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Abstract: This study has been motivated by cancer research, in which heterogene-

ity analysis plays an important role and can be roughly classified as unsupervised

or supervised. In supervised heterogeneity analysis, the finite mixture of regres-

sion (FMR) technique is used extensively, under which the covariates affect the

response differently in subgroups. High-dimensional molecular and, very recently,

histopathological imaging features have been analyzed separately and shown to be

effective for heterogeneity analysis. For simpler analysis, they have been shown to

contain overlapping, but also independent information. In this article, our goal is

to conduct the first and more effective FMR-based cancer heterogeneity analysis

by integrating high-dimensional molecular and histopathological imaging features.

A penalization approach is developed to regularize estimation, select relevant vari-

ables, and, equally importantly, promote the identification of independent informa-

tion. Consistency properties are rigorously established. An effective computational

algorithm is developed. A simulation and an analysis of The Cancer Genome Atlas

(TCGA) lung cancer data demonstrate the practical effectiveness of the proposed

approach. Overall, this study provides a practical and useful new way of conducting

supervised cancer heterogeneity analysis.

Key words and phrases: Cancer heterogeneity, data integration, FMR, molecular

and imaging features.

1. Introduction

Heterogeneity is a hallmark of cancer, and thus has gained extensive research

(Turajlic et al. (2019)). Heterogeneity analysis can be roughly classified as unsu-

pervised or supervised. In unsupervised analysis, outcomes/phenotypes are not

involved, and clustering and other techniques are adopted (Wiwie, Baumbach and

Röttger (2015)). Unsupervised analysis can be useful, for example, for identify-

ing new disease subtypes, but it is often difficult to associate clinical implications
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with findings. In contrast, supervised analysis directly addresses the heterogene-

ity associated with a clinical outcome/phenotype, and often has more important

practical implications (Bair (2013)). In such analysis, it is postulated that co-

variates affect the response differently in subject subgroups (Stadler, Buhlmann

and van De Geer (2010); Hui, Warton and Foster (2015)). This may manifest as

different covariates being associated with the response and/or the same covari-

ates having different magnitudes of effects. Note that, here, subject subgroups

are unknown a priori and need to be estimated. This is different to the analysis

that considers interactions between known subject groups and biomarkers, which

is sometimes also referred to as “heterogeneity analysis” and is often conducted

to study treatment effects (Coppock, Leeperand Mullinix (2018)).B

In “classic” heterogeneity analysis, clinical/demographic/environmental vari-

ables have been considered. In the past two decades, molecular data have played

an increasingly important role in cancer research, and, in particular, in supervised

heterogeneity analysis (Ahmad and Fröhlich (2017)). Another type of data, re-

cently suggested as informative for modeling cancer outcomes/phenotypes, comes

from histopathological images. Such images are generated in a biopsy, which is

ordered for most suspected cases, and are used extensively for definitive diagnosis

and staging. They contain information on a tumor’s “micro” properties and sur-

rounding microenvironment. They differ significantly from radiological images,

which are generated by CT, PET, and other techniques, and provide informa-

tion on a tumor’s “macro” properties, such as location, size, and density. Recent

studies, such as Luo et al. (2017), have analyzed high-dimensional histopatho-

logical imaging features for modeling biomarkers, survival, and other outcomes.

Furthermore, a handful of studies, such as Kothari et al. (2013) and Althobiti

et al. (2018), conduct imaging-based heterogeneity analysis. However, they often

analyze low-dimensional imaging features and adopt relatively simple techniques.

A tumor’s properties and microenvironment, as reflected in histopathological

images, are affected but not fully regulated by molecular changes. As such, molec-

ular and imaging data contain overlapping and independent information. This

is supported by recent studies that have explicitly analyzed the relationship be-

tween the two types of data. For example, Yu et al. (2017) use a random forest to

correlate molecular data with histopathological imaging data, finding that these

two types of data have overlapping information, with some significant associa-

tions detected. Zhong, Wu and Ma (2019) adopt a hypothesis testing approach,

showing that the two types of data have independent information, when modeling

cancer prognosis. Under the homogeneity assumption, studies such as Sun et al.

(2018) and Mobadersany et al. (2018) show that integrating the two types of data
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leads to biologically sensible models with improved estimation/prediction perfor-

mance. Complementing and advancing the existing literature, in this study, we

take the natural next step and conduct cancer heterogeneity analysis by integrat-

ing high-dimensional molecular and imaging data.

In supervised heterogeneity analysis, the finite mixture of regression (FMR)

technique has been adopted extensively because of its lucid interpretations and

satisfactory statistical and numerical properties (McLachlan and Peel (2000)).

Here, the conditional distribution of the response y given the covariates X is a

mixture with multiple components, and the relationship between y and X varies

across such components. For example, under the “classic” mixture of two normal

distributions, y|X ∼ µN(Xα1, σ
2) + (1 − µ)N(Xα2, σ

2) with different coeffi-

cient vectors α1 and α2. Examples of FMR-based studies with low-dimensional

covariates include Chen, Chen and Kalbfleisch (2001) and Atienza et al. (2007),

and those with high-dimensional covariates include Khalili and Chen (2007) and

Hui, Warton and Foster (2015). Note that these and other similar studies in the

literature are limited to a single type of covariate.

When there are two or more types of covariates from different sources and

with different properties, the simplest solution is to stack them together, after

which variable selection or dimension reduction techniques can be applied. Exam-

ples include the Lasso-based approach in Boulesteix et al. (2017) and the elastic

net and sparse principal component analysis in Jiang et al. (2016). However, such

a strategy fails to account for overlapping information, which can manifest sta-

tistically as correlation. Approaches such as collaborative regression (Gross and

Tibshirani (2015)) and canonical variate regression (Luo et al. (2016)) can accom-

modate overlapping information via canonical correlation analysis. As another

example, the assisted robust marker identification (ARMI) approach developed

in Chai et al. (2017) borrows overlapping information from one type of covariate

to assist more accurate identification on the other type(s) of covariates. However,

these approaches model the response using each type of covariate separately, and

cannot effectively accommodate independent information contained in multiple

types of covariates. In addition, they have not been applied to heterogeneity anal-

ysis. There are approaches that decompose data and use only non-overlapping

information in modeling based on penalization (Zhu et al. (2016)) and Bayesian

(Wang et al. (2013)) techniques. However, the decomposed data do not have

clear interpretations, and these studies are also limited to the homogeneity case.

This study has been motivated by the critical importance of supervised can-

cer heterogeneity analysis, the increase in the number of studies that collect both

molecular and histopathological imaging data, the overlapping and independent
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information contained in such data, and a lack of studies that integrate them

for heterogeneity analysis. Our study complements and advances the existing

literature in multiple ways. In particular, we extend those works limited to a

single type of covariate by effectively integrating molecular and histopathologi-

cal imaging data. We also extend studies limited to low-dimensional covariates

(and thus limited information) by accommodating high-dimensional and noisy

covariates using a penalization technique. Furthermore, we advance the collabo-

rative regression and ARMI by building models using both types of data (thus,

using more information). In addition, without data decomposition, the resulting

models can be biologically more interpretable. We also rigorously show that the

proposed approach has satisfactory theoretical and numerical properties. Overall,

this study provides a new and practically useful way of modeling cancer hetero-

geneity. Note that supervised heterogeneity analysis is not limited to cancer,

and data integration is not limited to molecular and imaging data. As such, the

proposed approach can enjoy broad applicability far beyond that proposed here.

2. Methods

2.1. Integrated heterogeneity analysis

Assume n independent subjects. For the ith subject, denote yi as the re-

sponse of interest, and Xi· = (xi1, . . . , xip) and Zi· = (zi1, . . . , ziq) as the p- and

q-dimensional molecular and imaging measurements, respectively. The condi-

tional density of yi given Xi· and Zi· is

f(yi;Xi·,Zi·,θ) =

K∑
k=1

µkg (yi;h(Xi·αk +Zi·βk), σk) . (2.1)

Here, K is the number of mixture components (subgroups), µ = (µ1, . . . , µK)′ is

the vector of mixing proportions satisfying µk > 0 and
∑K

k=1 µk = 1, g(·) is the

known density function, h(·) is the known link function, σ = (σ1, . . . , σK)′ is an

unknown parameter vector usually related to the variance, αk = (αk1, . . . , αkp)
′

and βk = (βk1, . . . , βkq)
′ are the coefficient vectors for the molecular and imaging

measurements, respectively, and θ=(µ′,σ′,α′,β′)′=(µ′,σ′,α′1, . . . ,α
′
K ,β

′
1, . . . ,

β′K)′ , (θj)(2K+Kp+Kq)×1.

We propose the following penalized objective function:

QL0
(θ) =

n∑
i=1

log

{
K∑
k=1

µkg (yi;h(Xi·αk +Zi·βk), σk)

}
− n

K∑
k=1

p∑
j=1

ρ(|αkj |; γ, λ1)
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−n
K∑
k=1

q∑
l=1

ρ(|βkl|; γ, λ1)− nλ2
K∑
k=1

p∑
j=1

q∑
l=1

cjl1(αkj 6=0)1(βkl 6=0), (2.2)

where ρ(|ν|; γ, λ1) = λ1
∫ |ν|
0 (1 − x/λ1γ)+dx is the Minimax Concave Penalty

(MCP) with regularization parameter γ, (a)+ = max{a, 0}, 1(·) is the indicator

function, and λ1 and λ2 are the tuning parameters. Here, γ controls the unbi-

asedness and concavity of the estimator, with a larger value leading to a smoother

estimation, but a larger bias and less accurate variable selection (Zhang (2010)).

