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Abstract: Time series regression models are commonly used in time series analysis.

However, in modern applications, data are often serially correlated and have an

ultrahigh dimension and fat tails, making it difficult to develop new time series

analysis tools. In this paper, we propose a novel Bernstein-type inequality for high-

dimensional linear processes, and apply it to investigate two high-dimensional robust

estimation problems: (1) a time series regression with fat-tailed and correlated

covariates and errors, and (2) a fat-tailed vector autoregression. Our proposed

approach allows for exponential increases in the dimension with the sample size,

under mild moment and dependence conditions, while ensuring consistency in the

estimation process.
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1. Introduction

The growing prevalence of massive data sets has increased the importance of

high-dimensional data analysis, and particularly, high-dimensional linear regres-

sion. Specifically, consider the linear regression models

Yi = X⊤
i β + ξi, i = 1, . . . , n,

where Yi, Xi, and ξi are the response, covariate, and error variables, respectively.

Various regularization methods have been used to estimate the p-dimensional

regression parameter vector, including those of Tibshirani (1996), Zou and Hastie

(2005), Fan and Li (2001), Bickel, Ritov and Tsybakov (2009), Meinshausen

and Yu (2009), and many others; see Bühlmann and Van De Geer (2011) for a

comprehensive overview. Most investigations assume that the covariates Xi (if

it is a random design) and errors ξi are independent and identically distributed

(i.i.d.) Gaussian or sub-Gaussian random variables, which can be too restrictive

in practice.
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On the one hand, serial correlation might occur when data are collected over

time, requiring, for example, a linear regression with time series regressors and

autoregressive errors (Harvey, 1990; Tsay, 1984; Shumway and Stoffer, 2000).

On the other hand, many applications involving time series data are concerned

with high-dimensional objects and fat-tailed distributions, including those in

quantitative finance (Cont, 2001), portfolio allocation (Kim et al., 2012), risk

management (Koopman and Lucas, 2008), brain networks (Friston, 2011), and

geophysical dynamic studies (Kondrashov et al., 2005).

Previous works have examined linear regression with correlated errors.

Specifically, the Lasso estimator is studied for linear regression with autore-

gressive errors by Wang, Li and Tsai (2007) and Yoon, Park and Lee (2013),

weakly dependent errors by Gupta (2012), and long memory errors by Kaul

(2014). However, these studies focus on cases in which the dimension p is smaller

than the sample size n, or the Gaussian assumption is imposed on the error

process. More recently, Wu and Wu (2016) and Chernozhukov et al. (2021) used

the framework of functional dependence measures to account for both dependent

covariates and errors in linear regression, allowing p to increase with n at a

polynomial rate, while maintaining consistency. However, a narrow range is still

required for the dimension in the presence of non-Gaussian and dependent errors.

To address the ultrahigh-dimensional cases, where p can grow exponentially with

n, various robust methods have been proposed for linear regression with i.i.d. fat-

tailed errors, including the penalized Huber M -estimation (Fan, Li and Wang,

2017; Loh, 2017, 2021), sparse least trimmed squares (Alfons, Croux and Gelper,

2013), and ESL-Lasso (Wang et al., 2013), among others. In this study, we

consider a robust estimation of a time series regression, allowing for ultrahigh

dimensions and fat-tailed and correlated errors.

Vector autoregression (VAR) is another popular linear model for describing

the evolution of a set of variables over time, and there has been significant progress

in estimating high-dimensional VAR models. Inspired by its development in

high-dimensional linear regression, Hsu, Hung and Chang (2008), Nardi and

Rinaldo (2011), and Basu and Michailidis (2015) considered the Lasso estimator

with an ℓ1-penalty. Kock and Callot (2015) established oracle inequalities for

high-dimensional VAR models. Han, Lu and Liu (2015) adopted a Dantzig-

type penalization. Guo, Wang and Yao (2016) proposed a Bayesian information

criterion based on residual sums of the least squares estimator to estimate a high-

dimensional banded autoregression. However, most of these studies require the

Gaussian assumption or the existence of a finite exponential moment. In terms

of econometric analysis, Sims (1980) raised the concern that fat tails in VAR

models can affect the validity of statistical inference, and may lead to low degrees

of freedom because of the estimation of a possibly large number of parameters.

Therefore, there is a need to investigate robust estimation methods for high-

dimensional fat-tailed VAR models.
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In summary, we focus on tackling the challenges posed by high-dimensional

time series analysis with time series covariates, possibly correlated errors, fat

tails, and an ultrahigh dimension. This requires new statistical tools tailored

to the characteristics of these data sets. One of our key contributions is a

novel Bernstein-type inequality for the sum of a bounded transformation of

high-dimensional linear processes. This inequality is instrumental in obtaining

consistent estimators under mild conditions, such as log p = o(nc), for some c > 0.

The remainder of the paper is organized as follows. In Section 2, we introduce

the framework of high-dimensional linear processes and the important quantities

that characterize temporal and cross-sectional dependence. We then present a

new Bernstein-type inequality for high-dimensional linear processes. In Section 3,

we investigate two robust estimation problems: (1) a time series linear regression

with correlated and fat-tailed covariates and errors, and (2) autoregressive models

with fat-tailed errors. We provide simulation results in Section 4 to assess the

empirical performance of the robust estimators. All proofs are relegated to the

Supplementary Material.

