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Abstract: The vector auto-regressive (VAR) model is commonly used to model mul-

tivariate time series, and there are many penalized methods to handle high dimen-

sionality. However for spatio-temporal data, most of these methods do not consider

the spatial and temporal structure of the data, which may lead to unreliable network

detection and inaccurate forecasts. This paper proposes a data-driven weighted l1

regularized approach for spatio-temporal VAR models. Extensive simulation stud-

ies compare the proposed method with five existing methods for high-dimensional

VAR models, demonstrating advantages of our method over others in terms of pa-

rameter estimation, network detection, and out-of-sample forecasts. We also apply

our method to a traffic data set to evaluate its performance in a real application.

In addition, we explore the theoretical properties of the l1 regularized estimation

of the VAR model under a weakly sparse scenario, in which exact sparsity can be

viewed as a special case. To the best of our knowledge, this is the first study to

do so. For a general stationary VAR process, we derive the nonasymptotic upper

bounds on the l1 regularized estimation errors, provide the conditions for estimation

consistency, and further simplify these conditions for a special VAR(1) case.

Key words and phrases: l1 regularization, spatio-temporal structure, vector auto-

regressive model, weak sparsity.

1. Introduction

The vector auto-regressive (VAR) model is a popular tool for simultaneously

modeling and forecasting a number of time series, and has been widely applied

in scientific fields such as econometrics (Sims (1980)), finance (Tsay (2015)), and

ecology (Hampton et al. (2013)), among others. Recent developments in comput-

ing have made high-dimensional time series increasingly common. As the number

of time series components increases, the number of parameters in the VAR model

increases dramatically, leading to unreliable or even infeasible estimations. The
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Figure 1. The left panel illustrates the sparsity (zero/nonzero) pattern for the transition
matrix Φ in a VAR(1) process, with ∗ denoting nonzero entries. The right panel illustrates
the network structure implied by this VAR(1) process. For example, Φ13 is nonzero,
which indicates a directed connection from the third site to the first site.

usual way to handle high dimensionality is to impose sparsity or a low-rank struc-

ture on the transition matrices. Many estimation procedures have been proposed,

including l1 regularization (Basu and Michailidis (2015)), two-stage l1 regulariza-

tion (Davis, Zang and Zheng (2016)), the sparse seasonal VAR (Baek, Davis and

Pipiras (2017)), the low-rank structured VAR (Basu, Li and Michailidis (2019)),

hierarchical lag sparsity (Nicholson, Matteson and Bien (2017); Nicholson et al.

(2020); Safikhani et al. (2018)), the banded VAR (Guo, Wang and Yao (2016)),

and nonconcave penalization (Zhu (2020)). Other methods assume a factor struc-

ture on the time series data to reduce the dimensionality; see Lam and Yao

(2012) and Tu, Yao and Rongmao (2020). Such high-dimensional techniques have

become very popular in applications such as econometrics (Matteson and Tsay

(2011)), genetics (Michailidis and d’Alché Buc (2013)), biology (Hu, Fortin and

Ombao (2019)), and ecology (Reyes, Zhu and Aukema (2012)), among others.

For spatio-temporal data, each component of a multivariate time series con-

tains the observations in one spatial location (site). Here, the parameters in

the transition matrices can naturally capture the spatial and temporal interre-

lationships between the sites. At the same time, the zero–nonzero patterns of

the transition matrices reflect the network structure in the data set. Figure 1

shows a simple example of a VAR(1) model on five sites. There exists a directed

connection from site 3 to site 1, indicating that X1t is dependent on X3,t−1 and

thus Φ13 is nonzero. Furthermore, Φ31 = 0 means there is no directed connection

from site 1 to site 3. Thus, for spatio-temporal data, the spatial structure and

temporal information should be incorporated in the modeling procedure. If such

information is ignored, high-dimensional methods may lead to inaccurate net-
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(a) WLASSO1 v.s. TRUE (b) WLASSO2 v.s. TRUE (c) LASSO v.s. TRUE (d) adaLASSO v.s. TRUE

(e) SCAD v.s. TRUE (f) MCP v.s. TRUE (g) spaLASSO v.s. TRUE

Figure 2. Comparison of the proposed methods (WLASSO1 and WLASSO2) with five ex-
isting methods (the LASSO, adaptive LASSO, SCAD, MCP and spaLASSO of Schwein-
berger, Babkin and Ensor (2017)) in terms of the network estimation of one simulated
VAR(1) process from Section 3.3. Specifically, if the true value Φss′ and its estimator
Φ̂ss′ are nonzero, a black edge is drawn to connect site s and site s′. If Φss′ is not zero,
but Φ̂ss′ is zero, the edge is grey solid. If Φss′ is zero, but Φ̂ss′ is not zero, the edge is
grey dotted.

work estimations and unreasonable scientific conclusions. Figure 1 illustrates the

drawback of ignoring the spatial and temporal information, based on a simulation

study discussed in Section 3.3, in which the grey solid edges and grey dotted edges

represent false negatives and false positives, respectively. By not considering the

spatial and temporal information, the five existing methods studied in the sim-

ulation underestimate the true connections. In addition, the LASSO, adaptive

LASSO (adaLASSO), and SCAD also overestimate wrong connections. In con-

trast, our proposed methods (WLASSO1 and WLASSO2) recover the network

very well and significantly reduce false positives and false negatives.

In this paper, we propose a data-driven weighted l1 regularized approach

that constructs the penalty based on the spatial distances between sites and the

temporal lags in the VAR model. We derive the nonasymptotic upper bounds

of the estimation error, which hold with high probability, and show that these

bounds are smaller than those of the LASSO (Remark 1(c) in Section 2.2 and

Remark 2(c) in Section 2.3). The simulation studies compare the proposed ap-

proach with five existing methods, namely the LASSO (Basu and Michailidis
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(2015)), SCAD and MCP (Zhu (2020)), spaLASSO (Schweinberger, Babkin and

Ensor (2017)), and adaptive LASSO (Zou (2006); Wang, Li and Tsai (2007a)).

The proposed approach shows a significant advantage in terms of model fitting,

network detection, and forecasting performance (see Tables 1–5 and Figures 3–11

in the Supplemental Material). We also apply our method to a traffic network

data set from the Des Moines, Iowa. Here, the network structure detected by

the LASSO is not meaningful, whereas the proposed method provides a more

reasonable estimated network and better forecasting results.

Several studies focus on high-dimensional VAR in a spatio-temporal setting.