In addition, cjl describes the amount of overlapping information between the jth

component of X and the lth component of Z, with a larger value indicating a

higher level of overlapping. In the literature, there are multiple ways of quanti-

fying overlapping information. Given that overlapping information can manifest

as correlation, we propose cjl = |cPcorrjl |1(|cPcorrjl | ≥ cPcorr), where cPcorrjl is the

Pearson’s correlation between the jth molecular and lth imaging variables, and

cPcorr is the cutoff. Correlation perhaps provides the simplest and most straight-

forward quantification of overlapping information, and has been used extensively.

The cutoff cPcorr is introduced to remove (a large number of) spurious corre-

lations. With the maximizer of (2.2), the nonzero components of αk and βk
correspond to the important molecular and imaging variables that are associated

with the response for the kth subgroup.

The discontinuity of the L0 penalty makes optimization challenging. To

improve computational feasibility, we further propose

Q(θ) =

n∑
i=1

log

{
K∑
k=1

µkg (yi;h(Xi·αk +Zi·βk), σk)

}
− n

K∑
k=1

p∑
j=1

ρ(|αkj |; γ, λ1)

−n
K∑
k=1

q∑
l=1

ρ(|βkl|; γ, λ1)− nλ2
K∑
k=1

p∑
j=1

q∑
l=1

cjl

(
1− e−α2

kj/τ
)(

1− e−β2
kl/τ
)
,

(2.3)

where τ is a small positive constant that controls the goodness and smoothness

of the approximation.

Rationale. In contrast to existing FMR models, the proposed model includes

two distinct types of high-dimensional variables. Furthermore, in contrast to,

for example, the collaborative regression and ARMI, both molecular and imag-

ing data are included in a single model to take advantage of their independent

information. Penalization is adopted for regularization and sparsity. We adopt

the MCP because of its satisfactory statistical properties, such as unbiasedness,
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and better numerical performance than some other penalties, such as Lasso. In

(2.2), the key advancement is the last term, which promotes the identification of

molecular and imaging variables with smaller correlations (weaker overlapping in-

formation). In particular, the indicator functions 1(αkj 6= 0) and 1(βkl 6= 0) pick

up the selected molecular and imaging variables, and the penalty is defined as the

sum of the absolute values of their pair-wise correlations. This way, the proposed

approach directly encourages the selection of molecular and imaging variables

with weak correlations, and effectively accommodates their overlapping informa-

tion. Note that directly including two types of covariates in a single model without

properly accommodating their high correlations may lead to unreliable and inac-

curate estimation and identification. For two molecular (imaging) variables with

similar contributions to the model, the proposed correlation-based penalty selects

the one less correlated with important imaging (molecular) variables. As a result,

the identified model contains less redundant information, leading to more reliable

and accurate estimation and identification. In addition, these important molecu-

lar and imaging variables have more independent contributions, and may provide

richer information for understanding the response. The smooth approximation

of the indicator function simplifies the computation, and the exponential-based

approximation can be replaced by other smooth approximations.

2.2. Statistical properties

Assume K is known. Determining its value under FMR is nontrivial, but has

been discussed in the literature (Khalili and Lin (2013)). Let θ0 = ((µ0)′, (σ0)′,

(α0
1)
′, . . . , (α0

K)′, (β0
1)′, . . . , (β0

K)′)′ be the vector of true parameter values. Let

Ak = {j : α0
kj 6= 0}, Bk = {l : β0kl 6= 0}, C = {k : θ0k 6= 0}, and Cc = {k : θ0k = 0},

where θ0k is the kth element of θ0. Note that µ0k and σ0k are nonzero. Denote |A|
as the cardinality of set A. Let ak = |Ak|, bk = |Bk|, and s = 2K +

∑K
k=1 ak +∑K

k=1 bk. Assume that the nonsparsity size s� n. For a vector ν and index set S,

denote νS as the components of ν indexed by S. For a matrix M and two index

sets S1 and S2, denote M·S1 and MS1· as the columns and rows, respectively, of

M indexed by S1, and denote MS1,S2 as the submatrix of M indexed by S1 and

S2.
Denote θ∗C = ((µ∗)′, (σ∗)′, (α∗1,A1

)′, . . . , (α∗K,AK
)′, (β∗1,B1

)′, . . . , (β∗K,BK
)′)′ as

the maximizer of

Q̃n(θC) =

n∑
i=1

log

{
K∑
k=1

µkg (yi;h(Xi,Ak
αk,Ak

+Zi,Bk
βk,Bk

), σk)

}
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−nλ2
K∑
k=1

∑
j∈Ak

∑
l∈Bk

cjl

(
1− e−α2

kj/τ
)(

1− e−β2
kl/τ
)
.

Let f(yi;Xi·,Zi·,θC) =
∑K

k=1 µkg(yi;h(Xi,Ak
αk,Ak

+Zi,Bk
βk,Bk

), σk), c0 = max{
|corr(Xj , Zl)|, j ∈ Ak, l ∈ Bk, k = 1, . . . ,K}, with corr(Xj , Zl) being the corre-

lation between Xj and Zl, and b0 = min{{|α0
kj |, j ∈ Ak}, {|β0kl|, l ∈ Bk}, k =

1, . . . ,K}. We first establish the estimation consistency of θ∗C when the true

sparsity structure is known. Assume the following conditions:

(C1) The density function f(yi;Xi·,Zi·,θ) has a common support, is iden-

tifiable in θ up to the permutation of the component labels, and satis-

fies E[∂ log f(yi;Xi·,Zi·,θ)/∂θj ]|θ=θ0 = 0, E[(∂ log f(yi;Xi·,Zi·,θ)/∂θj)(∂

log f(yi;Xi·,Zi·,θ)/∂θl)] = E[−∂2 log f(yi;Xi·,Zi·,θ)/∂θj∂θl].

(C2) The Fisher information matrix for θC ,

I(θC) = E

{[
∂ log f(yi;Xi·,Zi·,θC)

∂θC

] [
∂ log f(yi;Xi·,Zi·,θC)

∂θC

]′}
,

is finite and positive definite at θC = θ0C .

(C3) There exists an open set N0 that contains the true parameter θ0, such

that for almost all Vi = (yi,Xi·,Zi·), the density f(yi;Xi·,Zi·,θ) admits

all third derivatives for all θ ∈ N0. There exist two functions M1(Vi)

and M2(Vi), for all θ ∈ N0, such that
∣∣∂2 log f(yi;Xi·,Zi·,θ)/∂θj∂θl

∣∣ ≤
M1(Vi),

∣∣∂3 log f(yi;Xi·,Zi·,θ)/∂θj∂θl∂θm
∣∣ ≤M2(Vi), where E[M1(Vi)] <

∞ and E[M2(Vi)] <∞.

(C4) For any constant ε > 0, there exists a finite positive constant κ1, such

that for j ∈ Ak, l ∈ Bk, k = 1, . . . ,K, P (|cPcorrjl − corr(Xj , Zl)| ≥ ε) ≤
2 exp(−nε2/2κ1). Moreover, b20 ≥ %τ with % > 2 and

√
nλ2b0e

−b20/2τ/τ =

o(1), if c0 ≥ cPcorr.

Conditions (C1)–(C3) are commonly assumed in the literature (Khalili and

Lin (2013); Hui, Warton and Foster (2015)). As suggested by Khalili and Chen

(2007), the identifiability of FMR models generally depends on the component

density g(·), maximum order K, and design matrix. We refer to the aforemen-

tioned publications for detailed discussions and sufficient conditions on identifi-

ability. Condition (C4) restricts the rate of λ2 when the maximum value of the

absolute correlations between the important molecular and imaging variables un-

der the true model is larger than the cutoff cPcorr. Condition (C4) also provides
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a constraint on the error between the estimated sample correlations and the true

population correlations.

Theorem 1. Under Conditions (C1)–(C4), there exists a strict local maximizer

θ∗C of Q̃n(θC) such that ||θ∗C − θ0C || = Op(
√
s/n).

The proof is provided in Appendix. Theorem 1 shows that θ∗C has the usual

Op(
√
s/n) convergence rate. Define θ̂ with θ̂C = θ∗C and θ̂Cc = 0. Next, we

show that θ̂ is a strict local maximizer of Q(θ) in (2.3). Assume the following

additional conditions:

(C5) b0λ
−1
1 → ∞, (λ1/(s/

√
n)) → ∞, and λ1/(n

a/2−1/2√log n) → ∞, a ∈
(0, 1/2).

(C6) log(p) = O(na), log(q) = O(na).

Condition (C5) puts constraints on the rate of λ1, and similar conditions have

been commonly assumed in high-dimensional studies (Fan and Lv (2011)). In

particular, the first subcondition establishes the rate at which the nonzero coef-

ficients can be distinguished from zero, and the other two restrict the rate of λ1
with respect to the sample size. Condition (C6) allows the dimensionality p and

q to grow exponentially fast.

