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S1 Lemmas

Lemma 1. Use the notation from Section 2 and write

β̃nkm = n1/2(XT
k·aBnkmXk·a)

−1XT
k·aψnkm(ε)

for k = 1, . . . , K and m = 1, . . . ,M . Then, provided Assumptions 1, 2, 3

and 4 are satisfied, we have ‖β̃nkm‖ = Op{(qnlogn)1/2}.



2 GUORONG DAI, URSULA U. MÜLLER AND RAYMOND J. CARROLL

Proof of Lemma 1: We calculate

‖β̃nkm‖2 = nψnkm(ε)TXk·a(X
T
k·aBnkmXk·a)

−2XT
k·aψnkm(ε)

≤ λmin(n−1XT
k·aBnkmXk·a)

−2n−1ψnkm(ε)TXk·aX
T
k·aψnkm(ε)

≤ Cn−1ψnkm(ε)TXk·aX
T
k·aψnkm(ε)

≤ Cn−1qn(max1≤j≤qn|ψnkm(ε)TXk·j|)2

= Cn−1qn(max1≤j≤qn|
∑n

i=1ψkmi(ε)Xkij|)2, (S1.1)

where the third step uses Assumptions 2 and 3. Since ψkmi(ε)Xkij has mean

zero and is bounded by Assumption 1, Hoeffding’s inequality gives

pr{|
∑n

i=1ψkmi(ε)Xkij| ≥ Ln(nlogn)1/2} ≤ 2 exp{−CL2
nlogn}

for any positive sequence Ln →∞. It follows that

pr{max1≤j≤qn|
∑n

i=1ψkmi(ε)Xkij| ≥ Ln(nlogn)1/2}

≤
∑qn

j=1pr{|
∑n

i=1ψkmi(ε)Xkij| ≥ Ln(nlogn)1/2}

≤ 2qn exp{−CL2
nlogn} = 2qnn

−CL2
n → 0, (S1.2)

where the last step holds true because qn = o(n1/2); see Assumption 4.

Therefore

max1≤j≤qn|
∑n

i=1ψkmi(ε)Xkij| = Op{(nlogn)1/2}.

This combined with (S1.1) gives ‖β̃nkm‖2 = Op(qnlogn), which completes

the proof.
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Lemma 2. Set M∗
1 = {D : D ∈ M,D∗ ⊂ D} and use the notation from

Section 3. Let Assumptions 1, 3, 6 and 7 be satisfied. Let c4 be the constant

from Assumption 7. Then we have, for k = 1, . . . , K, m = 1, . . . ,M , and

any positive sequence Ln that tends to infinity and satisfies Ln → ∞ and

1 ≤ Ln(logn)1/2 ≤ n1/10−c4/5,

lim
Ln→∞

pr{|
∑n

i=1

{
ρm(Yki−XT

kiDθ̂kmD)− ρm(εkmi)}|

≤ Ln|D|logn, for any D ∈M∗
1

}
= 1.

Proof of Lemma 2: Under Assumptions 1, 3, 6 and 7, Lemma A.2 in the

supplement to Lee et al. (2014) gives

limL→∞ limn→∞pr{‖θ̂kmD − θ∗kmD‖ ≤ Ln−1/2(|D|log pn)1/2,

for any D ∈M∗
1} = 1. (S1.3)

Then, as Ln →∞,

pr{‖θ̂kmD − θ∗kmD‖ ≤ Lnn
−1/2(|D|log pn)1/2, for any D ∈M∗

1} → 1.

(S1.4)

Under Assumptions 1, 3, 6 and 7, and since 1 ≤ Ln(logn)1/2 ≤ n1/10−c4/5,

we can apply Lemma A.1 in the supplement to Lee et al. (2014), which
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gives

maxD∈M∗1
∣∣ |D|−1[V̂kmD − E(V̂kmD | Xk·D)

+ 2
∑n

i=1X
T
kiD(θ̂kmD − θ∗kmD)ψkmi(ε)]

