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Supplementary Material

S1 Lemmas

Lemma 1. Use the notation from Section 2 and write

Enkm - n1/2 (XgaBnkak-a)_1X]Ia¢nkm(5)

fork=1,...,K and m =1,...,M. Then, provided Assumptions 1, 2, 3

and 4 are satisfied, we have || Bupml|| = Op{(qnlogn)*/?}.
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Proof of Lemma 1: We calculate

||Bnkm ||2 - n¢nkm (5)TXk-a(XgaBnkak~a>_2Xga¢nkm (5>

IN

>\min(nilxlrgaBnkak-a)72n71wnkm (5)TXk-anawnkm (5)

IN

Cn_l¢nkm (5)TXk4aX];;Ijawnkm (5)

IN

Cn” ' gn(maxy<j<q, [Vnm (€) T Xij])?

= Cn™'gu(maxicjcg, |20 Vemi(e) Xni|)?, (S1.1)

where the third step uses Assumptions 2 and 3. Since ¢y (g) Xyi; has mean

zero and is bounded by Assumption 1, Hoeffding’s inequality gives
Pr{ |3 Y (£) Xiig| = Ln(nlogn)'/?} < 2exp{~CL}logn}
for any positive sequence L,, — oo. It follows that
pr{maxi<;<g, |30 Vkmi(€) Xuis| > Ln(nlogn)'/?}
< S pr{ | 0T Wi (2) Xig| = Lu(nlogn)'/?}
< 2g, exp{—CL%logn} = 2qnn_CL% — 0, (S1.2)

where the last step holds true because ¢, = o(n'/?); see Assumption 4.

Therefore

max; <j<g, | > i Vkmi(€) Xpij| = Op{(nlogn)'/?}.

This combined with (S1.1) gives ||Bpem || = O,(gnlogn), which completes

the proof.
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Lemma 2. Set M = {D : D € M,D* C D} and use the notation from
Section 3. Let Assumptions 1, 3, 6 and 7 be satisfied. Let ¢y be the constant
from Assumption 7. Then we have, fork =1,... K, m=1,..., M, and

any positive sequence L, that tends to infinity and satisfies L, — oo and

1 < Ly, (logn)V/? < pl/10-ei/5,

Jim pr{| 327 { (Vi XipOkmn) — oo (ima) }

< L,|Dl|logn, for any D € M;} = 1.

Proof of Lemma 2: Under Assumptions 1, 3, 6 and 7, Lemma A.2 in the

supplement to Lee et al. (2014) gives

limz o hmnaoopr{HekmD - QZmDH < Ln—1/2(|D“ngn)l/2’

for any D € Mj} = 1. (51.3)
Then, as L,, — o0,

pr{Hé\kmp — 05l < Lnn’1/2(]D\logpn)1/2, for any D € M3} — 1.

(S1.4)

Under Assumptions 1, 3, 6 and 7, and since 1 < L,,(logn)'/? < nl/10-c/5

we can apply Lemma A.1l in the supplement to Lee et al. (2014), which
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gives

maXDe/vq} |D|_1[‘7kmD — E(Vimp | Xy.p)

+ 25 X O — O ki ()] | = 0,(1) (S1.5)

with Vip = Yo pm (Y — X,;fmékmp) — pm(€kmi)}- Then we have, on an

event that has probability tending to one,

[ X Ok = O i ()]
< NOmd = O | 1327, Xm0 |
< Ok — O D] *macs <, [ S0y XigPmi ()|
< Lnn’1/2(]D\logpn)1/2]D\1/2Ln(nlogn)1/2

= L?|Dllogn (S1.6)

for any D € M;. The last but one step uses (S1.2) and (S1.4). From
Assumption 7 we have p, = O(n®). Hence (S1.2) holds true when g, is

substituted by p,. We also have, for any 6y € RIP satisfying ||0p —65,.p | <
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Lan="*(|D|log p,)'/2,

1> E{pm (Yei — Xpipbp) — pm(Ekmi) | Xi}|
= S B fy o) (e < 8) — (e < 0)ds | Xy}
= S O B (s | Xig) = Fion (0 | Xio)ds
= Y fy e R s (5 | Xio)ds
< C(0p = b)) (Xnin Xyip) (0D — bfp)
< Cndmax(n™ X p Xi0) |00 — Ofp 12

< Cnllp — 8},,p]I” < CL2[Dllog p. (SL.7)

The first step in the above results is from Knight’s identity (Knight, 1998).
In the second step, Fi,(- | Xi) is the conditional distribution function of
€xm given Xg. The third step uses a Taylor expansion with some 5 between
0 and X, (0p — 60},.p). The fourth step holds true because of Assumption

3 and the fact that

Suplgign‘Xl;I;D<9D — Oemp)| < SUP1§i§nHinDH 10D — Ol
< CLypdyn~*(logn)*/?