Theorem 2. Under Conditions (C1)–(C6), with probability tending to one, θ̂ is

a strict local maximizer of Q(θ).

The proof is provided in Appendix. Theorem 2 establishes the selection and

estimation consistency under high-dimensional settings. This result shows that

the proposed approach has consistency comparable to that of simpler models,

although its objective and form are much more complicated.

2.3. Computation

We develop an expectation-maximization (EM) algorithm. First, for subject

i(= 1, . . . , n), we introduce an unobserved indicator vector ∆i = (∆i1, . . . ,∆iK),

where ∆ik = 1 if subject i belongs to subgroup k, and ∆ik = 0 otherwise. The

complete-data objective function is

Qc(θ)=

n∑
i=1

K∑
k=1

∆ik log {µkg (yi;h(Xi·αk +Zi·βk), σk)} − n
K∑
k=1

p∑
j=1

ρ(|αkj |; γ, λ1)

−n
K∑
k=1

q∑
l=1

ρ(|βkl|; γ, λ1)− nλ2
K∑
k=1

p∑
j=1

q∑
l=1

cjl

(
1− e−α2

kj/τ
)(

1− e−β2
kl/τ
)
.
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With fixed tuning parameters, the proposed algorithm proceeds as follows:

Initialization : Set t = 0. Initialize µ
(0)
k = 1/K, for k = 1, . . . ,K, and randomly

partition subjects into K subgroups with equal sizes. For each k, initialize

α
(0)
k and β

(0)
k using the MCP and σ

(0)
k as the MLE.

E-step : Update t = t+ 1. For k = 1, . . . ,K, and i = 1, . . . , n, compute:

δ
(t)
ik = Eθ(t−1) [∆ik] =

µ
(t)
k g

(
yi;h

(
Xi·α

(t−1)
k +Zi·β

(t−1)
k

)
, σ

(t−1)
k

)
f(yi;Xi·,Zi·,θ(t−1))

.

M-step : Optimize Eθ(t−1) [Qc(θ)] with respect to θ. For k = 1, . . . ,K, carry out

the following steps sequentially:

(a) Compute µ
(t)
k = (1/n)

∑n
i=1 δ

(t)
ik .

(b) Optimize QE(σk,αk,βk) = (1/n)
∑n

i=1 δ
(t)
ik log[g(yi;h (Xi·αk +Zi·βk) ,

σk)]−
∑p

j=1 ρ(|αkj |; γ, λ1)−
∑q

l=1 ρ(|βkl|; γ, λ1)−λ2
∑p

j=1

∑q
l=1 cjl(1−

e−α
2
kj/τ )(1− e−β2

kl/τ ) with respect to σk, αk, and βk. This varies with

h(·) and g(·). Below, we take the Gaussian distribution g(yi;h(Xi·αk+

Zi·βk), σk) = (1/
√

2π)σk exp[−(σkyi−Xi·αk −Zi·βk)2/2] as an exam-

ple, and develop a coordinate descent (CD) algorithm. Algorithms for

other distributions can be developed accordingly.

(b.1) With αk and βk fixed at α
(t−1)
k and β

(t−1)
k , optimize QE with re-

spect to σk. Let r
(t−1)
ik = Xi·α

(t−1)
k +Zi·β

(t−1)
k , ã

(t)
k =

∑n
i=1 δ

(t)
ik y

2
i ,

and b̃
(t)
k =

∑n
i=1 δ

(t)
ik r

(t−1)
ik yi. Then, σ

(t)
k = b̃

(t)
k + (

√
(b̃

(t)
k )2 + 4nã

(t)
k µ

(t)
k

/2ã
(t)
k ).

(b.2) With σk and βk fixed at σ
(t)
k and β

(t−1)
k , optimize QE with respect

to αk. For j = 1, . . . , p, carry out the following steps sequentially.

Compute η
(t)
kj = (1/n)

∑n
i=1 δ

(t)
ik x

2
ij , res

(t)
−kj = (1/n)

∑n
i=1 δ

(t)
ik (σ

(t)
k yi−

r
(t−1)
ik )xij + η

(t)
kj α

(t−1)
kj , and u

(t)
kj = (2/τ)e−(α(t−1)

kj )
2
/τ∑q

l=1 cjl(1 −

e−(β(t−1)
kl )

2
/τ ). Update

α
(t)
kj =


res

(t)
−kj

η
(t)
kj +λ2u

(t)
kj

,
∣∣∣res(t)−kj∣∣∣ > λ1γ

(
η
(t)
kj + λ2u

(t)
kj

)
res

(t)
−kj−sgn(res

(t)
−kj)λ1

η
(t)
kj +λ2u

(t)
kj−1/γ

, λ1 <
∣∣∣res(t)−kj∣∣∣ ≤ λ1γ (η(t)kj + λ2u

(t)
kj

)
0, else

and r
(t−1)
ik = r

(t−1)
ik + xijα

(t)
kj − xijα

(t−1)
kj .
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(b.3) With σk and αk fixed at σ
(t)
k and α

(t)
k , optimize QE with respect

to βk. For l = 1, . . . , q, carry out the following steps sequentially.

Compute η
(t)
kl = (1/n)

∑n
i=1 δ

(t)
ik z

2
il, res

(t)
−kl = (1/n)

∑n
i=1 δ

(t)
ik (σ

(t)
k yi

−r(t−1)ik )zil + η
(t)
kl β

(t−1)
kl , and u

(t)
kl = (2/τ)e−(β(t−1)

kl )
2
/τ∑p

j=1 cjl(1 −

e−(α(t)
kj )

2
/τ ). Update

β
(t)
kl =


res

(t)
−kl

η
(t)
kl +λ2u

(t)
kl

,
∣∣∣res(t)−kl∣∣∣ > λ1γ

(
η
(t)
kl + λ2u

(t)
kl

)
res

(t)
−kl−sgn(res

(t)
−kl)λ1

η
(t)
kl +λ2u

(t)
kl −1/γ

, λ1 <
∣∣∣res(t)−kl∣∣∣ ≤ λ1γ (η(t)kl + λ2u

(t)
kl

)
0, else

,

and r
(t−1)
ik = r

(t−1)
ik + zilβ

(t)
kl − zilβ

(t−1)
kl .

We iterate the E and M steps until convergence, which is concluded in our

numerical study if ||θ(t+1) − θ(t)||∞ < 10−4. In the literature, the convergence

properties of the EM and CD algorithms are well established, and convergence

is achieved in all of our numerical examples with a moderate number of iter-

ations. To improve the performance, as in published studies, multiple random

initializations of the subjects’ subgroup memberships are considered, and the final

estimator is chosen as the one with the smallest BIC.

The proposed approach involves a few parameters. We set τ in the L0 penalty

approximation as 0.01, and note that its value is not critical, as long as it is

sufficiently small. We set the cutoff cPcorr = 0.15, which leads to satisfactory

numerical results. For the regularization parameter γ in the MCP, following the

literature (Zhang (2010)), we examine a few values, including 1.8, 3, 6, and 10,

and find that γ = 6 has satisfactory performance (see Table S1 of the Supple-

mentary Materials). The two tuning parameters λ1 and λ2 are selected using the

BIC and a grid search, which is common practice.

To facilitate the data analysis and broad utilization, we provide R code and

an example using The Cancer Genome Atlas (TCGA) lung cancer data. The

code and example are available at https://github.com/shuanggema/fmrGI.

3. Simulation

Consider the following settings: (a) n = 300, p = 1000, q = 500, and K = 2.

(b) Xi· is generated from a multivariate normal distribution with marginal means

zero and covariance matrix Σ. Here, Σ has diagonal elements equal to one and

a block-diagonal structure, with two blocks corresponding to the important and

https://github.com/shuanggema/fmrGI
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unimportant variables, of which the sizes are p0 and p − p0, respectively. De-

tailed values of p0 are provided in Table 5 (Appendix). Within each block, vari-

ables have an autoregressive (AR) correlation structure, where the jth and kth

variables have correlation coefficient ρ|j−k|, with ρ = 0.3, 0.5, and 0.7. (c) To

describe the overlapping information between molecular and imaging variables,

a set of 200 imaging variables C is generated using a linear regression model

ZiC = XiCϑ + N(0, 0.012). Four settings of ϑ are considered, where ϑ1 and ϑ2

have 20 blocks with equal sizes, and ϑ3 and ϑ4 have 10 blocks with equal sizes.

In each block, ϑ1 and ϑ3 have all elements equal to one, and ϑ2 and ϑ4 have an

AR structure with ρ = 0.7. The rest of the imaging features are generated simi-

larly to Xi· and independent of the molecular variables. (d) Three settings (P1,

P2, and P3 in Table 5 of Appendix) of important variables are considered. In

particular, we consider two subgroups with the same and different sets of impor-

tant variables, with different settings. (e) We consider the continuous response

computed from the FMR model, with σk = 0.5 and µ1 = µ2 = 0.5 (balanced) and

µ1 = 0.4, µ2 = 0.6 (imbalanced). There are 72 scenarios, comprehensively cover-

ing a wide spectrum with different levels of within- and between-type correlations,

as well as heterogeneity.