We first introduce some notation. For a vector β = (β1, . . . , βp)
⊤, let

|β|1 =
∑

i |βi|, |β|2 = (
∑

i β
2
i )

1/2, |β|0 = |{i : βi ̸= 0}|, and |β|∞ = maxi |βi|.
Let Supp(β) be the support of β. For a matrix A = (aij)1≤i,j≤p ∈ Rp×p, let

λi, for i = 1, . . . , p, be its eigenvalues and λmax(A) = maxi |λi| be the spectral

radius, λmin(A) = mini |λi|. Let κ(A) denote the condition number of A. Denote

|A|1 =
∑

i,j |aij|, ∥A∥1 = maxj

∑
i |aij|, ∥A∥∞ = maxi

∑
j |aij|, the spectral norm

∥A∥ = ∥A∥2 = sup|x|2 ̸=0 |Ax|2/|x|2, and the Frobenius norm ∥A∥F = (
∑

i,j a
2
ij)

1/2.

Moreover, let tr(A) be the trace of A, ∥A∥max = maxi,j |aij| be the entry-wise

maximum norm, and |A| be a matrix after taking the absolute value of A, that is,

|A| = (|aij|)i,j. For a random variable X and q > 0, define ∥X∥q = {E(|X|q)}1/q.
For two real numbers x, y, set x ∨ y = max(x, y). For two sequences of positive

numbers {an} and {bn}, we write an ≲ bn if there exists some constant C > 0

such that an/bn ≤ C as n → ∞, and write an ≍ bn if an ≲ bn and bn ≲ an. We

use c0, c1, . . . and C0, C1, . . . to denote universal positive constants, the values

of which may vary in different contexts. Throughout the paper, we consider the

high-dimensional regime, allowing the dimension p to grow with the sample size

n, that is, we assume p = pn → ∞ as n → ∞.

2. Bernstein-type Inequality for High-dimensional Linear Processes

We consider a general framework of p-dimensional stationary linear processes

Xi = (Xi1, . . . , Xip)
⊤ = µ+

∞∑
k=0

Akεi−k, (2.1)

where µ ∈ Rp is the mean vector, A0 = Ip, Ak, for k ≥ 1, are p × p coefficient

matrices with real entries such that
∑∞

k=0 tr(A
⊤
k Ak) < ∞, εi = (εi1, . . . , εip)

⊤,
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and εij, for i ∈ Z, 1 ≤ j ≤ p, are i.i.d. random variables with a zero mean and

finite variance. Kolmogorov’s three-series theorem ensures that the linear process

(2.1) is well defined. Many researchers have worked on this model, including

Bhattacharjee and Bose (2014, 2016), Liu, Aue and Paul (2015), and Chen, Xu

and Wu (2016), among others. One special case of (2.1) is the stationary Gaussian

process. If Ak = 0, for k > d, it becomes a vector moving average process of

order d (Reinsel, 2003; Lütkepohl, 2005; Brockwell and Davis, 2009). Another

important class of models covered by (2.1) is the VAR model, which is widely

used in economics and finance (e.g., Sims, 1980; Stock and Watson, 2001; Tsay,

2005; Fan, Lv and Qi, 2011).

The linear process (2.1) is a flexible multivariate model for correlated data

in that the coefficient matrices Ak capture both temporal and cross-sectional

(spatial) dependence. Previous research has explored different structural condi-

tions on the matrices Ak. For example, Liu, Aue and Paul (2015) worked on

a restrictive class of linear processes with matrices Ak that are simultaneously

diagonalizable, which implies the absence of spatial dependence among the

components. Bhattacharjee and Bose (2016) assumed that lim p−1tr(Π) exists

and is finite for any polynomial Π in {Ak, A
⊤
k }, a joint convergence assumption

that is difficult to verify. In this work, we impose a condition on the decay rate

of the spectral norms of Ak, which allows for more general dependence structures

and is easier to check in practice. Assume that there exist 0 < ρp < 1 and

1 ≤ γp < ∞ such that

∥Ak∥ = sup
|x|2 ̸=0

|Akx|2
|x|2

≤ γp · ρkp, (2.2)

for all k ≥ 0. This implies short-range dependence, in the sense that the

autocovariance matrices Cov(X0, Xj) =
∑∞

k=0 AkA
⊤
k+j are absolutely summable.

The proposed quantities ρp and γp can capture temporal and spatial dependence

in the underlying high-dimensional process. In particular, ρp represents the

strength of the temporal dependence, with smaller values indicating faster decay

rates and weaker temporal dependence. The magnitude of γp naturally quantifies

the spatial dependence. A notable feature is that both γp and ρp may depend

on p in the high-dimensional regime. For example, when p is large, ρp may be a

relatively large rate, close to one, indicating a slow decay speed. In fact, there

exists an absolute constant, independent of p and strictly smaller than one, such

that (2.2) can be rewritten as

∥Ak∥ ≤ γp · ρk/τp0 , for some τp ≥ 1. (2.3)

In particular, we define τp ≡ 1 if there exists ρ0 such that ρp ≤ ρ0 < 1, and

τp = log ρ0/ log ρp, for ρ0 satisfying 0 < ρ0 ≤ ρp, if ρp is large and increases with

p. In the latter case, it could happen that τ := τp is an unbounded function
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in terms of the dimension p. Note that few studies have examined measures of

dependence quantified by the dimension p, despite their relevance in analyzing

high-dimensional time series. This feature is illustrated by the high-dimensional

VAR model in Example 1. Henceforth, for notational simplicity, we omit the

dimension subscript in γp, τp, and refer to them as γ, τ . In addition, we assume

τ ≤ n; otherwise, there may exist very strong temporal dependence, in the sense

that ∥Ak∥ is decaying at a rate no faster than ρ
1/n
0 .