∣∣ = op(1) (S1.5)

with V̂kmD =
∑n

i=1{ρm(Yki −XT
kiDθ̂kmD)− ρm(εkmi)}. Then we have, on an

event that has probability tending to one,

|
∑n

i=1X
T
kiD(θ̂kmD − θ∗kmD)ψkmi(ε)|

≤ ‖θ̂kmD − θ∗kmD‖‖
∑n

i=1XkiDψkmi(ε)‖

≤ ‖θ̂kmD − θ∗kmD‖|D|1/2max1≤j≤pn|
∑n

i=1Xkijψkmi(ε)|

≤ Lnn
−1/2(|D|log pn)1/2|D|1/2Ln(nlogn)1/2

= L2
n|D|logn (S1.6)

for any D ∈ M∗
1. The last but one step uses (S1.2) and (S1.4). From

Assumption 7 we have pn = O(nc3). Hence (S1.2) holds true when qn is

substituted by pn. We also have, for any θD ∈ R|D| satisfying ‖θD−θ∗kmD‖ ≤
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Lnn
−1/2(|D|log pn)1/2,

|
∑n

i=1E{ρm(Yki −XT
kiDθD)− ρm(εkmi) | Xki}|

=
∑n

i=1E{
∫ XT

kiD(θD−θ
∗
kmD)

0
I(εkmi ≤ s)− I(εkmi ≤ 0)ds | Xki}

=
∑n

i=1

∫ XT
kiD(θD−θ

∗
kmD)

0
Fkm(s | Xki)− Fkm(0 | Xki)ds

=
∑n

i=1

∫ XT
kiD(θD−θ

∗
kmD)

0
sfkm(s̄ | Xki)ds

≤ C(θD − θ∗kmD)T
∑n

i=1(XkiDX
T
kiD)(θD − θ∗kmD)

≤ Cnλmax(n
−1XT

k·DXk·D)‖θD − θ∗kmD‖2

≤ Cn‖θD − θ∗kmD‖2 ≤ CL2
n|D|log pn. (S1.7)

The first step in the above results is from Knight’s identity (Knight, 1998).

In the second step, Fkm(· | Xk) is the conditional distribution function of

εkm given Xk. The third step uses a Taylor expansion with some s̄ between

0 and XT
kiD(θD − θ∗kmD). The fourth step holds true because of Assumption

3 and the fact that

sup1≤i≤n|XT
kiD(θD − θ∗kmD)| ≤ sup1≤i≤n‖XkiD‖‖θD − θ∗kmD‖

≤ CLndnn
−1/2(logn)1/2

≤ Cn4c4/5−2/5(logn)1/2 → 0

from Assumptions 1 and 7. Combining (S1.4), (S1.5), (S1.6) and (S1.7)
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yields that, for any D ∈M∗
1,

V̂kmD ≤ |E(V̂kmD | Xk·D)|+ 2|
∑n

i=1X
T
kiD(θ̂kmD − θ∗kmD)ψkmi(ε)|+ |D|op(1)

≤ CL2
n|D|log pn + L2

n|D|logn+ |D|op(1) ≤ CL2
n|D|logn

with probability approaching one, where the op(1) term comes from (S1.5).

This finishes the proof.

S2 Proofs of the Theorems

Proof of Theorem 1: Under Assumptions 1-4, Lemma 6 of Sherwood and

Wang (2016) gives

‖n1/2(θ̂km − θ∗km)− β̃nkm‖ = op(1) (S2.1)

for every k and m, with β̃nkm defined in Lemma 1. Therefore

‖θ̂km − θ∗km‖ = Op{n−1/2(qnlogn)1/2}. (S2.2)

It follows that for every k and m,

max1≤j≤qn|θ̂kmj − θ∗kmj| ≤ ‖θ̂k − θ∗k‖ = Op{n−1/2(qnlogn)1/2}

= Op{n(c1−1)/2(logn)1/2}.
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Hence

max
1≤j≤qn

‖θ̂(j) − θ∗(j)‖1 ≤ KM max
1≤k≤K

max
1≤m≤M

max
1≤j≤qn

|θ̂kmj − θ∗kmj|

= Op{n(c1−1)/2(logn)1/2},

which, combined with Assumption 5, yields

min1≤j≤qn‖θ̂(j)‖1 ≥ min1≤j≤qn‖θ∗(j)‖1 −max1≤j≤qn‖θ̂(j) − θ∗(j)‖1

≥ Cn(c2−1)/2 − {n(c1−1)/2(logn)1/2} = Op{n(c2−1)/2}.

