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ON STRATIFIED DENSITY-RATIO MODELS
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Abstract: Density-ratio models are receiving increasing attention, particularly be-

cause of their relationship with generalized linear models and their applications in

missing-data analyses. The density-ratio assumption, however, may not be true in

some applications, and an important limitation is that the standard density-ratio

model does not accommodate heterogeneity within the underlying population. To

address these issues, we propose a new density-ratio model that incorporates a strat-

ification procedure and dispersion parameters. The resulting stratified density-ratio

model 1) retains attractive properties of the standard density-ratio model, while

allowing the density-ratio assumption to be violated for some covariate, and 2) pro-

vides a validation tool, using a Kolmogorov–Smirnov-type statistic, to check the

modeling assumption. We estimate the finite-dimensional and infinite-dimensional

parameters simultaneously using an efficient nonparametric maximum likelihood ap-

proach. The resulting estimators are shown to be consistent and asymptotically nor-

mal. The asymptotic covariance matrix of the estimators for the finite-dimensional

parameters attains the semiparametric efficiency bound.

Key words and phrases: Bootstrap test, density ratio models, generalized linear

models, Kolmogorov-Smirnov test, nonparametric maximum likelihood estimation,

semiparametric efficiency.

1. Introduction

The exponential family is a rich and flexible parametric family of distribu-

tions possessing nice theoretical properties and wide practical applicability. The

generalized linear model (GLM) (McCullagh and Nelder (1989)) relates the re-

sponse variable Y and θ, which contains covariate information, as

f(y|θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
, (1.1)

where a(·), b(·), and c(·) are known functions, and φ is called the dispersion

parameter; refer to Jørgensen (1997) for a comprehensive treatment and general-

ization of the error distributions considered by Nelder and Wedderburn (1972).

A critical assumption in the classical GLM is that a(·), b(·), and c(·) are
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known functions. In addition, model (1.1) is an exponential family density func-

tion with canonical parameter θ only if φ is known; otherwise, it is an exponential

dispersion model. If c(·) is unspecified in model (1.1), then neither is b(·). Using

the canonical link function with a linear predictor θ = βTX, where X is a set

of covariates, we have f(y|φ) = constant × exp {c(y, φ)} when X = 0 and φ is

a known quantity. Therefore, a properly normalized function of c(·) serves as a

so-called baseline density function. The preceding argument heuristically intro-

duces a semiparametric specification of the GLM when c(·) is left unspecified.

In this study, we formalize this idea in a density-ratio modeling framework with

unspecified c(·) and unknown φ.

The semiparametric density-ratio model (DRM) (Diao, Ning and Qin (2012)),

also called the proportional likelihood ratio model (Luo and Tsai (2012)), has

been studied extensively in recent years, with its early history dating back to

Anderson (1972). Several statistical models in the literature are closely related

to the DRM, such as the Cox proportional hazards model (Cox (1972, 1975)),

generalized linear models (Nelder and Wedderburn (1972)), DRMs for categori-

cal covariates (Qin and Zhang (1997); Qin (1998); Fokianos et al. (2001); Zhang

(2000, 2002)), biased sampling models (Vardi (1985); Gill, Vardi and Wellner

(1988); Gilbert, Lele and Vardi (1999); Chen (2001)), semiparametric single-

index models (Ichimura (1993)), generalized odds ratio models (Liang and Qin

(2000)), and semiparametric generalized linear models (Rathouz and Gao (2009);

Huang and Rathouz (2012); Huang (2014).) While obtaining some desirable

properties, such as the efficiency of the estimators (within a suitable class) and

robustness to model mis-specification, studies based on the standard DRM have

been extended to accommodate different types of data, such as missing and trun-

cated data (Chan (2012)), right-censored data (Zhu (2014)), longitudinal data

(Luo and Tsai (2014)), time-series data (Kedem et al. (2008); Fung and Huang

(2016)), multivariate extreme-value data in risk assessment (De Carvalho and

Davison (2014)), survival data from prevalent cohort studies (Zhu et al. (2017)),

and correlated data with multivariate outcomes (Marchese and Diao (2017)).

The key to modeling the distribution of a response variable Y conditional

on a given covariate vector X using the density-ratio technique is to use a prop-

erly normalized product of an unspecified baseline probability density function

f(·) and an exponential function of the linear predictor containing the covariate

information:

f(y|X) =
f(y) exp(yβTX)

b(βTX, f)
, b(βTX, f) =

∫
Y
f(s) exp(sβTX)ds, (1.2)



SDRM 155

where b(·) is a normalizing constant dependent on βTX and f(·), and Y is the

support of the response variable. Closely related to the DRM, note that the

semiparametric generalized linear models (SPGLMs) of Rathouz and Gao (2009),

Huang and Rathouz (2012), and Huang (2014) explicitly model the mean struc-

ture E(Y |X) = η(βTX) using a user-specified inverse link function η(·) in addition

to the error distribution f(y) = exp(b+yθ)f0(y) in density-ratio form, where f0(·)
is some reference density function and b is a normalizing constant. The merit of

the SPGLMs is the reverse specification of the canonical parameter θ ≡ θ(X;β, f)

as an implicit solution of the conditional mean and the error distribution, which

gives β the usual mean contrast interpretation.