We consider the following alternatives. [FMR-MCP] analyzes the stacked

data (X,Z) under the FMR model (2.1) with the MCP for regularized estima-

tion and selection. This is the most direct competitor, and does not account

for overlapping information. [Kmeans-MCP] first applies Kmeans to the resid-

uals computed from an MCP-penalized linear regression model, with (X,Z) to

identify subgroups, and then applies the MCP to each subgroup separately. This

approach accommodates heterogeneity using the clustering technique, and there is

no accounting for overlapping information. [CoRe] conducts collaborative regres-

sion (Gross and Tibshirani (2015)) that accommodates overlapping information

and encourages X and Z to generate similar estimated effects. [DC-SVD] con-

ducts a decomposition of X and Z using a singular value decomposition (SVD)

to extract overlapping and independent information, and then conducts model-

ing (Zhu et al. (2016)). Both CoRe and DC-SVD are limited to the homogeneity

case. [MCP-MI], [MCP-M], and [MCP-I] analyze (X,Z), X, and Z, respectively,

using an MCP-penalized linear regression. We acknowledge that there are other

potential alternatives. However, the above are likely the most relevant.

To get more intuition, we first simulate one dataset under AR(0.5), µ1 = µ2 =

0.5, P3, and ϑ2. Beyond the proposed approach, we also consider its most direct

competitor, FMR-MCP. The identification results are presented in Figure S1

(Supplementary Materials). For this specific dataset, both approaches correctly
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identify the important variables, with FMR-MCP having more false positives.

The molecular-imaging variable pairs identified using the proposed approach have

weaker correlations (fewer connections), suggesting its effectiveness in promoting

non-overlapping information.

To evaluate the identification performance, we adopt the true and false pos-

itive rates computed for the molecular (M:TPR and M:FPR) and imaging vari-

ables (I:TPR and I:FPR) separately. The estimation performance is evaluated

using the root sum of squared errors (RSSE), defined as ||α̂−α0|| and ||β̂−β0||
for molecular and imaging variables, respectively, where (α̂, β̂) and (α0,β0) are

the estimated and true values of (α,β), respectively. Note that, with the decom-

position strategy, DC-SVD cannot generate the estimated values of α̂ and β̂. For

the proposed approach, FMR-MCP, and Kmeans-MCP, we also use classification

accuracy (Accuracy) to evaluate the performance of the heterogeneity analysis.

Moreover, an independent set with 100 subjects is generated, and the prediction

median squared error (PMSE) is computed.

For each scenario, 500 replicates are simulated, and the medians and me-

dian absolute deviations (MADs) of the evaluation measures are summarized.

The results for the scenarios with AR(0.5), µ1 = µ2 = 0.5, and ϑ1 and ϑ2 are

summarized in Tables 1 and 2. The rest of the results are provided in the Sup-

plementary Materials. Across all simulation scenarios, the proposed approach

has favorable performance. For example, in Table 1, under the scenario with

correlation AR(0.5), balanced heterogeneity design, P1, and ϑ1, the proposed

approach identifies the majority of true positives and only a few false positives

with (M:TPR, M:FPR, I:TPR, I:FPR)=(1.00, 0.02, 1.00, 0.03), compared to

(0.70, 0.02, 0.70, 0.04) for FMR-MCP, (0.15, 0.05, 0.05, 0.03) for Kmeans-MCP,

(0.30,0.02, 0.10, 0.02) for CoRe, (0.40, 0.02, 0.20, 0.01) for DC-SVD, (0.10, 0.05,

0.10, 0.03) for MCP-MI, (0.30, 0.14, –, –) for MCP-M, and (–, –, 0.00, 0.00)

for MCP-I. It also performs better in terms of estimation with, for example,

(M:RSSE, I:RSSE)=(0.67, 0.49) under the scenario with P2 and ϑ1 in Table 1,

compared to (1.65, 1.36), (8.48, 5.15), (3.64, 3.00), (–,–), (6.34, 4.00), (11.97,–

), and (–, 2.86) for the alternatives. More satisfactory prediction accuracy is

observed. Take the scenario with P2 and ϑ2 in Table 2 as an example. The

PMSE values are 1.76 (proposed), 2.81 (FMR-MCP), 8.78 (Kmeans-MCP), 10.52

(CoRe), 11.55 (DC-SVD), 19.00 (MCP-MI), 40.61 (MCP-M), and 13.78 (MCP-

I). The proposed approach also outperforms FMR-MCP and Kmeans-MCP in

the heterogeneity analysis. For example, under the scenario with P3 and ϑ2 in

Table 2, the Accuracy values are 0.85 (proposed), 0.68 (FMR-MCP), and 0.52

(Kmeans-MCP).
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Table 1. Simulation results under the scenarios with AR(0.5), µ1 = µ2 = 0.5, and over-
lapping pattern ϑ1 with 20 blocks. In each cell, median (MAD) based on 500 replicates.

Method Accuracy M:TPR M:FPR M:RSSE I:TPR I:FPR I:RSSE PMSE

P1

proposed 0.95(0.0) 1.00(0.0) 0.02(0.0) 0.63(0.2) 1.00(0.0) 0.03(0.0) 0.48(0.2) 1.82(1.2)

FMR-MCP 0.89(0.1) 0.70(0.4) 0.02(0.0) 2.03(2.6) 0.70(0.4) 0.04(0.0) 1.80(2.3) 7.84(10.7)

Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.05(0.0) 9.14(0.5) 0.05(0.1) 0.03(0.0) 5.48(0.7) 10.38(3.0)

CoRe -- 0.30(0.1) 0.02(0.0) 3.80(0.0) 0.10(0.1) 0.02(0.0) 3.00(0.0) 10.75(2.2)

DC-SVD -- 0.40(0.1) 0.02(0.0) -- 0.20(0.1) 0.01(0.0) -- 12.06(3.7)

MCP-MI -- 0.10(0.1) 0.05(0.0) 6.54(0.5) 0.10(0.1) 0.03(0.0) 4.10(0.5) 19.94(5.8)

MCP-M -- 0.30(0.1) 0.14(0.0) 12.68(1.0) -- -- -- 42.00(9.8)

MCP-I -- -- -- -- 0.00(0.0) 0.00(0.0) 3.00(0.0) 10.50(2.4)

P2

proposed 0.94(0.0) 1.00(0.0) 0.02(0.0) 0.67(0.3) 1.00(0.0) 0.03(0.0) 0.49(0.2) 1.57(1.1)

FMR-MCP 0.91(0.1) 0.80(0.3) 0.02(0.0) 1.65(1.9) 0.85(0.2) 0.04(0.0) 1.36(1.6) 4.55(5.7)

Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.48(0.6) 0.10(0.1) 0.03(0.0) 5.15(0.7) 8.99(2.4)

CoRe -- 0.28(0.1) 0.02(0.0) 3.64(0.1) 0.15(0.1) 0.02(0.0) 3.00(0.0) 10.67(2.3)

DC-SVD -- 0.35(0.1) 0.02(0.0) -- 0.15(0.1) 0.02(0.0) -- 11.40(3.2)

MCP-MI -- 0.15(0.1) 0.05(0.0) 6.34(0.3) 0.10(0.1) 0.03(0.0) 4.00(0.4) 18.15(3.9)

MCP-M -- 0.25(0.1) 0.12(0.0) 11.97(0.8) -- -- -- 40.61(9.8)

MCP-I -- -- -- -- 0.05(0.1) 0.00(0.0) 2.86(0.1) 10.67(2.3)

P3

proposed 0.88(0.1) 0.75(0.2) 0.02(0.0) 1.92(1.0) 0.70(0.3) 0.04(0.0) 1.59(0.9) 4.83(3.6)

FMR-MCP 0.69(0.2) 0.40(0.2) 0.04(0.0) 4.15(3.5) 0.25(0.2) 0.05(0.0) 2.96(1.6) 12.34(10.6)

Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.52(0.6) 0.10(0.1) 0.03(0.0) 5.11(0.5) 8.84(2.6)

CoRe -- 0.50(0.1) 0.01(0.0) 3.73(0.0) 0.20(0.1) 0.02(0.0) 3.00(0.0) 7.97(2.2)

DC-SVD -- 0.50(0.1) 0.02(0.0) -- 0.30(0.1) 0.01(0.0) -- 9.25(3.0)

MCP-MI -- 0.20(0.1) 0.04(0.0) 6.29(0.5) 0.10(0.1) 0.02(0.0) 4.01(0.4) 16.32(3.2)

MCP-M -- 0.30(0.1) 0.13(0.0) 11.57(0.9) -- -- -- 33.72(8.2)

MCP-I -- -- -- -- 0.10(0.1) 0.00(0.0) 3.00(0.1) 7.83(2.2)

Overall, the proposed approach exhibits better performance with a moder-

ate within correlation AR(0.5). Compared to settings P1 and P2, which have

a higher level of heterogeneity, under P3, the performance of the proposed ap-

proach and FMR-MCP decays. The two homogeneity-based alternatives CoRe

and DC-SVD, which accommodate overlapping information, have improved per-

formance. However, the proposed approach remains superior. The superiority

of the proposed approach over FMR-MCP and Kmeans-MCP provides direct

support for the L0-based penalty for accommodating overlapping information.

The improvement over CoRe and DC-SVD suggests the necessity of accounting

for heterogeneity. The proposed approach performs much better than MCP-MI,

MCP-M, and MCP-I, re-establishing the value of data integration.

