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Abstract: Particle filters, also known as sequential Monte Carlo, are a powerful

computational tool for making inference with dynamical systems. In particular, it

is widely used in state space models to estimate the likelihood function. However,

estimating the gradient of the likelihood function is hard with sequential Monte

Carlo, partially because the commonly used reparametrization trick is not applicable

due to the discrete nature of the resampling step. To address this problem, we

propose utilizing the smoothly jittered particle filter, which smooths the discrete

resampling by adding noise to the resampled particles. We show that when the

noise level is chosen correctly, no additional asymptotic error is introduced to the

resampling step. We support our method with simulations.

Key words and phrases: Reparametrization trick, resampling, sequential Monte

Carlo, state space models.

1. Introduction

Computing or estimating the likelihood function and its gradient for a

statistical model with hidden variables is a challenge with applications in many

areas of statistics and machine learning (Andrieu, Doucet and Tadic (2005);

Kingma and Welling (2013); Le et al. (2017); Mohamed et al. (2020)). In a

general form, such a likelihood function can be written as

L(θ | y) =
∫

p(y, z; θ)dz, (1.1)

where p(y, z; θ) is the joint likelihood of the observed variables y and the

unobserved latent variables z with θ as parameters. In practice, the integral

is usually estimated by a Monte Carlo method, typically a form of importance

sampling:

L̂(θ | y) = 1

n

n∑
i=1

p(y, zi; θ)

q(zi; θ)
with zi ∼ q, (1.2)

where q is the sampling distribution of zi’s which could potentially depend on θ.

The gradient of the likelihood function can be estimated by differentiating L̂(θ | y)
with respect to θ, provided that the sampling distribution q is differentiable (in
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practice, usually the target is the log-likelihood instead). However, in some high-

dimensional cases, q may not be well behaved and this naive method could result

in considerable instability. A notable example is the inference of state space

models, where particle filters, also known as sequential Monte Carlo (SMC), are

usually used to construct q (Liu and Chen (1998); Doucet, de Freitas and Gordon

(2001)).

A state space model consists of a Markovian system of hidden states and

a probabilistic observation model. The q function provided by SMC is high-

dimensional and often incurs a high variance in estimating the derivative of the

likelihood function (Naesseth et al. (2018)). Recently, there has been a line

of work on differentiable particle filters (DPF) (Naesseth et al. (2018); Zhu,

Murphy and Jonschkowski (2020); Corenflos et al. (2021)) that addresses this

difficulty and enables end-to-end training in state space models. Research on

DPF addresses the challenge of using particle filters to estimate the gradient

of an estimating equation, usually the log-likelihood function, with respect to

the estimand, where directly applying backpropagation through the proposal

function q is generally highly unstable due to the discreteness of the resampling

step. As a result, DPF can be used to infer the parameters of a complex

model using gradient-based methods. Although gradient-based methods are not

theoretically guaranteed to converge, they have garnered growing attention due

to their promising performance in practice and inherent regularization ability

(Ali, Dobriban and Tibshirani (2020)).

The reparametrization trick is a method used to provide low-variance gra-

dient estimate of an expectation, such as ∇θEp(z;θ){f(z; θ)}, where θ appears in

the underlying density function p (see Section 4.2 for a detailed description).

However, the reparametrization trick only works for continuous distributions.

As briefly mentioned above, the main challenge of DPF arises from the resam-

pling step, which introduces discreteness and prevents the deployment of the

reparametrization trick. While this issue is created by resampling, the resampling

step is necessary for coping with the weight degeneracy problem that often

appears in particle filters. If no resampling is performed, most of the particle

weights will soon converge to zero and only a tiny number of particles are actually

used for approximating the posterior. A main intuition behind resampling is that

particles with small weights are less informative and thus discarded so as to save

computational resources to explore regions that may be more promising for the

future (Liu and Chen (1995)).

Numerous approaches have been proposed to resample from a set of weighted

particles, including the bootstrap resampling or multinomial resampling (Gordon,

Salmond and Smith (1993)), residual resampling (Liu and Chen (1998)), strati-

fied resampling (Kitagawa (1996)), optimal resampling (Fearnhead and Clifford

(2003)), and so on. Most, if not all, of the commonly used resampling methods

are discrete in nature, preventing a direct use of the reparametrization trick.
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Some researchers have investigated jittered resampling, which involves adding a

small amount of noise to the resampling step to alleviate the particle degeneracy

issue (Shephard and Flury (2009)). Although jittered resampling is not popularly

deployed in a regular SMC algorithm, perhaps because it does not improve the

performance of SMC for simple posterior estimation, we demonstrate in this

paper how to use it as a building block to facilitate the reparametrization trick

for gradient estimation with SMC.