Robustness is a major advantage of the DRM and its variants. However, the

performance still relies on the density-ratio assumption, by which, we mean that

the logarithm of two probability density functions are related linearly in y:

log
f(y|X)

f(y)
= yβTX + b̃(βTX, f), (1.3)

where b̃(βTX, f) = − log b(βTX, f). If the functional form of the baseline

density function is known, then (1.3) can be used to check the density-ratio as-

sumption. However, the baseline density function f(·) is left unspecified. There-

fore, validating the assumption by directly checking the linearity of the functional

forms is practically infeasible under the foregoing semiparametric specification.

To the best of our knowledge, very few works have justified the validity of the

density-ratio assumption. Most existing studies examining the density-ratio mod-

eling technique seek to enhance model flexibility using the robust nature and

some invariant properties of the density-ratio form. Violating the density-ratio

assumption can yield inconsistent estimators of the unknown parameters, both

finite-dimensional and infinite-dimensional. Other statistical inferences may not

be reliable either.

Under the DRM (1.2), the population is typically assumed to be homoge-

neous with a common baseline distribution, based upon which the linear predictor

quantifies the covariate effects. If this is untrue for some covariate, especially for

a discrete covariate, then including all the covariates in a linear predictor based

upon a single baseline distribution is inappropriate. The following two examples

offer insight into violations due to heterogeneity, motivating us to consider the

stratified density-ratio model in this study.

Example 1. (ANCOVA with unequal covariances). Figure 1 plots the post-

vs. pre-treatment blood lead concentration levels from a clinical trial data set
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(Fitzmaurice, Laird and Ware (2012)). The open and closed circles show the suc-

cimer and placebo groups, respectively, and their corresponding fitted regression

lines are also displayed. A typical feature of this type of data is that the pre-

treatment scores have roughly the same means and variances between the two

treatment groups. However, this is not the case for the post-treatment scores,

because individual responses to different treatments are unlikely to be the same.

Here, the analysis of covariance (ANCOVA) model with random effects can be

useful in modeling this type of data. The underlying heterogeneity is group spe-

cific. Hence, the density-ratio assumption is clearly violated if we do not consider

separate baseline density functions.

The Poisson distribution (and its variants) is another commonly used para-

metric family of distributions when modeling count data. The density-ratio as-

sumption is also violated in the following example of a heterogeneous negative-

binomial regression model, which offers extra flexibility in modeling over-dispersed

count data.

Example 2. (Negative-binomial regression with heterogeneous dispersion). The

probability mass function is

P(Y = y|A) =
Γ(y + (1/φ))

Γ(y + 1)Γ((1/φ))

(
1

1 + φµ

)(1/φ)( φµ

1 + φµ

)y
,

where

φ ≡ φ(A) =

{
0, A = 0,

φ1 ∈ (0, 1], A = 1.

Under the above model,

E(Y |A) = µ, Var(Y |A) = µ+ φ(A)µ2.

Note that as φ→ 0, the negative-binomial distribution NB(µ, µ+φµ2) converges

to a Poisson distribution with mean µ. Here, µ can be treated as a baseline

quantity or further modeled using other covariates. Clearly, the (conditional)

variance here is covariate dependent.

The remainder of this paper is organized as follows. In Section 2, we present

a new density-ratio model based on stratification that incorporates dispersion

parameters. To avoid a fully stratified model, a common regression vector (di-

rection) is assumed, while the magnitudes are allowed to vary across strata. We

develop likelihood-based inference procedures and establish the asymptotic prop-
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Figure 1. Treatment-specific blood lead concentration.

erties of the proposed estimators. In Section 3, we illustrate how to use the

proposed model to validate the density-ratio assumption using a Kolmogorov–

Smirnov-type goodness-of-fit test. In addition, we propose a bootstrap proce-

dure to approximate the p-value of the goodness-of-fit test statistic. In Section

4, we conduct simulation studies to assess the finite-sample performance of the

proposed model and the testing procedure. In Section 5, we illustrate the pro-

posed methodology by analyzing two data sets: blood lead concentration data

(Fitzmaurice, Laird and Ware (2012)), and German health data for 1984–1988

(SOEP Group (2001); Hilbe (2011)). All technical details are provided in the

Supplementary Material.

2. Methods

2.1. The models

We first define some notation. Let Y be a general univariate response vari-

able supported on Y ⊆ R. We consider a K-level categorical covariate, namely

A ∈ {1, 2, . . . ,K}. Denote by A = (A1, . . . , AK−1)T the (K − 1) × 1 vector of

dummy variables associated with A, where Ak = I{A = k} (k = 1, . . . ,K − 1)

correspond to the first K − 1 levels of A, and the Kth variable is set as the

reference level. Let X be a d× 1 vector of other available covariates, and denote

by Z = (XT,AT)T the totality of covariates defined on Z ⊆ Rd+K−1. Let F (·|Z)

and Fk(·|X) be the distribution functions of Y conditional on Z and (X, A = k)

(k = 1, . . . ,K), respectively. Assume that the aforementioned conditional dis-
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tributions all possess density functions (with respect to some proper dominat-

ing measures suppressed without ambiguity), denoted by f(·|Z) and fk(·|X)

(k = 1, . . . ,K), respectively. Let f(·) = f(·|Z = 0) and fk(·) = fk(·|X = 0)

(k = 1, . . . ,K) be their corresponding baseline density functions. It is clear that

f(·) = fK(·).
Recall that under the density-ratio assumption, Y |(X,A) ∼ f(y|X,A) sat-

isfies

f(y|X,A) =
f(y) exp{y(αTA + βTX)}

b(αTA + βTX, f)
,

b(αTA + βTX, f) =

∫
Y
f(s) exp{s(αTA + βTX)}ds.

