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S1 Second Real-Data Example

We now turn our attention to the analysis of the German health data. This

five-year-period (1984–1988) dataset is a subset from the well-known Ger-

man national health registry database (SOEP Group, 2001; Hilbe, 2011).

A sample of 19609 observations on 17 variables are available from the R

package COUNT. A sub-sample of size=1000 with 15 variables is ran-

domly drawn from the sample, constituting a dataset for our data analysis.

We pick the variable docvis (in log-scale), number of doctor visits during

a year, as the response variable, and other 14 socio-economic variables as

covariates. Summary of these variables and transformations used in our

models are briefed in Table 1.

The categorical covariate A we consider here is the binary variable



Table 1: Summary of German Health 1984-1988 data (a random sample of

size=1000).

Abbreviation Description Summary Statistics Transformation

docvis number of doctor visits during year range:0-49, mean=3.346 x 7→ log(1 + x)

outwork 1=out of work, 0=working #1=361, #0=639 -

hospvis number of days in hospital during year range:0-11, mean=0.132 x 7→ log(1 + x)

age age in years range:25-64, mean=44.07 -

income household yearly income in marks (DM/1000) range:0.4-12, mean=3.357 x 7→ log(1 + x)

female 1=female, 0=male #1=487, #0=513 -

married 1=married, 0=not married #1=778, #0=222 -

kids 1=have children, 0=no children #1=405, #0=595 -

self 1=self-employed, 0=not self-employed #1=67, #0=933 -

edlevel1 reference level, not high school graduate #0=796 -

edlevel2 1=high school graduate #1=52 -

edlevel3 1=university/college #1=78 -

edlevel4 1=graduate school #1=74 -

year.84 reference level, year 1984 #0=206 -

year.85 1=year 1985 #1=206 -

year.86 1=year 1986 #1=181 -

year.87 1=year 1987 #1=167 -

year.88 1=year 1988 #1=240 -



outwork, which takes value 1 if the selected person is out of work, and 0

otherwise. Table 2 presents regression coefficient estimates using both the

DRM and the SDRM, where in the later case the regression coefficient

estimate of outwork is replaced by that of the dispersion parameter φ.

Estimated baseline CDFs are plotted in Figure 1.



Table 2: Estimated coefficients for German health 1984-1988 data (a ran-

dom sample of size=1000).

SDRM DRM

Var. Coef. Std. Err. t P > |t| Var. Coef. Std. Err. t P > |t|

hospvis 0.240 0.041 5.810 < 0.001 hospvis 0.299 0.037 8.110 < 0.001

age 0.125 0.039 3.252 0.001 age 0.168 0.041 4.047 < 0.001

income -0.002 0.031 -0.053 0.958 income 0.010 0.039 0.263 0.793

female 0.153 0.067 2.270 0.023 female 0.186 0.079 2.358 0.018

married -0.026 0.074 -0.359 0.720 married -0.045 0.092 -0.491 0.623

kids -0.184 0.069 -2.652 0.008 kids -0.200 0.084 -2.398 0.016

self -0.201 0.149 -1.355 0.175 self -0.291 0.156 -1.863 0.062

edlevel2 0.195 0.120 1.620 0.105 edlevel2 0.235 0.153 1.538 0.124

edlevel3 -0.081 0.117 -0.696 0.486 edlevel3 -0.121 0.142 -0.851 0.395

edlevel4 -0.191 0.132 -1.443 0.149 edlevel4 -0.211 0.150 -1.407 0.159

year.85 -0.156 0.090 -1.732 0.083 year.85 -0.198 0.111 -1.786 0.074

year.86 -0.037 0.088 -0.424 0.672 year.86 -0.049 0.112 -0.442 0.658

year.87 -0.032 0.090 -0.356 0.722 year.87 -0.016 0.114 -0.142 0.887

year.88 -0.056 0.083 -0.671 0.502 year.88 -0.073 0.105 -0.692 0.489

φ 0.481 0.205 2.352 0.019 outwork 0.191 0.086 2.237 0.025
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Figure 1: Estimated baseline CDFs for German health 1984-1988 data (a

random sample of size=1000).

