =
∏k

j=1
{π̃j(x)}1/k.

After some algebra, we can show that

log

{
π̃j(x)

SGM(x)

}
= x>βwj , j = 1, . . . , k.

Thus, SMLR is a generalization of CMLR2 under the simplex-based coding

scheme. The modeling of CMLR1 is based on asymmetric comparisons of the

categories, while CMLR2 and SMLR use symmetric comparisons. However, be-

cause SMLR removes the sum-to-zero constraint in CMLR2 and involves fewer

parameters, SMLR is more desirable and computationally efficient.

Note that Zhang and Liu (2014) proposed a flexible multicategory classifica-

tion framework under the simplex structure that considers a general large-margin

loss function `(·). According to Theorem 3 in Zhang and Liu (2014), if we consider

an exponential loss of the form `(z) = e−z and `′(z) = −e−z, the relationship

between the conditional class probability and the theoretical minimizer f∗ can

be expressed as

Pj(x) =
`′(〈f∗(x),wj〉)−1∑k
i=1 `

′(〈f∗(x),wi〉)−1
=

exp(〈f∗(x),wj〉)∑k
s=1 exp(〈f∗(x),ws〉)

, x ∈ X , j = 1, . . . , k,

which recovers the probabilistic assumption (3.2) of the proposed SMLR. This

interesting connection sheds some light on SMLR from the perspective of large-

margin classification.

3.2. Maximum likelihood estimation

The log-likelihood function for the SMLR model (3.2) based on the data set

D is

Ln(β) = `n(βW) =

n∑
i=1

x>i βwyi −
n∑
i=1

log

(
k∑
j=1

ex
>
i βwj

)
, (3.3)
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and the corresponding estimator by maximizing the likelihood is defined as

β̂ = argmax
β

Ln(β). (3.4)

Compared with CMLRs, our SMLR solves an unconstrained problem with fewer

parameters.

The Fisher scoring algorithm, which is equivalent to Newton’s method for the

SMLR model, can be used to solve (3.4). For notational simplicity, let π̃i , π̃(xi)

be the probability vector for the ith observation, where π̃i depends on β, as

determined by (3.2). Let Λ(u) = diag(u)− uu> be a matrix associated with u.

After some tedious computation, the score vector is

Un(β) =
∂Ln(β)

∂β
=

n∑
i=1

(W ⊗ xi)(eyi − π̃i), (3.5)

and the negative Hessian matrix is

Qn(β) = −∂
2Ln(β)

∂β∂β>
=

n∑
i=1

[WΛ(π̃i)W
>]⊗ (xix

>
i ). (3.6)

Observe that Qn(β) involves only the design matrix X, and does not depend

on the response Y . In what follows, we consider the setting of a fixed design.

Then, Qn(β) is also known as the Fisher information. The following proposition

presents some basic results for Qn(β).

Proposition 3. For any design X, Qn(β) � 0 and Ln(β) is concave in β. In

addition, Qn(β) is positive definite if and only if the design matrix X is of full

column rank.

Owing to the concavity of Ln(β), the MLE β̂ is a solution to the likelihood

equation Un(β) = 0, which can be solved using standard convex programming

(Boyd and Vandenberghe (2004)). In addition, the full column rank of the design

matrix X implies that the number of observations n could be as low as d, that

is, n ≥ d. If Qn(β) � 0, then Ln(β) is strictly concave. In this case, as long as

the estimate β̂ exists, it must be unique.

The Fisher scoring procedure can be reformulated further as an iteratively

reweighted least squares algorithm, and the corresponding updating scheme is
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βnew = βold + Q−1n (βold)Un(βold)

= βold +

[
n∑
i=1

{WΛ(π̃old
i )W>} ⊗ (xix

>
i )

]−1{ n∑
i=1

(W ⊗ xi)(eyi − π̃old
i )

}
,

where π̃old
i has the jth entry π̃oldij = ex

>
i β

oldwj/
∑k

s=1 e
x>i β

oldws , for j = 1, . . . , k.

3.3. Comparison with regular CMLRs

As a new member of the MLR family, the SMLR is closely related to existing

MLRs. The main results are stated in the following theorem.

Theorem 1. The three estimators (2.3), (2.4), and (3.4) defined for the same

observations D achieve the same log-likelihood values, that is, `n(θ̂rb) = `n(θ̂sc) =

Ln(β̂). Moreover, if β̂ is unique, then the regular estimators can be recovered by

θ̂rb = β̂(W −wr1
>
k ) and θ̂sc = β̂W.

Theorem 1 states that the two CMLR estimators θ̂rb and θ̂sc can be uniquely

determined by the SMLR estimator β̂, under some linear transformations. For

any observation x, we have the following prediction results:

π̂rbj (x) = π̂scj (x) = ̂̃πj(x) =
ex
>β̂wj∑k

s=1 e
x>β̂ws

.

Therefore, these three MLR models are equivalent in terms of probability esti-

mation and label prediction. If an alternative simplex is applied, the estimated

coefficients of SMLR may be different, but these three MLR models still share

the same prediction outputs.