Similarly, if the density-ratio assumption is postulated within each stratum of A,

that is, Y |(X, A = k) ∼ fk(y|X) (k = 1, . . . ,K), then

fk(y|X) =
fk(y) exp(yβT

kX)

bk(β
T
kX, fk)

, bk(β
T
kX, fk) =

∫
Yk

fk(s) exp(sβT
kX)ds.

To avoid a fully stratified model with different baseline density functions and

different regression coefficients, we consider the following “parallel-slope” model:

fk(y|X) =
fk(y) exp{yβTXV (φk)}

bk(β
TX, φk, fk)

,

bk(β
TX, φk, fk) =

∫
Yk

fk(s) exp{sβTXV (φk)}ds,
(2.1)

where Yk is the support of Y |(X, A = k) (k = 1, . . . ,K), φk is the unknown

dispersion parameter corresponding to stratum k (k = 1, . . . ,K), and V (·) is a

known positive function subject to V (0) = 1. To ensure model identifiability,

we set φK to zero. This semiparametric specification mimics the formulation of

the classical parametric generalized linear models with dispersion parameters. A

typical example is the normal regression model with mean parameter β and error

variance σ2, where β∗ ≡ β/σ2 is identified as the true parameter in the DRM.

We refer to (2.1) as the stratified density-ratio model (SDRM).

Remark 1. The conditional mean/variance function is useful for prediction and

model diagnostics. Based on the DRM, the conditional mean function is given

by

µ(z) ≡ E(Y |Z = z) =

∫
Y yf(y) exp{y(αk + βTx)}dy∫
Y f(y) exp{y(αk + βTx)}dy

, (2.2)
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where z = (x, k), and the conditional variance function is given by

Var(Y |Z = z) =

∫
Y{y − µ(z)}2f(y) exp{y(αk + βTx)}dy∫

Y f(y) exp{y(αk + βTx)}dy
. (2.3)

These conditional mean and conditional variance functions are understood in the

same way as any other model in a regression analysis. It is clear that (2.2) and

(2.3) depend on the linear predictor (αk + βTx) and the baseline density f(·).
If fk(·) ≡ f(·|A = k) are heterogeneous for different k, then the heterogeneity

contained in the baseline density functions plays a part in the overall conditional

mean and conditional variance.

Remark 2. As mentioned previously, when the true model is a normal linear

regression model, the DRM can only estimate the quotient β/σ2, where σ2 is the

variance of the residual error. In general, for a K-level categorical covariate A,

let σ2
k = σ2(A = k) (k = 1, . . . ,K), and the regression parameter in the SDRM

be β∗. Then,
β

σ2
k

=
β

σ2
K

×
σ2
K

σ2
k

≡ β∗ × V (φk). (2.4)

We set the Kth stratum to be the reference level. Therefore, V (φk) is the variance

ratio of the reference stratum of the baseline distribution to that of the kth

stratum (k = 1, . . . ,K − 1). We set V (·) to be the exponential function exp(·).
In practice, because the true variances of the distributions are unknown, the

SDRM essentially estimates the log odds ratio parameter, for all strata, in the

same direction ‖β∗‖−1β∗, the magnitude of which is controlled by the dispersion

parameter in the corresponding stratum. A similar technique was used in a

genetic study by Schifano et al. (2013).

Remark 3. The positive function V (·) should not be confused with the variance

function in the GLM literature; it is not a variance function that depends on the

conditional mean (e.g., VGLM(µ) = µ(1−µ) for the binomial family). As in (2.4),

V (φk) represents the baseline variance ratio. Any positive function subject to

V (0) = 1 (identifiability) is a potential candidate, though the actual numerical

performance may differ. Therefore, the exponential function is a natural choice.

Remark 4. From (2.4), we can also see that if the heterogeneity indeed exists,

then not all the ratios σ2
K/σ

2
k (k = 1, . . . ,K − 1) are equal to one. Therefore,

without the stratification, the estimator of β∗ is no longer consistent. This can

be generalized to arbitrary responses beyond the normal data using the proposed

SDRM.
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Remark 5. The estimator of β∗ can be converted back to the original scale β by

adjusting the error variance σ2
K of the reference distribution. Following Marchese

and Diao (2017), we estimate σ2
K from the residuals using the observations from

the reference stratum after obtaining the regression coefficient estimates.

2.2. Nonparametric maximum likelihood estimation

Let {(Yi,Xi, Ai), i = 1, . . . , n} be an independent and identically distributed

(i.i.d.) sample of observations of size n. The sample size in the kth group of

A is nk =
∑n

i=1 I{Ai = k}, for k = 1, . . . ,K. If the response variable Y follows a

discrete or mixed underlying distribution, tied outcomes may be observed. Let m

and mk (k = 1, . . . ,K) be the numbers of distinct observations in the whole sam-

ple and in the stratified sample corresponding to stratum k, respectively. Note

that n =
∑K

k=1 nk, but m 6
∑K

k=1mk, in general. Based on the definition in

(2.1) and an i.i.d. sample of size n, the likelihood function about the unknown

parameter (β,φ,F), where φ = (φ1, . . . , φK−1) and F = (F1, . . . , FK), is given

by

Ln(β,φ,F) =

n∏
i=1

K∏
k=1

[
dFk(Yi) exp{YiβTXiV (φk)}∫
Yk

exp{sβTXiV (φk)}dFk(s)

]I{Ai=k}

=

K∏
k=1

nk∏
r=1

dFk(Ykr) exp{YkrβTXkrV (φk)}∫
Yk

exp{sβTXkrV (φk)}dFk(s)
, (2.5)

where dFk(·) = fk(·) (k = 1, . . . ,K) are the baseline density functions with re-

spect to some dominating measure, and Ykr and Xkr (k = 1, . . . ,K; r = 1, . . . , nk)

are the response and covariates for the rth subject in the kth group of A, respec-

tively.