From Figure 1, we do not see much difference in the baseline CDF

estimates between the two models for each outwork group. The goodness-

of-fit test described in Section 3 is not significant with a p-value of 0.269

based on 2,000 bootstrap samples. However, the dispersion parameter φ has

a significant estimate of 0.481 (p-value = 0.019). All these results together

suggest that outwork impacts the effects of other covariates on the response

variable, that is, there may exist interaction effect between outwork and



other covariates.

For this application, results from the SDRM and the DRM are mainly

in agreement, possibly because the departure from the density-ratio as-

sumption is not severe. Labeled by DRM.int in Figure 1, we also include

the estimated baseline CDFs based on the DRM with outwork interacting

with all other covariates. All methods give very close baseline CDF esti-

mates, however, a direct diagnostic procedure is still required to evaluate

the adequacy.

S2 Proofs

The following notations, which are consistent with the notations used in

previous sections, will be used throughout the entire Appendix section. Let

η = (θ,F) be the parameters under consideration, where θ = (β,φ) are

finite-dimensional, and F is infinite-dimensional; their regularity conditions

are postulated in Section 2 of the main article. Let Pn and P be the empirical

measure and the expectation of n i.i.d. observations O1, ...,On. That is, for

any measurable function g(·),

Pn[g(O)] =
1

n

n∑
i=1

g(Oi), P[g(O)] = Eη0
[g(O)],

where η0 = (β0,φ0,F0) are the true parameter values.



S2.1 Proof of Theorem 1

S2.1 Proof of Theorem 1

We first prove that under conditions (C1)–(C5), the parameters η = (β,φ,F)

are identifiable. Recall from Section 2 of the main article that φ = (φ1, ..., φK−1)

and F = (F1, ..., FK). The likelihood function about (β,φ,F) based on a

size n sample of i.i.d. observations {Oi = (Yi,Xi, Ai), i = 1, ..., n} is given

by

Ln(β,φ,F) =
n∏
i=1

K∏
k=1

[
dFk(Yi) exp{YiβTXiV (φk)}∫
Yk

exp{sβTXiV (φk)}dFk(s)

]I{Ai=k}

,

where dFk(·) (k = 1, ..., K) are probability density functions assumed with

respect to some dominating measure. Note that β is common to all strata

while φk and Fk are stratum-specific. Suppose that two sets of parameter

values η̄ and η̃ give the same likelihood function for a single observation

O = (Y,X, A). Then, for A = k, we have

dF̄k(Y ) exp{Y β̄
T
XV (φ̄k)}∫

Y exp{sβ̄T
XV (φ̄k)}dF̄k(s)

=
dF̃k(Y ) exp{Y β̃

T
XV (φ̃k)}∫

Yk
exp{sβ̃

T
XV (φ̃k)}dF̃k(s)

. (S2.1)

Since (S2.1) holds for all X, by letting X = 0 we have F̄k(y) = F̃k(y), for

any y ∈ Yk. It follows that

exp{Y β̄
T
XV (φ̄k)}∫

Yk
exp{sβ̄T

XV (φ̄k)}dF̄k(s)
=

exp{Y β̃
T
XV (φ̃k)}∫

Yk
exp{sβ̃

T
XV (φ̃k)}dF̃k(s)

. (S2.2)

Substitute y1 6= y2 ∈ Yk for Y in (S2.2), we have

exp{y1β̄
T
XV (φ̄k)}∫

Yk
exp{sβ̄T

XV (φ̄k)}dF̄k(s)
=

exp{y1β̃
T
XV (φ̃k)}∫

Yk
exp{sβ̃

T
XV (φ̃k)}dF̃k(s)

,



S2.1 Proof of Theorem 1

and

exp{y2β̄
T
XV (φ̄k)}∫

Yk
exp{sβ̄T

XV (φ̄k)}dF̄k(s)
=

exp{y2β̃
T
XV (φ̃k)}∫

Yk
exp{sβ̃

T
XV (φ̃k)}dF̃k(s)

,

respectively. It follows that

(y1 − y2)β̄
T
XV (φ̄k) = (y1 − y2)β̃

T
XV (φ̃k).

