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Abstract: Time series regression models are commonly used in time series analysis.
However, in modern applications, data are often serially correlated and have an
ultrahigh dimension and fat tails, making it difficult to develop new time series
analysis tools. In this paper, we propose a novel Bernstein-type inequality for high-
dimensional linear processes, and apply it to investigate two high-dimensional robust
estimation problems: (1) a time series regression with fat-tailed and correlated
covariates and errors, and (2) a fat-tailed vector autoregression. Our proposed
approach allows for exponential increases in the dimension with the sample size,
under mild moment and dependence conditions, while ensuring consistency in the
estimation process.
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1. Introduction

The growing prevalence of massive data sets has increased the importance of
high-dimensional data analysis, and particularly, high-dimensional linear regres-
sion. Specifically, consider the linear regression models

K:X;rﬁ+§“ izla"'un)

where Y;, X;, and &; are the response, covariate, and error variables, respectively.
Various regularization methods have been used to estimate the p-dimensional
regression parameter vector, including those of Tibshirani| (1996, Zou and Hastie
(2005), [Fan and Li| (2001), Bickel, Ritov and Tsybakov, (2009), Meinshausen
and Yu (2009)), and many others; see Bithlmann and Van De Geer| (2011)) for a
comprehensive overview. Most investigations assume that the covariates X; (if
it is a random design) and errors §; are independent and identically distributed
(i.i.d.) Gaussian or sub-Gaussian random variables, which can be too restrictive
in practice.
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On the one hand, serial correlation might occur when data are collected over
time, requiring, for example, a linear regression with time series regressors and
autoregressive errors (Harvey, [1990; [Tsay, |1984; [Shumway and Stoffer, 2000).
On the other hand, many applications involving time series data are concerned
with high-dimensional objects and fat-tailed distributions, including those in
quantitative finance (Cont, 2001), portfolio allocation (Kim et al., [2012), risk
management (Koopman and Lucas|, 2008), brain networks (Friston), 2011), and
geophysical dynamic studies (Kondrashov et al.l |2005).

Previous works have examined linear regression with correlated errors.
Specifically, the Lasso estimator is studied for linear regression with autore-
gressive errors by Wang, Li and Tsai (2007) and [Yoon, Park and Lee (2013]),
weakly dependent errors by (Guptal (2012)), and long memory errors by Kaul
(2014). However, these studies focus on cases in which the dimension p is smaller
than the sample size n, or the Gaussian assumption is imposed on the error
process. More recently, [Wu and Wu| (2016) and |Chernozhukov et al.| (2021) used
the framework of functional dependence measures to account for both dependent
covariates and errors in linear regression, allowing p to increase with n at a
polynomial rate, while maintaining consistency. However, a narrow range is still
required for the dimension in the presence of non-Gaussian and dependent errors.
To address the ultrahigh-dimensional cases, where p can grow exponentially with
n, various robust methods have been proposed for linear regression with i.i.d. fat-
tailed errors, including the penalized Huber M-estimation (Fan, Li and Wang;,
2017; Lohl 2017} |2021)), sparse least trimmed squares (Alfons, Croux and Gelper,
2013), and ESL-Lasso (Wang et all [2013), among others. In this study, we
consider a robust estimation of a time series regression, allowing for ultrahigh
dimensions and fat-tailed and correlated errors.

Vector autoregression (VAR) is another popular linear model for describing
the evolution of a set of variables over time, and there has been significant progress
in estimating high-dimensional VAR models. Inspired by its development in
high-dimensional linear regression, Hsu, Hung and Changl (2008), Nardi and
Rinaldo (2011, and Basu and Michailidis| (2015) considered the Lasso estimator
with an ¢;-penalty. |[Kock and Callot| (2015]) established oracle inequalities for
high-dimensional VAR models. Han, Lu and Liu| (2015) adopted a Dantzig-
type penalization. |Guo, Wang and Yao| (2016|) proposed a Bayesian information
criterion based on residual sums of the least squares estimator to estimate a high-
dimensional banded autoregression. However, most of these studies require the
Gaussian assumption or the existence of a finite exponential moment. In terms
of econometric analysis, Sims| (1980]) raised the concern that fat tails in VAR
models can affect the validity of statistical inference, and may lead to low degrees
of freedom because of the estimation of a possibly large number of parameters.
Therefore, there is a need to investigate robust estimation methods for high-
dimensional fat-tailed VAR models.
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In summary, we focus on tackling the challenges posed by high-dimensional
time series analysis with time series covariates, possibly correlated errors, fat
tails, and an ultrahigh dimension. This requires new statistical tools tailored
to the characteristics of these data sets. One of our key contributions is a
novel Bernstein-type inequality for the sum of a bounded transformation of
high-dimensional linear processes. This inequality is instrumental in obtaining
consistent estimators under mild conditions, such as log p = o(n¢), for some ¢ > 0.

The remainder of the paper is organized as follows. In Section 2, we introduce
the framework of high-dimensional linear processes and the important quantities
that characterize temporal and cross-sectional dependence. We then present a
new Bernstein-type inequality for high-dimensional linear processes. In Section 3,
we investigate two robust estimation problems: (1) a time series linear regression
with correlated and fat-tailed covariates and errors, and (2) autoregressive models
with fat-tailed errors. We provide simulation results in Section 4 to assess the
empirical performance of the robust estimators. All proofs are relegated to the
Supplementary Material.