We assume λn = o{n(c2−1)/2}, which implies

pr{min1≤j≤qn‖θ̂(j)‖1 ≥ aλn} → 1. (S2.3)

The subderivative of the objective function (2.2) with respect to θ(j) is

∂Γλn(θ)

∂θ(j)
=



∂`n(θ)

∂θ(j)
+ λnS(θ(j)), ‖θ(j)‖1 ≤ λn,

∂`n(θ)

∂θ(j)
+ S(θ(j)) (aλn−‖θ

(j)‖1)
a−1 , λn < ‖θ(j)‖1 < aλn,

∂`n(θ)

∂θ(j)
, aλn ≤ ‖θ(j)‖1,

(S2.4)

with

S(θ(j)) = (Sign(θ11j), . . . , Sign(θ1Mj), . . . , Sign(θK1j), . . . , Sign(θKMj))
T,

where Sign(x) = x/|x| for x 6= 0 and Sign(0) = [−1, 1]. Thus (S2.3) implies

that, with probability tending to one, θ̂(j) (1 ≤ j ≤ qn) belongs to the third

case in (S2.4). Combined with the fact that θ̂ is a local minimizer of `n(θ),
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it gives that

0 ∈ ∂`(θ)/∂θ(j)|θ=θ̂ = ∂Γλn(θ)/∂θ(j)|θ=θ̂. (S2.5)

Under Assumptions 1-5, the equation (3.5) in Lemma 1 of Sherwood

and Wang (2016) yields that for every k and m,

pr{maxqn<j≤pn|∂`(θ)/∂θkmj|θ=θ̂| > λn} → 0. (S2.6)

Since ‖θ̂(j)‖1 = 0 for qn < j ≤ pn, which belongs to the first case in (S2.4),

we have

∂Γλn(θ)/∂θ(j)|θ=θ̂ = ∂`(θ)/∂θ(j)|θ=θ̂ + λnS(0) (S2.7)

Since S(0) = {(u1, . . . , uK) : |uk| ≤ 1, k = 1 . . . , K}, (S2.6) and (S2.7)

imply that for qn < j ≤ pn,

pr{0 ∈ ∂Γλn(θ)/∂θ(j)|θ=θ̂} → 1. (S2.8)

Combining (S2.5) and (S2.8) completes the proof.

Proof of Theorem 2: Set β̂n = n1/2(θ̂a − θ∗a), β̃n = n−1/2R−1n XT
a ψn(ε) and

write AnΣ
−1/2
n β̃n =

∑n
i=1Dni, where Dni = n−1/2AnΣ

−1/2
n R−1n δni, δni =

{ψ1·i(ε)
T ⊗ XT

1ia, . . . , ψK·i(ε)
T ⊗ XT

Kia}T and, for every k and i, ψk·i(ε) =
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{ψk1i(ε), . . . , ψkMi(ε)}T. We have E(Dni) = 0 since E(δni) = 0 and

∑n
i=1E(DniD

T
ni) = n−1E[AnΣ−1/2n R−1n {

∑n
i=1E(δniδ

T
ni | X )}R−1n Σ−1/2n AT

n ]

= E{AnΣ−1/2n R−1n (n−1XT
a HnXa)R

−1
n Σ−1/2n AT

n}

= E(AnΣ−1/2n R−1n SnR
−1
n Σ−1/2n AT

n ) = AnA
T
n → G.

For any η > 0 we obtain

∑n
i=1E{‖Dni‖2I(‖Dni‖ > η)}

≤ η−2
∑n

i=1E(‖Dni‖4)

= (nη)−2
∑n

i=1E{(δ
T
niR

−1
n Σ−1/2n AT

nAnΣ−1/2n R−1n δni)
2}

≤ (nη)−2λ2max(A
T
nAn)

∑n
i=1E{(δ

T
niR

−1
n Σ−1n R−1n δni)

2}

≤ Cn−2
∑n

i=1E{(δ
T
niS
−1
n δni)

2}

≤ Cn−2
∑n

i=1E{λmin(Sn)−2‖δni‖4}

≤ Cn−2
∑n

i=1E(‖δni‖4)

= Cn−2
∑n

i=1E{(
∑K

k=1

∑M
m=1ψkmi(ε)