We conduct additional simulations under setting AR(0.5) for within-block
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Table 2. Simulation results under the scenarios with AR(0.5), µ1 = µ2 = 0.5, and over-
lapping pattern ϑ2 with 20 blocks. In each cell, median (MAD) based on 500 replicates.

Method Accuracy M:TPR M:FPR M:RSSE I:TPR I:FPR I:RSSE PMSE

P1

proposed 0.95(0.0) 1.00(0.0) 0.01(0.0) 0.66(0.3) 1.00(0.0) 0.04(0.0) 0.50(0.3) 1.80(1.5)

FMR-MCP 0.93(0.1) 0.90(0.1) 0.02(0.0) 1.06(1.1) 0.90(0.1) 0.04(0.0) 1.03(1.1) 3.14(3.5)

Kmeans-MCP 0.52(0.0) 0.10(0.1) 0.05(0.0) 9.29(0.6) 0.05(0.1) 0.03(0.0) 5.43(0.6) 10.41(2.8)

CoRe -- 0.30(0.1) 0.02(0.0) 3.80(0.0) 0.10(0.1) 0.02(0.0) 3.00(0.0) 10.75(2.4)

DC-SVD -- 0.40(0.1) 0.02(0.0) -- 0.20(0.1) 0.02(0.0) -- 12.68(4.7)

MCP-MI -- 0.10(0.0) 0.04(0.0) 6.43(0.5) 0.10(0.0) 0.03(0.0) 4.13(0.5) 20.48(6.2)

MCP-M -- 0.30(0.1) 0.14(0.0) 12.68(1.0) -- -- -- 42.00(9.8)

MCP-I -- -- -- -- 0.40(0.3) 0.36(0.1) 17.83(6.1) 58.34(60.6)

P2

proposed 0.94(0.0) 1.00(0.0) 0.01(0.0) 0.62(0.2) 1.00(0.0) 0.04(0.0) 0.49(0.2) 1.76(1.3)

FMR-MCP 0.92(0.1) 0.85(0.2) 0.02(0.0) 1.36(1.6) 0.80(0.3) 0.04(0.0) 1.26(1.4) 2.80(3.4)

Kmeans-MCP 0.52(0.0) 0.10(0.1) 0.04(0.0) 8.53(0.5) 0.10(0.1) 0.03(0.0) 5.33(0.6) 8.78(2.8)

CoRe -- 0.30(0.1) 0.02(0.0) 3.65(0.1) 0.15(0.1) 0.02(0.0) 3.00(0.0) 10.52(2.5)

DC-SVD -- 0.35(0.1) 0.02(0.0) -- 0.20(0.1) 0.02(0.0) -- 11.55(3.3)

MCP-MI -- 0.15(0.1) 0.04(0.0) 6.43(0.5) 0.10(0.1) 0.03(0.0) 4.16(0.4) 19.00(5.5)

MCP-M -- 0.25(0.1) 0.12(0.0) 11.97(0.8) -- -- -- 40.61(9.8)

MCP-I -- -- -- -- 0.10(0.1) 0.01(0.0) 3.05(0.4) 13.78(9.1)

P3

proposed 0.85(0.1) 0.70(0.3) 0.02(0.0) 2.18(1.4) 0.65(0.4) 0.05(0.0) 1.65(1.0) 5.70(4.5)

FMR-MCP 0.68(0.2) 0.40(0.3) 0.04(0.0) 4.85(3.5) 0.25(0.3) 0.06(0.0) 3.05(1.6) 11.56(10.8)

Kmeans-MCP 0.52(0.0) 0.15(0.1) 0.04(0.0) 8.57(0.6) 0.10(0.1) 0.03(0.0) 4.99(0.6) 8.49(2.3)

CoRe -- 0.50(0.1) 0.02(0.0) 3.73(0.0) 0.20(0.1) 0.02(0.0) 3.00(0.0) 7.95(2.3)

DC-SVD -- 0.50(0.1) 0.02(0.0) -- 0.30(0.1) 0.01(0.0) -- 9.23(3.2)

MCP-MI -- 0.20(0.1) 0.04(0.0) 6.13(0.4) 0.10(0.1) 0.03(0.0) 4.05(0.5) 17.15(4.3)

MCP-M -- 0.30(0.1) 0.13(0.0) 11.57(0.9) -- -- -- 33.72(8.2)

MCP-I -- -- -- -- 0.40(0.3) 0.35(0.1) 16.63(5.6) 49.28(54.1)

correlation, and settings ϑ1 and ϑ2 for the overlapping pattern. First, we con-

sider two additional settings (P4 and P5 in Table 5 of Appendix) of important

variables. Specifically, P4 has different important variables for the two sub-

groups, which may closely mimic the real data example (Tables 3 and 4). P5 is

a more homogeneous case, where more than half of the important variables have

the same effects for the two subgroups, and the remaining effects have different

magnitudes, but the same directions. Second, a more imbalanced heterogeneity

design with µ1 = 0.1 and µ2 = 0.9 is considered. Summary results are pre-

sented in Tables S13–S21 of the Supplementary Materials, where for the highly

imbalanced heterogeneity scenarios, we also provide the sensitivity and specificity

results of the heterogeneity analysis and consider the two subgroups separately.

Patterns similar to those described above are observed. Specifically, under the
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most homogeneous setting P5 (Table S14 of the Supplementary Materials), the

proposed approach behaves slightly worse than DC-SVD, as expected, but still

better than the other alternatives. Under the highly imbalanced setting with

µ1 = 0.1 and µ2 = 0.9, the proposed approach still performs well in identifying

the two subgroups, with high accuracy. In addition, it has satisfactory identi-

fication and estimation performance for the second subgroup, but worse perfor-

mance for the first subgroup, which has a very limited sample size, compared to

the homogeneity-based alternatives. Because the two subgroups share the same

important variables under settings P1, P3, and P5, it is not surprising that the

homogeneity-based alternatives behave well by considering the two subgroups

together.

A closer look at the number of mixture components. In the above simu-

lations, we assume that K = 2 is known, as in published studies such as Khalili

and Chen (2007), Hui, Warton and Foster (2015), and Liu et al. (2020). We

propose adopting the BIC when the value of K needs to be estimated. Here, we

additionally take the scenarios with settings AR(0.5) and ϑ1 as an example, and

examine the performance of the BIC for selecting K. Specifically, with candi-

date K = 1, 2, 3, 4, 5, we simulate 500 replicates, compute the frequency that a

particular value is selected, and report the results in Table S22 (Supplementary

Materials). In general, the BIC has satisfactory performance. The setting P3

has a higher degree of homogeneity compared to P1 and P2, making it more

difficult to identify the true value of K = 2. We report the summary identifi-

cation and estimation results of the proposed approach with BIC-selected K in

Table S23 (Supplementary Materials), where the true and estimated subgroups

are matched by minimizing the RSSE when K is overestimated (Khalili and Lin

(2013)). The observed patterns are similar to those in Table 1 and Table S3

(Supplementary Materials), suggesting that estimating K does not significantly

affect the performance of the proposed approach.

Computer time. We examine the computer time under the above simulation

settings and n = 300, p = 1000, and q = 500. With fixed tuning parameters and

one initialization, the average computer time of the proposed analysis is 17.09

seconds, using a laptop with standard configurations, compared to 16.58, 1.05,

0.18, 5.69, 0.81, 0.73, and 0.71 seconds for FMR-MCP, Kmeans-MCP, CoRe, DC-

SVD, MCP-MI, MCP-M, and MCP-I, respectively. With more complex analysis,

the proposed approach has a higher computational cost, but is still affordable.
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4. Data Analysis

TCGA is a hallmark genomics program organized by the National Cancer

Institute (NCI) and National Human Genome Research Institute (NHGRI), and

has significantly advanced cancer research in multiple aspects. It has published

high-quality outcome/phenotype, clinical, molecular, and histopathological imag-

ing data. There have been both unsupervised (Li et al. (2018)) and supervised

(Ahmad and Fröhlich (2017)) heterogeneity studies conducted using TCGA data.

In our analysis, we combine data on lung adenocarcinoma (LUAD) and

lung squamous cell (LUSC), two major subtypes of non-small-cell lung cancer

(NSCLC), to increase the sample size. We acknowledge their differences. How-

ever, as the proposed analysis is designed to accommodate heterogeneity, this

does not pose a problem. The response variable is the reference value for the

pre-bronchodilator forced expiratory volume in one second in percent (FEV1),

which is an important biomarker for lung capacity and tightly associated with

prognosis and other outcomes. For the molecular variables, we analyze mRNA

gene expressions downloaded from cBioPortal. For the imaging variables, we

adopt a recently developed data extraction and processing pipeline (Zhong, Wu

and Ma (2019)). Briefly, we first download the diagnostic slides using the GDC

Data Transfer Tool from the TCGA website, and then extract high-dimensional

imaging variables using CellProfiler. These imaging features represent objective

attributes of histopathological images, including the area and perimeter of the

nucleus and cytoplasm, mean and standard deviation of these measures, and

other general image attributes. After subject matching, a total of 370 subjects

with 20,440 gene expression measurements and 221 imaging features are avail-

able. Brief information is provided in Figure S2 (Supplementary Materials). Our

preliminary exploration suggests that if the dimensions of the two types of data

differ significantly, performance may be inferior. In addition, the number of

lung capacity-related genes is not expected to be large. As such, we conduct a

marginal screening, and the top 500 genes with the smallest p-values computed

from a marginal linear regression are selected for downstream analysis.