Naesseth et al. (2018) point out that in the absence of the reparametrization

trick, the gradient estimate is highly unstable, and propose to discard the term

that corresponds to resampling and thus cannot exploit the reparametrization

trick. Clearly, this method produces non-negligible bias if resampling is frequently

implemented . Zhu, Murphy and Jonschkowski (2020) propose to replace the tra-

ditional resampling mechanisms with a continuous transformation called particle

transformer to enable the reparametrization trick. In a particle transformer, the

resampling procedure is realized through a neural network (NN) with additional

parameters, where the input layer is the weighted particles and the output layer

is the resampled unweighted particles. Corenflos et al. (2021) apply ensemble

transform (Reich (2013)) to the resampling step, which is accomplished through

a linear transformation (interpolation). Specifically, the linear transformation

is determined by an entropy penalized optimal transport measure. Compared

to the particle transformer, the ensemble transform can avoid training a neural

network. However, neither the particle transformer nor the ensemble transform

necessarily preserve well the particles’ empirical distribution after resampling. As

will be detailed in Section 2, while the NN-based transformer lacks theoretical

guarantees and is computationally expensive, the linear transformation may

significantly alter the empirical particle distribution. In this article, we develop

a deployment of the “smoothly jittered particle filter,” which replaces standard

discrete resampling mechanisms with a kernel smoothed resampling procedure,

to enable the reparametrization trick. We also present that specially designed

kernel functions can enable efficient computation. Our experiments show that

the proposed method outperforms existing techniques in various model settings.

The rest of the paper is organized as follows. Section 2 reviews some related

work. Section 3 offers a comprehensive yet concise overview of the state space

model and the SMC framework under a unified notation system. Section 4 is

dedicated to the gradient estimation problem, in which we first introduce the

general gradient estimation problem and two main approaches to solve it, and

then show the obstacles in realizing the approaches under the SMC framework.

Section 5 proposes the reparametrized resampling via jittering and presents a fast

computation algorithm to solve the differentiability problem of SMC discussed

in Section 4. Section 6 provides numerical simulation results to support the

proposed method. Section 7 concludes the article and discusses some further

extensions.
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Figure 1. Cartoon illustration of a potential issue of linear-transformation-based
resampling. Let X1:4 denote the original particles, which are resampled to X̃1:4

(X4 = X̃4). The solid curve represents a low-dimensional manifold, around which the
probability distribution is concentrated. While the original particles are close to the
manifold, after such linear resampling X̃2 and X̃3 drifted away and became bad particles.

2. Related Work

Pitt (2002) presents an early work on smooth likelihood estimators, suggest-

ing a method to sample from a linearly interpolated empirical CDF of particles in

one-dimensional cases. Building on this concept, Lee (2008) extends the approach

by utilizing tree-based partitions to construct piece-wise continuous estimators.

Ścibior and Wood (2021) suggest that the stop-gradient operator can be used

to customize which terms to ignore in gradient calculation. Maddison, Mnih and

Teh (2016), Le et al. (2017) and Corenflos et al. (2021) discussed the gradient

estimation bias when the resampling term is ignored. In particular, Corenflos

et al. (2021, Proposition 4.1) showed that the bias is zero when p((x(t−1), x(t)) |
y1:t) = p((x(t−1), x(t)) | y1:T ).

The ensemble transform (Corenflos et al. (2021)) replaces resampling with a

linear transformation of particles (with the coefficients being non-linear functions

of the weights and particles). The linear transformation may be problematic, for

instance, when the particles concentrate on a low-dimensional manifold and a

linear transformation could send the particles off the manifold. We refer the

reader to Figure 1 for an illustration. Intuitively, this issue is less severe when

the number of particles is large. Note that since the optimal transport matrix

is usually close to a diagonal matrix, this issue may not be very pronounced in

practice. Our proposed jittering method statistically produces particles close to

existing particles. Thus, we believe it mitigates this particular issue to a certain

extent, though not entirely.

Another closely related work is VMPF-UG by Lai, Domke and Sheldon

(2022), in which the resampling and proposal steps are merged into a single step,

thus eliminating the discrete resampling component in SMC and enabling the

reparametrization trick. The key difference between their method and ours is that
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by keeping the resampling step, our approach preserves the trajectory structure.

The absence of a trajectory structure prohibits the use of some models including

the variational recurrent neural network (VRNN) (Lai, Domke and Sheldon (2022,

Sec. 7)). Another advantage of our method is its flexibility to accommodate any

proposal distribution, whereas VMPF-UG currently only supports Gaussian or

product distributions. In a more divergent approach, Aitchison (2019) introduced

tensor Monte Carlo as an alternative to SMC, which no longer has a sequential

structure and avoids resampling entirely.

3. Preliminaries

3.1. Notation

We use capital letters to denote random variables and lower case letters

for their realizations. Superscripts and subscripts are used to denote the

step/iteration and the sample index, respectively. Temporal notations are

omitted for clarity whenever there is no confusion. We use E and V to represent

expectation and variance, with subscripts, when used, to highlight the underlying

distribution. The gradient with respect to variable θ is denoted by ∇θ.