Example 1 (High-dimensional VAR Models). Consider the VAR(1) model

Xi = AXi−1 + εi, (2.4)

where A ∈ Rp×p is the transition matrix, and εi, for i ∈ Z, are i.i.d. error

vectors with mean zero and covariance matrix Ip. Equivalently, the model can

be represented by the moving average model Xi =
∑∞

k=0 A
kεi−k, a special case

of (2.1) with Ak = Ak. The process is stable (and hence stationary) if and

only if the spectral radius λmax(A) < 1 (Lütkepohl, 2005). If A is symmetric,

as λmax(A) = ∥A∥, condition (2.2) can be easily verified with ρp = λmax(A)

and γ = 1. For asymmetric A, it has a better interpretation when we consider

condition (2.3), and it could happen that τ may increase with the dimension p.

Consider the design A = (aij)
p
i,j=1, with aij = λj−i+11{0 ≤ j − i ≤ B − 1}, for

some 0 < λ < 1 and 1 ≤ B ≤ p. Here, B depicts how many variables, at most,

in Xi−1 have a spatial effect on Xij. Figure 1 shows a plot of ∥Ak∥ under the

numerical setup λ = 0.55, B = 3, 4, and p = 20, 25, 30. As shown, ∥Ak∥ decays

after a certain lag that moves forward as p increases. This lag can be defined

as τ in condition (2.3), so τ increases with p in this design. Additionally, the

geometric decay (its existence is shown later) occurs at a slow speed, which is

further evidence of large ρp (or large τ , equivalently). For example, when B = 3

and p = 30, ∥Ak∥ decreases from 1.35 to 0.1 over a broad lag range from 30 to

60. The peak of ∥Ak∥ before decay is defined as γ, indicating the strength of

spatial dependence. Comparing the two plots, we can see that stronger spatial

dependence with a larger B results in a larger γ.

Concentration inequalities play an important role in the study of sums of

random variables. A number of inequalities have been derived for independent

random variables; see Bühlmann and Van De Geer (2011) for a review. Bern-

stein’s inequality (Bernstein, 1946) is a powerful tool for analyzing concentration

behavior that provides an exponential inequality for sums of independent random

variables that are uniformly bounded. For example, let Y1, . . . , Yn be i.i.d. random

variables such that EYi = 0, Var(Yi) = σ2 < ∞, and |Yi| ≤ M , for all i. Then,

for any x > 0, we have
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Figure 1. The graph of ∥Ak∥ for B = 3, 4, and p = 20, 25, 30.

P

(
n∑

i=1

Yi ≥ x

)
≤ exp

{
− x2

2nσ2 + 2Mx/3

}
, (2.5)

which suggests two types of bound for the tail probability: a sub-Gaussian-type

tail exp{−x2/(Cnσ2)} in terms of the variance of
∑n

i=1 Yi, and a sub-exponential-

type tail exp{−x/(CM)} in terms of the uniform bound M . Bernstein-type

inequalities have been developed for Markov chains and temporally dependent

processes with an additional order (log n in some constant powers) in the sub-

exponential-type tail; see, for example, Adamczak (2008), Merlevède, Peligrad

and Rio (2009), Hang and Steinwart (2017), and Zhang (2021). The problem

of generalizing to high-dimensional time series is quite challenging, and very few

results have been obtained. Our first goal is to establish a new Bernstein-type

inequality for the sum of a bounded transformation of the high-dimensional linear

processes in (2.1).

Theorem 1. Let Xi be the linear process generated from (2.1), with Eεij = 0,

Eε2ij = σ2 < ∞, and let condition (2.3) be satisfied. Let G : Rp → R be a function

with |G(u)| ≤ M , for all u ∈ Rp. Suppose there exists a vector g = (g1, . . . , gp)
⊤

with gi ≥ 0 and
∑p

i=1 gi = 1 such that the following Lipschitz condition holds: for

all u = (u1, . . . , up)
⊤ and v = (v1, . . . , vp)

⊤,

|G(u)−G(v)| ≤
p∑

i=1

gi|ui − vi|. (2.6)

Then, for any x > 0, we have

P

(
n∑

i=1

G(Xi)− EG(Xi) ≥ x

)
≤ 2 exp

{
− x2

C1nσ2τ 2γ2 + C2τMx

}
, (2.7)
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where the constants C1 and C2 are given by

C1 =
16e2√

2πρ40{log(1/ρ0)}3
, C2 =

8e

log(1/ρ0)
. (2.8)

Remark 1. Equipped with our new inequality (2.7), we can investigate the

concentration properties of sums of bounded transformations of high-dimensional

linear processes that exhibit both temporal and cross-sectional dependence,

characterized by τ and γ, respectively. In the special case that the processes

are one-dimensional, denoted by Xi ∈ R, and τ = 1 and γ is of a constant order

that satisfies condition (2.2), our probability inequality (2.7) is just as sharp

as the classical Bernstein inequality (2.5). Note that our inequality is strictly

sharper than the Bernstein-type inequalities for univariate time series established

by Merlevède, Peligrad and Rio (2009) and Zhang (2021). Recall that Merlevède,

Peligrad and Rio (2009) derived a concentration inequality for a univariate strong

mixing process (Xi) with mean zero and upper bounded by M in magnitude:

P

(
n∑

i=1

Xi ≥ x

)
≤ exp

{
− Cx2

nv2 +M2 +M(log n)2x

}
, (2.9)

where v2 is the asymptotic variance of
∑n

i=1 Xi/
√
n. Zhang (2021) obtained a

similar bound, with v2 represented in terms of functional dependence measures.