For A = K, note that φ̄K = φ̃K = 0 and V (0) = 1. From condition (C1)

in Section 2 of the main article, we obtain β̄ = β̃. It follows immediately

that φ̄k = φ̃k (k = 1, ..., K − 1). This establishes the identifiability of the

parameters (β,φ,F). With this result, we next prove the consistency of

the NPMLEs.

Recall from Section 2 of the main article that the sample size is nk in

stratum k while the number of distinct observations is mk, and F̃n,k(t) =∑mk

j=1 p̃kjI{Yk(j) 6 t} is the NPMLE of Fk0(t), p̃kj = F̃n,k{Yk(j)}. Indexed by

{n}n∈N, let (β̃n, φ̃n) ∈ Θ be a sequence of estimators of (β,φ). Since Θ is

compact, there exists a subsequence {nl}l∈N such that (β̃nl
, φ̃nl

)→ (β∗,φ∗),

for some point (β∗,φ∗) ∈ Θ. Since F̃n,k is uniformly bounded over Yk,

Helly’s Selection Theorem implies that, for any subsequence, we can always

choose a further subsequence such that F̃nl,k
converges pointwise to some

For the ease of notation and presentation, let the sub-subsequence be still indexed

by {nl}l∈N.



S2.1 Proof of Theorem 1

distribution function F ∗k in Yk. Recall from (2.8) in the main article indexed

by the subsequence {nl}l∈N, F̃nl,k
satisfies

F̃nl,k
{Yk(j)} =

λkj

nPn[Q(O; β̃n, φ̃n,k, F̃n,k)I{A = k}]

∣∣∣∣
Y=Yk(j)

,

where

Q(O;β, φk, Fk) =
exp{Y βTXV (φk)}∫

Yk
exp{sβTXV (φk)}dFk(s)

.

Next, we construct another step function F̆n,k(t) by imitating F̃n,k(t) as

F̆n,k{Yk(j)} =
λkj

nPn[Q(O;β0, φk0, Fk0)I{A = k}]

∣∣∣∣
Y=Yk(j)

.

Since both

F1 = {βTXV (φk) : (β,φ) ∈ Θ},

and

F2 = {Fk(y) : Fk is a distribution function on Yk}

are P-Donsker classes, and Q is bounded away from 0, the preservation of

the Donsker property (van der Vaart and Wellner, 1996) implies that the

following class

Q = {Q−1(O;β, φk, Fk) : y ∈ Yk, (β,φ) ∈ Θ, Fk is a distribution function on Yk}
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is a bounded P-Donsker class, and hence is also a P-Glivenko-Cantelli class.

By the Glivenko-Cantelli theorem, uniformly in t ∈ Yk, the followings hold

almost surely:

F̆n,k(t) =

mk∑
j=1

F̆n,k{Yk(j)}I{Yk(j) 6 t}

=

mk∑
j=1

λkjI{Yk(j) 6 t}
nPn[Q(O;β0, φk0, Fk0)I{A = k}]

→ Eη0

[
I{Y 6 t}
µ(Y )

∣∣∣∣A = k

]
,

where µ(Y |A = k) = Eη0
[Q(O;β0, φk0, Fk0)] = Q(O;β0, φk0, Fk0).

Direct calculation gives

Eη0

[
I{Y 6 t}
µ(Y )

∣∣∣∣A = k

]
=

∫
Yk

I{y 6 t} exp{yβT
0 XV (φk0)}

µ(y)
∫
Yk

exp{sβT
0 XV (φk0)}dFk(s)

dFk0(y)

=

∫
Yk

 I{y 6 t} exp{yβT
0 XV (φk0)}[

exp{yβT
0XV (φk0)}∫

Yk
exp{sβT

0XV (φk0)}dFk0(s)

] ∫
Yk

exp{sβT
0 XV (φk0)}dFk0(s)

 dFk0(y)

=

∫
Yk
I{y 6 t}dFk0(y)

= Fk0(t).