However, the likelihood function (2.5) can be maximized, without exploding

to infinity, only when the baseline distribution functions are discretized at the dis-

tinct observations, and the corresponding jump sizes are considered as unknown

parameters to be estimated. Let pkj = Fk{Yk(j)|X = 0} (j = 1, . . . ,mk; k =

1, . . . ,K) be the probability masses that the discretized conditional distributions

assign to the ordered distinct observations when the covariate X takes 0, where

Yk(j) denotes the jth-order statistic in stratum k. Then, the nonparametric like-

lihood function is given by

Ln(β,φ,p) =

K∏
k=1

nk∏
r=1

pkj exp{Yk(j)β
TXkrV (φk)}∑mk

l=1 pkl exp{Yk(l)β
TXkrV (φk)}

, (2.6)
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where pk = (pk1, . . . , pk,mk−1)T, for k = 1, . . . ,K, and p = (pT1 , . . . ,p
T
K)T. We

introduce an intermediate index j in (2.6) to account for possible tied values of

Y , where j depends on r via {j : Yk(j) = Ykr, 1 6 j 6 mk, 1 6 r 6 nk} ≡ Jk.
For stratum k, the multiplicity of j, denoted by λkj , is defined as the cardinality

of the set Jk. It follows that
∑mk

j=1 λkj = nk (k = 1, . . . ,K). The corresponding

nonparametric log-likelihood function can be written as

`n(β,φ,p) =

K∑
k=1


mk∑
j=1

λkj log(pkj) +

nk∑
r=1

Ykrβ
TXkrV (φk)

−
nk∑
i=1

log

[
mk∑
l=1

pkl exp{Yk(l)β
TXkrV (φk)}

]}
. (2.7)

To maximize (2.7) with respect to (β,φ,p), a commonly used approach is

the re-normalizing iterative procedure; that is, repeatedly updating the estimates

of the jump sizes p and the regression parameters (β,φ) until both converge. It

can be shown that the resulting nonparametric maximum likelihood estimators

(NPMLEs) of (β,φ,p), denoted by (β̃n, φ̃n, p̃n), satisfy

p̃kj = λkj

 nk∑
r=1

exp{Yk(j)β̃
T
XkrV (φ̃k)}∑mk

l=1 p̃kl exp{Yk(l)β̃
T
XkrV (φ̃k)}

−1

. (2.8)

Alternatively, Diao, Ning and Qin (2012) and Marchese and Diao (2017) pro-

posed using the quasi-Newton algorithm (Press et al. (1992)) to directly optimize

the negative nonparametric likelihood function (2.6) with respect to the regres-

sion parameters (β,φ) and the re-parametrized jump sizes p via the softmax

transformation

pkj =
exp(ζkj)∑mk

l=1 exp(ζkl)
, ζkmk

≡ 0 (j = 1, . . . ,mk − 1; k = 1, . . . ,K). (2.9)

The softmax transformation (2.9) implicitly transforms the constrained op-

timization problem into an unconstrained one and stabilizes the jump sizes, thus

facilitating the numerical computation. In general, the iterative procedure and

the direct optimization procedure yield almost identical solutions. However, the

direct optimization is considerably faster than the iterative procedure, and is less

prone to convergence problems. In our numerical studies, we adopt the direct

optimization approach using the softmax transformation.

Using this transformation, the resulting effective nonparametric log-likelihood
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function about (β,φ, ζ) is given by

`n(β,φ, ζ) =

K∑
k=1

nk∑
r=1

log

[
exp{ζkj + Yk(j)β

TXkrV (φk)}∑mk

l=1 exp{ζkl + Yk(l)β
TXkrV (φk)}

]
,

where ζk = (ζk1, . . . , ζk,mk−1)T, for k = 1, . . . ,K, and ζ = (ζT1 , . . . , ζ
T
K)T is of

dimension
∑K

k=1(mk − 1). The intermediate index j plays the same role as that

in (2.6). The totality of the unknown parameters is d+K− 1 +
∑K

k=1(mk− 1) =

d− 1 +
∑K

k=1mk.

Then, the NPMLE of Fk(t) (k = 1, . . . ,K) is given by

F̃n,k(t) =

∫
Yk

I{y 6 t}dF̃k(y) =

mk∑
j=1

p̃kjI{Yk(j) 6 t},

where

p̃kj =


exp(ζ̃kj)

1 +
∑mk−1

l=1 exp(ζ̃kl)
, j 6= mk

1−
mk−1∑
l=1

p̃kl, j = mk,

and (β̃n, φ̃n, ζ̃n) are obtained by solving ∇`n(β̃n, φ̃n, ζ̃n) = 0. Here, ∇`n(β,φ, ζ)

denote the first derivatives of `n(β,φ, ζ) with respect to the unknown parameters

(β,φ, ζ).

2.3. Asymptotic theory

In this subsection, we establish the asymptotic properties of the proposed NPM-

LEs. We first impose the following regularity conditions:

(C1) The covariate vector Z = (XT,AT)T is bounded almost surely, and aTZ = 0

almost surely if and only if a = 0.

(C2) For some fixed limit ρk ∈ (0, 1), nk/n→ ρk, as n→∞ (k = 1, . . . ,K).