2‖Xkia‖2)2}

≤ Cn−2
∑n

i=1E{(max1≤k≤K‖Xkia‖)4}

≤ Cn−1E{(max1≤i≤n max1≤k≤K‖Xkia‖)4}

≤ Cn−1q2n = o(1),

with λmax(·) being the largest eigenvalue of a square matrix. The fourth

step in the above display results from the fact that λmax(A
T
nAn)→ C. The
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sixth step uses the condition that λmin(Sn) is uniformly bounded away from

zero. The last but one step holds true because of Assumption 1, and the last

step uses Assumption 4. This shows that the Lindeberg-Feller condition for

the central limit theorem is satisfied, i.e. we have

AnΣ−1/2n β̃n =
∑n

i=1Dni → N(0, G) in distribution (n→∞). (S2.9)

It is obvious that β̃n = (β̃T
n11, . . . , β̃

T
n1M , . . . , β̃

T
nK1, . . . , β̃

T
nKM)T with β̃nkm

defined in Lemma 1. Hence, using (S2.1), we have

‖β̂n − β̃n‖ ≤
∑K

k=1

∑M
m=1‖β̂nkm − β̃nkm‖ = op(1).

It follows that

‖AnΣ−1/2n (β̂n − β̃n)‖2 = (β̂n − β̃n)TΣ−1/2n AnA
T
nΣ−1/2n (β̂n − β̃n)

≤ λmax(AnA
T
n )λmin(Σn)−1‖β̂n − β̃n‖2 = op(1).

In the last step we used λmax(AnA
T
n )→ C, Assumption 2 and the condition

that λmin(Sn) is uniformly bounded away from zero. This combined with

(S2.9) yields

n1/2AnΣ−1/2n (θ̂a − θ∗a) = AnΣ−1/2n β̂n → N(0, G) in distribution (n→∞).
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Proof of Theorem 3: Consider the set of overfitted models M1 = {D ∈

M : D∗ ⊂ D,D 6= D∗} and the set of underfitted models M2 = {D ∈ M :

D∗ 6⊂ D}. Since M1 ∪M2 =M\{D∗} it suffices to show

limn→∞pr{minD∈M1MQBIC(D) > MQBIC(D∗)} = 1, (S2.10)

limn→∞pr{minD∈M2MQBIC(D) > MQBIC(D∗)} = 1. (S2.11)

We first prove (S2.10). Write ŴD = n−1
∑K

k=1

∑M
m=1

∑n
i=1ρm(Yki −

XT
kiDθ̂kmD) and W ∗ = n−1

∑K
k=1

∑M
m=1

∑n
i=1ρm(εkmi). From Lemma 2 we

know that we can choose some sequence Ln that does not depend on D

and satisfies Ln → ∞, Ln = o(Tn) and n−1Lndnlogn → 0 such that for

k = 1, . . . , K and m = 1, . . . ,M ,

pr{|
∑n

i=1{ρm(Yi −XT
kiDθ̂kmD)− ρm(εkmi)}|

≤ (MK)−1Ln|D|logn, for any D ∈M∗
1} → 1. (S2.12)

Since

|ŴD −W ∗|

≤ n−1
∑K

k=1

∑M
m=1|

∑n
i=1{ρm(Yi −XT

kiDθ̂kmD)− ρm(Yi −XT
kiD∗θ

∗
kmD∗)}|,

we have

pr{|ŴD −W ∗| ≤ n−1Ln|D|logn, for any D ∈M∗
1} → 1.
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It follows that

pr{|ŴD − ŴD∗| ≤ n−1Ln(|D|+ |D∗|)logn,

for any D ∈M∗
1} → 1 (S2.13)

and that

pr{ŴD∗ ≥ C, for any D ∈M∗
1} → 1. (S2.14)

Here we used Assumption 9 and the fact that n−1Ln|D∗|logn → 0 (As-

sumption 7). Therefore, with probability tending to one,

minD∈M1MQBIC(D)−MQBIC(D∗)

= minD∈M1 [log{1 + Ŵ−1
D∗ (ŴD − ŴD∗)}+ (2n)−1Tn(|D| − |D∗|)logn]

≥ minD∈M1{−2Ŵ−1
D∗ |ŴD − ŴD∗|+ (2n)−1Tn(|D| − |D∗|)logn}

≥ minD∈M1{−Cn−1Ln(|D|+ |D∗|)logn+

(2n)−1Tn(|D| − |D∗|)logn}. (S2.15)

The first inequality in the above derivation comes from the fact that log(1+

x) ≥ −2|x| for any |x| ∈ (−1/2, 1/2), from equation (S2.13) combined with

n−1Lndnlogn → 0, and from (S2.14). The last step holds true because of

(S2.13) and (S2.14). Then (S2.15) implies (S2.10) because Ln = o(Tn) and

|D| > |D∗|.