In our framework of linear processes with condition (2.2) satisfied, v2 ≍ σ2γ2 can

be computed for one-dimensional cases. Notably, our inequality is made sharper

by removing the additional factor (log n)2 in the sub-exponential-type bound.

To study high-dimensional time series, an important class of transformations

is linear combinations of transformed component processes, that is, G(Xi) =∑p
j=1 ajhj(Xij), where

∑n
j=1 |aj| = 1, hj : R → R are univariate functions

satisfying |hj(x)| ≤ M and |hj(x) − hj(y)| ≤ 1, for any x, y ∈ R, and thus

condition (2.6) is satisfied with gj = |aj|. As a special case, when G(Xi) =

hj(Xij), for a fixed 1 ≤ j ≤ p, the result provides a concentration inequality for

sums of each component process (Xij)i∈Z after the transformation hj. This is

useful when estimating the mean vector of high-dimensional linear processes in a

robust way, as discussed at the end of this section. In Remark 2.3, we highlight

that our inequality yields a rate of ℓ∞-norm convergence for the robust mean

estimator, which is as sharp as the optimal rate for i.i.d. processes.

Condition (2.3) requires that ∥Ak∥ decays geometrically up to the quantity

γ, and that the decay speed is controlled by τ . Chen, Xu and Wu (2016) worked

on the same linear model under a weaker condition allowing polynomial decay,

namely, ∥Ak∥ = O((1 ∨ k)−α), for some α > 1, under which, an exponential-type

probability inequality does not hold, in general, even if it is a one-dimensional

process with a uniform bound. That is, if we relax condition (2.2) to a polynomial
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decay, the concentration inequality delivers an exact rate with algebraic decay

for one-dimensional linear process; see Theorem 14 in Chen and Wu (2018).

In Theorem 1, we assume the existence of a finite variance of εij. If this is

relaxed to the existence of a finite exponential moment, a similar bound can be

achieved with G not necessarily bounded; see Theorem 2.

Theorem 2. In model (2.1), assume that Eεij = 0, E exp(c0|εij|) = θ < ∞, for

some constant c0 > 0, and condition (2.3) is met. Then, for G satisfying (2.6),

it holds that

P

(
n∑

i=1

G(Xi)− EG(Xi) ≥ x

)
≤ 2 exp

{
− x2

C3nθ2τ 2γ2 + C4γτx

}
, (2.10)

where the constants C3 and C4 depend on ρ0 and c0.

One immediate application of Theorem 1 is to estimate the mean vector for

high-dimensional fat-tailed linear processes. From an M -estimation viewpoint,

we apply Huber’s estimator (Huber, 1964) of the mean vector, denoted by µ̂ =

(µ̂1, . . . , µ̂p)
⊤, with µ̂j as the solution of a to the equation

n∑
i=1

ϕν(Xij − a) = 0,

where ϕν(x) = (x ∧ ν) ∨ (−ν) is the Huber function with the robustification

parameter ν > 0.

Theorem 3. Let Xi be generated from model (2.1), with Eεij = 0, Var(εij) = 1,

µ = EXi, and max1≤j≤p Var(Xij) = µ2
2 < ∞. Choose ν ≍ µ2

√
n/log p. With

probability at least 1− 4p−c, for some c > 0, it holds that

|µ̂− µ|∞ ≤ C(γ + µ2)τ

√
log p

n
, (2.11)

under the scaling condition (γ+µ2)τ
√
log p/n → 0, where C is a positive constant

depending on c and the constants C1, C2 in Theorem 1.

Remark 2. Theorem 3 delivers a rate of ℓ∞-norm convergence for the robust

mean estimator µ̂, and involves a delicate interplay between the cross-sectional

dependence, temporal dependence, and the variance of the process. If γ, µ2, and

τ are all of a constant order, it follows that

|µ̂− µ|∞ = OP

(√
log

p

n

)
, (2.12)

under the scaling condition log p/n → 0. Note that (2.12) is as sharp as

the optimal rate provided in Theorem 5 of Fan, Li and Wang (2017) for the

concentration of the mean estimation for the i.i.d. case. Furthermore, it is strictly
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sharper than existing Bernstein-type inequalities for time series, such as those

of Merlevède, Peligrad and Rio (2009), Hang and Steinwart (2017), and Zhang

(2021).

3. Robust Estimation of Time Series Regression

In this section, we investigate a robust estimation of a high-dimensional

time series linear regression and autoregression with fat-tailed covariates and

errors. However, we expect our framework of high-dimensional linear processes

and Bernstein-type inequalities to be useful in other high-dimensional estimation

and inference problems that involve dependent and non-sub-Gaussian random

variables.

3.1. Estimating time series regression with correlated errors

We work on linear regression models with a random design that involve time

dependent covariates and errors:

Yi = X⊤
i β

∗ + ξi, (3.1)

with more justification provided as follows.

Assumption 1.

(A1) Xi is generated from the p-dimensional linear process Xi =
∑∞

k=0 Akεi−k,

where the components of εi are i.i.d. random variables, with E(εij) = 0 and

Var(εij) = σ2
ε < ∞. Condition (2.3) is satisfied with γ and τ , which may

depend on p.

(A2) ξi =
∑∞

k=0 bkηi−k is the error process, where ηi are i.i.d. random variables

with E(ηi) = 0 and Var(ηi) = σ2
η < ∞, and bk ≤ Cρk for universal constants

0 < ρ < 1 and C < ∞.

(A3) Xi is strictly exogenous in the sense that (εi)i are independent of (ηi)i, where

(εi)i and (ηi)i are error processes of Xi and ξi, respectively, as defined in

(A1) and (A2).