3.2. State space model

State space models, also known as hidden Markov models when the hidden

states take on finite discrete values, are characterized by a transition model and

an observation model. In its general form, the state space model can be expressed

as:

X(1) ∼ g1(·; θ),

Y (t) |
(
X(1:t) = x(1:t), Y (1:t−1)

)
∼ ft(· | x(t); θ), (3.1)

X(t) |
(
X(1:t−1) = x(1:t−1), Y (1:t−1)

)
∼ gt(· | x(t−1); θ), t = 2, . . . , T,

where the X(t)’s are unobserved hidden states while the Y (t)’s are fully observed,

and f and g represent distributions as well as density functions. A well-known

problem for such models is the so-called filtering problem, which is to estimate

the hidden state X(t) given all of the observations up to time t for fixed θ. In

other words, the filtering problem focuses on the on-line posterior distribution of

the hidden state at each time:

p(x(t) | y(1:t); θ) =

∫
p(x(1:t) | y(1:t); θ)dx(1:t−1),

where

p(x(1:t) | y(1:t)) ∝
t∏

s=1

{
gs(x

(s) | x(s−1); θ)fs(y
(s) | x(s); θ)

}
.
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Aside from inferring the hidden states, we are also interested in estimating

the model parameter θ when it is unknown. There are two general inference

strategies. From the perspective of maximizing the likelihood function, we aim

to compute

argmax
θ

∫
p(x(1:t), y(1:t); θ)dx(1:t).

From the perspective of Bayesian inference, we assign a prior density p(θ) and

aim to infer the following joint posterior density of (θ, x(1:t)):

p(θ, x(1:t) | y(1:t)) ∝ p(x(1:t), y(1:t); θ)p(θ).

The standard method of maximizing the likelihood function or computing

the posterior mean is difficult because p(y(1:t); θ) or p(θ, x(1:t)|y(1:t)) is generally

intractable unless the model is linear and Gaussian. Therefore, it is necessary to

use Monte Carlo approximations to carry out the inference.

3.3. Particle filters

For state space models, particle filters (PF) refer to a class of algorithms

to approximate the sequence of posterior distributions (of the hidden states,

say) with weighted particles. A generic particle filter algorithm is outlined in

Algorithm 1. In a sequential manner, particles and their weights are updated

according to proposal distributions.

Consider a scenario where θ is the unknown parameter of interest. In

a Bayesian framework, we can utilize particle filters for posterior inference.

Although particle filters do not directly target the posterior distribution of θ,

they can estimate the values of p(y(1:t) | θ) and approximate the simulation from

p(x(1;t) | y(1:t); θ). Thus, particle filters can be used for making a Metropolis–

Hastings type proposal and computing the acceptance ratio. This class of

algorithms is widely recognized as particle MCMC methods (Andrieu, Doucet

and Holenstein (2010)).

4. Differentiability of Sequential Monte Carlo

4.1. Gradient-based parameter estimation

Although the particle MCMC approach and its variants have been shown

effective in estimating the parameters in state space models, it may take a large

number of iterations for the algorithm to converge. To avoid costly computation,

one intuitive way is to employ the gradient of the log-likelihood with respect to the

parameters to guide the search in the parameter space. An accurate estimation

of the gradient can guide us to search in the space more efficiently. However,

the gradient of the marginal log-likelihood ℓ(θ) with respect to θ is intractable

analytically because the distribution itself is generally not in closed form. Instead,



REPARAMETRIZED RESAMPLING VIA JITTERING 1247

Algorithm 1: Sequential importance sampling with resampling.

Input: {gt, ft, y(t)}Tt=1, θ

Output: weighted particles (X
(1:T )
i ,W

(T )
i )1≤i≤n, estimation of log-likelihood

ˆℓ(θ)

Initialization: ℓ̂(θ)← 0.
for t = 1 to T do

Draw X
(t)
j from gt(X

(t) | X(1:t−1)
j ; θ) (g1(X

(1); θ) if t = 1) for j = 1, 2, . . . , n
conditionally independently.

Calculate the importance weight (π0 ≡ 1):

W
(t)
j = ft(y

(t) | X(t)
j ; θ)

Update the estimate of the log-likelihood:

ℓ̂(θ)← ℓ̂(θ) + log

 1

n

∑
j

W
(t)
j

 .

Normalize the importance weight.
if t < T then

Sample a
(t)
1 , a

(t)
2 , . . . , a

(t)
n from {1, 2, . . . , n} with probabilities

W
(t)
1 , . . . ,W

(t)
n , let X̃

(1:t)
j = X

(1:t)

a
(t)
j

, and reweight the samples

X̃
(1:t)
1 , X̃

(1:t)
2 , . . . , X̃

(1:t)
n equally with 1/n.

Let X
(1:t)
j = X̃

(1:t)
j for j = 1, 2, . . . , n.

end

end

Return (X
(1:T )
i ,W

(T )
i )1≤i≤n, ℓ̂(θ).

letting

ℓ̂(θ) = log L̂(θ) = log
{
SMC estimate of p(y(1:t) | θ)

}
, (4.1)

where L̂(θ) is an unbiased estimator for the likelihood function L(θ), we aim to

compute the gradient of E{ℓ̂(θ)}, where the expectation is taken with respect to

the randomness in the SMC procedure, including both the particle generation

and resampling. It is not difficult to derive the joint distribution of the particles

and the resampling indices, conditional on the observations y(1:t), which is shown

in equation (4.2) below:

p(x
(1:t)
1:n , a

(1:t)
1:n ; θ) =

{
n∏

i=1

g(x
(1)
i ; θ)

}
·

t∏
s=2

n∏
i=1

 w
(s−1)

a
(s−1)
i∑

l w
(s−1)
l

g(x
(s)
i | x

(s−1)

a
(s−1)
i

; θ)

 , (4.2)

where a
(1:t)
1:n represents the resampling indices as in Algorithm 1 and w represents

the importance weights, which depend on y. From the perspective of variational
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inference, the objective function E{ℓ̂(θ)} can be regarded as a surrogate evidence

lower bound (see Theorem 1 in Naesseth et al. (2018)).