To prove equation (S2.11) we introduce D′ = D ∪ D∗ for any D ∈
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M2. Since q is fixed by Assumption 7, there is a parameter with minimum

absolute value ν > 0, i.e. ν = min1≤k≤K min1≤m≤M minj∈D∗ |θ∗kmj| > 0.

Since (S1.3) still holds for any set in M∗
2 = {D ⊂ {1, . . . , pn} : |D| ≤

2dn,D∗ ⊂ D}, we have

pr{maxD∈M2‖θ̂kmD′ − θ∗kmD′‖ ≤ ν} → 1. (S2.16)

For k = 1, . . . , K, m = 1, . . . ,M and any D ∈ M2, let θ̃kmD′ be a |D′| × 1

vector, i.e. the dimension of θ̃kmD′ is given by the number of indices in the set

D′ = D∪D∗. We define it as an extended version of θ̂kmD: the components

of θ̃kmD′ that correspond to the index set D coincide with the components

of θ̂kmD; the remaining components are filled with zeros. For example, if

D = {1, 3}, D∗ = {1, 2} and θ̂kmD = {1.4, 0.7}, then D′ = {1, 2, 3}, |D′| = 3

and θ̃kmD′ = (1.4, 0, 0.7)T. Since D∗ 6⊂ D, there exist some k0 and m0 such

that ‖θ̃k0m0D′ − θ∗k0m0D′‖ ≥ ν. Combined with (S2.16) and since the check

function is convex, this implies that there exists a |D′| × 1 vector θ̄D′ such

that ‖θ̄D′ − θ∗k0m0D′‖ = ν and

∑n
i=1ρm0(Yk0i −XT

k0iD′ θ̄D′) ≤
∑n

i=1ρm0(Yk0i −XT
k0iD′ θ̃k0m0D′)

=
∑n

i=1ρm0(Yk0i −XT
k0iDθ̂k0m0D).

Now set GD′(ω) = n−1
∑n

i=1{ρm0(εk0m0i − XT
k0iD′ω) − ρm0(εk0m0i)} and
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Bν(D′) = {ω ∈ R|D′| : ‖ω‖ = ν}. Then we have, for any D ∈M2,

n−1
∑n

i=1{ρm0(Yk0i −XT
k0iDθ̂k0m0D)− ρm0(Yk0i −XT

k0iD′ θ̂k0m0D′)}

≥ n−1
∑n

i=1{ρm0(Yk0i −XT
k0iDθ̄D′)− ρm0(Yk0i −XT

k0iD′ θ̂k0m0D′)}

= GD′(θ̄D′ − θ∗k0m0D′)−GD′(θ̂k0m0D′ − θ∗k0m0D′)+

E{GD′(θ̄D′ − θ∗k0m0D′) | Xk0·D′} − E{GD′(θ̄D′ − θ∗k0m0D′) | Xk0·D′}

≥ infω∈Bν(D′)E{GD′(ω) | Xk0·D}

− supω∈Bν(D′)|GD′(ω)− E{GD′(ω)|Xk0·D′}| −GD′(θ̂k0m0D′ − θ∗k0m0D′).

(S2.17)

Similar to (S1.7), we have, for any D′ ∈M∗
2 and ω ∈ Bν(D′),

E{GD′(ω) | Xk0·D′}

= n−1
∑n

i=1

∫ XT
k0iD′

ω

0 Fk0m0(s | Xk0iD′)− Fk0m0(0 | Xk0iD′)ds

= n−1
∑n

i=1

∫ XT
k0iD′

ω

0 sfk0m0(s̄ | Xk0iD′)ds

≥ CωT{n−1
∑n

i=1(Xk0iD′X
T
k0iD′)}ω

≥ Cλmin(n−1XT
k0·D′Xk0·D′)‖ω‖2 = C‖ω‖2, (S2.18)

where the third step uses Assumption (3) and the last step Assumption (6).