Consequently, we conclude that F̆n,k(t) converges uniformly to Fk0(t) on Yk

almost surely.

Since (β̃n, φ̃n, F̃n) maximizes `n(β,φ,F), we have `n(β̃n, φ̃n, F̃n) >
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`n(β0,φ0, F̆). Let n→∞, we have

0 6
1

n
`n(β̃n, φ̃n, F̃n)− 1

n
`n(β0,φ0, F̆n)→ Eη0

log

∏K
k=1

[
dFk(Yi) exp{Yiβ∗TXiV (φ∗k)}∫
Yk

exp{sβ∗TXiV (φ∗k)}dF
∗
k (s)

]I{Ai=k}

∏K
k=1

[
dFk0(Yi) exp{YiβT

0XiV (φk0)}∫
Yk

exp{sβT
0XiV (φk0)}dFk0(s)

]I{Ai=k}

 ,
which is the negative Kullback-Leibler information in (β∗,φ∗,F∗). Together

with the identifiability results proved at the beginning of Section S2.1, we

conclude that β∗ = β0, φ
∗ = φ0, and F∗ = F0.

S2.2 Proof of Theorem 2

Consider the set of indices

A = {H ≡ (b, c,h) : b ∈ Rd, c ∈ RK−1,h ∈ HK ;

‖b‖ 6 1, ‖c‖ 6 1, |hk|V 6 1, k = 1, ..., K},

where |hk|V denotes the total variation of hk(·) on Yk.

Define a neighborhood of the true parameters η0 = (β0,φ0,F0) as follows:

U = {η = (β,φ,F) : ‖β − β0‖+ ‖φ− φ0‖+
K∑
k=1

sup
t∈Yk
|Fk(t)− Fk0(t)| < ε0},

(S2.3)

where ε0 > 0 is a small constant. If nk, for all k = 1, ..., K, is large enough,

then (β̃n, φ̃n, F̃n) belong to U with probability approaching one.

Denote by `(β,φ,F) =
∑K

k=1 I{A = k}`k(β, φk, Fk) the log-likelihood

function about (β,φ,F) based on a single observation (Y,X, A). Recall
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that β is common to all strata, while φk and Fk are stratum-specific. Let

˙̀
β(η) and ˙̀

φk(η) denote the derivatives of `(η) with respect to β and φk

(k = 1, ..., K − 1), respectively. Then, bT ˙̀
β(η) is the score function for β

corresponding to a one-dimensional submodel P(β + εb,φ,F), for a small

enough ε > 0. Likewise, ck ˙̀
φk(η) is the score function for φk correspond-

ing to a one-dimensional submodel P(β, φk + εck, Fk). For k = 1, ..., K,

let ˙̀
Fk

(η)[hk] denote the path-wise derivative of `(η) with respect to Fk

along the path Fk(y) + ε
∫
Yk
QFk

[hk](y)dFk(y), where QFk
[hk](y) = hk(y)−∫

Yk
hk(y)dFk(y).

We calculate each derivative as follows:

bT ˙̀
β(η) =

K∑
k=1

[
I{A = k}d`k(β + εb, φk, Fk)

dε

∣∣∣∣
ε=0

]

=
K∑
k=1

I{A = k}

[
Y −

∫
Y s exp{sβTXV (φk)}dFk(s)∫
Y exp{sβTXV (φk)}dFk(s)

]
bTXV (φk)

=
K∑
k=1

I{A = k}bT [XV (φk) {Y − E(Y |X)}] ,

ck ˙̀
φk(η) = I{A = k}d`k(β, φk + εck, Fk)

dε

∣∣∣∣
ε=0

= I{A = k}

[
Y −

∫
Yk
s exp{sβTXV (φk)}dFk(s)∫
Y exp{sβTXV (φk)}dFk(s)

]
βTXV

′
(φk)ck

= I{A = k}ck
[
βTXV

′
(φk) {Y − E(Y |X)}

]
,

(S2.4)
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˙̀
Fk

(η)[hk] = I{A = k}
d`k(β, φk, Fk + ε

∫
Y QFk

[hk]dFk)

dε

∣∣∣∣
ε=0

= I{A = k}

(
QFk

[hk](Y )−

[∫
Y QFk

[hk](s) exp{sβTXV (φk)}dFk(s)∫
Yk

exp{sβTXV (φk)}dFk(s)

])

= I{A = k}
(
QFk

[hk](Y )− E
[
QFk

[hk](Y )|X
])
.