(C3) The true parameter values of β and φ, denoted by β0 and φ0, belong to

the interior of a known compact set,

Θ = {(β,φ) : ‖β‖ 6 B0, ‖φ‖ 6 B0, for some positive constant B0} .

In addition, φk 7→ V (φk) is a known positive function with V (0) ≡ 1,

such that it is bounded away from zero and ∞ on Θ almost surely, and
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continuously differentiable in a neighborhood of φk0 (k = 1, . . . ,K − 1).

(C4) The true baseline cumulative distribution function of Fk(t), denoted by

Fk0(t) =
∫
Yk
I{y 6 t}dFk0(y) (k = 1, . . . ,K), is a class of distribution func-

tions defined on Yk ⊆ R with finite first and second moments. The integral

is understood in the usual Lebesgue–Stieltjes sense, where the probability

density function is assumed with respect to some proper dominating mea-

sure, suppressed without ambiguity.

(C5) There exist positive constants B1 6 B2 such that the following inequalities

hold almost surely:

B1 6 Eη0

[
exp{Y βT

0 XV (φk0)}
]
6 B2,

Eη0

∥∥∥∥ ∂

∂θ0
exp{Y βT

0 XV (φk0)}
∥∥∥∥ 6 B2,

Eη0

∥∥∥∥ ∂2

∂θ0∂θ
T
0

exp{Y βT
0 XV (φk0)}

∥∥∥∥ 6 B2,

where η0 = (β0,φ0,F0) are the true parameter values.

We now establish the consistency and asymptotic normality of the proposed

NPMLEs.

Theorem 1. Under conditions (C1)–(C5), ‖β̃n − β0‖ → 0, ‖φ̃n − φ0‖ → 0,

and supt∈Yk
|F̃n,k(t) − Fk0(t)| → 0 (k = 1, . . . ,K), almost surely, where ‖ · ‖ is

the Euclidean norm.

Theorem 2. Under conditions (C1)–(C5), the random element
√
n(β̃n−β0, φ̃n−

φ0, F̃n−F0) converges weakly to a tight, zero-mean Gaussian process in the met-

ric space l∞(Rd×RK−1×HK), where l∞(H) is a linear space, equipped with the

supremum norm, consisting of all bounded functions.

Remark 6. Although it is not required that the support of Z contain 0 to prove

Theorems 1 and 2, we impose this additional assumption such that Fk(·), for

k = 1, . . . ,K, have meaningful interpretations. In practice, if a covariate takes

positive values (for example, age), one can center the covariate at its sample

mean. In this case, Fk(·) has the interpretation of the conditional CDF of the

response variable for the kth group, given that the covariates take values at their

means.

In addition to estimating the baseline distribution function in each stra-

tum, we can estimate the asymptotic covariance matrix of the baseline distri-
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bution function estimator, together with that of the finite-dimensional param-

eter θ. We can regard the likelihood function (2.7) as a function of (β,φ),

and the parameters that represent the jump sizes of Fk(·) (k = 1, . . . ,K) at

distinct observed values. From the classical Fisher information theory of para-

metric models, the asymptotic covariance matrix in Theorem 2 can be esti-

mated using the inverse of the observed Fisher information matrix jointly in

all parameters (β,φ,F). Let (b, c) ∈ Rd × RK−1 be any constant vector, and

h = (h1, . . . , hK) ∈ HK be any bounded K-function. The asymptotic variance

of the random element bTβ̃n + cTφ̃n +
∑K

k=1

∫
Yk
hk(t)dF̃n,k(t) is equal to that

of bTβ̃n + cTφ̃n +
∑K

k=1

∑mk

j=1 hk(Yk(j))p̃kj . Therefore, it can be consistently es-

timated using hT
nJ−1

n hn, where hn is the column vector consisting of b, c, and

hk(Yk(j)) − hk(Yk(mk)) (j = 1, . . . ,mk − 1; k = 1, . . . ,K), and Jn is the nega-

tive Hessian matrix of `n(β̃n, φ̃n, F̃n) with respect to (β,φ) and the jump sizes

Fk{Yk(j)} (j = 1, . . . ,mk − 1; k = 1, . . . ,K). The next theorem provides a theo-

retical justification for this result.

Theorem 3. Let V (b, c,h) be the asymptotic variance of the random element√
n[bT(β̃n−β0) +cT(φ̃n−φ0) +

∑K
k=1

∫
Yk
hk(t)d{F̃n,k(t)−Fk0(t)}]. Under con-

ditions (C1)–(C5), the estimator nhT
nJ−1

n hn → V (b, c,h) uniformly in (b, c,h)

in probability.

The proofs of Theorems 1–3 are provided in the Supplementary Material.

3. A Goodness-of-fit Test

An appealing feature of the proposed SDRM is that it can be used to check

the density-ratio assumption. Recall that under the DRM, the nonparametric

likelihood function of (α,β, q) is given by

Ln(α,β, q) =

n∏
i=1

qj exp{Y(j)(α
TAi + βTXi)}∑m

l=1 ql exp{Y(l)(αTAi + βTXi)}
, (3.1)

where Y(j) is the jth-order statistic in the entire sample, and qj = F{Y(j)|Z = 0}
(j = 1, . . . ,m). Note that, similar to (2.6), the intermediate index j in (3.1) is

related to i via Yi = Y(j) (j = 1, . . . ,m; i = 1, . . . , n).

The NPMLEs of (α,β, q), denoted by (α̂n, β̂n, q̂n), are obtained by solving

∇ logLn(α̂n, β̂n, q̂n) = 0 subject to the constraint
∑m

j=1 qj = 1, and the NPMLE

of the baseline distribution function F (·) is given by
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F̂n(t) =

m∑
j=1

q̂jI{Y(j) 6 t}.