The most relevant work is that of Schweinberger, Babkin and Ensor (2017), who

developed the spaLASSO, which incorporates the spatial structure in the VAR

model estimation. Their approach assumes the spatial dependence exists only

within a specific distance ρ, whereas ρ is either known or estimated in an initial

step by the LASSO within sub-sampled sites. After ρ is specified, only parameters

associated with distances smaller than the given ρ are estimated; others are fixed

as zero. Assuming that the distance ρ is known is usually unrealistic in real data

sets. By estimating ρ using an initial LASSO estimator, the inaccuracy of the

initial estimator can produce an unreliable estimation of ρ, thus contaminating

the final estimation of the model. As shown in Figure 2(c), the LASSO cannot

identify the true network, and therefore, delivers an inaccurate estimation of ρ

and an inaccurate estimation from the spaLASSO (Figure 2(g)). Furthermore,

the assumption of no spatial dependence beyond the distance ρ is restrictive,

and may not be true in some real cases, such as the more general weakly sparse

scenario considered in this study. In addition, this approach does not incorporate

the lag order of the temporal dependence. In contrast, the proposed method

incorporates both the spatial and the temporal information in a smooth way,

rather than truncating the parameters at a certain distance. Furthermore, the

penalty weights are data driven so that no prior information is needed. The

algorithm of the proposed method requires only a single step and is easy to

implement using existing algorithms.

In a real application, spatial and temporal dependence may still exist, even

for a long distance or temporal lag. In such cases, the transition matrices in the

VAR model have many small nonzero elements, and thus are not sparse; hence

this is the so-called “weakly sparse” scenario. The second goal of this study is to

investigate the theoretical properties of the l1 regularized estimation of the VAR

model under the weakly sparse scenario. Weak sparsity is pursued mostly for

independent data; see Negahban et al. (2009) and Raskutti, Wainwright and Yu

(2011). However, no existing studies investigate the properties of l1 regularized
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estimators for high-dimensional VAR models under the weakly sparse scenario.

Our contribution is to fill this gap. In addition, the “weak sparsity” defined here

is more general than the lr ball constraint commonly used in the literature; we

discuss the advantages of our weak sparsity in detail in Section 2.3. We first

derive the upper bounds of the l1 regularized estimation error for a general sta-

tionary VAR process (Theorem 2) and provide the weak sparsity constraint (2.9)

that guarantees the estimation consistency. Then, we further explore the weak

sparsity constraint and simplify it for a special case of the VAR(1) process. More-

over, the results in Theorem 2 can also be used directly to derive the error bound

under the lr ball setting (Corollary 1), and we prove that our weak sparsity con-

straint is more relaxed than the lr ball setting (Remark 3). Finally, we examine

the proposed method under the weakly sparse scenario using simulation studies,

demonstrating impressive advantages over other existing methods.

The remainder of the paper is structured as follows. Section 2 introduces the

weighted l1 regularized approach for the high-dimensional spatio-temporal VAR,

as well as its theoretical properties. Section 3 presents the implementation of the

proposed method and compares its performance with that of the LASSO, SCAD,

MCP, adaptive LASSO (adaLASSO), and spaLASSO using simulation studies.

In Section 4, we apply the proposed method to a traffic network data set. Section

5 concludes the paper.

Notation. Throughout this paper, we denote the cardinality of a set J by |J |,
and use JC to denote its complementary set. For a vector v, we use vJ := (vi)i∈J
to denote the sub-vector with support J , and use ‖v‖q := (

∑n
i=1 |vi|q)1/q to de-

note its lq norm. For a matrix A, we use Aj to denote its jth column. vec(A), A′,

and AH are its vectorization, transpose, and conjugate transpose, respectively.

A ◦ B and A ⊗ B are the element-wise product and Kronecker product, respec-

tively, of matrices A and B. Λmax(A) and Λmin(A) are the largest and smallest

eigenvalues, respectively, of a symmetric or Hermitian matrix A. For a squared

matrix A, ‖A‖F , ρ(A), and ‖A‖2 are its Frobenius norm
√
tr(AHA), spectral

radius max{|λi| : λi are eigenvalues of A}, and spectral norm
√

Λmax(AHA), re-

spectively. We write x & y if there exists a positive constant c such that x ≥ cy.

If we have both x & y and y & x, we use x � y to denote their relationship.

2. High-Dimensional Spatio-Temporal Vector Autoregression

Suppose xst is the observation on site s at time t (s = 1, . . . ,m; t = 1, . . . , T ),

and we assume Xt = (x1t, . . . , xmt)
′ is generated by a pth-order VAR process:
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Xt = Φ1Xt−1 + · · ·+ ΦpXt−p + εt, εt
i.i.d.∼ N(0,Σ), (2.1)

Here, Φ1, . . . ,Φp are m×m transition matrices encoding dependence across space

and temporal lags. We use Φl,ss′ to denote the ss′th entry of Φl, so that Φl,ss′

represents the l-lagged influence of site s′ on site s. We express this VAR(p)

model in the following multivariate regression form: X ′T
...

X ′p+1


︸ ︷︷ ︸
Y(T−p)×m

=

X
′
T−1 · · · X ′T−p
...

. . .
...

X ′p · · · X ′1


︸ ︷︷ ︸

X(T−p)×pm

Φ′1
...

Φ′p


︸ ︷︷ ︸
Bpm×m

+

 εT
...

εp+1


︸ ︷︷ ︸
E(T−p)×m

.

In the high-dimensional case, the LASSO can recover the sparseness of the

transition matrices and reduce the forecasting error (Basu and Michailidis (2015)).

However, the regular LASSO uses the same penalty for different Φl,ss′ compo-

nents, which may be inappropriate for spatio-temporal data. Instead, we propose

the following weighted l1 regularized LS, which penalizes Φl,ss′ according to the

spatial distance between site s and s′, say dss′ , as well as the temporal lag l:

weighted l1-LS: B̂ = min
B

1

N
‖Y −XB‖2F + λNΩ(B), (2.2)

where N = T − p and Ω(B) =
∑p

l=1

∑m
s,s′=1wl,ss′ |Φl,ss′ |, with wl,ss′ ≥ 0 being

the penalty weight for Φl,ss′ . Because Φl,ss′ quantifies the dependence between

site s and site s′ across the temporal lag l, it is more likely to be zero if dss′

and l are large. Therefore, the weight wl,ss′ is set to be an increasing function of

the distance dss′ and the temporal lag l. Using this construction of the penalty

weights, we impose a spatio-temporal structure on the data in which the condi-

tional dependence between two sites across the temporal lag l (represented by

Φl,ss′) decays as the spatial distance dss′ and temporal lag l increase. There are

several ways to define the weights, for example,

w
(1)
l,ss′ = exp

(
c1

l dss′

p dmax

)
or w

(2)
l,ss′ =

(
1 +

l dss′

p dmax

)c2
, (2.3)

where dmax is the maximum of dss′ , and c1, c2 > 0 are universal constants deter-

mined using cross-validation. The inclusion of c1 and c2 ensures that the weights

are data driven and adds flexibility to this method. Other weight functions can

be defined as well based on the context of the data set under investigation. A spe-

cial case is that wl,ss′ is a function of dss′ only, such as w
(3)
l,ss′ = exp (c3dss′/dmax),
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which means that the magnitudes of the parameters are influenced only by the

distance. We examine the performances of various weight functions in our simu-

lation studies and real data application.