We first introduce some notation. For a vector 3 = (B1,...,53,)", let
1Bl = 5,181, 1812 = (S, B82)12, [Blo = I{i : B # O}, and |8l = max; |5l
Let Supp(fB) be the support of 5. For a matrix A = (a;j)1<ij<p € RP*P, let
i, for i = 1,...,p, be its eigenvalues and A\,..(A) = max; |\;| be the spectral
radius, Apin(A) = min; [A;|. Let k(A) denote the condition number of A. Denote
AL = 255 laizl, [[Alln = max; 37, |ai;|, [|Alle = max; Y, |ai;|, the spectral norm
| All = [|All2 = supj,y, 0 | Az|2/]2|2, and the Frobenius norm || A||p = (3, ; af;)'/>.
Moreover, let tr(A) be the trace of A, ||Al|max = max;; |a;;| be the entry-wise
maximum norm, and |A| be a matrix after taking the absolute value of A, that is,
|A| = (Jaij|)i ;- For a random variable X and g > 0, define || X||, = {E(|X|?)}/9.
For two real numbers z,y, set  V y = max(z,y). For two sequences of positive
numbers {a,} and {b,}, we write a,, < b, if there exists some constant C' > 0
such that a,/b, < C as n — oo, and write a,, < b, if a,, < b, and b, < a,. We
use ¢y, cq,... and Cy,C1,... to denote universal positive constants, the values
of which may vary in different contexts. Throughout the paper, we consider the
high-dimensional regime, allowing the dimension p to grow with the sample size
n, that is, we assume p = p,, — 0o as n — o0.

2. Bernstein-type Inequality for High-dimensional Linear Processes
We consider a general framework of p-dimensional stationary linear processes
Xi = (Xil,...,Xip)T :M+2Ak€i—k7 (21)
k=0

where p € RP is the mean vector, Ag = I,,, Ay, for k > 1, are p X p coefficient
matrices with real entries such that > ;- tr(A; Ay) < oo, & = (€i1,-..,€5)
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and €;;, for i € Z, 1 < j < p, are i.i.d. random variables with a zero mean and
finite variance. Kolmogorov’s three-series theorem ensures that the linear process
is well defined. Many researchers have worked on this model, including
Bhattacharjee and Bose, (2014, 2016)), Liu, Aue and Paul (2015)), and |Chen, Xu
and Wu/(2016)), among others. One special case of is the stationary Gaussian
process. If A, = 0, for k > d, it becomes a vector moving average process of
order d (Reinsel, 2003; [Lutkepohl, 2005; Brockwell and Davis|, 2009). Another
important class of models covered by is the VAR model, which is widely
used in economics and finance (e.g., Sims, [1980; [Stock and Watson, 2001} Tsay),
2005; Fan, Lv and Qi 2011)).

The linear process is a flexible multivariate model for correlated data
in that the coefficient matrices A; capture both temporal and cross-sectional
(spatial) dependence. Previous research has explored different structural condi-
tions on the matrices A,. For example, [Liu, Aue and Paul (2015) worked on
a restrictive class of linear processes with matrices A, that are simultaneously
diagonalizable, which implies the absence of spatial dependence among the
components. [Bhattacharjee and Bose (2016) assumed that limp~'tr(II) exists
and is finite for any polynomial II in {A, A]}, a joint convergence assumption
that is difficult to verify. In this work, we impose a condition on the decay rate
of the spectral norms of A;, which allows for more general dependence structures
and is easier to check in practice. Assume that there exist 0 < p, < 1 and
1 <, < oo such that

Al = sup K2l <ot (22)

a0 |22
for all £ > 0. This implies short-range dependence, in the sense that the
autocovariance matrices Cov(Xo, X;) = .2 ArA,,; are absolutely summable.
The proposed quantities p, and =, can capture temporal and spatial dependence
in the underlying high-dimensional process. In particular, p, represents the
strength of the temporal dependence, with smaller values indicating faster decay
rates and weaker temporal dependence. The magnitude of v, naturally quantifies
the spatial dependence. A notable feature is that both «, and p, may depend
on p in the high-dimensional regime. For example, when p is large, p, may be a
relatively large rate, close to one, indicating a slow decay speed. In fact, there

exists an absolute constant, independent of p and strictly smaller than one, such
that (2.2]) can be rewritten as

A4l <7, - pi/ ™, for some 7, > 1. (2.3)

In particular, we define 7, = 1 if there exists p, such that p, < p, < 1, and
7, = log po/ log p,, for po satisfying 0 < po < p,, if p, is large and increases with
p. In the latter case, it could happen that 7 := 7, is an unbounded function
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in terms of the dimension p. Note that few studies have examined measures of
dependence quantified by the dimension p, despite their relevance in analyzing
high-dimensional time series. This feature is illustrated by the high-dimensional
VAR model in Example 1. Henceforth, for notational simplicity, we omit the
dimension subscript in 7, 7,, and refer to them as v, 7. In addition, we assume
7 < n; otherwise, there may exist very strong temporal dependence, in the sense

that [|A|| is decaying at a rate no faster than p(l)/ "