Recall from Section 2 that Fk(·) = F (·|X = 0, A = k) is the distribution

function conditional on (X = 0, A = k) and F = (F1, . . . , FK). Under the DRM,

the NPMLEs of Fk(·), denoted by F̂n,k(·), for k = 1, . . . ,K, are given by

F̂n,k(t) =



m∑
j=1

q̂jI{Y(j) ≤ t}, k = K,

m∑
j=1

q̂j exp(Y(j)α̂k)I{Y(j) 6 t}∑m
l=1 q̂l exp(Y(l)α̂k)

, k = 1, . . . ,K − 1.

Intuitively, if the density-ratio assumption is valid, we expect that F̃n,k(·)
and F̂n,k(·) to be close for all k = 1, . . . ,K. We then propose a Kolmogorov–

Smirnov-type (KS) statistic,

∆n =

K∑
k=1

nk
n

∆n,k, (3.2)

to test the density-ratio assumption, where

∆n,k = sup
t∈Yk

√
n |∆n,k(t)| = sup

t∈Yk

√
n
∣∣F̂n,k(t)− F̃n,k(t)∣∣

measures the maximum discrepancy between the estimated baseline distributions

for the kth group based on the DRM and SDRM. A large value of ∆n indicates

a departure from the density-ratio assumption. The validity of the test is based

on the following theorem.

Theorem 4. Under the density-ratio assumption and regularity conditions (C1)–

(C5), the stochastic process
√
n(F̂ − F̃)  W, where W = (W1, . . . ,WK) is a

zero-mean K-variate Gaussian process in the metric space l∞(HK).

Theorem 4 serves as the basis for justifying the proposed goodness-of-fit test.

Let δp be the pth quantile of the asymptotic null distribution of the test statistic

∆n defined in (3.2), that is, δp satisfies

P

(
K∑
k=1

ρk

{
sup
t∈Yk

|Wk(t)|
}
6 δp

)
= p.

Because the supremum map is uniformly continuous in l∞(H), according to the
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continuous mapping theorem (van der Vaart and Wellner (1996)), we have

lim
n→∞

P(∆n > δ1−p) = lim
n→∞

P

(
K∑
k=1

nk
n

{
sup
t∈Yk

√
n
∣∣F̂n,k(t)− F̃n,k(t)∣∣} > δ1−p

)

= P

(
K∑
k=1

ρk

{
sup
t∈Yk

|Wk(t)|
}
> δ1−p

)
= p.

Because there is no explicit analytic expression for the weighted suprema of

the Gaussian processes, we propose a bootstrap procedure to approximate the

p-value of the goodness-of-fit test. The algorithm proceeds as follows.

Step 1. Obtain the NPMLEs (α̂n, β̂n, F̂n) and (β̃n, φ̃n, F̃n) under the DRM and

SDRM, respectively. Calculate ∆obs
n based on the observed sample of size

n, and the NPMLEs thereof.

Step 2. For i = 1, . . . , n, calculate the conditional distribution of the response

based on (Yi,Zi), where Zi = (XT
i ,A

T
i )T, under the DRM, as follows:

P̂ij = P(·|Xi,Ai) =
q̂j exp{Y(j)(α̂

T
nAi + β̂

T

nXi)}∑m
l=1 q̂l exp{Y(l)(α̂

T
nAi + β̂

T

nXi)}
(j = 1, . . . ,m).

Then, P̂(·|Zi) ≡ P̂i = (P̂i1, . . . , P̂im) is the estimated probability distribu-

tion conditional on Zi under the DRM.

Step 3. Generate Y ∗i according to the multinomial distribution P̂(·|Zi)(i = 1, . . . ,

n). Denote the generated random sample of size n as Y∗ = (Y ∗1 , . . . , Y
∗
n ).

Step 4. Obtain the NPMLEs (α̂∗n, β̂
∗
n, F̂

∗
n) and (β̃

∗
n, φ̃

∗
n, F̃

∗
n) based on {(Y ∗i ,Zi), i =

1, . . . , n} under the DRM and SDRM, respectively. Calculate the test statis-

tic ∆∗n based on the generated sample and the corresponding NPMLEs.

Step 5. Repeat Step 3 and Step 4 B times, obtain (∆∗1n , . . . ,∆
∗B
n ). The p-value

is then approximated by

p̂∆ =
1

B

B∑
b=1

I{∆∗bn > ∆obs
n }.

The null hypothesis, H0 : the density-ratio assumption holds, is rejected at

a prespecified significance level α if p̂∆ < α.
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4. Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample per-

formance of the proposed SDRM and the goodness-of-fit test procedure. Over the

course of the simulation studies, we provide some insight into how the SDRM is

comparable to the DRM when the density-ratio assumption is satisfied/violated.

We first consider the scenario under which the density-ratio assumption

holds. We generate data from the model

Yi|(Xi, Ai) ∼ N
(
αAi + βTXi, 1

)
, i = 1, . . . , n,

where α = −0.2, β = (0.5,−0.5, 0.5)T, A is a binary variable with success prob-

ability 0.5, and X is a covariate vector with three components, X1, X2, and X3,

which are standard normal, uniform(−1, 1), and Bernoulli(0.5) variables, respec-

tively. We consider sample sizes 100, 200, and 400, and all simulation results are

based on 1,000 replicates. The confidence intervals are constructed based on the

normal approximation, where the corresponding standard errors are estimated

by inverting the observed Fisher information matrix jointly in all parameters.