In Figure S3 (Supplementary Materials), we show the histogram and esti-

mated density of FEV1. We observe two modes, which may reasonably suggest

heterogeneity with two subgroups. FEV1 has also been examined in the literature

(Liu et al. (2020)), which suggests continuous and close-to-normal distributions.

As such, we model it using a mixture of two normal distributions. Note that

such exploratory analysis based on a histogram has previously been conducted in

the literature (Khalili and Chen (2007)). To be cautious, we have also conducted
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Table 3. Data analysis using the proposed approach: identified genes and estimates.

Gene α1 α2 Gene α1 α2 Gene α1 α2 Gene α1 α2

EIF4A3 -0.58 ECHDC2 -0.19 RFC5 0.03 NFU1 -0.16

DHX36 0.21 N4BP1 0.12 POLR3C 0.37 FAM160A2 -0.26

KIAA0141 0.25 FAM210A -0.04 PSMD12 -0.08 PCDHB4 0.17

WDR43 -0.07 SST 0.15 RPL23AP53 0.35 CD81 0.16

CNPPD1 0.49 ZNF596 0.12 PSME4 0.01 MAK16 -0.34

METTL5 -0.22 0.09 RNF115 -0.16 NCBP1 0.20 GCSH 0.08

DCUN1D1 -0.10 FBXO28 -0.49 LRRC31 0.13 GCFC2 -0.07

DBR1 -0.20 GPN1 0.06 RHBDF1 0.08 L2HGDH -0.11

B9D2 0.09 ADSL 0.07 TCTEX1D2 -0.09 DTX2 0.38

DNAJB4 -0.28 IGIP -0.22 RAD51 0.32 RGL2 0.27

RPSAP58 -0.10 MEGF6 0.06 BIN3 -0.07 OR6C6 -0.15

CNKSR1 0.11 IL22RA2 0.10 RSL24D1 -0.02 KIAA1109 -0.20

CCT5 -0.04 TCF25 -0.15 DYNC1I2 -0.25 TMEM50B 0.10

IRX2 0.42 METTL21C 0.18 EPT1 0.29 TRAPPC10 -0.10

CTNNAL1 -0.14 CENPO 0.24 SCNN1D 0.03 CSNK2A1 0.01

TRMT61B 0.10 C1ORF112 -0.03 DEFB4A 0.16 PDLIM2 -0.02

MRPL3 0.35 CCDC92 0.03 ZIC1 -0.04 ZC3H6 0.01

ASTN1 -0.05 UGT1A7 -0.09 MAP3K6 -0.14 0.12 KIAA1715 -0.06

CD1E -0.16 EML3 -0.05 ZNF487 0.23 RPA3 -0.12

TOMM5 -0.10 HMGXB4 -0.07 PRDM9 -0.17 KCNK18 -0.28

FAM86JP -0.17 RNF168 0.10 CDC73 0.11 CAMTA2 0.05

LDLRAD2 -0.03 RNPEPL1 -0.08 PAK1 -0.01 YPEL3 -0.19

IARS 0.04 POLR2D -0.04 GPATCH3 0.08 SNX5 -0.10

analyses with 3, 4, and 5 mixture components. However, the results are not

as sensible, with the extra components having very small numbers of important

variables and/or small mixture probabilities. With two mixture components, the

proposed approach identifies 92 genes and 24 imaging variables, and the detailed

information is provided in Tables 3 and 4. Almost all of the important variables

contribute to the response in only one subgroup, except for genes METTL5 and

MAP3K6, which have effects in both subgroups, but with different signs. More

information on the identified gene expressions and imaging features is provided

graphically in Figure S4 (Supplementary Materials). For the two subgroups sep-

arately, there are only 49 and 43, respectively, gene-imaging variable pairs with

absolute correlations larger than 0.1, which again shows the proposed approach’s

effectiveness in identifying non-overlapping information.

A literature search suggests that many of the identified genes show strong

evidence of being associated with lung capacity and cancer. More details are

provided in the Supplementary Materials. We also examine the 24 identified

imaging features more closely. These features measure tissue area shape, texture,
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Table 4. Data analysis using the proposed approach: identified imaging features and
estimates.

Group Imaging Feature Name Abbreviation β1 β2

Geometry AreaShape Center X ASCX -0.022

Geometry AreaShape EulerNumber ASEN -0.003

Geometry AreaShape Zernike 5 3 ASZ53 -0.212

Geometry AreaShape Zernike 5 5 ASZ55 -0.012

Geometry AreaShape Zernike 7 1 ASZ71 -0.202

Geometry AreaShape Zernike 7 3 ASZ73 0.209

Geometry AreaShape Zernike 8 0 ASZ80 -0.001

Holistic Count Identifyeosinprimarycytoplasm CIPC 0.113

Texture Granularity 10 ImageAfterMath G10M 0.220

Texture Granularity 11 ImageAfterMath.1 G11M1 -0.200

Texture Granularity 12 ImageAfterMath.1 G12M1 -0.168

Texture Granularity 13 ImageAfterMath G13M 0.005

Texture Granularity 13 ImageAfterMath.1 G13M1 0.111

Texture Granularity 9 ImageAfterMath G9M 0.005

Texture Granularity 9 ImageAfterMath.1 G9M1 0.041

Geometry Location Center Y.1 LCY1 -0.066

Texture Texture Correlation ImageAfterMath 3 00 TCM300 0.243

Texture Texture Correlation ImageAfterMath 3 01 TCM301 -0.329

Texture Texture Correlation ImageAfterMath 3 02 TCM302 0.066

Texture Texture DifferenceEntropy maskosingray 3 02 TDM302 0.280

Texture Texture DifferenceVariance maskosingray 3 02 TDVM302 -0.182

Texture Texture Entropy ImageAfterMath 3 03 TEM303 -0.015

Holistic Threshold WeightedVariance Identifyeosinprimarycytoplasm TWPC -0.132

Holistic Threshold WeightedVariance identifyhemaprimarynuclei TWPN 0.002

nuclear, and cytoplasm parameters. In particular, 13 are texture related. Similar

findings have been made in previous studies (Luo et al. (2017)). However, our

literature review suggests that the biological implications of high-dimensional

imaging features are not well understood. As such, interpretation is not pursued

further.

Analysis is also conducted using the alternatives. Summary comparison re-

sults are presented in Table S24 (Supplementary Materials), including the num-

bers of genes and imaging variables identified by the different approaches, and

their overlaps and RV coefficients. The RV coefficient measures the similarity

between two data matrices, with a larger value indicating higher similarity. The

various approaches identify different sets of features with moderate overlapping,

as suggested by the RV coefficients. To provide additional support to the analy-

sis, we evaluate the prediction performance and selection stability of the proposed

approach and the alternatives. Specifically, we conduct 100 random splits to gen-
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erate training and testing data. Estimation is conducted using the training data,

prediction is made on the testing data, and the median values of the PMSE and

Pearson’s correlation (COR, between the estimated and observed values of FEV1)

are computed. The proposed approach has (PMSE,COR)=(0.32,0.49), compared

to (0.34,0.48) for FMR-MCP, (0.55,0.13) for Kmeans-MCP, (0.33,0.15) for CoRe,

(0.32,0.19) for DC-SVD, (1.02,0.15) for MCP-MI, (0.46,0.12) for MCP-M, and

(0.34,0.15) for MCP-I. When using the observed occurrence index (OOI), which

is the probability of being identified in multiple splits, to evaluate stability, the

proposed approach has a mean OOI value for the identified genes and imaging

features of 0.265, compared to 0.254, 0.181, 0.152, 0.132, 0.104, 0.098, and 0.200

for the alternatives. The improved prediction and stability performance supports

the proposed analysis to a certain extent.

5. Discussion

Heterogeneity analysis is a “classic”, yet still highly important topic in can-

cer research. In this article, we have advanced cancer heterogeneity analysis by

integrating molecular and histopathological imaging features. We have adopted

penalization for regularized estimation and selection, and, equally importantly,

the promotion of non-overlapping information. The proposed analysis and ap-

proach are biologically well motivated and intuitive. Theoretical investigation,

simulation, and data analysis have demonstrated satisfactory performance. Over-

all, this study can enrich the family of cancer analytics and suggest a new data

integration direction for development. Furthermore, the proposed analysis can

be applied to a wide variety of data types, models, and molecular and other

measurements.

The proposed approach can be extended further to accommodate more than

two types of covariates. This will require revising the last penalty term to include

all pairs (of covariate types), and the extension of the other steps will be mostly

straightforward. In computation, we have adopted multiple random initializa-

tions, and chosen the final estimator as the one with the smallest BIC. Other

initialization techniques can also be adopted. In particular, our brief exploration

has suggested that the Kmeans initializations lead to similar results. This is a

“classic” problem, and we have chosen not to reiterate the literature. The adopted

FMR technique can reveal important differences across subgroups in modeling a

response. However, as has been noted in the literature, such differences may

or may not be associated with disease subtypes or other clinical characteristics.