Then, the score operator indexed by H ∈ A is defined as

ψ(η)[H] = bT ˙̀
β(η) +

K−1∑
k=1

ck ˙̀
φk(η) +

K∑
k=1

˙̀
Fk

(η)[hk]. (S2.5)

We define a sequence of maps Ψn : U → l∞(A) as follows:

Ψn(η)[H] = Pn [ψ(η)[H]]

= Pn

[
bT ˙̀

β(η) +
K−1∑
k=1

ck ˙̀
φk(η) +

K∑
k=1

˙̀
Fk

(η)[hk]

]

= Pn
[
bT ˙̀

β(η)
]

+
K−1∑
k=1

Pn
[
ck ˙̀

φk(η)
]

+
K∑
k=1

Pn
[

˙̀
Fk

(η)[hk]
]

≡ A(1)
n [b] +

K−1∑
k=1

A(2)
n [ck] +

K∑
k=1

A(3)
n [hk],

where A
(1)
n , A

(2)
n , and A

(3)
n can be viewed as linear functionals defined on Rd,

R, and BV (Yk), working on indices b, ck, and hk, respectively, and BV (Yk)

denotes the space of functions defined on Yk with bounded variation.

Correspondingly, we can define the limiting map Ψ : U → l∞(A) as

Ψ(η)[H] = A(1)[b] +
K−1∑
k=1

A(2)[ck] +
K∑
k=1

A(3)[hk],
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where the linear functionals A(1), A(2), and A(3) are obtained by replac-

ing the empirical measures by the corresponding expectations. Clearly,

Ψn(η̃n) = 0, and Ψ(η0) = 0. Then,
√
n(Ψn − Ψ)(η) = {Gnψ(η)[H] :

H ∈ A} is an empirical process in the space l∞(A) indexed by the class

of score functions {ψ(η)[H] : H ∈ A}. To prove the asymptotic normality

of the NPMLEs η̃n = (β̃n, φ̃n, F̃n), we shall verify the conditions stated

in Theorem 3.3.1 of van der Vaart and Wellner (1996). From the defini-

tion and the consistency result we have established, Ψ(β0,φ0,F0) = 0 and

Ψn(β̃n, φ̃n, F̃n) = oP (n−1/2) hold. It remains to verify the following four

conditions:

(VW1)[approximation condition]

√
n(Ψn −Ψ)(β̃n, φ̃n, F̃n)−

√
n(Ψn −Ψ)(β0,φ0,F0)

= oP

(
1 +
√
n‖β̃n − β0‖+

√
n‖φ̃n − φ0‖+

√
n

K∑
k=1

sup
t∈Yk
|F̃n,k(t)− Fk0(t)|

)
.

(VW2)[asymptotic distribution of score function]

√
n(Ψn−Ψ)(β0,φ0,F0) ξ, where ξ is a tight Gaussian process on l∞(A).

(VW3)[Fréchet-differentiability]

The map (β,φ,F) 7→ Ψ(β,φ,F) is Fréchet differentiable at (β0,φ0,F0).

(VW4)[invertibility]

The derivative of Ψ(β,φ,F) at (β0,φ0,F0), denoted by Ψ̇(β0,φ0,F0), is
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continuously invertible.

Recall the neighborhood U around the true parameter value η0 from (S2.3),

the class

{ψ(η)[H]− ψ(η0)[H] : η ∈ U ,H ∈ A}

is a Donsker class, and A(1), A(2), and A(3) are bounded Lipschitz functionals

with respect to A. Therefore, as η → η0,

sup
H∈A

Eη0

[{
ψ(η)[H]− ψ(η0)[H]

}2]→ 0.