The simulation results under the above settings are summarized in Table

1. The NPMLEs under the DRM and SDRM are comparable. Both have small

biases; the standard error estimates agree well with the sampling standard devia-

tions; and the 95% confidence intervals have correct coverage probabilities (CPs).

As the sample size increases, the biases and standard deviations of the NPMLEs

for both models decrease. As expected, the biases and standard error estimates

under the DRM are smaller than those under the SDRM, because the DRM is

the true model. The relative efficiency (RE), defined as the ratio of the mean

squared error (MSE) of the estimator under the SDRM to that under the DRM,

is only slightly greater than one, especially for the regression coefficients. This

shows that the SDRM results in a limited loss of efficiency when the density-ratio

assumption holds.

We next consider the scenario when the density-ratio assumption is violated.

Specifically, we generate data from the model

Yi|(Xi, Ai) ∼ N
(
αAi + βTXi, σ

2(A)
)
, i = 1, . . . , n.

Here, σ2(A = 1) = 0.72 and σ2(A = 0) = 1. The remaining settings are the same

as those in the first set of simulations. Because we set V (·) to be the exponential

function exp(·), the dispersion parameter φ is log(1.0/0.49) = 0.713. In this case,

the true model is the SDRM, whereas the density-ratio assumption in the DRM
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Figure 2. Size/power curve for testing the density-ratio assumption under the normal
regression with covariate-dependent errors. The dashed horizontal line corresponds to
the nominal 5% significance level.

is violated.

The simulation results under the above scenario are summarized in Table

2. The NPMLEs under the SDRM continue to perform well, with small biases

and correct coverage probabilities of the 95% confidence intervals. On the other

hand, the NPMLEs of the regression parameters under the DRM are very biased,

and the REs decrease quickly as the sample size increases, such that the MSE is

dominated by the bias. The biases of the estimators of the baseline distributions

under the DRM appear to be much larger than those under the SDRM.

Finally, we evaluate the finite-sample performance of the proposed goodness-

of-fit test for testing the density-ratio assumption in the standard DRM. The

settings of the mean function of the normal distribution are as before. The

variance parameter σ1 ≡ σ(A = 1) controls the effect size, and σ(A = 0) ≡ 1. The

type-I error rates and statistical power are calculated based on 2,000 simulations,

each with B = 500 bootstrap replicates. The size/power curve for the normal

regression with covariate-dependent errors is plotted in Figure 2. The proposed

goodness-of-fit test can control the type-I error rate accurately, and the power

increases when the sample size or the effect size increases.

In addition to the normal regression with covariate-dependent errors, we con-

duct a power analysis when the baseline distribution is heterogeneous negative-

binomial. See Example 2 in Section 1 for the parametrization of the base-

line distribution. The linear predictor in the DRM form is (αA +
∑3

j=1 βjXj),

where A is a binary variable with success probability 0.5; X1, X2, and X3 are

standard normal, uniform(−1, 1), and Bernoulli(0.5) variables, respectively; and
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Figure 3. Size/power curve for testing the density-ratio assumption under the hetero-
geneous negative-binomial regression. The dashed horizontal line corresponds to the
nominal 5% significance level.

(α, β1, β2, β3) = (−1.0,−0.5, 0.5,−0.5). The baseline distribution of the response

variable is a Poisson distribution with mean µ = 3 conditional on A = 0. The

dispersion parameter φ1 controls the effect size. The type-I error rates and sta-

tistical power are calculated based on 2,000 simulations, each with B = 500 boot-

strap replicates. The size/power curves are displayed in Figure 3. The proposed

goodness-of-fit test can still control the type-I error rate accurately. The test,

however, is much less powerful compared to that of the normal regression with

covariate-dependent errors. One possible reason for such a dramatic decrease in

power is that the response variable follows a discrete probability distribution, of

which the true distribution function is a step function.

5. Applications

We first apply the proposed methodology to a blood lead concentration data

set. A sample of n = 100 observations is available in Fitzmaurice, Laird and

Ware (2012) and will be used in our data analysis. In randomized clinical trials,

it is common practice to consider the pre-treatment score as a covariate to be ad-

justed for the post-treatment score, where the difference between the group-wise

intercepts may quantify the treatment effect (Crager (1987)). In practice, people

typically assume normality. Two issues have long been recognized. First, both

pre- and post-treatment scores are random rather than fixed values, which may

have different covariance structures. Second, parallel slopes between treatment

groups is a critical assumption in the classical ANCOVA model, albeit this has
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Table 3. Estimated coefficients for the blood lead concentration data.

SDRM DRM

Var. Coef. Std. Err. t P > |t| Var. Coef. Std. Err. t P > |t|
pre.trt 4.311 0.993 4.337 < 0.001 pre.trt 1.099 0.225 4.882 < 0.001

φ -2.134 0.453 -4.710 < 0.001 succimer -3.310 0.593 -5.579 < 0.001
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Figure 4. Estimated baseline CDFs for the blood lead concentration data.

been frequently questioned. Motivated by this data set, Funatogawa, Funato-

gawa and Shyr (2011) studied the type-I error rate of the ANCOVA model under

equal-slope, but different covariances, without assuming normality. We now show

how the proposed SDRM can be applied in this situation.