Theorem 1 also implies connections between the two CMLRs, that is, θ̂rb =

θ̂sc(Ik−er1
>
k ) and θ̂sc = θ̂rb{Ik− (1k1

>
k )/k}, where Ik is a k×k identity matrix.

To compare the three MLRs, we consider a corner case in which there are two

distinct categories, that is, k = 2. Let P (x) = P (Y = 1 | x) be the probability

that the first category happens, conditioning on the given covariates x. Clearly,

P (Y = 2 | x) = 1− P (x). Then, the CMLR1 model with parameter (θ,0) is

P (x) =
ex
>θ

ex>θ + 1
=

1

1 + e−x>θ
,

where the second category is viewed as a reference. For CMLR2, owing to the

sum-to-zero constraint θ1+θ2 = 0, we can simplify (θ1,θ2) as (θ1,−θ1), yielding
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the model

P (x) =
ex
>θ1

ex>θ1 + ex>θ2
=

1

1 + ex>(θ2−θ1)
=

1

1 + e−2x>θ1
.

The SMLR model (3.2) with parameter β becomes

P (x) =
ex
>β

ex>β + e−x>β
=

1

1 + e−2x>β
.

Denote the three corresponding estimates as (θ̂,0), (θ̂1,−θ̂1), and β̂ ∈ Rd, re-

spectively. Based on Theorem 1, we have θ̂ = 2β̂ and θ̂1 = β̂. This leads to the

following corollary.

Corollary 1. If k = 2, the three MLR models are equivalent up to a scaling

factor.

Theorem 1 can also be used to reveal some interesting properties of the

regular CMLRs. For example, consider the relation between the CMLR1 estima-

tors under two different reference categories, r and s. By Theorem 1, we have

θ̂(r) = β̂(W −wr1
>
k ) and θ̂(s) = β̂(W −ws1

>
k ). The relation between θ̂(r) and

θ̂(s) is shown in the following corollary.

Corollary 2. For the CMLR1 model with two different reference categories r

and s, θ̂(r) and θ̂(s) have the following relation:

θ̂(r) = θ̂(s) − θ̂(s)r 1>k .

For illustration, consider k = 2 and an available estimate (θ̂,0) for the

CMLR1 model with the second reference. By Corollary 2, the estimate for

CMLR1 with the first reference is (0,−θ̂).

According to Theorem 1, it is possible to transfer the properties of regular

CMLRs to the SMLR framework. For instance, Albert and Anderson (1984)

showed that the MLE for the CMLR1 model exists only when the data sets

overlap, where existence means the finiteness of an estimate. We can extend the

concept of overlapping to the SMLR model, as follows.

Definition 1. (Overlapping). We say that the observations D are overlapping

if for every nonzero matrix β ∈ Rd×(k−1), there exists a duplet (i, t), with i ∈
{1, . . . , n} and t ∈ Y\yi, such that x>i β(wyi −wt) < 0.

Applying Theorem 1, we have the following corollary for the existence of the

SMLR estimator.
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Corollary 3. The MLE for the SMLR model exists if and only if the observations

D overlap.

Although the three MLRs are closely connected, the SMLR model treats all

categories equally, and provides systematic insights in a concise framework with-

out further constraints. Hence, the SMLR model serves as a unified framework

that includes the binomial LR and two regular CMLRs. In what follows, we fo-

cus on the SMLR model for succinct technical presentation. All conclusions for

the SMLR model can be adapted to regular CMLRs using the link functions in

Theorem 1.

4. Theoretical Properties

In this section, we establish the asymptotical results and statistical learning

theory for the proposed SMLR model, including the existence and uniqueness of

the MLE, Fisher consistency, the comparison inequalities as a classifier, and the

convergence results for the kernel SMLR.

4.1. Asymptotical results

We are interested in the asymptotic behavior of the SMLR model under a

complicated diverging setting, where both the number of covariates and the num-

ber of categories can increase with the sample size. In the literature, the diverging

number of covariates is well studied, but few studies examine the diverging num-

ber of categories, even though such a setting is not uncommon in practice. In

the general “large n, diverging d and diverging k” setup, we denote d = dn and

k = kn to emphasize the effect of the sample size n. Then, the number of pa-

rameters for the SMLR is (kn− 1)dn. Hereafter, we replace (β, β̂) by (βn, β̂n) to

emphasize their dependencies on the sample size n.

For the matrix Λ(π̃i) in Qn(βn), because π̃i depends on βn, we rewrite

Λi(βn) = Λ(π̃i). Hence, the Fisher information matrix Qn(βn) =
∑n

i=1{W
Λi(βn)W>}⊗(xix

>
i ) is a function of βn. Assume that the true coefficient matrix

is βn0. Denote Gn0 = Qn(βn0). When the underlying model is correctly specified,

P (Y = j | X = x) =
ex
>βn0wj∑k

s=1 e
x>βn0ws

.

For the score vector Un(·) defined in (3.5), it follows that E{Un(βn0)} = 0.