According to Lemma 3.3.5 in van der Vaart and Wellner (1996), the ap-

proximation condition is satisfied. Since A
(1)
n , A

(2)
nk , and A

(3)
nk are bounded

Lipschitz functionals with respect to A, and the class of score functions

{ψ(η)[H] : H ∈ A} is P-Donsker, by the Donsker Theorem,
√
n(Ψn−Ψ)(η0)

weakly converges to a tight zero-mean Gaussian process ξ in l∞(A) indexed

by H. The covariance function between ξ(H1) and ξ(H2) is given by

Eη0

[
ψ(η0)[H1]× ψ(η0)[H2]

]
.

Therefore, the asymptotic distribution of score function condition is sat-

isfied. By the smoothness of Ψ(η), the Fréchet differentiability condition

holds and the derivative of Ψ(η) at η0, denoted by Ψ̇(η0), is a map from
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the space {η0 − η : η ∈ U} to l∞(A). To verify the invertibility condition,

we follow the arguments in Zeng and Lin (2007, 2010). It suffices to prove

that for any one-dimensional submodel

P

(
β0 + εb,φ0 + εc, F10 + ε

∫
Y1
QF10 [hk]dF10, ..., FK0 + ε

∫
YK
QFK0

[hk]dFK0

)
,

the Fisher information along this submodel is non-singular. If the Fisher

information along this submodel is singular, then the score function for

this submodel is 0 almost surely. This is similar to prove the identifia-

bility of the model parameters. Recall the definition of the score opera-

tor ψ indexed by H in (S2.5) with components defined in (S2.4), we will

show that ψ(η0)[H] = 0 implies H = (b, c, h1, ..., hK) = 0. For a sin-

gle observation (Y,X, A), when A = k, X = 0 implies QFk0
[hk](Y ) −∫

Yk
QFk0

[hk](y)dFk0(y) = 0. Thus, QFk0
[hk](y) = 0, for all y ∈ Yk. Let

y1 6= y2 ∈ Yk. We have[
y1 −

∫
Yk
s exp{sβT

0 XV (φk0)}dFk0(s)∫
Yk

exp{sβT
0 XV (φk0)}dFk0(s)

]
bTXV (φk0)

+

[
y1 −

∫
Yk
s exp{sβT

0 XV (φk0)}dFk0(s)∫
Yk

exp{sβT
0 XV (φk0)}dFk0(s)

]
βT

0 XV ′(φk0)ck = 0,

(S2.6)

and[
y2 −

∫
Yk
s exp{sβT

0 XV (φk0)}dFk0(s)∫
Yk

exp{sβT
0 XV (φk0)}dFk0(s)

]
bTXV (φk0)

+

[
y2 −

∫
Yk
s exp{sβT

0 XV (φk0)}dFk0(s)∫
Yk

exp{sβT
0 XV (φk0)}dFk0(s)

]
βT

0 XV ′(φk0)ck = 0.

(S2.7)
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Subtracting (S2.7) from (S2.6), we have

(y1 − y2)bTXV (φk0) + (y1 − y2)βT
0 XV ′(φk0)ck = 0.

Condition (C1) in Section 2 of the main article and φK0 = 0 imply b = 0

and ck = 0. Thus, all four conditions are verified, and hence we can conclude

that
√
n(β̃n − β0, φ̃n − φ0, F̃n − F0)  −Ψ̇−1(β0,φ0,F0)ξ. Moreover, it

can be shown that

√
n

{
bT(β̃n − β0) + cT(φ̃n − φ0) +

K∑
k=1

∫
Yk
QFk

[hk]d(F̃n,k − Fk0)

}

= −
√
n(Pn − P)

{
b̃T ˙̀

β(η0) + c̃T ˙̀
φ(η0) +

K∑
k=1

˙̀
Fk

(η0)[h̃k]

}
+ oP (1),

where b̃, c̃, and h̃k involve the inverse of a Fredholm operator used to

verify condition (VW4). From the joint asymptotic normality of η̃n =

(β̃n, φ̃n, F̃n), by choosing hk = 0 (k = 1, ..., K), we see that bTβ̃n +cTφ̃n is

an asymptotically linear estimator of bTβ0 + cTφ0 with influence function

b̃T ˙̀
β(η0) + c̃T ˙̀

φ(η0) lying in the space spanned by the score functions. It

follows that (β̃n, φ̃n) are semiparametrically efficient (Bickel et al., 1993).