Utilizing weighted penalty functions such as those above significantly im-

proves the model performance, without sensitivity to the exact choice of weight

functions. This is mainly because we include the data-informed constants ci in

all weight functions, which are selected via cross-validation. Including such data-

driven constants optimizes the weights to some extent, and reduces the reliance

of the model performance on the choice of the weight functions, demonstrating

the robustness of the proposed method with respect to changes in the weight

functions.

2.1. Model assumption

In the following, we provide the nonasymptotic bounds on the estimation

error of the weighted l1-LS estimation (2.2), and show that under certain condi-

tions, the proposed estimator is consistent. We rewrite the VAR model as

vec(Y ) = vec(XB) + vec(E) = (Im ⊗X)vec(B) + vec(E) := Zβ + e,

where y = vec(Y ) is an mN × 1 vector, Z = Im ⊗X is an mN × q matrix, and

β = vec(B) is a q × 1 vector with q = m2p. The proposed estimation (2.2) can

be expressed as the following M-estimation:

β̂ = argmin
β

{
−2β′γ̂ + β′Γ̂β + λNΩ(β)

}
, (2.4)

where γ̂ = (Im ⊗X ′)y/N and Γ̂ = (Im ⊗X ′X)/N . Throughout this paper, we

denote the true parameter as β∗ and the corresponding true transition matrices

as Φ∗1, . . . ,Φ
∗
p. We consider two scenarios: (1) β∗ is exactly sparse; and (2) β∗

is not exactly sparse, but can be well approximated by a sparse vector, which is

called “weakly sparse.” Both scenarios need the following assumption.

Assumption 1. The VAR(p) process is stationary, that is, the roots of |Im −∑p
l=1 Φlz| = 0 are lying outside the unit circle. In addition, Σ is positive definite.

Assumption 1 is fundamental in high-dimensional time series analyses. Be-

cause the key to analyzing the M-estimation (2.4) is the dependence shown in

γ̂ and Γ̂, this assumption guarantees that the spectral density of {Xt} exists.

Under such an assumption, Basu and Michailidis (2015) used the spectral den-

sity to construct a measure of dependence, and proved that γ̂ and Γ̂ satisfy

two important conditions. More specifically, Propositions (4.2) and (4.3) in
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Basu and Michailidis (2015) state that, under Assumption 1, there exist con-

stants bi, such that for N & max{ω2, 1}(log p+2 logm), the restricted eigenvalue

(RE) condition (2.5) and Derivation condition (2.6) hold with probability at least

1− b1 exp(−b2N min{ω−2, 1})− b3 exp(−b4(log p+ 2 logm)):

RE condition: θ′Γ̂θ ≥ α ‖θ‖22 − τ ‖θ‖
2
1 , ∀θ ∈ Rq, (2.5)

Derivation condition: ‖γ̂ − Γ̂β∗‖∞ ≤ Q
√

log p+ 2 logm

N
. (2.6)

Here, ω, α, τ , and Q are determined by the transition matrices {Φ∗l }
p
l=1 and the

covariance matrix of the innovation Σ. Specially, we first define

µmin(Φ) = min
|z|=1

Λmin(ΦH(z)Φ(z)), µmax(Φ) = max
|z|=1

Λmax(ΦH(z)Φ(z)),

where Φ(z) = I −
∑p

l=1 Φ∗l z
l (z ∈ C) is the characteristic polynomial of the VAR

process and ΦH(z) is its conjugate transpose. Furthermore, we set

Φ̃ =


Φ1 · · · Φp−1 Φp

Im · · · 0 0
...

. . .
...

...

0 · · · Im 0

 ,
Φ̃(z) = Ipm − Φ̃z (z ∈ C),

µmin(Φ̃) = min
|z|=1

Λmin(Φ̃H(z)Φ̃(z)).

Then, ω, α, τ , and Q are defined as follows:

ω = a1
Λmax(Σ)/µmin(Φ̃)

Λmin(Σ)/µmax(Φ)
, α =

Λmin(Σ)

2µmax(Φ)
, τ = αmax{ω2, 1} log p+ logm

N

Q = a2

[
Λmax(Σ) +

Λmax(Σ)

µmin(Φ)
+

Λmax(Σ)µmax(Φ)

µmin(Φ)

]
, (2.7)

where a1 and a2 are positive constants. Refer to Basu and Michailidis (2015) for

more detail. The RE condition (2.5) and Derivation condition (2.6) are the key

to deriving the convergence rate of the M-estimation (2.4).

2.2. Convergence rate under exact sparsity

In this section, we assume the true parameter β∗ has many zero entries, and

we set its support to be J = {(l, ss′) : Φ∗l,ss′ 6= 0}, with |J | = k. In addition, we

need the following constraint for the penalty weights.

Assumption 2. wl,ss′ > 0, for all (l, ss′) ∈ JC .
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This assumption states that the parameters with true values equal to zero

should have nonzero penalties. This assumption can be guaranteed by setting all

penalty weights to be positive. In addition, any choice of (λN , {wl,ss′}) is equiv-

alent to (λ̃N , {w̃l,ss′}), with λ̃N = aλN and w̃l,ss′ = wl,ss′/a, for any arbitrary

positive number a. Without loss of generality, we can set min{wl,ss′ : (l, ss′) ∈
JC} = 1. Furthermore we set rw = max{wl,ss′ : (l, ss′) ∈ J}, which is indeed the

ratio between the maximum weight of the nonzero parameters and the minimum

weight of the zero parameters, that is, rw = max{wl,ss′ : (l, ss′) ∈ J}/min{wl,ss′ :

(l, ss′) ∈ JC}. In the following theorem, this ratio is the key quantity for the

proposed method to achieve smaller error bounds than those of the LASSO.

Theorem 1. Consider the weighted l1-LS estimator in (2.4). If Assumptions 1

and 2 hold, there exist constants bi > 0 not depending on the data or the model

parameters, such that for any N & (1 + rw)2 max{ω2, 1}k(log p + 2 logm) and

λN ≥ 4Q
√

(log p+ 2 logm)/N , with probability at least:

1− b1 exp(−b2N min{ω−2, 1})− b3 exp(−b4(log p+ 2 logm)),

the estimation error (β̂ − β∗) is bounded as follows:

‖β̂ − β∗‖2 ≤
1 + 2rw

α

√
kλN , ‖β̂ − β∗‖1 ≤

2 + 6rw + 4r2w
α

kλN ,

(β̂ − β∗)′Γ̂(β̂ − β∗) ≤ (1 + 2rw)2

2α
kλ2N .