Example 1 (High-dimensional VAR Models). Consider the VAR(1) model
Xi = AXi—l + €4, (24)

where A € RP*P is the transition matrix, and g;, for ¢ € Z, are i.i.d. error
vectors with mean zero and covariance matrix I,. Equivalently, the model can
be represented by the moving average model X; = > 7 A¥e, 4, a special case
of with A, = A*. The process is stable (and hence stationary) if and
only if the spectral radius Ap.x(A) < 1 (Litkepohl, |2005). If A is symmetric,
as Amax(A4) = ||4||, condition can be easily verified with p, = Apnax(4)
and v = 1. For asymmetric A, it has a better interpretation when we consider
condition , and it could happen that 7 may increase with the dimension p.
Consider the design A = (a;;)},;_,, with a;; = ¥7"*'1{0 < j —i < B — 1}, for
some 0 < A < 1land 1 < B < p. Here, B depicts how many variables, at most,
in X, ; have a spatial effect on X;;. Figure 1 shows a plot of ||A*|| under the
numerical setup A = 0.55, B = 3,4, and p = 20,25,30. As shown, ||A*|| decays
after a certain lag that moves forward as p increases. This lag can be defined
as 7 in condition , so T increases with p in this design. Additionally, the
geometric decay (its existence is shown later) occurs at a slow speed, which is
further evidence of large p, (or large 7, equivalently). For example, when B = 3
and p = 30, ||A*|| decreases from 1.35 to 0.1 over a broad lag range from 30 to
60. The peak of ||A*| before decay is defined as -, indicating the strength of
spatial dependence. Comparing the two plots, we can see that stronger spatial
dependence with a larger B results in a larger ~.

Concentration inequalities play an important role in the study of sums of
random variables. A number of inequalities have been derived for independent
random variables; see Bithlmann and Van De Geer| (2011) for a review. Bern-
stein’s inequality (Bernstein, 1946) is a powerful tool for analyzing concentration
behavior that provides an exponential inequality for sums of independent random
variables that are uniformly bounded. For example, let Y7,...,Y, bei.i.d. random
variables such that EY; = 0, Var(Y;) = 02 < oo, and |Y;| < M, for all i. Then,
for any x > 0, we have
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Figure 1. The graph of ||A¥|| for B = 3,4, and p = 20, 25, 30.

Pl S Y, >z < - 1 2.
(Z _:1:) _exp{ 2n02+2Mx/3} (25)

i=1

which suggests two types of bound for the tail probability: a sub-Gaussian-type
tail exp{—2?/(Cno?)} in terms of the variance of Y ", Y;, and a sub-exponential-
type tail exp{—z/(CM)} in terms of the uniform bound M. Bernstein-type
inequalities have been developed for Markov chains and temporally dependent
processes with an additional order (logn in some constant powers) in the sub-
exponential-type tail; see, for example, /Adamczak (2008)), Merlevede, Peligrad
and Rio| (2009)), Hang and Steinwart| (2017), and Zhang (2021). The problem
of generalizing to high-dimensional time series is quite challenging, and very few
results have been obtained. Our first goal is to establish a new Bernstein-type
inequality for the sum of a bounded transformation of the high-dimensional linear
processes in (|2.1]).

Theorem 1. Let X; be the linear process generated from ({2.1), with Ee;; = 0,
Ee?; = 0% < 00, and let condition (2.3)) be satisfied. Let G : R? — R be a function
with |G(u)| < M, for all u € RP. Suppose there exists a vector g = (gi,...,gp)"
with g; > 0 and >_7_, g; = 1 such that the following Lipschitz condition holds: for
allu = (uy,...,u,)" and v = (vy,...,v,) ",

|G(u) — G(v)| < Zgi|u,» — . (2.6)

Then, for any x > 0, we have

p(ia(xi) —EG(X;) > x> < 2exp{ - v } (2.7)

Cino?1m2y2 + Cor Mz
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where the constants Cy and Cy are given by

B 1662 o Se
V2rpi{log(1/p0)y*’ 7 log(1/po)’

Remark 1. Equipped with our new inequality , we can investigate the
concentration properties of sums of bounded transformations of high-dimensional
linear processes that exhibit both temporal and cross-sectional dependence,
characterized by 7 and -y, respectively. In the special case that the processes
are one-dimensional, denoted by X; € R, and 7 = 1 and ~ is of a constant order
that satisfies condition , our probability inequality is just as sharp
as the classical Bernstein inequality . Note that our inequality is strictly
sharper than the Bernstein-type inequalities for univariate time series established
by Merlevede, Peligrad and Rio (2009)) and Zhang| (2021). Recall that |Merlevede,
Peligrad and Rio| (2009) derived a concentration inequality for a univariate strong
mixing process (X;) with mean zero and upper bounded by M in magnitude:

~ Cx?
S < — .
P<2Xl —x> —eXp{ nv2+M2+M(1ogn)2x}’ (29)

=1

(2.8)

¢y

where v? is the asymptotic variance of Y . | X;/\/n. |Zhang| (2021) obtained a
similar bound, with v? represented in terms of functional dependence measures.
In our framework of linear processes with condition satisfied, v? < 0242 can
be computed for one-dimensional cases. Notably, our inequality is made sharper
by removing the additional factor (logn)? in the sub-exponential-type bound.