S2.3 Proof of Theorem 3

Theorem 3 can be considered as a direct consequence of Theorem 2. We

only outline the heuristics here; detailed argument parallels that of Parner



S2.3 Proof of Theorem 3

(1998). The key point is that the variance can be uniformly approximated

by its empirical counterpart under the regularity conditions.

The operator Ψ̇(η)[H] maps η − η0 to a bounded functional in l∞(A).

Specifically, Ψ̇η0
(β̃n−β0, φ̃n−φ0, F̃n−F0)[b, c,h] is equal to the expecta-

tion (with respect to the true parameter η0) of the second derivative of the

log-likelihood function along the directions of (β̃n−β0, φ̃n−φ0, F̃n−F0) and

(b, c,
∫
Y1 h1dF10, ...,

∫
YK
hKdFK0). For any direction hn = (b, c,~h1, ...,~hK),

where ~hk = (hk(Yk(1))−hk(Yk(mk)), ..., hk(Yk(mk−1))−hk(Yk(mk))) and (b, c,h)

= (b, c, h1(·), ..., hK(·)) ∈ A. With direction hn, the second derivative can

be approximated uniformly in (b, c,h) ∈ A by

(bT, cT,~hT1 , ...,
~hTK)(Jn/n)



β̃n − β0

φ̃n − φ0

F̃n,1(Y1(1))− F10(Y1(1))

...

F̃n,k(Yk(j))− Fk0(Yk(j))
...

F̃n,K(YK(mK−1))− FK0(YK(mK−1))


j=1,...,mk−1;k=1,...,K

,

where Jn is the negative Hessian matrix of (2.7) in the main article with re-

spect to (β̃n, φ̃n, F̃n). From the joint asymptotic normality of (β̃n, φ̃n, F̃n),
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we have

√
n



β̃n − β0

φ̃n − φ0

F̃n,1(Y1(1))− F10(Y1(1))

...

F̃n,k(Yk(j))− Fk0(Yk(j))
...

F̃n,K(YK(mK−1))− FK0(YK(mK−1))


j=1,...,mk−1;k=1,...,K

d
≈ (Jn/n)−1/2G,

where G is a standard multivariate Gaussian vector. Thus, we have

√
n(bT, cT,~hT1 , ...,

~hTK)



β̃n − β0

φ̃n − φ0

F̃n,1(Y1(1))− F10(Y1(1))

...

F̃n,k(Yk(j))− Fk0(Yk(j))
...

F̃n,K(YK(mK−1))− FK0(YK(mK−1))


j=1,...,mk−1;k=1,...,K

d
≈ (bT, cT,~hT1 , ...,

~hTK)(Jn/n)−1/2G.

It follows that
√
n[bT(β̃n −β0) + cT(φ̃n −φ0) +

∑K
k=1

∫
Yk
hk(t)d{F̃n,k(t)−
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Fk0(t)}] converges to a zero-mean Gaussian distribution with variance V ,

where

V = lim
n→∞

n(bT, cT,~hT1 , ...,
~hTK)J−1n (bT, cT,~hT1 , ...,

~hTK)T.

S2.4 Proof of Theorem 4

Theorem 4 is also a consequence of Theorem 2, hence we keep it brief. If

the density-ratio assumption holds, then both the DRM and the SDRM can

yield consistent estimators of the baseline CDFs, although the former one

is more efficient. It suffices to notice that
√
n(F̂n− F̃n) =

√
n{(F̂n−F0)−

(F̃n−F0)} ≡ ξ1−ξ2, where ξ1 =
√
n(F̂n−F0) and ξ2 =

√
n(F̃n−F0) both

have limiting Gaussian processes with mean zeros and covariance functions

obtained from the inverse of the observed Fisher information matrix.
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