If we set s0 = min{|β∗j | : j ∈ J}, the number of false zeros is bounded by∣∣∣supp(β∗)\supp(β̂)
∣∣∣ ≤ 2 + 6rw + 4r2w

s0α
kλN .

If we consider a threshold version β̃ := {β̂jI(|β̂j | > λN )}, with I(.) being the

indicator function, the number of false nonzeros in β̃ is bounded by∣∣∣supp(β̃)\supp(β∗)
∣∣∣ ≤ (1 + 2rw)2

k

α
.

Remark 1.

(a) ‖β̂ − β∗‖2 =
√∑p

l=1 ‖Φ̂l − Φ∗l ‖2F is the error of the transition matrices

under the Frobenius norm, and (β̂ − β∗)′Γ̂(β̂ − β∗) =
∑T

t=1 ‖
∑p

l=1(Φ̂l −
Φ∗l )Xt−l‖22/T is the in-sample prediction error under the l2 norm.

(b) If we set rw = 1, which corresponds to the LASSO, we will get the following

upper bounds, which are similar to those in Basu and Michailidis (2015):
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‖β̂ − β∗‖2 ≤ 3
√
kλN/α, ‖β̂ − β∗‖1 ≤ 12kλN/α, (β̂ − β∗)′Γ̂(β̂ − β∗) ≤

9kλ2N/α, |supp(β∗)\supp(β̂)| ≤ 12kλN/(s0α), |supp(β̃)\supp(β∗)| ≤ 9k/α.

(c) Compared with the LASSO (rw = 1), if the weights {wl,ss′} are properly

specified, the ratio rw should be much smaller than one. In the ideal case

when rw is close to zero, our upper bounds for ‖β̂ − β∗‖2, ‖β̂ − β∗‖1,
(β̂−β∗)′Γ̂(β̂−β∗), |supp(β∗)\supp(β̂)| and |supp(β̃)\supp(β∗)| are nearly

1/3, 1/6, 1/9, 1/6, and 1/9 respectively, of that of the LASSO.

(d) Condition of Consistency: If λN is selected as λN � Q
√

(log p+ 2 logm)/N ,

the upper bounds of the estimation errors become

‖β̂ − β∗‖2 ≤
(1 + 2rw)Q

α

√
k(log p+ 2 logm)

N
,

‖β̂ − β∗‖1 ≤
(2 + 6rw + 4r2w)Q

α

√
k(log p+ 2 logm)

N
,

(β̂ − β∗)′Γ̂(β̂ − β∗) ≤ 1

2
(1 + 2rw)2α−1Q2k(log p+ 2 logm)

N
,

where α and Q are related to unknown parameters, as shown in equation

(2.7). When Q/α has a finite upper bound, we will have ‖β̂ − β∗‖2 .√
k(log p+ 2 logm)/N . In this case, the consistency of the proposed esti-

mator requires only that N increases at a faster rate than k(log p+2 logm).

2.3. Convergence rate under weak sparsity

In real applications, the conditional dependence quantified by Φ∗l,ss′ may not

be zero, even for a large distance dss′ and/or lag l. For instance, Φ∗l,ss′ 6= 0

may occur for a large distance dss′ , especially when the sites are located on an

irregular lattice. This example motivates us to consider a scenario called “weak

sparsity”, in which the true parameter vector β∗ does not have many zeros (i.e.

not exactly sparse), but can be well approximated by a sparse vector. Only a few

studies touch on weak sparsity, and almost all of them focus on independent data

(Negahban et al. (2009), Raskutti, Wainwright and Yu (2011)). An exception is

the work of Sun et al. (2018), which focuses on estimating the spectral density

matrix of high-dimensional time series. Moreover, they all define weak sparsity

under the so-called “ lr ball” setting. Specifically, they assume the true parameter

vector is within the lr ball: Br(R) := {β∗ :
∑q

j=1 |β∗j |r ≤ R}, where r ∈ [0, 1] is

fixed. Under this setting, a constraint on the radius R is required to achieve the

estimation consistency. For example, in independent data, the LASSO estimator
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is consistent if R satisfies

lr ball constriant: R = o

((
N

log q

)1−r/2
)
, (2.8)

where q is the number of parameters (Negahban et al. (2009), Raskutti, Wain-

wright and Yu (2011)). However, how “sparsifiable” β∗ is depends on the relative

magnitude of each element in β∗, rather than its overall lr length. Thus, the lr
ball setting does not clearly describe the “sparsifiability” of β∗. A special case

in which all β∗j have the same magnitude could still fit in the lr ball setting.

However, in this case, β∗ cannot be approximated by a sparse vector, and is not

suitable for an l1 regularized estimation. In general, the lr ball setting may not

be a reasonable way to relax the sparsity assumption.

Instead of using the lr ball setting, we define “weak sparsity” from another

perspective: most entries of β∗ are small enough such that β∗ can be well ap-

proximated by its hard thresholding version, say β∗η, the jth entry of which is

β∗j I(|β∗j | > η). For any given threshold η, we use Jη = {j : |β∗j | > η} to denote

the support of β∗η. The formal definition of our proposed weak sparsity is as

follows.

Definition 1 (Weak Sparsity Constraint). If there exists an η such that the

following two conditions hold:

|Jη| = o

((
α

Q

)2 N

log p+ 2 logm

)
and

‖β∗JCη ‖1 = o

(
min

{
α

Q
, 1,

1

ω

}√
N

log p+ 2 logm

)
, (2.9)

where JCη := {j : |β∗j | ≤ η}, we say β∗ satisfies the weak sparsity constraint.

This constraint means, with a proper choice of η, β∗η is sparse and is a good

approximation of β∗ in the sense that its difference from β∗, denoted as β∗JCη
,

is sufficiently small. In this way, our weak sparsity constraint quantifies how

sparsifiable the true parameter vector β∗ is, so that its l1 regularized estimation

remains consistent. In the following theorem, first without this constraint, we give

a general result of the upper bound of the estimation error. Then, under this

weak sparsity constraint, with a proper choice of λN , we show that the proposed

estimator is consistent. Furthermore, we simplify the weak sparsity constraint in

a special case of VAR(1) in Proposition 1. Finally, we directly apply Theorem

2 to derive the upper bound of the estimation error under the lr ball setting,
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and prove that our weak sparsity constraint (2.9) is more relaxed than the lr
ball constraint (Corollary 1). Also note that Theorem 2 and Corollary 1 also

hold for the LASSO, because LASSO can be viewed as a special case of the

proposed method in which all wl,ss′s are the same. To state our theorem, we

require the following notation: for any η, set w1(η) = min{wl,ss′ : (l, ss′) ∈ JCη },
w2(η) = max{wl,ss′ : (l, ss′) ∈ Jη}, and rw(η) = w2(η)/w1(η).