< Cn'5 25 (logn)2 0

from Assumptions 1 and 7. Combining (S1.4), (S1.5), (S1.6) and (S1.7)
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yields that, for any D € M7,

Vind < | E(Vimp | Xi0)| 4+ 210 XL Ormd — G ) remi ()] + D0, (1)

< CL2|Dlog p, + L2[Dllog n + [Dlo,(1) < CL2[Dllogn

with probability approaching one, where the 0,(1) term comes from (S1.5).

This finishes the proof.

S2 Proofs of the Theorems

Proof of Theorem 1: Under Assumptions 1-4, Lemma 6 of Sherwood and

Wang (2016) gives
1272 Brm = ) — Butom | = 0p(1) (52.1)
for every k and m, with Enkm defined in Lemma 1. Therefore

[— O,{n""?(gulogn)"/?}. (52.2)

It follows that for every k and m,

maxi<;j<g, [Okmj — Opmjil < 10k — 04l = Op{n~""*(gnlogn)"/*}

= Op{n(cl’l)/z(log n)1/2}.
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Hence

max [0 —0*9 |, < KM max max max |Ogmj — Ofmil
1<i<qn 1<k<K 1<m<M 1<j<qn J

_ Op{n(cl—l)/2(10g n)l/Z}7
which, combined with Assumption 5, yields

mini<jcg, 091 > mini<jcg, [|0°9]) — maxi<j<q, |09 — O

> COnl2 D2 _ plea=D2(ogn)/?}) = Op{n(CQ‘l)/2}.
We assume ), = o{n{~V/2} which implies
primin<j<,, [|09]; > aX,} — 1. (S2.3)

The subderivative of the objective function (2.2) with respect to 8¢ is

;

04, (0 ; ;
) XSO, 1691 < An,
oy, (0) |
n — 0l (0 1 arp— 9(]) .
00) ot 4 5(00) ) -, < 1091 < ahn, (52.4)
04, (0 ;
pe ar, < |09,
\
with

S(0Y)) = (Sign(611), . - -, Sign(f1ar;), - - - , Sign(Ox1;), - - -, Sign(Orcar;)) ",

where Sign(z) = z/|z| for z # 0 and Sign(0) = [—1, 1]. Thus (S2.3) implies
that, with probability tending to one, o) (1 < j < @) belongs to the third

case in (S2.4). Combined with the fact that § is a local minimizer of 0,(0),
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it gives that
0 € 9L(0) /00| ,_5 = 0Ty, (0) /06| ,_5. (S2.5)

Under Assumptions 1-5, the equation (3.5) in Lemma 1 of Sherwood

and Wang (2016) yields that for every k and m,
pr{maxgy, <j<p, |00(0)/00km;|p_s| > A} — 0. (52.6)

Since ||69]|, = 0 for ¢, < j < p,, which belongs to the first case in (S2.4),

we have
ITy, (0)/009|,_s = 90(0)/06Y|,_5 + X\,.S(0) (S2.7)

Since S(0) = {(u1,...,uk) : |Jug] < L,k = 1...,K}, (S2.6) and (52.7)

imply that for ¢, < 7 < py,
pr{0 € aTy, (0)/007],_5} — 1. (S2.8)

Combining (S2.5) and (S2.8) completes the proof.

Proof of Theorem 2: Set 3, = nl/Q(é\a — 0%, B, = n~Y2RIX T, () and

write 4,528, = S Dy, where Dy, = n V24,5, R0, 6, =

{:(e)T @ XL, . vka(e)T @ XE, 3T and, for every k and i, iy (e) =
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{r1i(e), . .. ,wkMi(é?)}T. We have E(D,;) = 0 since E(J,;) =0 and

YL B(DuDy) = 0 BAS PRI BSudy | X)IR, 1V AAT)
= B{AX°R' (n ' X[HXo)R, 'S, AT}

= B(AXVPRIS, RIS VPAT) = A, AT G
For any n > 0 we obtain

> E{IDus (| Dyill > )}
< B Dill)
= () 230 B{0n R S, PATALE PR, 10,00 )
< () T N (A An) S0 B (6, R 2 R 60i) )
< COn 20 B{(6%.5,160:)%}
< O E{ A min (Sn) 2|6l *}
< O30 (10w
= On i B (S S i ()% Xl )}
< Cn~?Y " E{(maxi ek | Xnial)*}
< Cn~'E{(max; <j<, maxi<p<r | Xpial[)*}
< Cn”'q; = o(1),
with A\pnax(-) being the largest eigenvalue of a square matrix. The fourth

step in the above display results from the fact that Apn. (AL A,) — C. The
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sixth step uses the condition that A, (S,) is uniformly bounded away from
zero. The last but one step holds true because of Assumption 1, and the last
step uses Assumption 4. This shows that the Lindeberg-Feller condition for

the central limit theorem is satisfied, i.e. we have
A Y26, =S Dy — N(0,G) in distribution (n — c0).  (S2.9)

It is obvious that 8, = (Bhi1,- -+, Biiass - Boagets - Bugenr) - With Bogm

defined in Lemma 1. Hence, using (S2.1), we have
160 = Ball < Zhea S| Boiom = Butnl| = 0p(1).
It follows that
1A 2 Be = B = (B — Bu) "= 2 A ATE (B — B)
< Aax (An A7) Ain (Z0) H1Bo = Bull® = 0,(1).