To study high-dimensional time series, an important class of transformations
is linear combinations of transformed component processes, that is, G(X;) =
i_1a;hi(X;), where >37_ |a;| = 1, h; : R — R are univariate functions
satisfying |h;(z)] < M and |h;(z) — h;(y)| < 1, for any =,y € R, and thus
condition is satisfied with g; = |a;|. As a special case, when G(X;) =
h;(X;;), for a fixed 1 < j < p, the result provides a concentration inequality for
sums of each component process (X;;);ez after the transformation h;. This is
useful when estimating the mean vector of high-dimensional linear processes in a
robust way, as discussed at the end of this section. In Remark 2.3, we highlight
that our inequality yields a rate of ¢.,-norm convergence for the robust mean
estimator, which is as sharp as the optimal rate for i.i.d. processes.
Condition (2.3)) requires that ||Ay|| decays geometrically up to the quantity
v, and that the decay speed is controlled by 7. |Chen, Xu and Wu (2016) worked
on the same linear model under a weaker condition allowing polynomial decay,
namely, ||Ax|| = O((1V k)~*), for some « > 1, under which, an exponential-type
probability inequality does not hold, in general, even if it is a one-dimensional
process with a uniform bound. That is, if we relax condition to a polynomial



158 LIU AND ZHANG

decay, the concentration inequality delivers an exact rate with algebraic decay
for one-dimensional linear process; see Theorem 14 in |Chen and Wu| (2018)).

In Theorem 1, we assume the existence of a finite variance of ¢;;. If this is
relaxed to the existence of a finite exponential moment, a similar bound can be
achieved with GG not necessarily bounded; see Theorem 2.

Theorem 2. In model (2.1)), assume that Ee;; = 0, Eexp(cole;;|) = 0 < oo, for
some constant ¢y > 0, and condition (2.3) is met. Then, for G satisfying (2.6,
it holds that

.’172

B C3nf?712~2 + Cyyra

P(iG(Xi) - EG(X;) > x) < 2exp{ }, (2.10)

where the constants Cs and Cy depend on pg and cq.

One immediate application of Theorem 1 is to estimate the mean vector for
high-dimensional fat-tailed linear processes. From an M-estimation viewpoint,
we apply Huber’s estimator (Huber, 1964) of the mean vector, denoted by i =
(fury .-, fip) ", with fi; as the solution of a to the equation

Z¢V(Xij - a) =0,

where ¢,(x) = (z Av) V (—v) is the Huber function with the robustification
parameter v > 0.

Theorem 3. Let X; be generated from model (2.1)), with Ee;; =0, Var(e;;) =1,
p = EX;, and maxi<;j<, Var(X;;) = p3 < co. Choose v < psy/n/logp. With
probability at least 1 — 4p~¢, for some ¢ > 0, it holds that

. logp
i — ple < C(7+u2)7\/7, (2.11)

under the scaling condition (y+p2)7+/logp/n — 0, where C' is a positive constant
depending on ¢ and the constants Cy,Cy in Theorem 1.

Remark 2. Theorem 3 delivers a rate of {,-norm convergence for the robust
mean estimator [, and involves a delicate interplay between the cross-sectional
dependence, temporal dependence, and the variance of the process. If v, us, and
7 are all of a constant order, it follows that

i e = 02 (1082 ), (2.12)

under the scaling condition logp/n — 0. Note that (2.12]) is as sharp as
the optimal rate provided in Theorem 5 of Fan, Li and Wang (2017) for the
concentration of the mean estimation for the i.i.d. case. Furthermore, it is strictly
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sharper than existing Bernstein-type inequalities for time series, such as those
of Merlevede, Peligrad and Riol (2009), Hang and Steinwart| (2017)), and [Zhang
(2021).

3. Robust Estimation of Time Series Regression

In this section, we investigate a robust estimation of a high-dimensional
time series linear regression and autoregression with fat-tailed covariates and
errors. However, we expect our framework of high-dimensional linear processes
and Bernstein-type inequalities to be useful in other high-dimensional estimation
and inference problems that involve dependent and non-sub-Gaussian random
variables.

3.1. Estimating time series regression with correlated errors

We work on linear regression models with a random design that involve time
dependent covariates and errors:

Y, =X/ +¢&, (3.1)
with more justification provided as follows.

Assumption 1.

(A1) X, is generated from the p-dimensional linear process X; = Y poy Ax€i_r,
where the components of €; are i.i.d. random variables, with E(e;;) = 0 and
Var(e;;) = 02 < co. Condition is satisfied with v and T, which may
depend on p.

(A2) & = ZZO:O bpni_y is the error process, where m; are i.i.d. random variables
with B(n;) = 0 and Var(n;) = o} < oo, and by, < Cp"* for universal constants
0<p<landC < 0.

(A3) X, is strictly exogenous in the sense that (¢;); are independent of (1;):, where
(€:); and (n;); are error processes of X; and §;, respectively, as defined in

(A1) and (A2).