Assumption 3. wl,ss′ > 0, for all (l, ss′).

Theorem 2. Consider the weighted l1-LS estimator in (2.4), and assume As-

sumptions 1 and 3 hold. Then, there exist constants bi > 0, such that for any

η, if N & (1 + rw(η))2|Jη|max{ω2, 1}(log p + 2 logm) and λN = λ̃N/w1(η) with

λ̃N = 4Q
√

(log p+ 2 logm)/N , with probability at least

1− b1 exp(−b2N min{ω−2, 1})− b3 exp(−b4(log p+ 2 logm)),

the estimation error (β̂ − β∗) is bounded as follows:

‖β̂ − β∗‖2 ≤
1 + 2rw(η)

α

√
|Jη|λ̃N + 2

√
rw(η)λ̃N‖β∗JCη ‖1

α
+

4rw(η) max{ω, 1}
Q

λ̃N‖β∗JCη ‖1,

‖β̂ − β∗‖1 ≤ (2 + rw(η))
√
|Jη|‖β̂ − β∗‖2 + 4rw(η)‖β∗JCη ‖1,

(β̂ − β∗)′Γ̂(β̂ − β∗) ≤ 1 + 2rw(η)

2

√
|Jη|λ̃N‖β̂ − β∗‖2 + 2rw(η)λ̃N‖β∗JCη ‖1.

Second, if there exists an η such that β∗ satisfies the weak sparsity constraint

(2.9), the proposed estimator is consistent, that is, for any arbitrary ε > 0,

Pr(‖β̂ − β∗‖2 > ε)→ 0 as T,m→∞.

Remark 2.

(a) Theorem 2 includes exact sparsity as a special case. If β∗ is exactly sparse

with k nonzero entries, by setting η = 0, we can obtain |Jη| = k and

‖β∗JCη ‖1 = 0. Then, the above three upper bounds are the same as those in

Theorem 1. For the weakly sparse scenario, we approximate β∗ by its hard

thresholding version β∗η. As a result, extra terms containing ‖β∗JCη ‖1 occur

in the upper bounds.



HIGH-DIMENSIONAL SPATIO-TEMPORAL VAR 1283

(b) By setting rw = 1, we obtain the upper bounds of the LASSO:

‖β̂ − β∗‖2 ≤
3

α

√
|Jη|λ̃N + 2

√
λ̃N‖β∗JCη ‖1

α
+

4 max{ω, 1}
Q

λ̃N‖β∗JCη ‖1,

‖β̂ − β∗‖1 ≤ 3
√
|Jη|‖β̂ − β∗‖2 + 4‖β∗JCη ‖1,

(β̂ − β∗)′Γ̂(β̂ − β∗) ≤ 3

2

√
|Jη|λ̃N‖β̂ − β∗‖2 + 2λ̃N‖β∗JCη ‖1.

Furthermore, if the weak sparsity constraint (2.9) holds, the LASSO esti-

mator is also consistent.

(c) If the weights {wl,ss′} are properly specified, the ratio rw should be smaller

than one and implies smaller error bounds than those of the LASSO. In

the ideal case, when rw is close to zero, the error bounds of the proposed

method approach:

‖β̂ − β∗‖2 ≤
1

α

√
|Jη|λ̃N , ‖β̂ − β∗‖1 ≤ 2

√
|Jη|‖β̂ − β∗‖2,

(β̂ − β∗)′Γ̂(β̂ − β∗) ≤ 1

2

√
|Jη|λ̃N‖β̂ − β∗‖2,

which are less than 1/3, 2/9, and 1/9, respectively, of those of the LASSO.

The meaning of the weak sparsity constraint (2.9) is straightforward. How-

ever, it is difficult to verify in practice, because it contains α, Q, and ω, which

depend on unknown model parameters. When α is bounded away from zero, and

Q and ω are bounded away from infinity, the weak sparsity constraint can be

simplified as |Jη| = o (N/(log p+ 2 logm)) and ‖β∗JCη ‖1 = o (N/(log p+ 2 logm)),

which depends only on the number of observations and the parameter dimension.

For a general stationary VAR process, the behaviors of α, Q, and ω are complex,

and cannot be guaranteed to be bounded. Here, we consider a simple case of

VAR(1) process with symmetric transition matrix, and explore the properties of

α, Q, and ω in Proposition 1.

Proposition 1. For any stationary VAR(1) process Xt = ΦXt−1 + εt with sym-

metric transition matrix Φ, we have

|λi| < 1 for any i, ρ(Φ) = max
1≤i≤m

|λi|,

µmax(Φ) = (1 + ρ(Φ))2, µmin(Φ) = (1− ρ(Φ))2,
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where {λi}mi=1 are the eigenvalues of Φ. Furthermore, α is bounded away from

zero, Q and ω are bounded away from infinity if and only if Λmax(Σ) is bounded

away from infinity, Λmin(Σ) is bounded away from zero and ρ(Φ) is bounded away

from one.

This proposition implies the following: for a VAR(1) process with a sym-

metric transition matrix, if the eigenvalues of Σ and Φ behave properly and

there exists an η > 0 satisfying |Jη| = o (N/(log p+ 2 logm)) and ‖β∗JCη ‖1 =

o (N/(log p+ 2 logm)), we achieve the consistency of β̂. The symmetry of Φ

is not required for the general case to build consistency. However, it helps to

simplify the weak sparsity constraint, and makes it more informative for real ap-

plications. In addition, because dss′ equals to ds′s, a symmetric Φ can happen in

reality when Φss′ is a function of the distance dss′ .

lr Ball Setting. Negahban et al. (2009) and Raskutti, Wainwright and Yu (2011)

investigate the LASSO estimation of linear regression in independent data under

the lr ball setting. Under some conditions, they build up the upper bound of

the l2 estimation error and provide the condition for consistency (i.e. the lr ball

constraint (2.8)). Based on Theorem 2, we obtain a similar error bound under

the lr ball constraint for the proposed method (Corollary 1). Moreover, we prove

that our constraint (2.9) is more relaxed than the lr ball constraint, and thus is

more general.

Corollary 1. Consider the weighted l1-LS estimator in (2.4) with true parameter

β∗ within the lr ball: Br(R) := {β∗ :
∑q

j=1 |β∗j |r ≤ R}. Assume Assumptions 1

and 3 hold. Furthermore, set w1 = min{wl,ss′}, w2 = max{wl,ss′}, rw = w2/w1,

λN = 4w−11 Q
√

(log p+ 2 logm)/N , and η = λN/α. Then, there exist constants

bi > 0, such that for any N & (1 + rw)2|Jη|max{ω2, 1}(log p + 2 logm), with

probability at least

1− b1 exp(−b2N min{ω−2, 1})− b3 exp(−b4(log p+ 2 logm)),

the estimation error is bounded as follows:

‖β̂ − β∗‖2 ≤
w1 + 2w2 + 2

√
w2

α(2−r)/2 R1/2λ
(2−r)/2
N +

4w2 max{ω, 1}
Qα1−r Rλ2−rN . (2.10)

Remark 3.