In the last step we used Apax (A, AY) — C, Assumption 2 and the condition
that Apin(Sy) is uniformly bounded away from zero. This combined with

(52.9) yields

nl/QAnEgl/Z(é\a -0 = Anzgl/zén — N(0,G) in distribution (n — 00).
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Proof of Theorem 3: Consider the set of overfitted models M; = {D €

M : D* C D,D # D*} and the set of underfitted models My = {D € M :

D* ¢ D}. Since My U My = M\{D*} it suffices to show

lim,, oo pr{minpers, MQBIC(D) > MQBIC(D*)} =1, (52.10)

lim,, oo pr{minpe o, MQBIC(D) > MQBIC(D*)} = 1. (S2.11)

We first prove (S2.10). Write Wp = n I S S o (Yas —
X];I‘Z-Dé\km’p) and W* = ”_125212:%:12?:1/0771(%7711')- From Lemma 2 we
know that we can choose some sequence L, that does not depend on D
and satisfies L, — oo, L, = o(T},) and n~'L,d,logn — 0 such that for

k=1,...,. Kandm=1,...,M,

pr{| 30 {pm (Vi = XEpBkmp) — pon(Ermi) }|

< (MK)™'L,|Dllogn, for any D € Mi} — 1. (S2.12)
Since
Wp — W*|
S n_IZszlz%:ﬂZ?:l{pm(Y; - XI;I;DkaD) - pm(Yz - XI;I;D*QZmD*)H:

we have

pr{|/Wp — W*| <n 'L,|Dllogn, for any D € M;} — 1.
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It follows that

pr{[Wp — Wp:| < n ™' L,(|D| + |D*|)logn,

for any D € M3} — 1 (52.13)
and that
pr{ﬁ/\p* > (C, for any D € M;} — 1. (52.14)

Here we used Assumption 9 and the fact that n='L,|D*[logn — 0 (As-

sumption 7). Therefore, with probability tending to one,

minpe v, MQBIC(D) — MQBIC(D*)
= minpeay, [log{1 + Wt (Wp — Wp:)} + (2n) "' T, (|D| — |D*|)log n]

Z minDeMl{—QW_*l WD - WD*

+ (2n)'T.(|D| — |D*|)log n}
> minpea, {—Cn ' L,(|D| + |D*|)logn +

(2n) " T,(|D| — |D*|)log n}. (52.15)

The first inequality in the above derivation comes from the fact that log(1+
x) > —2|z| for any |z| € (—1/2,1/2), from equation (S2.13) combined with
n~tL,d,logn — 0, and from (S2.14). The last step holds true because of
(52.13) and (S2.14). Then (S2.15) implies (S2.10) because L,, = o(7},) and
D] > D).

To prove equation (S2.11) we introduce D' = D U D* for any D €
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M. Since q is fixed by Assumption 7, there is a parameter with minimum

0 > 0.

absolute value v > 0, i.e. ¥ = minj<p<cx MiNy<mey Minjep |0,

Since (S1.3) still holds for any set in Mj; = {D C {1,...,p,} : |D| <

2d,,, D* C D}, we have
pr{maX'DeM2||§km’D/ — 0ol <vl— 1 (52.16)

Fork=1,....K,m=1,...,M and any D € My, let Oy be a |D'| x 1
vector, i.e. the dimension of gkmpl is given by the number of indices in the set
D' = DUD*. We define it as an extended version of é\km’pi the components
of gkmD/ that correspond to the index set D coincide with the components
of @mp; the remaining components are filled with zeros. For example, if
D = {1,3}, D* = {1,2} and Omp = {1.4,0.7}, then D’ = {1,2,3}, |D'| = 3
and 5,%@/ = (1.4,0,0.7)*. Since D* ¢ D, there exist some kg and mg such
that ||Ggmen — Oxomopr|| = v. Combined with (S2.16) and since the check
function is convex, this implies that there exists a |D’| x 1 vector fp such

that ||6p — 6}, || = v and

Z?:lpmo (Ykoi - Xl;l;iD’e_D’) < Z?:lpmo (Ykoi - Xl;l;z'D’ekom()D’)

= Z?:lpmo (Ykoi - XI;I(;iDekomop>'