Note that parameter θ not only appears in the term ℓ̂(θ), but also affects

the underlying joint density p(x
(1:t)
1:n , a

(1:t)
1:n ; θ). Therefore, it is imprecise to simply

exchange the differentiation and the expectation signs for the computation of the

gradient. To propose an efficient and accurate estimation of ∇θE{ℓ̂(θ)} is the

major focus of this article.

4.2. Score estimate and the reparametrization trick

Computing the gradient of the expectation term is a ubiquitous problem

in statistics and machine learning (Mohamed et al. (2020)). Two most used

gradient estimators are the score function gradient (Williams (1992)) and the

reparametrization gradient (Kingma and Welling (2013)). Specifically for our

goal, the objective function is Ep(z;θ){ℓ̂(θ, z)}, where z = (x
(1:t)
1:n , a

(1:t)
1:n ), and we

have made clear the dependency of the log-likelihood estimate ℓ̂ on z. Assuming

that we can swap the derivative and integration signs, we have

∇θEp(z;θ)

{
ℓ̂(θ, z)

}
=∇θ

{∫
z

p(z; θ)ℓ̂(θ, z)dz

}
=

∫
z

∇θ

{
p(z; θ)ℓ̂(θ, z)

}
dz

=

∫
z

p(z; θ)∇θ ℓ̂(θ, z)dz +

∫
z

ℓ̂(θ, z)∇θp(z; θ)dz.

(4.3)

The first term in equation (4.3) can be rewritten as Ep{∇θ ℓ̂(θ, z)} and thus can

be easily estimated by a Monte Carlo method that draws samples z ∼ p(z; θ).

We can rewrite the second term as∫
z

ℓ̂(θ, z)p(z; θ)∇θ log p(z; θ)dz = Ep

{
ℓ̂(θ, z)∇θ log p(z; θ)

}
,

and then apply the same Monte Carlo method. This Monte Carlo estimate is

usually termed as the score estimate or reinforce estimate (Williams (1992);

Poyiadjis, Doucet and Singh (2011)). However, this estimate usually has a huge

variance, and it may even be better to simply estimate it as zero (Le et al. (2017);

Naesseth et al. (2018)). The induced bias is provided explicitly in Corenflos et al.

(2021, Prop. 4.1).

The reparametrization trick is another way to solve the gradient estimation

problem. Using this trick, Kingma and Welling (2013) proposed an unbi-

ased, differentiable and scalable estimator for the variational bound (see their

Section 2.2) in auto-encoding variational Bayes. The “tricky” part of the

reparametrization trick is that we can make the randomness an input to the

model so as to backpropagate through a random node. Consider the general
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question of estimating ∇θ[Ep(z;θ){f(z; θ)}], of which equation (4.3) is a special

case. If we can reparametrize Z as Z = ϕ(ϵ; θ), such that ϕ(ϵ; θ) has density

p(·; θ), where ϕ is differentiable with respect to θ, and ϵ ∼ p(ϵ) independent of θ,

then

Ep(z;θ) {f(z; θ)} = Ep(ϵ) [f{ϕ(ϵ; θ); θ}] , (4.4)

and consequently,

∇θEp(z;θ) {f(z; θ)} = ∇θEp(ϵ) [f{ϕ(ϵ; θ); θ}]
= Ep(ϵ) [∇θf{ϕ(ϵ; θ); θ}] ,

(4.5)

which can be approximated by a Monte Carlo method that draws ϵ ∼ p(ϵ).

4.3. Resampling in SMC and non-differentiability

Although the reparametrization trick has been shown to be efficient in various

applications, it is not applicable to discrete distributions. For example, if we

employ step functions as our ϕ, the gradient will be zero almost everywhere

and undefined at some points. This means that we cannot directly apply the

reparametrization trick to equation (4.3), since the resampling indices a
(1:t)
1:n are

discrete.

To specifically understand the subtlety of the problem in the context of SMC,

let us consider the state-space model in more details. Following notations from

Section 3.2 and the chain-rule of probability, we have

∇ℓ(θ) = ∇ log p(y(1); θ) +
T∑

t=2

∇ log p(y(t) | y(1:(t−1)); θ). (4.6)

Let us start from the first term. Suppose we draw x
(1)
1:n from a distribution q1(·; θ),

such that we can use the reparameterization trick to write x
(1)
i = ϕ1(ϵ

(1)
i , θ),

ϵ
(1)
i

i.i.d.∼ N (0, 1). Then we have

p(y(1); θ) = Eq1(·;θ)

{
p(y(1), x(1); θ)

q1(x(1); θ)

}
= E

{
p(y(1), ϕ1(ϵ

(1), θ); θ)

q1(ϕ1(ϵ(1), θ); θ)

}
,

where ϵ(1) ∼ N (0, 1). Since the distribution of ϵ(1) is free of θ, we can directly

differentiate under the integral sign and obtain an expectation form of∇θp(y
(1); θ)

(and hence also ∇θ log p(y
(1); θ)), then use x

(1)
1:n as Monte Carlo samples for

estimation.