Define Sn = X>X =
∑n

i=1 xix
>
i . Because the covariates xi are assumed to

be deterministic, Qn(βn) and Sn are not random. Given a fixed δ > 0, we

consider a region of interest for βn, that is, Nn(δ) =
{
β :

∥∥G1/2
n0

(
β − βn0

)∥∥ ≤
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δ{dn(kn − 1)}1/2
}

.

In order to obtain the asymptotic results, we need the following assumptions.

Assumption 1. The true parameter βn0 is contained in the interior of a compact

subset Bn in Rdn×(kn−1).

Assumption 2. Each covariate of X is uniformly bounded by a constant C > 0.

Assumption 3. There exist two positive constants c1 and c2 such that c1 ≤
λmin(Sn/n) ≤ λmax(Sn/n) ≤ c2.

Assumption 4. There exists a constant L0 > 0 such that ‖Λ(β)−Λ(β′)‖2 ≤
L0 ‖β − β′‖, for any β,β′ ∈ Bn.

The above assumptions are motivated by the literature on M -estimation

with a diverging dimension of covariates; see Portnoy (1985), Portnoy (1988),

He and Shao (2000), Wang (2011), Liang and Du (2012), and Gao et al. (2018).

Assumption 1 restricts the true parameter βn0 under the doubly diverging setting.

Assumption 2 ensures that each observed covariate vector is bounded, that is,

‖xi‖ ≤ C
√
dn, for any i = 1, . . . , n. Assumption 3 gives some regular conditions

on the design matrix X. Assumption 4 is specially tailored for the SMLR model,

and can be viewed as a generalized Lipschitz condition.

Remark 1. Assumption 3 is also used by Wang (2011) and Liang and Du

(2012) to establish the asymptotics for a binomial LR with diverging covari-

ates. Based on Assumption 3, we can find a positive constant c0 such that

c0 ≤ maxi=1,...,n minj=1...,k π̃ij(βn0). Furthermore, using Lemma 4 in the Supple-

mentary Material, for the Fisher information matrix Gn0, we have

Gn0

n
=

1

n

n∑
i=1

{WΛi(βn)W>} ⊗ (xix
>
i ) � knc0

kn − 1

Sn
n
� cI(kn−1)dn , (4.1)

with a constant c ∈ (0, c0c1]. If k = 2, the result (4.1) is reduced to that of

Liang and Du (2012). In summary, there exists a positive constant c such that

λmin(Gn0/n) ≥ c, and (4.1) is required to establish the convergence and asymp-

totic normality of the estimated coefficients under certain diverging settings.

Remark 2. Under Assumption 2, we have ‖Sn/n‖2 ≤ n−1
∑n

i=1 x>i xi ≤ dnC
2.

Therefore, Assumption 3 holds naturally in the “fixed d” case.

Remark 3. Owing to the complicated nature of an MLR, Assumption 4 is nec-

essary to control the behavior of different coefficients on the component of the

Fisher information matrix, which depicts the continuousness of a matrix function
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in another manner. Technical proofs of the consistency and asymptotic normality

can be simplified using Assumption 4.

Next, when the number of parameters dn(kn−1) increases, the existence and

consistency of the MLE is guaranteed by the following theorem.

Theorem 2. Suppose Assumptions 1–4 hold. If
√
dnkn/n→ 0, then there exists

a sequence {β̂n} such that as n→∞,

P
(
β̂n ∈ Nn(δ) and Un(β̂n) = 0

)
→ 1 and ‖β̂n − βn0‖ = Op

(√
dnkn
n

)
.

For the classical setting with fixed d and k, the conditions become 1/n→ 0.

For a fixed dimension d and varying categories kn, we require kn = o(n). When

the number of categories k is fixed, dn should satisfy dn = o(n).

The following theorem ensures the asymptotic normality of β̂n.

Theorem 3. Suppose Assumptions 1–4 hold. If dnkn/
√
n → 0, then for any

dn(kn − 1)× l matrix Vn with l fixed and such that V>nVn = Il,

V>nG
1/2
n0

(
β̂n − βn0

)
−→ N (0, Il), in distribution,

where N (·, ·) is a multivariate normal distribution.

In particular, let Un = G
−1/2
n0 Vn

(
V>nG−1n0 Vn

)−1/2
. Then U>nUn = Il. Based

on Theorem 3, we have the following corollary which gives the asymptotic distri-

bution of V>n (β̂n − βn0).

Corollary 4. Under the same conditions as in Theorem 3, as n→∞, we have(
V>nG−1n0 Vn

)−1/2
V>n

(
β̂n − βn0

)
−→ N (0, Il), in distribution.

If d and k are fixed, we only need n−1/2 → 0, which is trivially true. When

the number of categories kn diverges and d is fixed, the conditions in Theorem

3 reduce to kn/
√
n → 0, which implies a sufficient condition kn = o(

√
n). For

a diverging number of covariates dn and fixed k, we require dn/
√
n → 0, that

is, dn = o(
√
n). In particular, for the binomial LR model, we recover the result

in Portnoy (1985, 1988), and our result is stronger than those of He and Shao

(2000) and Wang (2011). Hence, our conditions in Theorem 2 and 3 are general

for MLR models with a diverging number of parameters, even with a diverging

number of categories.
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The following theorem and its corollary suggest that one can approximate

Gn0 using Qn(β̂n) when applying Theorem 3 and Corollary 4 for interval esti-

mation.