Let A be the succimer group indicator, and let pre.trt and post.trt be the

pre- and post-treatment scores, respectively. We standardize these scores for

comparison purposes. The fitted linear predictor in the SDRM is 4.311pre.trt ×
e−2.134, and that in the DRM is −3.310A+1.099pre.trt. The estimated coefficients

are all significant. Detailed estimation results can be found in Table 3, and the

estimated baseline distribution functions (CDFs) based on the SDRM and DRM

are plotted in Figure 4. The proposed goodness-of-fit test is significant, with

a p-value of 0.023 based on 2,000 bootstrap samples, and the homogeneity test

based on the SDRM is also significant (p-value < 0.001). In other words, the

density-ratio assumption is rejected, and the two estimated baseline CDFs based

on the SDRM are significantly different.

Although the estimated baseline CDFs based on the DRM and SDRM do not

differ substantially in Figure 4, the proposed tests can still detect a significant

difference (all give consistent results). This finding demonstrates that when the

normality assumption indeed holds, the proposed semiparametric procedure is
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fairly powerful in distinguishing heterogeneity among the baselines. In addition,

both the parametric and semiparametric procedures validate the parallel-slope

assumption (with a p-value of 0.194 for testing the interaction effect in the AN-

COVA model, and a p-value < 0.001 for testing φ = 0 in the SDRM).

We end this case analysis with a final remark. The quantity T ≡ EF1
(post .trt |

pre.trt = 0) − EF0
(post .trt |pre.trt = 0) represents the treatment effect incorpo-

rating the random subject/group effects (see (2.2) for the conditional mean func-

tion). Replacing the unknown parameters in T with (β̃, φ̃, F̃1, F̃0) based on the

SDRM gives the NPMLE of the treatment effect T̃ . We have T̃ = −1.317, which

is very close to the value of −1.308 (p-value < 0.001) obtained from the ANCOVA

model. Because we have the conditional distribution estimates, in addition to the

mean difference, other summary statistics involving β and/or F0 and F1, such as

the median treatment effect, can also be conveniently calculated using plug-ins.

The second real-data analysis is provided in the Supplementary Material.

6. Discussion

We have proposed a KS-type test statistic (3.2) and a goodness-of-fit proce-

dure. Alternatively, we may consider the so-called Cramér–von-Mises-type (CvM)

statistic based on the (weighted) integrated quadratic distance, that is,

∆CvM
n =

K∑
k=1

∫
Yk

wk(t){F̂n,k(t)− F̃n,k(t)}2dt.

One may improve the efficiency of the test by choosing a proper weight function

wk(t) (k = 1, . . . ,K), taking into account both the within- and between-strata

information, as well as the characteristics of the baseline distribution functions.

We take wk(t) = nk/n, the benchmark sample proportion, as a simple adjustment

for the between-strata sample sizes in the KS-type test described in Section 3.

The optimality conditions of the weight function are beyond the scope of this

study, but deserve to be investigated in future research.

The proposed stratified model and the goodness-of-fit test procedure have

several limitations. First, the proposed KS-type test and its potential alternative,

the CvM-type test, are not direct and formal diagnostic tests for the density-ratio

assumption. The entire testing procedure relies on the stratification of a categor-

ical covariate. On the one hand, searching for such a categorical covariate can be

practically burdensome; on the other hand, it may be more reasonable to explain

the (condition) variance based on a set of covariates, which is similar to the GLMs

with varying dispersion (Smyth (1989)). Most importantly, if the density-ratio
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assumption is violated for a continuous covariate, then how to properly categorize

such a continuous variable becomes more troublesome. Undoubtedly, a suitable

stratification will entail a nice result with good interpretability. The second draw-

back we would like to address is the transformation applied to the variables used

to fit the model. Typically, we use the log-transformation to a right-tailed vari-

able naturally bounded from below by zero. This may be acceptable in practice;

however, is not yet “formally” justified. Therefore, a formal validation procedure

for the density-ratio assumption and the functional forms of the covariates cer-

tainly warrants future research. Lastly, we want to emphasize that the regression

parameter β in the DRM/SDRM, in general, cannot be interpreted as the mean,

in contrast to those in the GLMs. This is a major limitation of this model, owing

to the “canonical form” yβTX in the linear predictor. The SPGLMs (Rathouz

and Gao, 2009; Huang and Rathouz, 2012; Huang, 2014) have a clear advantage

in this regard.

The standard DRM typically assumes that observations are homogeneous

within the overall population. This is, in general, untrue if there is a natural

stochastic ordering in the response variable across different levels of a poten-

tial confounding categorical covariate. El Barmi and McKeague (2013) tested

a stochastic ordering based on an integrated localized empirical likelihood ratio

statistic. Combining the advantages of the empirical likelihood methodology and

the benchmark likelihood ratio test, their approach is elegant and successful in

k-sample data, the data structure of which is similar to that of the DRM with a

single k-level categorical covariate. Their procedure, however, is not applicable

to data with arbitrary covariates, in general. In a blood alcohol concentration

(BAC) data set discussed by Ramı́rez and Vidakovic (2010), Chang (2014) strat-

ified the ages of the drunk drivers into two levels, where below 30 were considered

as young, and 30 and above were considered as old. The post-stratified distri-

bution of the BAC of the young group was stochastically larger than that of the

old group. The original BAC data set contains many other covariates, though

Chang (2014) only considered the covariate age, which was stratified. Inspired

by El Barmi and McKeague (2013) and Chang (2014), we think that it will be

an interesting future research topic to consider the testing of stochastic orderings

among the baseline CDFs in the SDRM formulated in this study.

Supplementary Material

The online Supplementary Material provides proofs for the theorems in Sec-

tion 2 and Section 3, as well as the second real-data example (German health
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registry data) in Section 5.
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