The framework is quite general, because the linear process includes a
wide range of commonly used time series models. For linear regression models
with dependent errors, early works focused on a fixed design or i.i.d. covariates.
Wang, Li and Tsai (2007) and Yoon, Park and Lee (2013) considered the case
where &; follows an autoregressive process, which is one type of linear process.
Gupta (2012) examined the weakly dependent ¢; introduced by Doukhan and
Louhichi (1999)), and specifically discussed the AR(1) and ARMA cases. |Alfons,
Croux and Gelper| (2013) adopted the same format of moving average errors,
but assumed long memory dependence. More generally, (Wu and Wu (2016) and
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Chernozhukov et al.| (2021) considered the nonlinear Wold representation with

Xi=g(....ei1,&) and § = h(...,mi—1,7m:).
We form a modified ¢;-regularized Huber estimator of /3, given by

B—argmln—zq) {(Y: = X B)w(Xi)} + AlBl,

BERP

where @, is Huber loss function (Huber| 1964)

v €Tr) =
vlz| —v?/2, if |z| > v,

defined with respect to the robustification parameter v > 0. For additional
properties of the Huber regression, refer to Huber| (1973)), Yohai and Maronna
(1979), Mammen (1989)), Sun, Zhou and Fan (2020)), and Fan, Li and Wang
(2017)), among others. Motivated by Loh (2021)), w(z) : R? — R is a weight

function defined by
b
w(r) =minq 1, —— 5,
(=) { |Bﬂ’5’2}

where b € R is a fixed constant, and B € RP*? is a provided positive-definite
matrix. With such a choice of w(x), it always holds that |w(x)z|s < b/Amin(B) =:
by. In contrast to the regular Huber regression for well-behaved X; (e.g., Gaussian
or sub-Gaussian), we incorporate an additional weight function on the covariate
process to account for the fat tails of X;. In Section S1, we conduct a simulation
study for robust time series regression estimation and examine the effect of w(x).

As a popular convention, 8* is assumed to be sparse in the sense that |3*|y =
s. Denote the condition number of B as k(B) = Apax(B)/Amin(B). Theorem 4
describes the estimation consistency of B .

Theorem 4. Let Assumptions (A1), (A2), and (A3) be satisfied. Assume

bo(bo + K(B)yo.)T/5 (logp) 0. (3.2)

Choose v =< c,(n/logp)'/? and \ = boan(logp/n)l/Q. With probability at least
1 —8p~¢, for some ¢ > 0, it holds that

5 boo, slogp
=Bk = Oy EeE ) 2V (33)

The scaling condition (3.2)) to ensure consistency indicates a subtle interplay

between the dimensionality parameters (s,p,n), internal parameters (7,7, 0.),
and known values by and «(B) associated with the weight function w(z). The con-
vergence rate (3.3)) scales inversely with the quantity A (E[{w?(X;)/2}X: X)),
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and suggests that we cannot shrink the covariates too aggressively. If X; is well
behaved, with the existence of a finite exponential moment, one may eliminate the
weight function and replace the factor with the larger quantity A, (E[X;X,']).

In the extensively studied regression setting with i.i.d. covariates, |Fan, Li and
Wang (2017) provide an optimal convergence rate of | B— B2 for a weakly sparse
model under fat tails (the same as the minimax rate in Raskutti, Wainwright and
Yu, [2011). In the special exact sparse case, their convergence rate is /s(logp)/n,
and it relies on the sub-Gaussian tail assumption for the covariates X;. [Loh|(2021)
allowed broader classes of distributions for X; by inserting a weight function
to control the Euclidean norm of X;, but required that the errors be drawn
i.i.d. from a symmetric distribution, and thus selected v at a fixed constant order
(cf. Theorem 1). In contrast, Fan, Li and Wang| (2017) waived the symmetry
requirement by allowing v to diverge in order to reduce the bias induced by the
Huber loss when the distribution of &; is asymmetric. We borrow ideas from both,
and further account for time-dependent covariates and errors. Compared with
Loh| (2021)), with i.i.d. covariates and i.i.d. errors, our result requires a stronger
scaling condition in terms of the dependence quantities v,7 and a larger
power of log p to handle both dependent covariates and dependent errors.

Applying ¢;-regularization in time series regression, Wu and Wul (2016)
(cf. Theorem 5) dealt with correlated covariates and errors, and allowed a wider
class of stationary processes in a causal form. The linear error process in our
consideration falls in the weaker dependence range within their framework. If
v, 70, = O(1), p = o(n?™') is required for their regular estimator, without
accounting for robustness, where ¢ > 2 is the order of the finite moments for
&. |Chernozhukov et al.| (2021) considered the Lasso estimator for a system
of time series regression equations, with one regression equation as a special
case, for which the allowed dimension is still of a polynomial rate to ensure
consistency by considering the performance bound with respect to the prediction
norm (cf. Corollary 5.4). Compared with the two aforementioned works, we allow
a much wider range for the dimension p under mild conditions.

The tuning parameter v plays a key role by adapting to errors with fat tails.
In practical applications, the optimal values of the tuning parameters v and A
can be chosen using a two-dimensional grid search and cross-validation or an
information-based criterion such as the AIC or BIC. We leave the theoretical
investigation of selecting the tuning parameters as important future work.