The framework (3.1) is quite general, because the linear process includes a

wide range of commonly used time series models. For linear regression models

with dependent errors, early works focused on a fixed design or i.i.d. covariates.

Wang, Li and Tsai (2007) and Yoon, Park and Lee (2013) considered the case

where ξi follows an autoregressive process, which is one type of linear process.

Gupta (2012) examined the weakly dependent ξi introduced by Doukhan and

Louhichi (1999), and specifically discussed the AR(1) and ARMA cases. Alfons,

Croux and Gelper (2013) adopted the same format of moving average errors,

but assumed long memory dependence. More generally, Wu and Wu (2016) and
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Chernozhukov et al. (2021) considered the nonlinear Wold representation with

Xi = g(. . . , εi−1, εi) and ξi = h(. . . , ηi−1, ηi).

We form a modified ℓ1-regularized Huber estimator of β, given by

β̂ = argmin
β∈Rp

1

n

n∑
i=1

Φν{(Yi −X⊤
i β)w(Xi)}+ λ|β|1,

where Φν is Huber loss function (Huber, 1964)

Φν(x) =

{
x2/2, if |x| ≤ ν,

ν|x| − ν2/2, if |x| > ν,

defined with respect to the robustification parameter ν > 0. For additional

properties of the Huber regression, refer to Huber (1973), Yohai and Maronna

(1979), Mammen (1989), Sun, Zhou and Fan (2020), and Fan, Li and Wang

(2017), among others. Motivated by Loh (2021), w(x) : Rp → R is a weight

function defined by

w(x) = min

{
1,

b

|Bx|2

}
,

where b ∈ R is a fixed constant, and B ∈ Rp×p is a provided positive-definite

matrix. With such a choice of w(x), it always holds that |w(x)x|2 ≤ b/λmin(B) =:

b0. In contrast to the regular Huber regression for well-behavedXi (e.g., Gaussian

or sub-Gaussian), we incorporate an additional weight function on the covariate

process to account for the fat tails of Xi. In Section S1, we conduct a simulation

study for robust time series regression estimation and examine the effect of w(x).

As a popular convention, β∗ is assumed to be sparse in the sense that |β∗|0 =
s. Denote the condition number of B as κ(B) = λmax(B)/λmin(B). Theorem 4

describes the estimation consistency of β̂.

Theorem 4. Let Assumptions (A1), (A2), and (A3) be satisfied. Assume

b0(b0 + κ(B)γσε)τ
√
s

√
(log p)3

n
→ 0. (3.2)

Choose ν ≍ ση(n/ log p)
1/2 and λ ≍ b0ση(log p/n)

1/2. With probability at least

1− 8p−c, for some c > 0, it holds that

|β̂ − β|2 ≤ C
b0ση

λmin(E[{w2(Xi)/2}XiX⊤
i ])

√
s log p

n
. (3.3)

The scaling condition (3.2) to ensure consistency indicates a subtle interplay

between the dimensionality parameters (s, p, n), internal parameters (τ, γ, σε),

and known values b0 and κ(B) associated with the weight function w(x). The con-

vergence rate (3.3) scales inversely with the quantity λmin(E[{w2(Xi)/2}XiX
⊤
i ]),
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and suggests that we cannot shrink the covariates too aggressively. If Xi is well

behaved, with the existence of a finite exponential moment, one may eliminate the

weight function and replace the factor with the larger quantity λmin(E[XiX
⊤
i ]).

In the extensively studied regression setting with i.i.d. covariates, Fan, Li and

Wang (2017) provide an optimal convergence rate of |β̂ − β|2 for a weakly sparse

model under fat tails (the same as the minimax rate in Raskutti, Wainwright and

Yu, 2011). In the special exact sparse case, their convergence rate is
√
s(log p)/n,

and it relies on the sub-Gaussian tail assumption for the covariatesXi. Loh (2021)

allowed broader classes of distributions for Xi by inserting a weight function

to control the Euclidean norm of Xi, but required that the errors be drawn

i.i.d. from a symmetric distribution, and thus selected ν at a fixed constant order

(cf. Theorem 1). In contrast, Fan, Li and Wang (2017) waived the symmetry

requirement by allowing ν to diverge in order to reduce the bias induced by the

Huber loss when the distribution of ξi is asymmetric. We borrow ideas from both,

and further account for time-dependent covariates and errors. Compared with

Loh (2021), with i.i.d. covariates and i.i.d. errors, our result requires a stronger

scaling condition (3.2) in terms of the dependence quantities γ, τ and a larger

power of log p to handle both dependent covariates and dependent errors.

Applying ℓ1-regularization in time series regression, Wu and Wu (2016)

(cf. Theorem 5) dealt with correlated covariates and errors, and allowed a wider

class of stationary processes in a causal form. The linear error process in our

consideration falls in the weaker dependence range within their framework. If

γ, τ, ση = O(1), p = o(nq−1) is required for their regular estimator, without

accounting for robustness, where q > 2 is the order of the finite moments for

ξi. Chernozhukov et al. (2021) considered the Lasso estimator for a system

of time series regression equations, with one regression equation as a special

case, for which the allowed dimension is still of a polynomial rate to ensure

consistency by considering the performance bound with respect to the prediction

norm (cf. Corollary 5.4). Compared with the two aforementioned works, we allow

a much wider range for the dimension p under mild conditions.

The tuning parameter ν plays a key role by adapting to errors with fat tails.