Then, under Assumptions 1, 3, 6 and 7, Lemma A.3 in the supplement to

Lee et al. (2014) gives

maxD′∈M∗2 supω∈Bν(D′)|GD′(ω)− E{GD′(ω) | Xk0·D′}| = op(1). (S2.19)
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It is obvious that (S2.12) is still valid when M∗
1 is substituted by M∗

2.

Hence

pr{maxD′∈M∗2 |GD′(θ̂k0m0D′ − θ∗k0m0D′)| ≤ Cn−1Lndnlogn} → 1,

which gives maxD′∈M∗2 |GD′(θ̂k0m0D′−θ∗k0m0D′)| = op(1). This, combined with

(S2.17), (S2.18) and (S2.19) implies that, with probability approaching one,

n−1minD∈M2

∑n
i=1{ρm(Yk0i −XT

k0iDθ̂k0m0D)−

ρm(Yk0i −Xk0iD′ θ̂k0m0D′)} ≥ 2C. (S2.20)

Since D ∈ D′ we have
∑n

i=1{ρm(Yki−XT
kiDθ̂kmD)−ρm(Yki−XkiD′ θ̂kmD′)} ≥ 0

for any k, m and D ∈M2. It follows

ŴD − ŴD′

= n−1
∑K

k=1

∑M
m=1

∑n
i=1{ρm(Yki −XT

kiDθ̂kmD)− ρm(Yki −XkiD′ θ̂kmD′)}

≥ n−1
∑n

i=1{ρm(Yk0i −XT
k0iDθ̂k0m0D)− ρm(Yk0i −Xk0iD′ θ̂k0m0D′)}.

This, combined with (S2.20), gives

pr{minD∈M2(ŴD − ŴD′) ≥ 2C} → 1. (S2.21)



16 GUORONG DAI, URSULA U. MÜLLER AND RAYMOND J. CARROLL

Then, with probability tending to one,

minD∈M2MQBIC(D)−MQBIC(D′)

= minD∈M2 [log{1 + Ŵ−1
D′ (ŴD − ŴD′)} − (2n)−1Tn(|D′| − |D|)logn]

≥ minD∈M2 [min{log 2, Ŵ−1
D′ (ŴD − ŴD′)/2} − (2n)−1Tn|D∗|logn]

≥ minD∈M2 [min{log 2, Ŵ−1
D′ C} − (2n)−1Tn|D∗|logn] > 0 (S2.22)

The first inequality comes from the fact that log(1 + x) ≥ min{x/2, log 2}

for any x ≥ 0. The second inequality uses (S2.21). The last step uses

Assumption 8 and the fact that (S2.14) is still valid whenM∗
1 is substituted

by M∗
2. Since (S2.10) can be easily extended to any D ∈ (M∗

2\{D∗}), we

know that, with probability tending to one, MQBIC(D′) ≥MQBIC(D∗) for

any D′ ∈M∗
2. This and (S2.22) yield

minD∈M2MQBIC(D)−MQBIC(D∗)

= minD∈M2{MQBIC(D)−MQBIC(D′) + MQBIC(D′)−MQBIC(D∗)}

≥ minD∈M2{MQBIC(D)−MQBIC(D′)} > 0,

with probability tending to one. This proves (S2.11).

S3 Additional Results of Simulations

In this section we check the asymptotic normality stated in Theorem 2 of

Section 2 using simulations. Under the setting of Table 2 in Section 4 with
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(n, p) = (200, 1000), T = (log p)/3 and the regression model

Yki = XT
kiα
∗
k + 0.7ξkiXki3 (k = 1, 2; i = 1, . . . n), (S3.1)

we consider two components, θ̂113 and θ̂15(20), of the estimator generated

by our data integration (DI) approach. The corresponding covariates X1i3

and X1i(20) affect the response Y1i via the terms 0.7ξ1iX1i3 and XT
1iα
∗
1 in

(S3.1), respectively. In Figures 1 and 2 we present the histograms of the

two components based on 1, 000 simulated data sets. We can see the curves

in the plots are unimodal, approximately symmetric and bell-shaped, which

confirms the asymptotic normality stated in Theorem 2.
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Figure 1: Histogram of θ̂113 generated by our data integration (DI) method. The setting

is the same as Table 2 in Section 4 with (n, p) = (200, 1000) and T = (log p)/3.

Figure 2: We consider the same scenario as Figure 1 but now investigate θ̂15(20).
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