3.2. Estimating transition matrix in VAR models

VAR models are popular for studying the evolution of a set of endogenous
variables over time. Interpretations of large VAR models have been developed
in various applications, such as policy analysis (Sims, 1992), financial systemic
risk analysis (Gourieroux and Jasiak, 2011)), portfolio selection (Ledoit and Wolf,
2003), functional genomics (Shojaie, Basu and Michailidis, 2012)), and brain
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networks (Sameshima and Baccala, [2014)).

Because a general VAR model of order d can be reformulated as a VAR(1)
model by appropriately redefining the random vectors, many works (Han, Lu
and Liu, [2015; |(Guo, Wang and Yao, 2016]) consider a model with lag 1, as given
in . Most works on high-dimensional VAR models require the Gaussian
assumption (Kock and Callot, 2015; |Basu and Michailidis, 2015; Han, Lu and
Liu, 2015)) or some structure assumption stronger than the minimal requirement
Amax(A4) < 1; for example, [Han, Lu and Liu (2015) imposed ||A| < 1, and Guo,
Wang and Yao| (2016]) considered banded A, with some decay condition on || A*||
free of p. For many VAR designs (Example 1 is one such), it could happen that
||A]| > 1, and the dimension p, as the size of A, can play a role in measuring the
temporal and cross-sectional dependence. Basu and Michailidis (2015) proposed
stability measures to capture temporal and cross-sectional dependence. From a
different viewpoint, we fill the gap between the spectral radius of a matrix and
its spectral norm. The following proposition provides a sufficient and necessary
condition for A,.x(A) < 1 by relating to the spectral norm.

Proposition 1. For any matriz A, it holds that M\yax(A) < 1 if and only if there
erists some finite integer k such that ||A*|| < po, given any universal constant
0<po<l1.

Letting 7 = min{k € Z* : ||[A*|] < po} and v = pp ' maxo<p<r_1 || A*],
condition holds for model without extra requirements. We now
introduce the notation. Let a} be the jth row of A and s; be the cardinality
of the support set of a;., that is, s; = [supp(a;.)] = |{i : a;; # 0}|. Denote
s = max;<;<ps; and S = 377 s;. For robustness, we first truncate the data
by obtaining X; = ¢,(X;), where v is the truncation parameter, determined
later. For notational convenience, we assume X is also observed. Based on the
truncated sample X, and the tuning parameter A > 0, we propose estimating A

by solving the following Lasso problem:

A—argmln—Z|X BX; 1>+ B, (3.4)

BeRexp T

which is equivalent to solving the p sub-problems:

n

1 ~ ~
a;. = argmin — » (X;; — b X;_1)> + Albl;. (3.5)

beRr TV

Before proceeding, we state the key assumptions on the process (2.4)) and some
scaling conditions that guarantee the consistency of the robust estimator A.

Assumption 2.

(B1) Eei; = 0; Eej; = 1; maxi<j<p || Xi5llq = pg < 00, for some q > 2.
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(B2) pgy7s?[(logp)/n]@=2/(2a=2) _ 0.
(B2') pymS*(logp)/n)la=2/(2a=2 — (.

Assumption (B1) imposes polynomial moment conditions on the underlying
VAR process. Assumption (B2) (or (B2')) assumes a vanishing scaling property.
If py, 7, and v are of a constant order, (B2) reduces to the scaling condition that
involves s (or §), n, and p only.

Theorem 5. Let Assumptions (B1) and (B2) be satisfied. Choose the truncation
parameter v < j,(n/logp)t/?a=2 . Let A be the solution of (3.4) with A <
w7 ([ Alleo + 1)[(log p) /n]@=2/2a=2) It holds that

>1/2—1/(2q—2)

= log p
14~ Al < Cryr( Al + s 2 , (3.

with probability at least 1 — 8p~¢, for some constant ¢ > 0. If Assumption (B2')
1s satisfied, it also holds that

1/2—1/(2q—2)
) , (3.7)

—~ lo
1A~ Alle < Chyr(JA]e + VS (222

with probability at least 1 — 8p~°, for some constant ¢ > 0.

The obtained rates of convergence are governed by two sets of parameters: (i)
dimensionality parameters: the dimension p, sparseness parameter s (or S), and
sample size n; (ii) internal parameters: the moment y,, dependence quantities 7
and v, and maximum absolute row sum ||A||.. If we assume that the internal
parameters are of a constant order, we have

R | 1/2-1/(2¢—2)
HA—AHF—OP(\@( °§p> >

To ensure consistency, the dimension p can be allowed to increase exponentially
with n, in view of the mild scaling condition. Guo, Wang and Yao (2016), with
the same constant order of internal parameters, can only allow the narrower
range p = o(n°), for some 0 < ¢ < (¢ —4)/8 (cf. Condition 4(i)). For Gaussian
autoregressive models, proposition 4.1 of Basu and Michailidis (2015) suggests

the order in terms of dimension parameters as

- 1
14— Allp = op(fs L )