(a) Corollary 1 implies that α(r−2)/2R1/2λ
(2−r)/2
N = o(1) and αr−1Rλ2−rN /Q =

o(1) are required to obtain the estimation consistency in the lr ball setting.
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After plugging in the choice of λN , we obtain the following lr ball constraint:

αr−2Q2−rR

(
log p+ 2 logm

N

)(2−r)/2
= o(1), and

max{ω, 1}αr−1Q1−rR

(
log p+ 2 logm

N

)(2−r)/2
= o(1). (2.11)

In the Supplemental Material, we prove this constraint is stricter than our

weak sparsity constraint (2.9).

(b) Note that, in the special case when α is bounded away from zero and Q
and ω are bounded away from infinity, the second term in (2.10) is of higher

order than the first term. Thus, the convergence rate becomes ‖β̂−β∗‖2 =

O
(
R1/2(log q/N

)1/2−r/4
). with q = pm2 being the number of parameters.

This rate is the same as that in the regression of independent data (Raskutti,

Wainwright and Yu (2011); Negahban et al. (2009)).

3. Simulation Studies

In this section, we first describe the implementation of the proposed weighted

l1-LS approach (2.2). Then, we present several simulation studies that compare

the proposed method with five existing penalized estimations of high-dimensional

VAR: the LASSO (Basu and Michailidis (2015)), SCAD and MCP (Zhu (2020)),

adaLASSO, and spaLASSO (Schweinberger, Babkin and Ensor (2017)). Several

settings of the VAR order, dimension of the time series and sparse scenarios are

considered. We find that, in all settings and scenarios, the proposed method

achieves substantial improvements over the existing methods in terms of param-

eter estimation, network detection, and out-of-sample forecast. Because we have

consistent findings across the different settings, we describe simulation of VAR (1)

with m = 100 in detail and summarize the findings for other simulation settings.

3.1. Practical implementation

The objective function in the minimization problem (2.2) can be decomposed

as a sum of independent objectives:

m∑
i=1

[
1

N
‖Yi −XBi‖22 + λNΩi(Bi)

]
,

where Yi and Bi are the ith columns of matrices Y and B, respectively, and

Ωi(Bi) =
∑p

l=1

∑m
j=1wl,ss′ |Φl,ss′ |. Therefore, the optimization (2.2) can be solved
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in parallel by solving the following sub-objectives:

min
Bi

1

N
‖Yi −XBi‖2 + λNΩi(Bi), i = 1, . . . ,m. (3.1)

By defining Φ̃l,ss′ = wl,ss′Φl,ss′ , B̃ = [Φ̃1, . . . , Φ̃p]
′ and, correspondingly, X̃(i) =

[X̃
(i)
1 , . . . , X̃

(i)
mp] the jth column of which is X̃

(i)
j = Xj ◦ w(i), with w(i) =

(1/w1,i1, . . . , 1/w1,im, . . . , 1/wp,i1, . . . , 1/wp,im)′, objective (3.1) is transformed into

a LASSO optimization,

min
B̃i

1

N
‖Yi − X̃(i)B̃i‖22 + λN‖B̃i‖1, i = 1, . . . ,m,

which can be easily solved by existing LASSO algorithms.

In practice, we need to select the VAR order p, the penalty parameter λN ,

and the universal constant ci in the penalty weights (2.3). The parameter selec-

tion can follow the forward cross-validation approach, which is commonly used

in high-dimensional VAR model estimations (Bańbura, Giannone and Reichlin

(2010); Song and Bickel (2011); Nicholson et al. (2020)) and provides good per-

formance for finite samples as shown in the following simulation studies and

real-data analysis. First, we separate the data into two sets: a training data

set {1, . . . , T0} and a validation data set {T0 + 1, . . . , T}. Here, T0 is prespeci-

fied such as T0 = b0.6T c. Then, we specify potential values of p and c, such as

p ∈ {1, . . . , 4} and ci ∈ {0.5, 5, 10, 15, 20, 25, 30}. For each given pair of (p, ci),

we follow Friedman, Hastie and Tibshirani (2010) to perform a grid search of

λN , which starts from λmaxN , the smallest value that shrinks all parameters to

zero, and then decreases in log-linear increments until the value of λmaxN /1000

is reached. We take 30 values along this grid, and obtain 4 × 7 × 30 triples of

(p, ci, λN ). For each triple of (p, ci, λN ), we optimize (2.2) using the training data

set and then calculate one-step-ahead forecast X̂
(p,ci,λN )
t+1 for the validation data

set (t = T0, . . . , T − 1). Then, we select the values of (p, ci, λN ) = (popt, copti , λoptN )

by minimizing the following root mean squared forecast error (RMSFE):

RMSFE =

√√√√ 1

T − T0

T−1∑
t=T0

1

m

∥∥∥X̂(p,ci,λN )
t+1 −Xt+1

∥∥∥2
2
.

Finally, we optimize (2.2) based on the selected (popt, copti , λoptN ) and data till T .
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3.2. Simulation setting

In each simulation setting, we simulate the VAR process 100 times, and each

simulated process has 150 observations. The last 80 points (t = 71, . . . , 150)

are preserved as a test data set for out-of-sample forecast comparison. For the

LASSO, adaLASSO, SCAD, MCP, and proposed method, we apply the afore-

mentioned forward cross-validation to select the tuning parameters, and set the

data within t = 1, . . . , 40 as training data set, and the data within t = 41, . . . , 70

as the validation data set. We use the LASSO estimator to derive the penalty

weight for the adaLASSO, that is, λi = λ/|β̃i| with the LASSO estimator β̃i. For

the spaLASSO, we use the code provided in the online supplemental materials of

Schweinberger, Babkin and Ensor (2017) to carry out the model estimation and

prediction. This method uses stability selection (Meinshausen and Bühlmann

(2010)) to sidestep the selection of the tuning parameters. Two weight functions

are considered in the proposed method:

WLASSO1: w
(1)
l,ss′ = exp

(
c1

l dss′

p dmax

)
; WLASSO2: w

(2)
l,ss′ =

(
1 +

l dss′

p dmax

)c2
.

We consider the following criteria to compare the various methods:

• l1 estimation error: ‖β̂ − β∗‖1 =
∑

l,s,s′ |Φ̂ss′,l − Φ∗ss′,l|.