Now, suppose we resample the particles x
(1)
1:n, and equivalently ϵ

(1)
1:n, to get a

new set ϵ̃
(1)
1:n and, correspondingly x̃

(1)
1:n with x̃

(1)
i = ϕ1(ϵ̃

(1)
i , θ), which can be viewed

as approximate samples from p(x(1) | y(1); θ). Let us similarly sample x
(2)
1:n from
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q2(·; θ), reparametrize x
(2)
i = ϕ2(ϵ

(2)
i , θ), ϵ

(2)
i

i.i.d.∼ N (0, 1), and write

p(y(2) | y(1); θ) =

∫
p(y(2), x(2) | y(1), x(1); θ)p(x(1) | y(1); θ)dx(1)dx(2)

= Ex(1)∼p(x(1)|y(1);θ),x(2)∼q2(·;θ)

{
p(y(2), x(2) | y(1), x(1); θ)

q2(x(2); θ)

}
≈ Ex̃(1)∼ϕ1(ϵ̃(1),θ),x(2)∼q2(·;θ)

{
p(y(2), x(2) | y(1), x̃(1); θ)

q2(x(2); θ)

}
= Eϵ̃(1),ϵ(2)

{
p(y(2), ϕ2(ϵ

(2), θ) | y(1), ϕ1(ϵ̃
(1), θ); θ)

q2(ϕ2(ϵ(2), θ); θ)

}
.

However, this is not a successful reparametrization attempt, as the ϵ̃(1)’s are

no longer i.i.d. Gaussian and their distribution implicitly depends on θ due to

resampling. Thus, we are not able to directly differentiate under the integral sign.

If we ignore this fact, pretending that the ϵ̃’s are i.i.d. Gaussian and differentiating

under the integral sign anyway, we recover the algorithm proposed by Naesseth

et al. (2018).

Despite the non-differentiability, resampling is necessary in SMC because the

repeated forward sampling procedure would eventually lead to weight degeneracy,

where the weights concentrate on only a few particles (Liu and Chen (1995)).

There are various means to resample from a set of weighted particles. Aside

from the bootstrap resampling or multinomial resampling shown in Algorithm 1,

residual resampling (Liu and Chen (1998)) and stratified resampling (Kitagawa

(1996)) are two more popular resampling schemes because they tend to introduce

less unnecessary randomness. Reich (2013) proposed the optimal transport

resampling, borrowing ideas from transportation theory. More recently, Gerber,

Chopin and Whiteley (2019) introduced the Hilbert curve resampling in a multi-

dimensional space, which is shown to have optimal rate under some conditions (Li

et al. (2022)). Unfortunately, all these resampling schemes are discrete, in that

the resampled particles can only take values in a finite set (conditional on particles

from the previous step), and thus incompatible with the reparametrization trick.

To circumvent the non-differentiability, Corenflos et al. (2021) proposed

a framework where the traditional resampling step is replaced by a linear

transformation with parameters defined by the optimal transport resampling

(Reich (2013)). However, the linear transformation could give rise to bad particles

when the posterior distribution concentrates on a non-linear manifold, or when

a linear combination of two modes ends up in an area with low density.
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5. Reparametrized Resampling via Jittering

5.1. Algorithm description

The vanilla multinomial resampling strategy in SMC samples independently

from the following multinomial distribution:

X̃i | X,W ∼ Multinomial{1, X, (W1,W2, . . . ,Wn)},

which is equivalent to sampling from the empirical distribution:

X̃i | X,W ∼
n∑

i=1

WiδXi
(x).

The discrete nature of multinomial distribution makes the reparametrization trick

fail. To overcome this issue, we consider a kernel smoothed version of the form

X̃i | X,W ∼
n∑

i=1

Wiκr (x−Xi) , (5.1)

where κr(·) is a non-negative differentiable kernel density, and r is a pre-

determined bandwidth parameter that balances smoothness and bias. Here, we

require that
∫
Rd κr (x) dx = 1, where d is the dimension of x. In other words, κr

is the derivative of a d-dimensional cumulative distribution function (CDF).

If we resample independently according to (5.1), everything is differentiable

and we can utilize the reparametrization trick. If κr =
∏d

j=1 κr,j = ∇xKr is

the derivative of the CDF Kr =
∏d

j=1 Kr,j, which corresponds to independent

random components. Then we can express each X̃i as F−1(Ui;W,X,Kr),

where Ui is a uniform random vector on the d-dimensional unit cube [0, 1]d,

and F−1(·;W,X,Kr) is the generalized inverse function of FW,X,Kr(x), which is

defined recursively as follows:

FW,X,Kr

1 (x1) =
∑
i

WiKr,1(x1 −Xi1),

FW,X,Kr

j (xj;x1:j−1) =

∑
i Wi

∏j−1
k=1 κr,k(xk −Xik)Kr,j(xj −Xij)∑
i Wi

∏j−1
k=1 κr,k(xk −Xik)

.