In the presence of fat tails and with the existence of a finite gth moment, our
result yields a slightly slower convergence rate, characterized by the moment order
q, and it becomes closer to their bound as ¢ increases.
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As an alternative method, a Dantzig-type estimation (Candes and Tao, 2007;
Cai, Liu and Luo, 2011; Han, Lu and Liu, 2015) can be modified in a robust
way. Let ¥, denote the autocovariance matrix of the process (X;) at lag k.
The Yule-Walker equation A = ¥;'%; suggests that a good estimate A should
have a small error in terms of ||ZOA — X1 ||max.- Without direct access to the
autocovariance matrices >y and X;, a natural approach is to find nice estimators
for them. Han, Lu and Liu (2015) used sample autocovariance matrices, yielding a
good performance bound under Gaussianity. For fat-tailed cases, we consider the
robust estimators of the autocovariance matrices based on the truncated sample:

~ 1N ~  ~
zk:;EE:X;%xjg for k=0,1.
=1

The Dantzig- type estimator is then modified to solve the following convex
programming problem:

A =argmin|B|; st. [|SoB — Si|max < A, (3.8)
BeRpxp

where A > 0 is a tuning parameter. Observe that problem (3.8 can be solved in
parallel, that is, (3.8) is equivalent to p subproblems:

@, = argmin |bl; s.t. |Sob— Sl <A, j=1,....p, (3.9)
beRr
for any unit vector u;. Let a.;,a.,...,a., be columns of A, and denote s* =

maxi <<, |supp(a.;)|. We can obtain A by simply concatenating all the columns
a.;, that is, A = (@.4,a.,...,a,). The next theorem delivers an upper bound
on the statistical accuracy.

Theorem 6. Let Assumption (B1) be satisfied. Let A be the solution of (3.8),
with v < p,(n/logp)" 212 and X < p,y7(|| Al +1){(log p) /n}=2/21=2)  With
probability at least 1 — 8p~, for some constant ¢ > 0, it holds that

, (3.10)

- log p\ /2~ 1/
12 = Al < CryrlZ5 141+ 1) (222

1/2—-1/(2q—2)
) (3.11)

~ _ . (logp
HA—AMSCWwﬂ@meml+DS<n

Interestingly, the convergence rate of the modified Dantzig-type estimator
has a similar form to that of the robust Lasso estimator developed in Theorem
5, if the included internal parameters for the process are of a constant order.
Both methods involve p parallel programming problems, with the lasso-based
method performing a row-by-row estimation, and the Dantzig method performing
a column-by-column estimation. The case of ||A|| < 1 studied by Han, Lu and
Liu (2015) is the special case where v = 1 and 7 = 1 in our framework. The
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latter work imposes a more flexible sparse condition, namely, that the transition
matrix A belongs to a class of weakly sparse matrices defined in terms of a strong
¢"-ball (0 < r < 1). This condition is also considered by Bickel and Levina
(2008), Rothman, Levina and Zhu| (2009)), |Cai, Liu and Luo| (2011), and |Cai and
Zhou| (2012)) when estimating covariance and precision matrices. For r = 0, it
is the exact sparse case, and Theorem 1 in |Han, Lu and Liu (2015)) implies the
dimension parameter order

~ 1
14— a4l = 0 (s ),

which is a bit sharper than our result (3.11)). There is an additional cost for fat-
tailed processes with robustness absorbed. Note that we are also able to derive
the bound of ||A — AJ|; for weakly sparse A based on the result (3.10).

4. Simulation Study

In this section, we evaluate the finite-sample performance of the robust Lasso
and Dantzig estimators proposed in Section 3.2, and compare it with that of
the traditional Lasso and Dantzig methods. A simulation on time series linear
regression is presented in the Supplementary Material. We consider the model
, where ¢;; are i.i.d. standardized Student’s t-distributions with df = 5. We
adopt the numerical setup of n = 50, 100 and p = 50, 100, 500, and set s = |logp|.
For the true transition matrix A = (a;;), we consider the following designs:

(1) Banded: A = (A"=711{]i — j| < s}) and A\ = 0.5.

(2) Block diagonal: A = diag{A;}, where each A; € R*** follows the structure
in Example 1 with B =2 and \; ~ Unif(—0.8,0.8).

(3) Toeplitz: A = (Ali=7l) and X = 0.5.

(4) Random Sparse: a;; ~ Unif(—0.8,0.8) and a;; ~ N(0,1), for (i,j) € C C
{(i,7) : i # j}, where C' is randomly selected and |C| = s*.

To ensure stationarity of the VAR model, the designs in (1), (3), and (4) are
further scaled by a factor of 2\,..(A) to ensure that the spectral radius of the
transition matrix is less than one. Figure 2 shows the plot of || A*|| under the four
designs, with p = 100,500. These patterns of matrix A were studied previously
in Han, Lu and Liu| (2015), where the assumption ||A| < 1 was necessary. In
this study, we keep the designs of symmetric sparse and weakly sparse matrices,
presented in cases (1) and (3), respectively. For these two cases, it holds that
| A% = (Amax(A))* = (0.5)%, and condition is satisfied with 7 = 1, v = 1,
and pg = 0.5. However, for the designs using asymmetric coefficient matrices
(cases (2) and (4)), we allow ||A]] > 1, and 7 and v in condition may
depend on the value of p.
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S
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Figure 2. The graph of || A*¥|| for the four designs of A, with p = 100, 500.