Theorem 4. Under the same conditions as in Theorem 3, as n→∞, we have∥∥V>nQ−1n (β̂n)Vn −V>nG−1n0 Vn

∥∥
2
−→ 0, in probability.

Corollary 5. Under the same conditions as in Theorem 3, as n→∞, we have[
V>nQ−1n (β̂n)Vn

]−1/2
V>n

(
β̂n − βn0

)
−→ N (0, Il), in distribution,

and(
β̂n − βn0

)>
Vn

{
V>nQ−1n (β̂n)Vn

}−1
V>n

(
β̂n − βn0

)
−→ χ2

l , in distribution,

where χ2
l is the χ2 distribution with l degrees of freedom.

According to Corollary 5 and the MLE, an asymptotic 1 − α confidence

interval (0 < α < 1) for βij is

β̂ij ± zα/2v>ijQ−1n vij ,

where zα/2 denotes the upper (α/2)-quantile of the standard normal distribution,

and vij is the unit vector of length dn(kn−1), with the {(j−1)dn+ i}th element

equal to one and all other elements equal to zero. We can also apply these results

when testing the following linear hypothesis:

H0 : V>nβn0 = a ←→ H1 : V>nβn0 6= a,

where the vector a ∈ Rl is known and Vn is a {(kn − 1)dn} × l matrix such that

V>nVn = Il. The large-sample Wald test statistic is defined as

Tn =
(
β̂>n Vn − a>

){
V>nQ−1n (β̂n)Vn

}−1(
V>n β̂n − a

)
.

Corollary 5 shows that the Wald test remains valid, that is, Tn −→ χ2
l in distri-

bution under the null hypothesis H0, even when the numbers of covariates and

categories diverge with the sample size.

4.2. Fisher consistency and error analysis

Fisher consistency is a fundamental property for classifiers, and is also called

infinite-sample consistency by Zhang (2004) and classification calibration by
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Bartlett, Jordan and McAuliffe (2006) and Tewari and Bartlett (2007). In this

section, we show these desired properties for the SMLR model.

First, let Pj(x) = P (Y = j | X = x) be the underlying class conditional

probability for any x ∈ X , and define a vector p(x) = (P1(x), . . . , Pk(x))>.

Consider a classifier C : X 7→ Y. The expected misclassification error is given by

R(C) = E[1{Y 6= C(X)}] = 1− EX [P{Y = C(x) | X = x}].

One can verify that the optimal classifier minimizing R(C), often called the

Bayes rule, is denoted as CB(x) = argmaxj Pj(x). Denote R∗ = R(CB) =

1− EX{maxj Pj(X)}.
Under the simplex coding scheme, it is sufficient to directly use k−1 functions

for multicategory classification. Let f = (f1, . . . , fk−1)
> : X 7→ Rk−1 be a

generic classification function. Then the prediction rule induced by f is Cf (x) =

arg maxj〈f(x),wj〉. For the SMLR log-likelihood (3.3), we can define the SMLR

loss function for an observation (x, y) as

V {f(x), y} = log

{
k∑
j=1

e〈f(x),wj〉

}
− 〈f(x),wy〉. (4.2)

We are interested in the expected V -risk

E(f) = E{V (f(X), Y )} = EX [E{V (f(X), Y ) | X}].

Consider the hypothesis space

F = {f : X 7→ Rk−1 : EX(‖f(X)‖) <∞},

where ‖·‖ is the standard Euclidean norm in Rk−1. Note that E(f) is a func-

tional of f , and we define its minimizer over F as f∗ = argminf∈F E(f). Fisher

consistency requires that CB(x) = Cf∗(x), for any x ∈ X .

Theorem 5. Assume that Pj(x) > 0, for j = 1, . . . , k. The expected V -risk

E : F 7→ R+ is a convex and continuous functional, with the minimizer f∗(x) =

(1− 1/k)
∑k

i=1{logPi(x)}wi. Moreover, the SMLR loss function (4.2) is Fisher

consistent.

Theorem 5 states a one-to-one correspondence between f∗ and p, where the

argument x is suppressed for brevity. Specifically, the explicit form of f∗ is a

linear expression of wi, with coefficients determined uniquely by Pj . Because

〈f∗(x),wj〉 = logPj(x)− (1/k)
∑k

i=1 logPi(x), for j = 1, . . . , k, we conclude that
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if Pi > Pj , then 〈f∗,wi〉 > 〈f∗,wj〉, and if Pi = Pj , then 〈f∗,wi〉 = 〈f∗,wj〉.
However, if Pj → 0, f∗ becomes unbounded and meaningless.

For a classification function f , R(Cf )−R∗ and E(f)− E(f∗) are called the

excess misclassification risk and the excess V -risk in SMLR, respectively. Then,

the following theorem provides an essential comparison inequality.

Theorem 6. For any f ∈ F, we have R(Cf )−R∗ ≤
√

2{E(f)− E(f∗)}1/2.