(5.2)

Here, xj denotes the j-th entry of the d dimensional vector x.

Let X̃i = F−1(Ui;W,X,Kr), it suffices to calculate the gradient of

F−1(·;W,X,Kr). The details are deferred to Section S1 in the supplemental

material. Our method, named reparametrized resampling via jittering (RRJ), is

detailed in Algorithm 2.

It has been pointed out to us by a reviewer that an arXiv preprint Graves

(2016) proposed a recursive method that can also be used as an alternative way

to calculate this gradient of F−1. The main ideas behind their method and ours
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are very similar. In the remainder of this paper, we present theoretical insights,

practical considerations, and empirical studies.

Algorithm 2: Reparametrized Resampling via Jittering (RRJ)

Input: weighted particles (X
(1:t)
i ,W

(t)
i )1≤i≤n, kernel distribution Kr with a

pre-chosen bandwidth r.

Output: resampled particles. (X̃i
(1:t)

)1≤i≤n.

Sample X̃
(1:t)
1 , X̃

(1:t)
2 , . . . , X̃

(1:t)
n from X

(1:t)
1 , . . . , X

(1:t)
n with probabilities

W
(t)
1 , . . . ,W

(t)
n , and reweight the samples X̃

(1:t)
1 , X̃

(1:t)
2 , . . . , X̃

(1:t)
n equally with

1/n.

Let X̃
(1:t)
i = X̃

(1:t)
i + ϵi, where ϵ

i.i.d.∼ Kr, i = 1, . . . , n.

Return (X̃i
(1:t)

)1≤i≤n.

5.2. Choice of the kernel distribution

Technically any kernel distribution with differentiable density is valid for

RRJ. We recommend the Gaussian kernel as a default choice for practical use,

given its simplicity in sampling and computation. Aside from the kernel itself,

the choice of the bandwidth r is more critical for the behavior of the proposed

algorithm, as it balances the SMC accuracy and differentiability. For the sake of

differentiability, we would like a large r; for high sampling accuracy, however, we

would like a small r so that the bias introduced by RRJ is negligible.

Consider a generic step in Algorithm 2, where we analyze the resampling

error similar to that in Li et al. (2022). There, the resampling step is unbiased

in terms of

E

{
n∑

i=1

1

n
ϕ(X̃i) | X,W

}
=

n∑
i=1

Wiϕ(Xi)

for any ϕ, so they only analyzed the resampling variance. Here, we are interested

in the mean squared error (MSE) instead because resampling is now generally

biased. When bias exists, under some loose conditions, specified in Theorem 1,

a properly chosen r does not affect the order of the estimation error rate.

Theorem 1. Consider the state space model and the SMC process in Algorithm 2

in which parameter θ is given, the length T of the state space model is fixed, and

kernel Kr satisfies kr(x) = k(x/r) for a fixed density k(·) with bandwidth r given.

Let πt(x
(1:t)) = p(x(1:t) | y(1:t)) and let d be the dimension of the hidden state x(t).

Assume

(i) ft(y
(t) | ·) and gt(x

(t) | ·) are upper bounded by M and L-Lipschitz,

(ii) ft(y
(t) | ·) is lower bounded by e > 0,

(iii) r = O(1/
√
dn).
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Then for any bounded Lipschitz ϕ, we have∣∣∣∣∣E
{∑n

j=1 W
(t)
j ϕ(X

(t)
j )∑n

j=1 W
(t)
j

}
−

∫
πt(x

(1:t))ϕ(x(t))dx(1:t)

∣∣∣∣∣ = O

(
1√
n

)
, (5.3)

Var

{∑n
j=1 W

(t)
j ϕ(X

(t)
j )∑n

j=1 W
(t)
j

}
= O

(
1

n

)
, (5.4)

and

E
{
|ℓ̂(θ)− ℓ(θ)|2

}
= O

(
1

n

)
, (5.5)

where ℓ(θ) is the true log-likelihood.

We note that, while the rates in Theorem 1 do not explicitly depend on the

dimension d, the dimension plays a role through the Lipschitz constant L. We

therefore cannot claim that this result is dimension-independent. The complete

proof and some empirical results on the likelihood bias of RRJ are provided in

the Supplementary Materials Sections S2 and S3.

6. Experiments

6.1. Experiments overview

To verify the effectiveness of RRJ in different settings, we implement simula-

tion studies under three models and analyze a real data case. As in Corenflos et al.

(2021), we use the log-likelihood estimate as the training target. For simulations

with well-specified models, we use the MSE of θ̂ as a performance measure; for

real data analysis, in the absence of the ground truth, we run a vanilla SMC

algorithm with a large n to evaluate the likelihood at θ̂ obtained by different

resampling methods.