Table 1.

p=>50,n=100 Banded Block Toeplitz Random
Lasso Lao 1.49 (0.060) 0.96 (0.072) 1.46 (0.143) 1.28 (0.124
Lasso L 1.56 (0.112) 1.22 (0.112) 1.55 (0.121) 1.30 (0.084
Robust-Lasso Lo,  1.35 (0.049) 0.80 (0.078) 1.30 (0.072) 1.17 (0.065
Robust-Lasso Lg 1.37 (0.076) 1.05 (0.041) 1.36 (0.090) 1.23 (0.038
Dantzig L, 2.01 (0.121) 1.91 (0.087) 2.02 (0.140) 2.40 (0.159
Dantzig Lg 2.10 (0.095) 1.92 (0.074) 2.04 (0.125) 2.69 (0.078
Robust-Dantzig Ly  1.86 (0.050) 1.08 (0.058) 1.86 (0.043) 1.47 (0.077
Robust-Dantzig Ly  1.90 (0.049) 1.41 (0.044) 1.89 (0.033) 2.02 (0.073

In each repetition, we generate a process of length 2n. We run the estimation
procedure in or based on {Xj,..
search for the tuning parameters v and . For each (v, A) in the grid, denote
the estimator by A(r, ). Then, (v,\) is chosen to minimize n~* Y
/l(u, M) X, 1|2, the average prediction error on {X,1,..., Xs,}. The following
tables report the average and standard deviation (in parentheses) of the estima-
tion error based on 1,000 repetitions in different matrix norms consistent with
Theorem 5 and Theorem 6. As comparisons, we obtain the results for the robust
methods and the traditional versions (Lasso estimator in Tibshirani (1996]) and

., X, } using a two-dimensional grid

2n
t=n-+1

Dantzig-based estimator in [Han, Lu and Liul (2015)) in different designs.

From a statistical perspective, the tables indicate that both robust estimation
methods outperform the regular Lasso and Dantzig when the innovation vectors
have a fat tail and the transition matrix exhibits a sparsity pattern. In summary,

our robust methods work particularly well for non-Gaussian time series.




A BERNSTEIN-TYPE INEQUALITY FOR HIGH DIMENSIONAL LINEAR PROCESSES
Table 2.

p =100,n = 50 Banded Block Toeplitz Random
Lasso Lo 2.64 (0.205) 2.31 (0.093) 2.49 (0.308) 2.40 (0.114)
Lasso Lp 2.73 (0.168) 2.44 (0.141) 2.74 (0.125) 2.48 (0.119)

Robust-Lasso Lo,  2.65 (0.073) 2.26 (0.101) 2.67 (0.039) 2.18 (0.084)

Robust-Lasso Lg 2.67 (0.080) 2.38 (0.139) 2.69 (0.052) 2.32 (0.131)
Dantzig L 3.13 (0.177) 2.70 (0.146) 3.15 (0.140) 3.21 (0.136)

Dantzig Lp 3.16 (0.073) 3.06 (0.172) 3.58 (0.116) 3.75 (0.173)
Robust-Dantzig L;  1.80 (0.069) 1.82 (0.051) 1.72 (0.047) 1.51 (0.073)
Robust-Dantzig Ly 2.78 (0.071) 2.01 (0.104) 2.77 (0.065) 2.45 (0.090)

Table 3.

p = 500,n = 100 Banded Block Toeplitz Random
Lasso Ly 4.99 (0.091) 4.12 (0.043) 4.27 (0.052) 4.49 (0.019)
Lasso Lp 8.16 (0.070) 7.98 (0.004) 8.05 (0.021) 7.82 (0.052)

Robust-Lasso Lo,  4.80 (0.012) 3.31 (0.015) 3.55 (0.051) 3.40 (0.017)

Robust-Lasso Lg 7.51 (0.120) 7.50 (0.177) 7.69 (0.158) 6.69 (0.220)
Dantzig L, 5.03 (0.070) 5.64 (0.034) 5.18 (0.055) 5.43 (0.050)

Dantzig Lg 8.64 (0.169) 9.03 (0.199) 9.18 (0.222) 8.43 (0.192)
Robust-Dantzig Ly  4.51 (0.030) 4.50 (0.017) 4.69 (0.037) 4.69 (0.034)
Robust-Dantzig Ly  7.11 (0.123) 7.05 (0.102) 7.09 (0.099) 6.76 (0.122)

5. Conclusion

167

Conventional time series regression tools are inadequate when analyzing

high-dimensional temporal-dependent and fat-tailed data.

In this paper, we

have proposed a novel Bernstein inequality for high-dimensional linear processes,

thus contributing to the robust estimation theory of high-dimensional time

series regression in the presence of fat tails.

The convergence rate depends

on the strength of the temporal and cross-sectional dependence, the moment
condition, the dimension, and the sample size. We allow the dimension to increase
exponentially with the sample size as a natural requirement of consistency. A
statistical inference of the estimates, such as hypothesis testing and constructing
confidence intervals, requires additional research in terms of asymptotic distribu-

tional theory. This is left to future work.

Supplementary Material

The online Supplementary Material contains a simulation on time series

regression and the proofs of all the results presented in the paper.
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