Theorem 6 covers the results for the binary LR in Bartlett, Jordan and

McAuliffe (2006). The upper bound can be improved under some regularity

conditions. To this end, we introduce the following generalized Tsybakov’s low-

noise assumption (Tsybakov (2004)).

Assumption 5. Let P(1)(x) and P(2)(x) be the largest conditional probability

and the second largest conditional probability, respectively. Assume that there

exist C > 0 and α ≥ 0 such that for all 0 < h ≤ 1,

PX({x ∈ X : P(1)(x)− P(2)(x) ≤ h}) ≤ Chα. (4.3)

Intuitively, it is clear that the misclassification error is particularly large when

it is difficult to separate the class with the highest probability from the others. In

many multicategory classification problems, it is reasonable to assume that the

P(1)(x) is unlikely to be very close to P(2)(x), for x ∈ X . Hence, Assumption 5 is

a meaningful low-noise condition that depends on the parameter α. We consider

two extreme values of α. If α = 0, this imposes the case without any assumption

on the noise, as discussed in Theorem 6. If α = ∞, it reduces to the noiseless

case.

We can improve the bound for the excess misclassification risk under As-

sumption 5. Note that similar results are established in Theorem 2 of Mroueh

et al. (2012) for multicategory support vector machines equipped with a hinge

loss or a quadratic loss. Theorem 7 establishes the results for the MLR models.

Theorem 7. For each f ∈ F, if Assumption 5 holds, then we have

R(Cf )−R∗ ≤ (8Cα)(α+1)/(α+2){E(f)− E(f∗)}(α+1)/(α+2),

where Cα = (α+ 1)C1/(α+1)α−α/(α+1) > 0 is a constant.

Remarkably, Theorem 6 is a particular case of Theorem 7 with α = 0. Fur-

thermore, Theorem 7 is a refined version of Theorem 6, because (α+ 1)/(α+ 2) >

1/2 when α > 0.
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4.3. Convergence analysis of kernel SMLR

Motivated by the kernel MLR of Zhu and Hastie (2005), we investigate the

consistency of the kernel SMLR and conduct a convergence analysis under a

diverging number of categories, which few works have done.

To start with, we consider a Mercer kernel K defined over X × X and the

reproducing kernel Hilbert space HK induced by K with the inner product 〈·, ·〉,
stratifying 〈φ(x), φ(x′)〉 = K(x,x′) with a feature map φ : X 7→ HK . Then, we

introduce the following notation:

F =
{
f : X 7→ Rk−1,

fj(x) = 〈uj , φ(x)〉 : EX{‖f(X)‖} <∞, uj ∈ HK , ∀j = 1, . . . , k − 1
}
,

FA =

{
f ∈ F :

(
k−1∑
j=1

〈uj ,uj〉

)1/2

≤ A

}
⊆ F ,

where A > 0 is a constant used to bound the hypothesis in F . Note that if

φ(x) = x, the classical setting of linear learning is recovered. We also need some

technical assumptions about the boundedness of the kernel function.

Assumption 6. There exists a constant C > 0 such that
√
K(x,x) ≤ C, for

any x ∈ X .

Under Assumption 6, we know EX{‖f(X)‖} ≤ AC for any f ∈ FA, which

ensures FA ⊆ F . Theoretically, the expected risk minimizer for the kernel SMLR

model is denoted as

f∗ = argmin
f∈F

E(f) = E{V (f(X), Y )}.

To ensure the uniqueness of f∗, we further define f∗=argminf∈B(
∑k−1

j=1〈uj ,uj〉)1/2,
where B = {f ∈ F : f = argminf∈F E(f)}. In fact, our aim is to learn the em-

pirical risk minimizer from FA, defined by

f̂ = argmin
f∈FA

ÊD(f) =
1

n

n∑
i=1

V {f(xi), yi}.

Proposition 4. Suppose Assumption 6 is met. For the function class FA, we

have

ED

[
sup
f∈FA

∣∣∣ 1
n

n∑
i=1

V {f(xi), yi} − E(f)
∣∣∣] ≤ 4

√
2AC(k − 1)1/2n−1/2.
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The concentration inequality in Proposition 4 involves the expectation of the

supremum of the empirical process, and it is a main tool to establish the consis-

tency of f̂ under the diverging number of categories, as shown in the following

Theorem.

Theorem 8. Assume Assumption 6 holds and there exists a proper A such that

the theoretical minimizer f∗ ∈ FA. If
√

(kn − 1)/n→ 0, then we have

lim
n→∞

ED{E(f̂)} = min
f∈FA

E(f) = E(f∗).

Theorem 8 implies that the consistency of f̂ requires that k should increase

at the order o(n). In particular, this order is identical to that of Theorem 2 for

the linear SMLR model. The main difference is that Theorem 2 is established for

the MLE of the linear SMLR, whereas Theorem 8 is based on the negative log-

likelihood loss function for the kernel SMLR. For the kernel CMLR2 with fixed k,

Zhang (2004) showed a convergence result under the condition
√
k/n ln3/2 n→ 0.