• l2 estimation error: ‖β̂ − β∗‖2 =
√∑

l,s,s′ |Φ̂ss′,l − Φ∗ss′,l|2.

• Percentage of false zeros: PFZ =
∑

l,s,s′I(Φ̂ss′,l = 0,Φ∗ss′,l 6= 0)/m2p.

• Percentage of false nonzeros: PFNZ =
∑

l,s,s′I(Φ̂ss′,l 6= 0,Φ∗ss′,l = 0)/m2p.

• RMSFE for h-step out-of-sample forecast, with h = 1, . . . , 5.

To simply the presentation of the results, we treat the LASSO as a benchmark,

and report the ratio of each method over the LASSO. Ratio less than one means

the method outperforms the LASSO.

3.3. Simulation of VAR(1) with dimension m = 100

First, we construct 21 × 21 lattices with coordinates {(xi, yj)}20i,j=1 as xi =

0.05i+ δi and yi = 0.05i+ δi, where δi and δ′i are independently generated from

unif(-0.01,0.01). Then, we randomly select 100 sites from all 441 vertices in the

lattice. Four sparse scenarios are considered:

(a) Exactly sparse: Generate |Φ̃∗ss′ | ∼ unif(0.1, 0.5); then, set |Φ∗ss′ | = |Φ̃∗ss′ |
I(dss′ ≤ 0.05).
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(b) Weakly sparse (fast decay): |Φ∗ss′ | = 0.55/ exp(20 dss′).

(c) Weakly sparse (slow decay): |Φ∗ss′ | = 0.25/ exp(5 dss′).

(d) Exactly sparse with zero parameters within a small distance: Generate

|Φ̃∗ss′ | ∼ unif(0.1, 0.5) and set |Φ∗ss′ | = |Φ̃∗ss′ |I(dss′ ≤ 0.06). Then, randomly

select 33% nonzero parameters to be zero.

The sign of Φ∗ss′ is selected randomly. Scenarios (a) and (d) represent exact spar-

sity, and scenario (d) less favor the proposed method because some parameters

associated with the small distance are zero. This scenario is specifically designed

to investigate the performance of the proposed method under an unfavorable sce-

nario. Scenarios (b) and (c) represent weak sparsity. Compared with scenario

(c), |Φ∗ss′ | in scenario (b) decays much faster, and thus is more sparsifiable. To

guarantee that the VAR(1) process is stationary, the above generation procedure

is repeated until all eigenvalues of Φ∗ are within (-1,1). We set Σ = 0.01I.

Simulation results. The empirical results are reported in Table 1 and Figure

3 in the Supplemental Material. In terms of model fitting, the proposed method

achieves a considerable improvement over the other five competing methods in all

four scenarios, highlighting the advantage of incorporating spatial and temporal

information. In particular, in scenario (a), the l1 error, l2 error, PFZ, and PFNZ

of the proposed method are only 35%, 41%, 5%, and 20%, respectively, of those

of the LASSO. In contrast, the other four methods do not outperform the LASSO

and underestimate the nonzero parameters. The only exception is PFNZ. This is

because the other competing methods are too conservative and severely under-

estimate the nonzero parameters. Thus, their PFNZ are low, but their PFZ are

high. Meanwhile, it is not surprising that the proposed method has a high PFNZ

in scenario (d), because there are some zero parameters associated with small

distances. We further explored the true zero parameters with distances less than

0.06, and summarize their WLASSO estimations in Table 2 in the Supplemental

Material. The zero parameters are estimated well by the proposed method, even

though their WLASSO penalties are small. Specifically, more than 70% of the

zero parameters are estimated as zero, and further 20% of them are estimated

to be within (−0.03, 0.03), which is negligible compared with the true nonzero

parameters. This is because the estimation becomes a low-dimensional prob-

lem after the proposed method forces the parameters with larger distances to be

zero. Thus, their estimations are close to the true value, that is, zero, even with-

out large penalties. On the other hand, the penalty weights of the adaLASSO

and spaLASSO are derived from an initial estimator (LASSO). Inaccuracy of
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the initial estimator produces unreliable penalty weights, thus contaminating the

estimation.

Figure 2 in Section 1 depicts the network detection results of one randomly

selected replicate in scenario (a), and the results are consistent with what we

observe in PFZ and PFNZ: the proposed method performs the best and provides

desirable network estimation. In contrast, the other five methods severely under-

estimate the true connections. Meanwhile, the LASSO, adaLASSO and SCAD

also overestimate wrong connections.

Figure 3 in the Supplementary Material plots the RMSFE ratio between

each method and the benchmark (LASSO). The proposed method demonstrates

significant improvement over the LASSO at h = 1, 2, 3, 4 in all scenarios. In

contrast, the other four methods do not show obvious advantages over the LASSO,

and sometimes even perform worse. In addition, the performance of WLASSO1

and WLASSO2 are very close, which confirms that the proposed method is not

sensitive to the choice of weight function. The following simulation studies and

real-data analysis also confirm this robustness.

3.4. Simulation for VAR(1) with m = 200, VAR(2) and VAR(3)

The simulation results are reported in Tables 3–5 and Figures 6–11 in the

Supplementary Material, which also indicates the superiority of proposed method

over other competing methods. Furthermore, the improvement over the other

methods is more significant for m = 200 than that it is for m = 100. For

example, the proposed method has a significantly better forecast than the others

even at horizon h = 5, and its reduction in the RMSE is larger for m = 200 than

that it is for m = 100. In addition, the improvement over the LASSO in terms

of forecasting becomes more obvious as p increases (Figure 11). This is because

our method penalizes the parameters based on both the spatial distance and the

temporal lags.

4. Traffic Data Analysis

The real data contain the hourly traffic volumes recorded on 79 sites on high-

ways around Des Moines, Iowa. The records are hourly data from Sepmtember

20, 2014 to November 2, 2014 (six weeks and two days), with a total of 1,056 ob-

servations for each site. The 79 sites are shown in Figure 17 in the Supplementary

Material.

For each site s, the volume series {zst} (s = 1, . . . , 79; t = 1, . . . , 1056) has

strong weekly periodicity, that is, its weekly trend is repeated every 168 time
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points. For each time point t, we use d = tmod (168) to denote the hour of the

time point t in one week. We model {zst} as follows:

zst = µsd + σsdxst, E(xst) = 0 and E(x2st) = 1, log(σsd) = as + bs log(µsd),

Xt = (x1t, . . . , xmt), Xt = Φ1Xt−1 + · · ·+ ΦpXt−p + εt. (4.1)

Here, {µsd}168d=1 is the weekly trend of {zst}, and {xst}1056t=1 is the series after sub-

tracting the trend and standardization, which is assumed to be stationary. In

addition, E(xst) = 0 and E(x2st) = 1 guarantee that σsd and xst are identifi-

able. The following two-stage procedure is carried out for the estimation and

forecasting.