In practical applications, the optimal values of the tuning parameters ν and λ

can be chosen using a two-dimensional grid search and cross-validation or an

information-based criterion such as the AIC or BIC. We leave the theoretical

investigation of selecting the tuning parameters as important future work.

3.2. Estimating transition matrix in VAR models

VAR models are popular for studying the evolution of a set of endogenous

variables over time. Interpretations of large VAR models have been developed

in various applications, such as policy analysis (Sims, 1992), financial systemic

risk analysis (Gourieroux and Jasiak, 2011), portfolio selection (Ledoit and Wolf,

2003), functional genomics (Shojaie, Basu and Michailidis, 2012), and brain
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networks (Sameshima and Baccala, 2014).

Because a general VAR model of order d can be reformulated as a VAR(1)

model by appropriately redefining the random vectors, many works (Han, Lu

and Liu, 2015; Guo, Wang and Yao, 2016) consider a model with lag 1, as given

in (2.4). Most works on high-dimensional VAR models require the Gaussian

assumption (Kock and Callot, 2015; Basu and Michailidis, 2015; Han, Lu and

Liu, 2015) or some structure assumption stronger than the minimal requirement

λmax(A) < 1; for example, Han, Lu and Liu (2015) imposed ∥A∥ < 1, and Guo,

Wang and Yao (2016) considered banded A, with some decay condition on ∥Ak∥
free of p. For many VAR designs (Example 1 is one such), it could happen that

∥A∥ ≥ 1, and the dimension p, as the size of A, can play a role in measuring the

temporal and cross-sectional dependence. Basu and Michailidis (2015) proposed

stability measures to capture temporal and cross-sectional dependence. From a

different viewpoint, we fill the gap between the spectral radius of a matrix and

its spectral norm. The following proposition provides a sufficient and necessary

condition for λmax(A) < 1 by relating to the spectral norm.

Proposition 1. For any matrix A, it holds that λmax(A) < 1 if and only if there

exists some finite integer k such that ∥Ak∥ ≤ ρ0, given any universal constant

0 < ρ0 < 1.

Letting τ = min{k ∈ Z+ : ∥Ak∥ ≤ ρ0} and γ = ρ−1
0 max0≤k≤τ−1 ∥Ak∥,

condition (2.3) holds for model (2.4) without extra requirements. We now

introduce the notation. Let a⊤
j· be the jth row of A and sj be the cardinality

of the support set of aj·, that is, sj = |supp(aj·)| = |{i : aij ̸= 0}|. Denote

s = max1≤j≤p sj and S =
∑p

i=j sj. For robustness, we first truncate the data

by obtaining X̃i = ϕν(Xi), where ν is the truncation parameter, determined

later. For notational convenience, we assume X0 is also observed. Based on the

truncated sample X̃i and the tuning parameter λ > 0, we propose estimating A

by solving the following Lasso problem:

Â = argmin
B∈Rp×p

1

n

n∑
i=1

|X̃i −BX̃i−1|22 + λ|B|1, (3.4)

which is equivalent to solving the p sub-problems:

âj· = argmin
b∈Rp

1

n

n∑
i=1

(X̃ij − b⊤X̃i−1)
2 + λ|b|1. (3.5)

Before proceeding, we state the key assumptions on the process (2.4) and some

scaling conditions that guarantee the consistency of the robust estimator Â.

Assumption 2.

(B1) Eεij = 0; Eε2ij = 1; max1≤j≤p ∥Xij∥q = µq < ∞, for some q > 2.
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(B2) µqγτs
2[(log p)/n](q−2)/(2q−2) → 0.

(B2′) µqγτS2[(log p)/n](q−2)/(2q−2) → 0.

Assumption (B1) imposes polynomial moment conditions on the underlying

VAR process. Assumption (B2) (or (B2′)) assumes a vanishing scaling property.

If µq, τ , and γ are of a constant order, (B2) reduces to the scaling condition that

involves s (or S), n, and p only.

Theorem 5. Let Assumptions (B1) and (B2) be satisfied. Choose the truncation

parameter ν ≍ µq(n/ log p)
1/(2q−2). Let Â be the solution of (3.4) with λ ≍

µqγτ(∥A∥∞ + 1)[(log p)/n](q−2)/(2q−2). It holds that

∥Â−A∥∞ ≤ Cµqγτ(∥A∥∞ + 1)s

(
log p

n

)1/2−1/(2q−2)

, (3.6)

with probability at least 1 − 8p−c, for some constant c > 0. If Assumption (B2′)

is satisfied, it also holds that

∥Â−A∥F ≤ C ′µqγτ(∥A∥∞ + 1)
√
S
(
log p

n

)1/2−1/(2q−2)

, (3.7)

with probability at least 1− 8p−c, for some constant c > 0.

The obtained rates of convergence are governed by two sets of parameters: (i)

dimensionality parameters: the dimension p, sparseness parameter s (or S), and
sample size n; (ii) internal parameters: the moment µq, dependence quantities τ

and γ, and maximum absolute row sum ∥A∥∞. If we assume that the internal

parameters are of a constant order, we have

∥Â−A∥F = OP

(√
S
(
log p

n

)1/2−1/(2q−2))
.

To ensure consistency, the dimension p can be allowed to increase exponentially

with n, in view of the mild scaling condition. Guo, Wang and Yao (2016), with

the same constant order of internal parameters, can only allow the narrower

range p = o(nc), for some 0 < c < (q − 4)/8 (cf. Condition 4(i)). For Gaussian

autoregressive models, proposition 4.1 of Basu and Michailidis (2015) suggests

the order in terms of dimension parameters as

∥Â−A∥F = OP

(√
S
√

log p

n

)
.