On the other hand, our Theorem 8 requires
√

(k − 1)/n→ 0, which is faster than

that of Zhang (2004).

5. Numerical Studies

In this section, we conduct several experiments to demonstrate the numer-

ical performance of the proposed SMLR model. In particular, we study three

simulated examples in Section 5.1, and consider two real-world applications in

Sections 5.2 and 5.3.

5.1. Simulated examples

Consider the following SMLR model:

π̃y(xi) =
ex
>
i βn0wy∑k

j=1 e
x>i βn0wj

, i = 1, . . . , n; y ∈ Y, (5.1)

where βn0 is a dn × (kn − 1) matrix of parameters. Specifically, Xi = (Xi1, . . . ,

Xidn)>, for i = 1, . . . , n, are independently generated from a multivariate normal

distribution with mean zero and marginal standard deviation 0.2. In the simula-

tion, we concentrate on the model (5.1) with a diverging number of parameters,

with the following explicit settings. Let bac be the largest integer not greater

than the number a.
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Example 1. (Diverging k and fixed d). Consider kn = b
√
nc and d = 3. Let

an = {(kn − 1)d}−1/21(kn−1)d. The true parameter matrix is

βn0 =

(
kn − 1

kn
· 1d −

kn − 2

kn
· 1d · · · (−1)kn−1

2

kn
· 1d (−1)kn

1

kn
· 1d
)
.

Example 2. (Diverging d and fixed k). Consider dn = b2
√
nc and k = 3.

Let d0 = bdn/4c and Vn = (vn1vn2) = d
−1/2
n I2⊗1dn . The true parameter matrix

is

βn0 =


0.4 · 1d0 −0.1 · 1d0
−0.3 · 1d0 0.2 · 1d0

0.2 · 1d0 −0.3 · 1d0
−0.1 · 1dn−3d0 0.4 · 1dn−3d0

 .

Example 3. (Diverging k and d simultaneously). Consider kn = b3n1/4cand

dn = b2n1/4c. Let d0 = bdn/2c and bn = {(kn − 1)dn}−1/21(kn−1)dn . The true

parameter matrix is

βn0 =(
kn−1
kn
· 1d0 −kn−2

kn
· 1d0 · · · (−1)kn−1 2

kn
· 1d0 (−1)kn 1

kn
· 1d0

−kn−1
kn
· 1dn−d0 kn−2

kn
· 1dn−d0 · · · (−1)kn 2

kn
· 1dn−d0 (−1)kn+1 1

kn
· 1dn−d0

)
.

The sample size n varies from {100, 500, 1000, 5000, 10000} for each example,

and we conduct 10,000 replications for each simulation. Because the dimension

of the estimated coefficient matrix changes as n increases, we measure the accu-

racy of the estimation using the simulated average mean squared error (AMSE),

which is obtained by averaging ‖β̂n − βn0‖
2
/(dn(kn − 1)) over all simulated sam-

ples. We also report the asymptotic behaviors of some linear combinations of

β̂n, including the average estimation bias (Bias), standard error of the estimates

(SE emp), average estimated standard error (SE est), and coverage probability

(CP) of a 95% confidence interval over 10,000 replications. All simulations are

implemented in R (R Core Team (2021).

From the theoretical results in Section 4.1, we can design certain diverging

settings, as shown in Examples 1–3. Tables 1–3 demonstrate the simulation

results for the three considered examples, where #para denotes the total number

of unknown parameters. In general, the biases and standard errors decrease as the

sample size n increases, and the coverage probabilities are close to the nominal

value when n is large. These results suggest that the performance of the MLE

is satisfactory under the considered diverging settings, and that the asymptotic

properties are valid.
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Table 1. Results for simulated Example 1.

n k #para AMSE Bias SE emp SE est CP
100 10 27 2.9282 0.0110 1.7587 1.6932 0.9278
500 22 63 1.0520 0.0114 1.1039 1.0905 0.9326

1,000 31 90 0.7218 0.0023 0.8439 0.8458 0.9422
5,000 70 207 0.3473 0.0080 0.6015 0.5997 0.9426

10,000 100 297 0.2472 -0.0011 0.5077 0.5092 0.9493

Table 2. Results for simulated Example 2.

n d #para AMSE
Estimate: v>n1

−→
β̂n Estimate: v>n2

−→
β̂n

Bias SE emp SE est CP Bias SE emp SE est CP

100 20 40 1.2580 0.1010 1.0868 0.9118 0.9137 0.0646 1.0786 0.9129 0.9173

500 44 88 0.1496 0.0323 0.4050 0.3813 0.9342 0.0305 0.4141 0.3906 0.9355

1,000 63 126 0.0687 0.0252 0.2627 0.2517 0.9394 0.0445 0.2656 0.2538 0.9370

5,000 141 282 0.0133 0.0223 0.1141 0.1133 0.9452 0.0198 0.1141 0.1134 0.9462

10,000 200 400 0.0068 0.0169 0.0818 0.0817 0.9467 0.0171 0.0818 0.0821 0.9473

Table 3. Results for simulated Example 3.

n d k #para AMSE Bias SE emp SE est CP
100 6 9 48 2.9184 0.0229 1.7543 1.6355 0.9233
500 9 14 117 0.6827 0.0070 0.8175 0.8085 0.9401

1,000 11 16 165 0.3995 0.0020 0.6576 0.6482 0.9418
5,000 16 25 384 0.1233 -0.0030 0.3675 0.3656 0.9466

10,000 20 30 580 0.0744 0.0024 0.2841 0.2819 0.9479

Lastly, we explore hypothesis testing based on the large-sample Wald test.