Stage 1: Estimate µsd, σsd, and series {xst}. We first use the local linear

kernel regression (Fan, Heckman and Wand (1995)) to estimate {µsd}168d=1 and

obtain the detrended series yst := zst− µ̂sd. Because we have multiple yst at each

d, we can approximate σsd using the standard error of these yst (i.e., σ̂sd is the

standard error of {yst : tmod (168) = d}). Then, we regress log(σ̂sd) on log(µ̂sd)

to estimate as and bs. Finally, the estimate of the series {xst} is obtained as

x̂st = (zst − µ̂sd)/ exp(âs + b̂s log(µ̂sd)). Figure 12 in the Supplemental Material

illustrates the result for one site in Stage 1.

Note that some stretches of observations in {zst} are zero. This may be the

result of road construction or maintenance at that time. These zero observations

are considered outliers, and are excluded when estimating {µsd} and {σsd}. The

following procedure is applied for outlier screening. For a given d, we have six to

seven zst. If the median of these zst is above 30, but one of them, say zst0 , is zero,

we mark zst0 as an outlier. In addition, we used boxplot to identify outliers: if

zst0 is below the interquantile of the 25% quantile or above the interquantile of

the 75% quantile, zst0 is marked as an outlier. We exclude these outliers when

estimating {µsd} and {σsd}, but attribute them to component {xst}.

Stage 2: Modeling {X̂t}. Set X̂t = (x̂1t, . . . x̂mt)
′. We apply the VAR, LASSO,

and the proposed method to estimate model (4.1) and carry out the forecasting.

Here, we divide the time period into four sub-periods: (1) weekday peak time

(6 a.m. to 8 p.m.); (2) weekday off-peak time (9 p.m. to next day 5 a.m.); (3)

weekend peak time (8 a.m. to 8 p.m.); (4) weekend off-peak time (9 p.m. to

next day 7 a.m.). We carry out one-step- to four-steps-ahead forecasting for the

last two weeks. To incorporate the spatial location information, we calculate the

road distances between the 79 sites. If there is a highway path from site s to site

s′, dss′ is the road distance of this path, otherwise, we set dss′ = dmax, where



HIGH-DIMENSIONAL SPATIO-TEMPORAL VAR 1291

dmax := max{dss′ : there is a road path from s to s′}. The following four weight

functions are considered:

WLASSO1: w
(1)
l,ss′ = exp

(
c1

l dss′

p dmax

)
, WLASSO2: w

(2)
l,ss′ =

(
1 +

l dss′

p dmax

)c2
,

WLASSO3: w
(3)
l,ss′ =

(
l

p
exp

(
dss′

dmax

))c3
, WLASSO4: w

(4)
l,ss′ = exp

(
c4
dss′

dmax

)
.

We also tried a setting in which dss′ =∞ if there is no road path between site s

and site s′. This setting forces the corresponding Φss′,l to be zero. In practice,

these two distance settings provide very similar network detection and forecasting

performance. For both the LASSO and the proposed method, the VAR order p is

selected from {1, . . . , 6}. Table 6 in the Supplemental Material lists the partition

of the training data set, validation data set, and test data set. In summary, the

last two weeks are the test data, and the last third and fourth weeks are the

validation data. It turns out WLASSO1, WLASSO2, and WLASSO3 performs

similarly and WLASSO4 behaves slightly worse. Thus, we report the result for

WLASSO1 only.

Summary of fitting and forecasting results. Table 7 in the Supplemental

Material lists the selected orders of the LASSO and WLASSO1 using forward

cross-validation. For the VAR without any penalty, we fix p = 1, which gives the

best forecast. WLASSO1 selects p as one or two for all sub-periods, but LASSO

selects p = 5 for the weekend peak time. Here, p = 5 means one site may be

influenced by another site even after five hours, which seems to be unreasonable.

This is because the LASSO penalizes the parameters equally regardless of the

temporal lag. The forecasting RMSFEs are listed in Table 8 in the Supplemental

Material. Unsurprisingly, the LASSO and WLASSO1 outperform the VAR. In

addition, WLASSO1 is superior to the LASSO for all scenarios, except the week-

day peak time, with h = 1. In particular, for the weekend peak time, WLASSO1

outperforms the LASSO by reducing the RMSFE by 17%, 9%, 8%, and 6% for

h=1, 2, 3, and 4 respectively. It also reduces the RMSFE by 8% for the weekend

off-peak time, with h = 1. To examine the significance of such improvements, we

carry out the Diebold–Mariano (DM) test (Diebold and Mariano (2002)) for each

sub-period. The test results show that WLASSO1 is significantly better than the

LASSO for the weekend peak time.

In addition, WLASSO1 yields a more reasonable network estimation than

that of the LASSO in all sub-periods, as shown in Figures 13–16 in the Supple-

mental Material. The LASSO connects some sites that are far from each other, or
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even in opposite directions, which is counter-intuitive, whereas WLASSO1 only

connects sites that are close to each other.

5. Conclusion

We have introduced a data-driven weighted l1 regularized estimation of a

high-dimensional VAR model for spatio-temporal data. This method incorporates

spatial distance and temporal lags to construct penalty weights. Its optimization

is straightforward and easy to implement using existing algorithms. Its theoret-

ical properties are explored for both the exactly sparse scenario and the weakly

sparse scenario. We also explore the conditions for consistency, which shows the

proposed method achieves smaller error bounds than those of the LASSO. The

theoretical results of the l1 regularization in the weakly sparse scenario are new,

and have not been addressed previously in a time series framework. Our defi-

nition of weak sparsity is also more general than the lr ball setting used in the

literature. To evaluate the model performance, we compare the proposed method

with five existing penalized VAR estimation methods using simulation studies,

showing that the proposed method yields more reasonable network detection and

a substantial improvement in terms of model fitting and forecasting. A real-data

application on a traffic data set also demonstrates the advantages of the proposed

method over the LASSO.

In this study, the tuning parameters are selected using cross-validation, yield-

ing reasonable performance in the numerical analysis. Another popular approach

is to use the BIC (Wang, Li and Tsai (2007a,b)). However, the BIC requires

estimating the covariance matrix Σ, which can be infeasible when the number of

observations T is smaller than the dimension m. A feasible solution in this case

is to apply a penalized estimation for Σ. However, it involves another tuning

parameter and is more expensive in terms of computation. An optimal proce-

dure of selecting the tuning parameters for high-dimensional time series and the

corresponding theoretical properties are beyond the scope of this study, and are

left to future research.

Supplementary Material

The online Supplementary Material contains three parts: (1) proofs of the

theorems, propositions, and corollaries; (2) simulation settings; and (3) tables

and figures.
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