Now set Gpr(w) = n7 13" {pmo (Ergmei — X,;Fom,w) — Pmo(Ekgmei) } and
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B,(D') = {w € RP'l": ||w|| = v}. Then we have, for any D € My,

n_IZ?:l{pm()(Ykoi - XkTOiDé\komoD> — Pimo(Yeoi — XkTOz‘D’akomoD’)}
> 07 S {pmo (Vioi = Xiin00r) = pmo (Vi = X Oroman)}
= G (O — Oy momr) — G Brgmorr — Orgpmor )+
E{Gp(0p — Onopr) | Xior'} = E{Gp/ (0D = Of o) | Xippr}
> infep, () E{Gp (W) | Xkyp}

—supyep, o) |G () = B{Gp (@) Xign} = G (Brmypr — b ymym):
(S2.17)

Similar to (S1.7), we have, for any D' € M} and w € B,(D’),

E{Gp/(w) | Xip'}
XxT w

= nilz?:lf[) o Fkomo (5 ’ XkoiD’> - Fkomo (0 | XkoiD’)dS
xT w

= n—lz?:1f0 For®! kaom()(g | XkoiD’)dS

2 CWT{n_lz?ﬂ(XkoiD’XkToz‘Df)}w

> C’Amm(nlekTo_D,XkO.D/)||w||2 = COl|w|?, (52.18)

where the third step uses Assumption (3) and the last step Assumption (6).
Then, under Assumptions 1, 3, 6 and 7, Lemma A.3 in the supplement to

Lee et al. (2014) gives

maxprem; SUPyep, (p) |G (W) = E{Gp (W) | Xiy }| = 0p(1). (52.19)
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It is obvious that (S2.12) is still valid when M7 is substituted by M;.

Hence

Gpl(é\komopl — ezomOD/)| < Cn_andnlog n} — 1,

pr{maX'D/GM;

Gt (Orgmomr 05,y )| = 0p(1). This, combined with

which giVGS maXDleMz

(52.17), (S2.18) and (S2.19) implies that, with probability approaching one,

n_lminpeMQZzll{Pm(Ykoi - Xl};m@komoD) -

pm(Ykoi — XkoiD’gkomoD’)} Z 20 (S220)

Since D € D’ we have Zyzl{pm(yki_X]};DakmD)_pm(Yki_sz’D’é\kmD’)} 2 0

for any k, m and D € M. It follows

Wp — Wy
=n I M S (Y — XEpOkmp) — P (Yei — Xpio O )}

>0 o (Yeoi — XpgipOkomon) — Pm(YVigi — XioivOromen?) }-

This, combined with (S2.20), gives

pr{minpers, (Wp — Wp) > 2C} — 1. (S2.21)
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Then, with probability tending to one,
minpe p, MQBIC(D) — MQBIC(D')
= minpe, [log{1 + W5 (Wp — Wp)} = (2n) T, (|D'| - [D|)log ]
> minpe v, [min{log 2, Wy (Wp — W) /2} — (2n) T, | D*|log ]
> minpe, [min{log 2, W5'C} — (2n)"'T,|D*|logn] > 0 (S2.22)
The first inequality comes from the fact that log(1 + ) > min{z/2,log 2}
for any > 0. The second inequality uses (S2.21). The last step uses
Assumption 8 and the fact that (S2.14) is still valid when M7 is substituted
by Mj. Since (S2.10) can be easily extended to any D € (M3\{D*}), we
know that, with probability tending to one, MQBIC(D’) >MQBIC(D*) for
any D' € M. This and (S2.22) yield
minpep, MQBIC(D) — MQBIC(D*)
= minpe pm, { MQBIC(D) — MQBIC(D') + MQBIC(D') — MQBIC(D*)}
> minpe v, {MQBIC(D) — MQBIC(D')} > 0,

with probability tending to one. This proves (52.11).

S3 Additional Results of Simulations

In this section we check the asymptotic normality stated in Theorem 2 of

Section 2 using simulations. Under the setting of Table 2 in Section 4 with
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(n,p) = (200,1000), T = (log p)/3 and the regression model
Yii = Xgof + 076X (k=1,2;i=1,...n), (S3.1)

we consider two components, 5113 and 515(20), of the estimator generated
by our data integration (DI) approach. The corresponding covariates Xi;3
and Xy;90) affect the response Yj; via the terms 0.7£;; X3 and Xﬂo/{ in
(S3.1), respectively. In Figures 1 and 2 we present the histograms of the
two components based on 1,000 simulated data sets. We can see the curves
in the plots are unimodal, approximately symmetric and bell-shaped, which

confirms the asymptotic normality stated in Theorem 2.
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Figure 1: Histogram of 0113 generated by our data integration (DI) method. The setting

is the same as Table 2 in Section 4 with (n,p) = (200, 1000) and T = (log p)/3.
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