Consider the model (5.1) with n = 10,000; the other settings remain the same

as before. For each scenario with a null hypothesis H0, we are interested in

comparing its estimated density curve and the density curve of its corresponding

χ2 distribution, and the Q-Q plots for the Wald test statistic under H0. The

related results are shown in Figures 1–3. As seen, the χ2 approximation for

the null distribution is reasonably accurate, and the theoretical quantiles are

approximated very well by the sample quantiles.

5.2. Application I

In this section, we apply the asymptotic results of the SMLR model to a

real data set for statistical inference. We consider the 1996 American National

Election Study (NES96) data set, which can be found in the CRAN package

faraway, and contains data on 944 respondents, where each respondent consists
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    χ

Figure 1. Asymptotic results for testing H0 : a>nβn = a>nβn0 in Example 1. The left
panel gives the estimated null density of the large-sample Wald test (circle points) and
the density of the chi-square distribution χ2

1 under H0 (solid line). The right panel gives
the Q-Q plot for the Wald test statistic under H0.

    χ

Figure 2. Asymptotic results for testing H0 : V>nβn = V>nβn0 in Example 2. The left
panel gives the estimated null density of the large-sample Wald test (circle points) and
the density of the chi-square distribution χ2

2 under H0 (solid line). The right panel gives
the Q-Q plot for the Wald test statistic under H0.

of 10 related variables. Following Faraway (2016) and Price, Geyer and Rothman

(2019), we consider three explanatory variables, namely, education level (categor-

ical with seven levels), income (categorical with 24 levels), and age (numerical).

Each covariate is standardized to have mean zero and standard deviation one.

The intercepts are considered as well. In addition, the response variable is the
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    χ

Figure 3. Asymptotic results for testing H0 : b>nβn = b>nβn0 in Example 3. The left
panel gives the estimated null density of the large-sample Wald test (circle points) and
the density of the chi-square distribution χ2

1 under H0 (solid line). The right panel gives
the Q-Q plot for the Wald test statistic under H0.

Table 4. Summary of NES96 categories.

Original Categories (size) Grouped Categories (size)

Strong Democrat (200)
Democrat (380)

Weak Democrat (180)

Independent Democrat (108)

Independent (239)Independent (37)

Independent Republican (94)

Weak Republican (150)
Republican (325)

Strong Republican (175)

self-identified political affiliation of voters. As seen from Table 4, the response

variable originally has seven categories (Original Categories), which is later re-

duced to three (Grouped Categories) by Faraway (2016). The objective here is

to use the proposed SMLR model to check whether the subjective grouping of

the response categories is recommended.

The fitted coefficient matrix β̂ = (β̂ij) ∈ R4×(k−1) for the original and

grouped categories is shown in Table 5, where the jth row vector of β is de-

noted by βj•. Note that β̂1• is very close to zero under the grouped categories,

which implies that the age factor may have a weak effect. However, the effect

of age on the original categories seems strong. To verify this, we conduct the



SIMPLEX-BASED MULTINOMIAL LOGISTIC REGRESSION 2487

Table 5. Fitted coefficients of the SMLR model based on the NES96 data.

Original Categories Grouped Categories

β̂•1 β̂•2 β̂•3 β̂•4 β̂•5 β̂•6 β̂•1 β̂•2

Intercept (β̂0•) 0.6304 0.1824 -0.8353 0.0667 0.5098 0.6198 0.0094 0.2519

Age (β̂1•) -0.1222 -0.0794 0.0815 0.2118 0.0728 0.1836 -0.0474 0.0103

Education Level (β̂2•) 0.0391 0.1050 -0.2889 0.0010 0.0175 0.0925 -0.0365 0.0120

Income (β̂3•) -0.5525 -0.1564 0.0168 -0.1116 -0.1451 -0.0377 -0.2570 -0.2312

following hypothesis test to investigate the effects of the age factor:

H0 : β1• = 0 ←→ H1 : β1• 6= 0. (5.2)

By Corollary 5, with V = Ik−1 ⊗ (0, 1, 0, 0)>, the Wald test statistic β̂>1•{V>

Q−1n (β̂)V}−1β̂1• follows χ2
k−1 under H0. For the grouped categories with k = 3,

the Wald test statistic is 1.0572 and the p-value is 0.5894. As a result, the age

factor plays no role in determining the political affiliation of voters under the

grouped categories. On the other hand, the Wald test statistic is 18.3178 and the

p-value is 0.0055 for the original categories, meaning that the effects of the age

factor are non-negligible. These results imply that the grouping of the response

categories is not supported by the data, which is consistent with the conclusion

in Price, Geyer and Rothman (2019).