In the presence of fat tails and with the existence of a finite qth moment, our

result yields a slightly slower convergence rate, characterized by the moment order

q, and it becomes closer to their bound as q increases.
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As an alternative method, a Dantzig-type estimation (Candes and Tao, 2007;

Cai, Liu and Luo, 2011; Han, Lu and Liu, 2015) can be modified in a robust

way. Let Σk denote the autocovariance matrix of the process (Xi) at lag k.

The Yule–Walker equation A = Σ−1
0 Σ1 suggests that a good estimate Â should

have a small error in terms of ∥Σ0Â − Σ1∥max. Without direct access to the

autocovariance matrices Σ0 and Σ1, a natural approach is to find nice estimators

for them. Han, Lu and Liu (2015) used sample autocovariance matrices, yielding a

good performance bound under Gaussianity. For fat-tailed cases, we consider the

robust estimators of the autocovariance matrices based on the truncated sample:

Σ̂k =
1

n

n∑
i=1

X̃i−kX̃
⊤
i , for k = 0, 1.

The Dantzig- type estimator is then modified to solve the following convex

programming problem:

Â = argmin
B∈Rp×p

|B|1 s.t. ∥Σ̂0B − Σ̂1∥max ≤ λ, (3.8)

where λ > 0 is a tuning parameter. Observe that problem (3.8) can be solved in

parallel, that is, (3.8) is equivalent to p subproblems:

â·j = argmin
b∈Rp

|b|1 s.t. |Σ̂0b− Σ̂1uj|∞ ≤ λ, j = 1, . . . , p, (3.9)

for any unit vector uj. Let a·1,a·2, . . . ,a·p be columns of A, and denote s∗ =

max1≤j≤p |supp(a·j)|. We can obtain Â by simply concatenating all the columns

â·j, that is, Â = (â·1, â·2, . . . , â·p). The next theorem delivers an upper bound

on the statistical accuracy.

Theorem 6. Let Assumption (B1) be satisfied. Let Â be the solution of (3.8),

with ν ≍ µq(n/ log p)
1/(2q−2) and λ ≍ µqγτ(∥A∥1+1){(log p)/n}(q−2)/(2q−2). With

probability at least 1− 8p−c′, for some constant c′ > 0, it holds that

∥Â−A∥max ≤ Cµqγτ∥Σ−1
0 ∥1(∥A∥1 + 1)

(
log p

n

)1/2−1/(2q−2)

, (3.10)

∥Â−A∥1 ≤ C ′µqγτ∥Σ−1
0 ∥1(∥A∥1 + 1)s∗

(
log p

n

)1/2−1/(2q−2)

. (3.11)

Interestingly, the convergence rate of the modified Dantzig-type estimator

has a similar form to that of the robust Lasso estimator developed in Theorem

5, if the included internal parameters for the process are of a constant order.

Both methods involve p parallel programming problems, with the lasso-based

method performing a row-by-row estimation, and the Dantzig method performing

a column-by-column estimation. The case of ∥A∥ < 1 studied by Han, Lu and

Liu (2015) is the special case where γ = 1 and τ = 1 in our framework. The
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latter work imposes a more flexible sparse condition, namely, that the transition

matrix A belongs to a class of weakly sparse matrices defined in terms of a strong

ℓr-ball (0 ≤ r < 1). This condition is also considered by Bickel and Levina

(2008), Rothman, Levina and Zhu (2009), Cai, Liu and Luo (2011), and Cai and

Zhou (2012) when estimating covariance and precision matrices. For r = 0, it

is the exact sparse case, and Theorem 1 in Han, Lu and Liu (2015) implies the

dimension parameter order

∥Â−A∥1 = OP

(
s∗
√

log p

n

)
,

which is a bit sharper than our result (3.11). There is an additional cost for fat-

tailed processes with robustness absorbed. Note that we are also able to derive

the bound of ∥Â−A∥1 for weakly sparse A based on the result (3.10).

4. Simulation Study

In this section, we evaluate the finite-sample performance of the robust Lasso

and Dantzig estimators proposed in Section 3.2, and compare it with that of

the traditional Lasso and Dantzig methods. A simulation on time series linear

regression is presented in the Supplementary Material. We consider the model

(2.4), where εij are i.i.d. standardized Student’s t-distributions with df = 5. We

adopt the numerical setup of n = 50, 100 and p = 50, 100, 500, and set s = ⌊log p⌋.
For the true transition matrix A = (aij), we consider the following designs:

(1) Banded: A = (λ|i−j|1{|i− j| ≤ s}) and λ = 0.5.

(2) Block diagonal: A = diag{Ai}, where each Ai ∈ Rs×s follows the structure

in Example 1 with B = 2 and λi ∼ Unif(−0.8, 0.8).

(3) Toeplitz: A = (λ|i−j|) and λ = 0.5.

(4) Random Sparse: aii ∼ Unif(−0.8, 0.8) and aij ∼ N(0, 1), for (i, j) ∈ C ⊂
{(i, j) : i ̸= j}, where C is randomly selected and |C| = s2.

To ensure stationarity of the VAR model, the designs in (1), (3), and (4) are

further scaled by a factor of 2λmax(A) to ensure that the spectral radius of the

transition matrix is less than one. Figure 2 shows the plot of ∥Ak∥ under the four

designs, with p = 100, 500. These patterns of matrix A were studied previously

in Han, Lu and Liu (2015), where the assumption ∥A∥ < 1 was necessary. In

this study, we keep the designs of symmetric sparse and weakly sparse matrices,

presented in cases (1) and (3), respectively. For these two cases, it holds that

∥Ak∥ = (λmax(A))k = (0.5)k, and condition (2.3) is satisfied with τ = 1, γ = 1,

and ρ0 = 0.5. However, for the designs using asymmetric coefficient matrices

(cases (2) and (4)), we allow ∥A∥ > 1, and τ and γ in condition (2.3) may

depend on the value of p.
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Figure 2. The graph of ∥Ak∥ for the four designs of A, with p = 100, 500.