In our data analysis, although FEV1 is an important biomarker for prognosis
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and other outcomes, it is still unclear what other clinical significance the identi-

fied heterogeneity and models have. Being beyond our scope, this aspect is not

pursued further. It will also be of interest to explore other and more complex

measures of overlapping information. For methodological development, we have

focused on molecular and imaging variables. It will be of interest to expand the

scope of the analysis to include clinical/demographic and other variables.

Supplementary Material

The Supplementary Material include additional simulation and data analysis

results referenced in Sections 2, 3, and 4.
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Appendix

Proof of Theorem 1

Let δn =
√
s/n and w = (g′K×1, t

′
K×1,u

′
1|A1|×1

, . . . ,u′K|AK |×1
,v′1|B1|×1

, . . . ,

v′K|BK |×1
)′. To prove Theorem 1, it suffices to show that under Conditions (C1)-

(C4), Q̃n(θC) < Q̃n(θ0C) on the boundary of set {θC : ||θC − θ0C || ≤ Cδn}, where

C is a sufficiently large positive constant. It is equivalent to show that Q̃n(θ0C +

δnw)− Q̃n(θ0C) is strictly negative everywhere on the boundary {w : ||w|| = C}.
Let Ln(θC) =

∑n
i=1 li(θC) with li(θC) = log f(yi;Xi·,Zi·,θC). Then

Dn(w) = Q̃n(θ0C + δnw)− Q̃n(θ0C)

= Ln(θ0C + δnw)− Ln(θ0C)

−nλ2
K∑
k=1

∑
j∈Ak

∑
l∈Bk

cjl

(
1− e−(α0

kj+δnukl)
2
/τ
)(

1− e−(β0
kl+δnvkl)

2/τ
)
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+nλ2

K∑
k=1

∑
j∈Ak

∑
l∈Bk

cjl

(
1− e−(α0

kj)
2
/τ
)(

1− e−(β0
kl)

2/τ
)

= Ln(θ0C + δnw)− Ln(θ0C) + IV.

We have

Ln(θ0C + δnw)− Ln(θ0C) = δnw
′

(
∂Ln(θC)

∂θC

∣∣∣∣
θ0
C

)
+

1

2
δ2nw

′

(
∂2Ln(θC)

∂2θC

∣∣∣∣
θ0
C

)
w

+
δ3n
6

∑
j,l,m∈C

∂3Ln(θC)

∂θj∂θl∂θm

∣∣∣∣
θ̃C

wjwlwm

= I + II + III,

where θ̃C lies on the line segment connecting θ0C + δnw and θ0C . With Condition

(C1), we have

1√
n

∂Ln(θC)

∂θC

∣∣∣∣
θ0
C

=
√
n

(
1

n

n∑
i=1

∂li(θC)

∂θC

∣∣∣∣
θ0
C

)

=
√
n

(
1

n

n∑
i=1

∂li(θC)

∂θC

∣∣∣∣
θ0
C

− E

[
∂l(θC)

∂θC

]∣∣∣∣
θ0
C

)
→ N(0, Σ̃).

Thus ∂Ln(θC)/∂θC |θ0
C

= OP (
√
n) = Op(

√
ns). Then,

|I| ≤ OP (nδ2n)||w||.

For II,

II = −1

2
nδ2nw

′I(θ0C)w +
1

2
nδ2nw

′

(
1

n

∂2Ln(θC)

∂2θC

∣∣∣∣
θ0
C

+ I(θ0C)

)
w.

Following Lemma 8 in Fan and Peng (2004), with Conditions (C1) and (C2), we

have ∥∥∥∥∥ 1

n

∂2Ln(θC)

∂2θC

∣∣∣∣
θ0
C

+ I(θ0C)

∥∥∥∥∥ = op

(
1

s

)
.

Therefore,

II = −1

2
nδ2nw

′I(θ0C)w +
1

2
nδ2n||w||2 × op(1).
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For III, by Condition (C3) and the Cauchy-Schwartz inequality, we have

|III| = δ3n
6

∣∣∣∣∣∣
∑

j,l,m∈C

∂3Ln(θC)

∂θj∂θl∂θm

∣∣∣∣
θ̃C

wjwlwm

∣∣∣∣∣∣
=
δ3n
6

∣∣∣∣∣∣
∑

j,l,m∈C

n∑
i=1

∂3 log f(yi;Xi·,Zi·,θC)

∂θj∂θl∂θm

∣∣∣∣
θ̃C

wjwlwm

∣∣∣∣∣∣
≤ δ3n

6

n∑
i=1

 ∑
j,l,m∈C

M2
2 (Vi)

1/2

||w||3 = Op(s
3/2δn)× nδ2 × ||w||2.

Since s� n, we have

III = op(nδ
2
n)||w||2.

Moreover,

|IV | = nλ2

∣∣∣∣∣
K∑
k=1

∑
j∈Ak

∑
l∈Bk

{
cjl

[(
e−(α

0
kj+δnukj)2/τ − e−(α0

kj)
2/τ
)

+
(
e−(β

0
kl+δnvkl)2/τ − e−(β0

kl)
2/τ
)

−
(
e−((α

0
kj+δnukj)2+(β0

kl+δnvkl)2)/τ − e−((α0
kj)

2+(β0
kl)

2)/τ
)]}∣∣∣∣∣.

Let c0 = max{|corr(Xj , Zl)|, j ∈ Ak, l ∈ Bk, k = 1, . . . ,K} with corr(Xj , Zl)

being the correlation between Xj and Zl. If c0 < cPcorr, with Condition (C4), we

have

P

 max
j∈Ak,l∈Bk,
k=1,...,K

|cPcorrjl | < cPcorr


≥ 1− P

 max
j∈Ak,l∈Bk,
k=1,...,K

|cPcorrjl | ≥ cPcorr


≥ 1−
K∑
k=1

∑
j∈Ak

∑
l∈Bk

P
(
|corr(Xj , Zl) + cPcorrjl − corr(Xj , Zl)| ≥ cPcorr

)
≥ 1−

K∑
k=1

∑
j∈Ak

∑
l∈Bk

P
(
|cPcorrjl − corr(Xj , Zl)| ≥ cPcorr − c0

)
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≥ 1− 2s2 exp

(
−n(cPcorr − c0)2

2κ1

)
→ 1.

Thus, if c0 < cPcorr, with probability approaching 1, maxj∈Ak,l∈Bk,k=1,...,K |cPcorrjl |
< cPcorr. That is, IV = 0. Next, consider the scenario with c0 ≥ cPcorr. With a

first order Taylor’s expansion,

e−(α0
kj+δnukj)

2
/τ − e−(α0

kj)
2
/τ = −2

τ
e−(α̃kj)

2/τ α̃kjδnukj , (A.1)

and

e−(β
0
kl+δnvkl)

2/τ − e−(β0
kl)

2/τ = −2

τ
e−(β̃kl)

2
/τ β̃klδnvkl. (A.2)

Denote η0kjl = (α0
kj , β

0
kl)
′ and ψkjl = (ukj , vkl)

′. Then we have

e−((α
0
kj+δnukj)2+(β0

kl+δnvkl)2)/τ − e−((α0
kj)

2+(β0
kl)

2)/τ

, e−((η
0
kjl+δnψkjl)′(η0

kjl+δnψkjl))/τ − e−(η0
kjl)
′(η0

kjl)/τ

= −2

τ
e−(η̃kjl)′(η̃kjl)/τδn (η̃kjl)

′ψkjl, (A.3)

where θ̃C = ((µ̃)′, (σ̃)′, (α̃1,A1
)′, . . . , (α̃K,AK

)′, (β̃1,B1
)′, . . . , (β̃K,BK

)′)′ lies on the

line segment connecting θ0C+δnw and θ0C . Denote b0 = min{{|α0
kj |, j ∈ Ak}, {|β0kl|,

l ∈ Bk}, k = 1, . . . ,K}. First consider (A.1). With δn =
√
s/n, we have α̃kj >

b0/
√

2. Then with Condition (C4), we have α̃2
kj/τ > b20/2τ > 1. Since e−xx is

monotonically decreasing when x > 1,∣∣∣e−(α0
kj+δnukj)

2
/τ − e−(α0

kj)
2
/τ
∣∣∣ =

2

τ
e−(α̃kj)

2/τ |α̃kj |δn|ukj |

=
(α̃kj)

2

τ
e−(α̃kj)

2/τ 2

|α̃kj |
δn|ukj |

≤ b20
τ
e−b

2
02τ

√
2

b0
δn|ukj | =

√
2b0
τ

e−b
2
0/2τδn|ukj |.

Similar conclusions can be drawn for (A.2) and (A.3). With
√
nλ2b0e

−b20/2τ/τ =

o(1) in Condition (C4), we have

|IV | ≤ nλ2
K∑
k=1

∑
j∈Ak

∑
l∈Bk

{ ∣∣∣e−(α0
kj+δnukj)

2
/τ − e−(α0

kj)
2
/τ
∣∣∣

+
∣∣∣e−(β0

kl+δnvkl)
2/τ − e−(β0

kl)
2/τ
∣∣∣

+
∣∣∣e−((α0

kj+δnukj)2+(β0
kl+δnvkl)

2)/τ − e−((α0
kj)

2+(β0
kl)

2)/τ
∣∣∣ }
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≤ 2nλ2

√
2b0
τ

e−b
2
0/2τδn

√
s||w||

= 2
√
nλ2

√
2b0
τ

e−b
2
0/2τnδ2n||w|| = op(nδ

2
n)||w||.