Simulation studies consist of (1) the linear state space model, (2) the

stochastic volatility model, and (3) the non-linear transition model. For each

model, 50 independent replications are carried out. The proposed RRJ is applied

to each of the simulated data to learn the corresponding parameters. We compare

the results with the same model trained by the ensemble transform proposed by

Corenflos et al. (2021), along with the method in Naesseth et al. (2018), where

the resampling terms are simply ignored. The last two methods are referred to

as “ET” and “multinomial”, respectively.

All of the aforementioned methods, including the RRJ, are carried out in

the procedure of gradient learning using ADAM (Kingma and Ba (2014)). For

simulation studies, we use a fixed learning rate of 0.01; for the real data analysis,

we follow the same setting as in Corenflos et al. (2021) and use learning rate

0.01× 0.9⌊step/200⌋. All the other ADAM parameters are set to default values.
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Figure 2. Simulation results for the linear transition state space model in different
dimensions. Boxplots of squared differences over 50 independent experiments, with mean
values indicated by green squares. Here, T = 40, particle numbers are 50.

6.2. Linear state space models

The multidimensional linear state space model is a widely used model for

time series data. Its general form can be expressed as:

X(t) | X(1:t−1) ∼ N
(
ΦX(t−1),Σx

)
,

Y (t) | X(1:t), Y (1:t−1) ∼ N
(
X(t),Σy

)
,

for t = 2, . . . , T , with X(1) ∼ N (0, 1/3I). In the simulations, we set Σx = Σy =

0.25I, and let

Φ = [ρ|i−j|]ij ×
0.8

λmax([ρ|i−j|]ij)
, (6.1)

where λmax(·) denotes the maximum eigenvalue of a matrix and the true value of

ρ is set as 0.5.

From Figure 2, we can see that RRJ with different bandwidth parameters

show better performances than ensemble transform and multinomial. We also

show pairwise comparisons with ensemble transform in Figure 3, where both

methods are applied to the same data. We can see that RRJ often outperforms

ensemble transform, especially in higher dimensions.
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Figure 3. Pairwise comparison between the RRJ and the ensemble transform in different
dimensions. Each dot represents an independent experiment, where the x-coordinate is
the squared loss of RRJ with kernel bandwidth r = 0.02, and the y-coordinate is the
squared loss of ensemble transform. Here, T = 40, particle numbers are 50.

6.3. Stochastic volatility model

The multidimensional stochastic volatility model is commonly applied model

in financial economics. The model is

X(t) | X(1:t−1) ∼ N
(
ΦX(t−1),Σ

)
,

Y (t) | X(1:t), Y (1:t−1) ∼ N
(
0, β2 diag{exp(X(t))}

)
,

for t = 2, . . . , T with X(1) ∼ N (0, 1/3I), where Φ and Σ are d × d parameter

matrices.

According to Chapter 14.2 in Chopin and Papaspiliopoulos (2020), the

likelihood function of the stochastic volatility model is highly pathological, and

it is often challenging to estimate all its parameters simultaneously. To validate
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Figure 4. Simulation results for the stochastic volatility model in different dimensions.
Boxplots of squared differences over 50 independent experiments, with mean values
indicated by green squares. Here, T = 40, particle numbers are 50.

the effectiveness of the proposed method more conveniently, in this study we fix

Σ = 0.25I and only estimate part of the parameters, i.e, Φ and β, with the true

value of β set to 0.5 and the true of Φ set the same as in (6.1). From Figure 4,

we can see that RRJ with different parameters show better performances than

ensemble transform, but not as good as multinomial.

6.4. Nonlinear transition state space model

We consider the state space model with nonlinear transition density (Kita-

gawa (1996)) below

X(t) | X(1:t−1) ∼ N
(
0.5θ3X

(t−1) +
10θ4X

(t−1)

1 + (X(t−1))2
, θ1V

(t)

)
,

Y (t) | X(t) ∼ N
(
0.05θ5X

(t), θ2W
(t)
)
,

(6.2)

where V (t) andW (t) are independent random variables sampled from the standard

normal distribution N (0, 1), and X(1) ∼ N (0, 2). In this model, θ1, θ2, θ3, θ4
and θ5 are the parameters to be estimated, whose real values are all set to 1.

Compared to the linear transition model, the parameters are more difficult to

estimate for this non-linear transition model. Figure 5 and Table 1 shows that

RRJ outperforms the other methods for θ3 and θ4, while not as good for θ1 and

θ2. For θ5, errors of RRJ methods have much smaller median, while the means

are comparable.

6.5. VRNN on polyphonic music data

The variational recurrent neural network (VRNN) proposed by Chung et al.

(2015) combines the concepts of RNN and variational autoencoder, which can

ensure the flexibility of the dynamic model to a large extent. Following the
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Figure 5. Simulation results for the nonlinear transition state space model. Boxplots
of squared differences over 600 independent experiments, with mean values indicated by
green squares. Here, T = 20.

notation in Corenflos et al. (2021), the model is represented in equation (6.3).