Table 1.

p = 50, n = 100 Banded Block Toeplitz Random

Lasso L∞ 1.49 (0.060) 0.96 (0.072) 1.46 (0.143) 1.28 (0.124)

Lasso LF 1.56 (0.112) 1.22 (0.112) 1.55 (0.121) 1.30 (0.084)

Robust-Lasso L∞ 1.35 (0.049) 0.80 (0.078) 1.30 (0.072) 1.17 (0.065)

Robust-Lasso LF 1.37 (0.076) 1.05 (0.041) 1.36 (0.090) 1.23 (0.038)

Dantzig L1 2.01 (0.121) 1.91 (0.087) 2.02 (0.140) 2.40 (0.159)

Dantzig LF 2.10 (0.095) 1.92 (0.074) 2.04 (0.125) 2.69 (0.078)

Robust-Dantzig L1 1.86 (0.050) 1.08 (0.058) 1.86 (0.043) 1.47 (0.077)

Robust-Dantzig LF 1.90 (0.049) 1.41 (0.044) 1.89 (0.033) 2.02 (0.073)

In each repetition, we generate a process of length 2n. We run the estimation

procedure in (3.4) or (3.8) based on {X1, . . . , Xn} using a two-dimensional grid

search for the tuning parameters ν and λ. For each (ν, λ) in the grid, denote

the estimator by Â(ν, λ). Then, (ν, λ) is chosen to minimize n−1
∑2n

t=n+1 |Xt −
Â(ν, λ)Xt−1|22, the average prediction error on {Xn+1, . . . , X2n}. The following

tables report the average and standard deviation (in parentheses) of the estima-

tion error based on 1,000 repetitions in different matrix norms consistent with

Theorem 5 and Theorem 6. As comparisons, we obtain the results for the robust

methods and the traditional versions (Lasso estimator in Tibshirani (1996) and

Dantzig-based estimator in Han, Lu and Liu (2015)) in different designs.

From a statistical perspective, the tables indicate that both robust estimation

methods outperform the regular Lasso and Dantzig when the innovation vectors

have a fat tail and the transition matrix exhibits a sparsity pattern. In summary,

our robust methods work particularly well for non-Gaussian time series.
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Table 2.

p = 100, n = 50 Banded Block Toeplitz Random

Lasso L∞ 2.64 (0.205) 2.31 (0.093) 2.49 (0.308) 2.40 (0.114)

Lasso LF 2.73 (0.168) 2.44 (0.141) 2.74 (0.125) 2.48 (0.119)

Robust-Lasso L∞ 2.65 (0.073) 2.26 (0.101) 2.67 (0.039) 2.18 (0.084)

Robust-Lasso LF 2.67 (0.080) 2.38 (0.139) 2.69 (0.052) 2.32 (0.131)

Dantzig L1 3.13 (0.177) 2.70 (0.146) 3.15 (0.140) 3.21 (0.136)

Dantzig LF 3.16 (0.073) 3.06 (0.172) 3.58 (0.116) 3.75 (0.173)

Robust-Dantzig L1 1.80 (0.069) 1.82 (0.051) 1.72 (0.047) 1.51 (0.073)

Robust-Dantzig LF 2.78 (0.071) 2.01 (0.104) 2.77 (0.065) 2.45 (0.090)

Table 3.

p = 500, n = 100 Banded Block Toeplitz Random

Lasso L∞ 4.99 (0.091) 4.12 (0.043) 4.27 (0.052) 4.49 (0.019)

Lasso LF 8.16 (0.070) 7.98 (0.004) 8.05 (0.021) 7.82 (0.052)

Robust-Lasso L∞ 4.80 (0.012) 3.31 (0.015) 3.55 (0.051) 3.40 (0.017)

Robust-Lasso LF 7.51 (0.120) 7.50 (0.177) 7.69 (0.158) 6.69 (0.220)

Dantzig L1 5.03 (0.070) 5.64 (0.034) 5.18 (0.055) 5.43 (0.050)

Dantzig LF 8.64 (0.169) 9.03 (0.199) 9.18 (0.222) 8.43 (0.192)

Robust-Dantzig L1 4.51 (0.030) 4.50 (0.017) 4.69 (0.037) 4.69 (0.034)

Robust-Dantzig LF 7.11 (0.123) 7.05 (0.102) 7.09 (0.099) 6.76 (0.122)

5. Conclusion

Conventional time series regression tools are inadequate when analyzing

high-dimensional temporal-dependent and fat-tailed data. In this paper, we

have proposed a novel Bernstein inequality for high-dimensional linear processes,

thus contributing to the robust estimation theory of high-dimensional time

series regression in the presence of fat tails. The convergence rate depends

on the strength of the temporal and cross-sectional dependence, the moment

condition, the dimension, and the sample size. We allow the dimension to increase

exponentially with the sample size as a natural requirement of consistency. A

statistical inference of the estimates, such as hypothesis testing and constructing

confidence intervals, requires additional research in terms of asymptotic distribu-

tional theory. This is left to future work.

Supplementary Material

The online Supplementary Material contains a simulation on time series

regression and the proofs of all the results presented in the paper.
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