It is observed that II dominates I, III, and IV , and is negative, since I(θC) is

positive definite at θC = θ0C . This completes the proof.

Proof of Theorem 2

Let θ̂ have θ̂C = θ∗C , a strict local maximizer of Q̃n(θC), and θ̂Cc = 0. First,

consider α̂k,Ac
k
. Following Theorem 1 in Fan and Lv (2011), with Condition (C5)

and Theorem 1, it suffices to check condition (8) in Fan and Lv (2011). Let

h1 = (nλ1)
−1
[
∂Ln(θ)

∂αk,Ac
k

∣∣∣∣
θ̂

− λ2n
∂ρ2(α,β)

∂αk,Ac
k

∣∣∣∣
θ̂

]
,

where ρ2(α,β) =
∑K

k=1

∑p
j=1

∑q
l=1 cjl(1− e

−α2
kj/τ )(1− e−β2

kl/τ ).

For j ∈ Ack, ∂ρ2(α,β)/∂akj =
∑q

l=1(2/τ)cjl(1 − e−β
2
kl/τ )e−α

2
kj/ταkj . As

α̂k,Ac
k

= 0, ∂ρ2(α,β)/∂akj |θ̂ = 0 for j ∈ Ack. Therefore, λ2n ∂ρ2(α,β)/∂αk,Ac
k

∣∣
θ̂

= 0. Then, we have

‖h1‖∞ = (nλ1)
−1 max

j∈Ac
k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ̂

∣∣∣∣ .
For j ∈ Ac, we have

∂Ln(θ)

∂αkj

∣∣∣∣
θ̂

=
∂Ln(θ)

∂αkj

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂2Ln(θ)

∂αkj∂θC

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂3Ln(θ)

∂αkj∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)
, (A.4)

where θ̃ lies on the line segment connecting θ0 and θ̂.

For the first term of (A.4), consider the event

Ω1 =

{
max
j∈Ac

k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ ≤ ζn√n} ,
with ζn = na(log(n))1/2, a ∈ (0, 1/2). With Condition (C3) and Bernstein’s

inequality, we have

P (Ω1) = 1− P
{

max
j∈Ac

k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ > ζn
√
n

}
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≥ 1−
∑
j∈Ac

k

P

{∣∣∣∣ 1√
n

∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ > ζn

}

≥ 1− 2(p− ak) exp

(
− ζ2n

2κ2

)
≥ 1− 2p exp

(
− ζ2n

2κ2

)
→ 1,

as log(p) = O(na) in Condition (C6). Thus, with probability approaching 1,

max
j∈Ac

k

∣∣∣∣ ∂Ln(θ)

∂αkj

∣∣∣∣
θ0

∣∣∣∣ = O(na/2+1/2
√

log n).

For the second term of (A.4), by Condition (C3) and Cauchy-Schwartz inequality,

max
j∈Ac

k

∣∣∣∣(θ̂C − θ0C)′ ∂2Ln(θ)

∂αkj∂θC

∣∣∣∣
θ0

∣∣∣∣
≤ max

j∈Ac
k

n∑
i=1

∣∣∣∣∣∑
l∈C

∂2 log f(yi;Xi·,Zi·,θ)

∂αkj∂θl
(θ̂l − θ0l )

∣∣∣∣∣
≤ max

j∈Ac
k

n∑
i=1

(∑
l∈C

(
∂2 log f(yi;Xi·,Zi·,θ)

∂αkj∂θl

)2
)1/2

‖θ̂C − θ0C‖

≤
n∑
i=1

(
s (M1(Vi))

2
)1/2 ∥∥∥θ̂C − θ0C∥∥∥ = Op(s

√
n).

For the third term of (A.4), by Condition (C3) and Cauchy-Schwartz inequality,

max
j∈Ac

k

∣∣∣∣(θ̂C − θ0C)′ ∂3Ln(θ)

∂αkj∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)∣∣∣∣
≤ max

j∈Ac
k

n∑
i=1

∑
l,m∈C

(
∂3 log f(yi;Xi·,Zi·,θ)

∂αkj∂θl∂θm

∣∣∣∣
θ̃

)2
1/2 ∥∥∥θ̂C − θ0C∥∥∥2

≤
n∑
i=1

(
s2 (M2(Vi))

2
)1/2 ∥∥∥θ̂C − θ0C∥∥∥2 = op(s

√
n).

Then, Condition (C5) gives ||h1||∞ ≤ op(1). Next, consider β̂k,Bc
k
. Similar to

above, let

h2 = (nλ1)
−1
[
∂Ln(θ)

∂βk,Bc
k

∣∣∣∣
θ̂

− λ2n
∂ρ2(α,β)

∂βk,Bc
k

∣∣∣∣
θ̂

]
.

For l ∈ Bck, ∂ρ2(α,β)/∂βkl =
∑p

j=1(2/τ)cjl(1− e−α
2
kj/τ )e−β

2
kl/τβkl. As β̂k,Bc

k
= 0,
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∂ρ2(α,β)/∂βkl|θ̂ = 0 for l ∈ Bck. Therefore, λ2n (∂ρ2(α,β)/∂βk,Bc
k
)
∣∣
θ̂

= 0. Then,

we have

‖h2‖∞ = (nλ1)
−1 max

l∈Bc
k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ̂

∣∣∣∣ .
For l ∈ Bc, we have

∂Ln(θ)

∂βkl

∣∣∣∣
θ̂

=
∂Ln(θ)

∂βkl

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂2Ln(θ)

∂βkl∂θC

∣∣∣∣
θ0

+
(
θ̂C − θ0C

)′ ∂3Ln(θ)

∂βkl∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)
, (A.5)

where θ̃ lies on the line segment connecting θ0 and θ̂. For the first term of (A.5),

consider the event

Ω2 =

{
max
l∈Bc

k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ ≤ ζn√n} ,
with ζn = na(log(n))1/2. Similar to the analysis of Ω1, we have

P (Ω2) = 1− P
{

max
l∈Bc

k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ > ζn
√
n

}
≥ 1−

∑
l∈Bc

k

P

{∣∣∣∣ 1√
n

∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ > ζn

}

≥ 1− 2(q − bk) exp

(
− ζ2n

2κ2

)
≥ 1− 2q exp

(
− ζ2n

2κ2

)
→ 1,

as log(q) = O(na) in Condition (C6). Thus, with probability approaching 1,

max
l∈Bc

k

∣∣∣∣ ∂Ln(θ)

∂βkl

∣∣∣∣
θ0

∣∣∣∣ = O(na/2+1/2
√

log n).

For the second term of (A.5), by Condition (C3) and Cauchy-Schwartz inequality,

max
l∈Bc

k

∣∣∣∣(θ̂C − θ0C)′ ∂2Ln(θ)

∂βkl∂θC

∣∣∣∣
θ0

∣∣∣∣
≤ max

l∈Bc
k

n∑
i=1

∣∣∣∣∣∣
∑
j∈C

∂2 log f(yi;Xi·,Zi·,θ)

∂βkl∂θj
(θ̂j − θ0j )

∣∣∣∣∣∣
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Table 5. Simulation settings: regression coefficients of important variables.

Setting p0 Regression coefficient

P1 10

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 0 0 0 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 0 0 0 0 0 0 0 0 0 0

P2 13

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 0 0 0 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 0 0 0 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 0 0 0 0 0 0 0

P3 10

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 −0.5 −0.5 −0.5 −0.5 −0.5 0.5 0.5 −0.5 −0.5 −0.5 0 0 0 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 −0.5 −0.5 −0.5 −0.5 −0.5 0.5 0.5 −0.5 −0.5 −0.5 0 0 0 0 0 0 0 0 0 0

P4 20

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 0 0 0 0 0 0 0 0 0 0 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 0 0 0 0 0 0 0 0 0 0 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

P5 10

α1 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

α2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β1 1.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

β2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0 0 0 0

≤ max
l∈Bc

k

n∑
i=1

∑
j∈C

(
∂2 log f(yi;Xi·,Zi·,θ)

∂βkl∂θj

)2
1/2

‖θ̂C − θ0C‖

≤
n∑
i=1

(
s (M1(Vi))

2
)1/2 ∥∥∥θ̂C − θ0C∥∥∥ = Op(s

√
n).

For the third term of (A.5), by Condition (C3) and Cauchy-Schwartz inequality,

max
l∈Bc

k

∣∣∣∣(θ̂C − θ0C)′ ∂3Ln(θ)

∂βkl∂2θC

∣∣∣∣
θ̃

(
θ̂C − θ0C

)∣∣∣∣
≤ max

l∈Bc
k

n∑
i=1

 ∑
j,m∈C

(
∂3 log f(yi;Xi·,Zi·,θ)

∂βkl∂θj∂θm

∣∣∣∣
θ̃

)2
1/2 ∥∥∥θ̂C − θ0C∥∥∥2

≤
n∑
i=1

(
s2 (M2(Vi))

2
)1/2 ∥∥∥θ̂C − θ0C∥∥∥2 = op(s

√
n).

Thus, ||h2||∞ ≤ op(1). This completes the proof.
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