(R(t+1), O(t+1)) = RNNθ(R
(t), Y (1:t), τθ(Z

(t)),

Z(t+1) ∼ N (µθ(O
(t+1)), σθ(O

(t+1))),

p̂(t+1) = hθ{τθ(Z(t+1)), O(t+1)},
Y (t) | R(t), Z(t) ∼ Ber(p̂(t)), (6.3)

where R(t) and O(t) represent the RNN state and output in a regular LSTM

model, respectively. Z(t) is a Gaussian random variable and τθ, hθ, µθ, σθ are fully
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Table 1. The results of the non-linear experiments are presented in these two tables.

Mean loss θ1 θ2 θ3 θ4 θ5
RRJ0.02 0.782(0.021) 0.067(0.004) 0.318(0.016) 0.248(0.012) 0.047(0.004)

RRJ0.06 0.791(0.021) 0.067(0.004) 0.320(0.017) 0.269(0.021) 0.266(0.027)

RRJ0.1 0.816(0.027) 0.069(0.004) 0.331(0.018) 0.381(0.042) 0.623(0.063)

ET 0.808(0.021) 0.063(0.005) 0.398(0.018) 0.639(0.092) 0.766(0.063)

multinomial 0.740(0.017) 0.054(0.004) 0.346(0.016) 0.621(0.088) 0.361(0.028)

(a) The mean squared error (MSE) and the standard deviation across multiple independent
experiments.

Median loss θ1 θ2 θ3 θ4 θ5
RRJ0.02 0.857 0.025 0.198 0.149 0.016

RRJ0.06 0.875 0.024 0.195 0.137 0.030

RRJ0.1 0.843 0.024 0.182 0.156 0.051

ET 0.956 0.021 0.222 0.190 0.424

multinomial 0.926 0.020 0.221 0.185 0.163

(b) The median of the squared errors across multiple independent trials.

connected neural networks. Y (t) denotes the binary observations. We initialize

(R(1), O(1)) to be zeros and Z(1) to be a sample from the standard multivariate

Gaussian distribution. We use 36 particles to run the experiments and then run

a separate SMC with multinomial resampling and 500 particles for performance

validation. The learning rate is set to 0.01×0.9⌊step/1000⌋ for a total of 10,000 steps.
Further details of the experiments can be found in Supplementary Materials

Section S4.

We present our experimental findings based on three polyphonic music

datasets outlined in Corenflos et al. (2021), which adhere to the methodology

of Boulanger-Lewandowski, Bengio and Vincent (2012). Within each dataset,

the binary vector Y (t) encompasses 88 dimensions, corresponding to the piano

note range spanning from A0 to C8. Table 2 showcases the sample mean and

standard deviation of the last-2000-step-average loss derived from independent

experiments, while Figure 6 illustrates the loss history of a representative run.

Notably, our results demonstrate that RRJ performs on par with or surpasses

ensemble transform concerning the achieved log-likelihood. It is worth noting that

ensemble transform tends to exhibit greater stability across distinct experimental

runs.

7. Discussion

This artical introduces and investigates a method called the reparametrized

resampling via jittering in particle filters for efficiently estimating the gradient

of the likelihood function of state space models. Some theoretical insights
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Table 2. Sample mean and standard deviation of the last-2000-step-average minus log-
likelihood, calculated over 50 independent runs.

RRJ ET

JSB 99.76 (16.09) 156.19 (16.38)

Nottingham 99.45 (20.88) 147.78 (13.52)

Muse 135.60 (33.59) 189.35 (15.47)
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Figure 6. The likelihood evaluation for VRNN model in a single run. The first 100 burn-
in steps are omitted.

and numerical experiments are provided to demonstrate the effectiveness of the

proposed method. We conclude the article with some additional thoughts and

open problems.

In a conventional application of particle filters, stratified resampling is often

preferred as it introduces less randomness compared to multinomial resampling.

However, it is not straightforward to backpropagate when stratified resampling is

employed. Our method can be easily generalized to stratified resampling. Instead

of using n i.i.d. samples Ui ∼ [0, 1]d (see Section 5), we can stratify the space and

use a low discrepancy set such as in Gerber and Chopin (2015) and Li et al.

(2022). It is expected to improve the gradient estimation.

The stratified multiple-descendant growth (SMG) algorithm proposed in Li

et al. (2022) has been proved to converge faster than the traditional SMC in

terms of the estimation MSE. The main idea of SMG is to shrink the number

of particles at the resampling step and grow it back at the transition step in

a stratified manner. This design is particularly conducive to convergence rate

analysis. It may be possible to borrow ideas from the analysis of SMG so as to

obtain a more refined convergence rate for RRJ.
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In addition to the smooth jittering, there are also other ways to “smooth”

discrete random variables, enabling the application of the reparametrization trick.

For example, Maddison, Mnih and Teh (2016) apply the Gumbel-max trick,

relaxing the multinomial sampling to a continuous distribution supported on

a simplex. It would be useful to compare different relaxation approaches in the

context of designing differential particle filters.

Supplementary Material

The supplementary materials consist of three sections: (1) The validity and

computational details of the proposed algorithm; (2) A general guide for selecting

the bandwidth parameter r; (3) Empirical evidence for the effectiveness of the

proposed method in terms of likelihood estimation.
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