5.3. Application II

As discussed, the main advantages of the proposed SMLR over CMLR1 and

CMLR2 are from computational and asymptotical perspectives, with these three

MLRs proved to be equivalent in Section 3.3. Therefore, these advantages may

not be evident in a finite-sample real application. On the other hand, the pe-

nalized counterparts of these three MLRs are no longer equivalent. The penalty

terms of CMLR1 and CMLR2 depend on prespecified constraints to make the

models identifiable, whereas the regularized SMLR solves an unconstrained opti-

mization problem without the reference category. The simplex-based structure is

expected to be more convenient and efficient in terms of statistical analysis and

algorithmic design (Zhang and Liu (2014)).

In this section, we apply the three ridge-penalized MLR models to three

real datasets from the UCI machine learning repository to further illustrate the

usefulness of the SMLR-based models. A summary of the data sets is provided

in Table 6, where n/d/k denote the sample size of the training set, the dimension

of the covariates and the number of categories, respectively. In addition, nmin
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and nmax represent the sizes of the minority and majority categories, respectively.

Note that the ridge-penalized CMLR1 may have several versions, depending on

the choice of the reference category, whereas the regularized CMLR2 and SMLR

are unique. Given a fixed penalty factor λ, we train all three ridge-penalized

MLR models for each data set, and compare their performance in terms of their

label prediction accuracy.

Table 6. Summary of real data sets and results of training ridge penalized MLRs.

Dataset
Information Accuracy

n d k nmin nmax λ CMLR1 CMLR2 SMLR

Breast 106 9 6 14 22 1.5
0.7830; 0.8019; 0.7925;

0.8019 0.8113
0.7547; 0.7830; 0.8113

Segmentation 210 19 7 30 30 1.1
0.9524; 0.9524; 0.9429; 0.9571

0.9571 0.9619
0.9619; 0.9571; 0.9524

Glass 214 9 6 9 76 0.5
0.7196; 0.7196; 0.7150;

0.7336 0.7336
0.7243; 0.7243; 0.7196

As seen from Table 6, the selection of the reference category has a significant

effect on the prediction accuracy, which is expected and is widely accepted in the

literature (e.g., Tutz, Pößnecker and Uhlmann (2015)). This finding suggests that

we need to be cautious when using the penalized CMLR1 and need to select an

appropriate reference category beforehand. In practice, an extra tuning process

on all possible reference categories may be needed to guarantee stable perfor-

mance of the penalized CMLR1. On the other hand, the penalized CMLR2 and

SMLR do not depend on the reference categories. Such MLR-based models offer

symmetric and systematic insight into all categories, and become more appealing;

see Friedman, Hastie and Tibshirani (2010), Zahid and Tutz (2013a), Zahid and

Tutz (2013b), Hastie, Tibshirani and Wainwright (2015), Powers, Hastie and Tib-

shirani (2018), and de Jong et al. (2019). Between these two MLRs, the penalized

SMLR is preferred for its computational convenience and the establishment of its

statistical properties. Similar arguments appear in Zhang and Liu (2014). Nev-

ertheless, substantial efforts are needed to investigate the theoretical properties

of the penalized SMLR, which is left to future work. In summary, the advantages

of the SMLR can be better exploited in a regularization setting, and this study

serves as a building block for further exploration of SMLR-based models.
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6. Conclusion

We have proposed a novel SMLR model that has several distinct features.

Compared with regular MLRs, the proposed SMLR circumvents restrictions such

as reference category selection and the sum-to-zero constraint, and hence is com-

putationally efficient. In addition, the SMLR can be treated as a unified frame-

work that connects binomial and multinomial logistic regressions. Moreover, the

asymptotic results, statistical learning theory, and properties under a general ker-

nel of the SMLR are well established, even when the number of covariates and

the number of categories increase with the sample size. Note that few studies

examine these statistical properties for the MLR under a diverging number of

categories. This study fills this gap because of the close relationship between the

SMLR and regular MLRs. Lastly, numerical simulations and real examples show

the excellent performance of the SMLR under a variety of scenarios.

One possible future research direction is to extend the SMLR to more com-

plicated data sets such as clustered multinomial data and count data, which are

ubiquitous in areas such as genomics, sports, imaging analysis, and text mining.

For example, Wang (2011) studies a clustered binary LR model with a diverg-

ing number of covariates, although its extension to clustered multinomial data

remains challenging. In terms of categorical count data, Zhang et al. (2017) pro-

posed the reference-based MLR model. However, the selection of the reference

category is subjective, and is not computationally efficient, in general. The pro-

posed SMLR model could be a promising tool to deal with such multicategory

data. Another potential research topic is to adapt the SMLR to high-dimensional

settings, where, as discussed in Section 5.3, the penalized SMLR is useful in such

cases.

Supplementary Material

The online Supplementary Material provides the following: (i) preliminary

lemmas used to establish the theoretical results in the manuscript, and (ii) tech-

nical proofs for all propositions and theorems presented in the manuscript.
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