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Abstract: Two recent streams of two-sample tests for high-dimensional data are the
sum-of-squares-based and supremum-based tests. The former is powerful against
dense differences in two population means, and the latter is powerful against sparse
differences. However, the level of sparsity and signal strength are often unknown, in
practice, making it unclear which type of test to use. Here, we propose an adaptive
weighted component test that provides good power against a variety of alternative
hypotheses with unknown sparsity levels and varying signal strengths. The basic
idea is to first allocate different weights to components with varying magnitudes
in a sum-of-squares-based test, and then to combine multiple weighted component
tests to make the underlying test adaptive to different sparsity levels of the mean
differences. We examine the asymptotic properties of the proposed test, and use
numerical comparisons to demonstrate the superior performance of the proposed
test across a spectrum of situations.
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1. Introduction

In real applications, it is often desirable to test whether the mean vectors of
two populations are the same. This can be formulated as a hypothesis testing
problem as follows:

Hy @ py = po versus Hu @ g # o,

where p; and po denote the two population mean vectors. To fix the notation, let
{X1i};2, and {X,;}72, be independent and identically distributed (i.i.d.) samples
from two populations with mean vectors p; and p,, respectively, and p X p
covariance matrices 3, and 3, respectively. Here, n, and n, represent the size
of the first and second samples, respectively. Denote n as the sum of sample sizes,
that is, n = ny + ny.

In low-dimensional cases, that is, p < n, several methods have been
developed to test the difference in the mean vectors between two populations.
For example, the classical T test of Hotelling (1931) has desirable properties and
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satisfactory power in conventional low-dimensional cases. However, with rapid
advances in sensing technology and data acquisition systems, high-dimensional
data are becoming more common, where the dimension of the data can exceed
the number of sampled observations, that is, p > n, leading to the so-called
“large-p-small-n” problem. For example, genetic data may contain thousands of
DNA segments from only a few hundred patients (Chen and Qin/ (2010))). In a
200mm fabrication line investigated by |Kumar et al. (2011), which produces 250
chips per wafer in lots of 25 wafers, the manufactured product with 22 layers can
involve 524 processing steps, with more than 21,710 process variables.

In high-dimensional cases, traditional multivariate two-sample tests, such as
the T2 test, either cannot be applied directly or their power is too low. For
example, the T? test statistic is undefined when p is larger than n, because it
involves inverting the p x p sample covariance matrix, which is singular. Even
when the T2 test is defined, its detection power decreases as the dimension p
increases. As shown theoretically in Fan| (1996), the standard Wald, score, and
likelihood ratio tests may have power that decrease in terms of the type-I error
rate as p increases, even for the simple one-sample test on the mean of a normal
distribution with a known covariance matrix.

Various two-sample tests for high-dimensional data have been proposed, and
can be grouped into two categories: sum-of-squares-based tests, and supremum-
based tests. The first category is motivated by the Lo-type distance between
two mean vectors, where all entries are considered. Several researchers have
attempted to extend the T2 statistic to the case of p > n by replacing the
sample covariance matrix with a nonsingular matrix. For example, |Bai and
Saranadasal (1996) propose a straightforward procedure (referred to here as the
BS test), in which they replace the sample covariance matrix with an identity
matrix. In order to simplify the theoretical derivation, Chen and Qin/ (2010)
suggest a test (the CQ test) that removes the cross-product terms from the
BS test. To account for possibly varying variances of the components of the
data, one can replace the sample covariance matrix with a diagonal version; see,
for example, [Srivastava and Du (2008), Srivastaval (2009)), and |Srivastava and
Kubokawa, (2013). In order to avoid a full estimation of the covariance matrix,
Gregory et al. (2015) propose a generalized component test (GCT) that assumes
that the p components admit a logical ordering such that the dependence between
components is related to their displacement. Moreover, to accommodate strongly
spiked eigenvalues (SSE) in high-dimensional data, Aoshima and Yata| (2018)
and [Ishii, Yata and Aoshimal (2019) propose distance-based tests that use the
estimated eigen-structures, and obtain their limiting distributions. |[Zhang et al.
(2020) propose a Welch-Satterthwaite y?-type test to further relax the restrictive
assumptions on the covariance structure. Other approaches use the random
projection method [Srivastava, Li and Ruppert| (2016))), interpoint distance
(Biswas and Ghosh| (2014)), and spatial sign ranks (Wang, Peng and Li (2015)),
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Chakraborty and Chaudhuri (2017)). The second category is motivated by the
L.-type distance between two mean vectors, where only the largest deviation is
used. A sample of research in this category includes |Chang et al.| (2017)) and the
CLX test proposed by (Cai, Liu and Xia/ (2014).

However, these two streams of tests are designed for extreme situations. The
first category is particularly efficient in the dense case, in which almost all of the
components in the two mean vectors exhibit some differences. In contrast, the
second category is efficient in the sparse case in which a few leading components
in the two mean vectors suffer from substantial changes. As a result, no single
test performs relatively well in both cases.

In reality, the sparsity level of the mean differences, that is, the number of
zero elements in pq — o, is often unknown. Furthermore, the sparsity level may lie
somewhere between the two extreme cases, neither dense nor sparse. Therefore,
it is unclear how to choose a powerful test from the above two categories when
the sparsity level of the mean differences is unknown. Moreover, most of the
above tests assume that the signal strength (or magnitude) is equal for each
component of g, — . In order to remove the assumptions of a known sparsity
level of p; — po and an equal shift magnitude in each component, we require a
flexible two-sample test for comparing high-dimensional mean vectors. Motivated
by this, we develop a robust two-sample test for high-dimensional mean vectors
with unknown sparsity levels and varying magnitudes of the mean differences.

The proposed test compresses two steps. The first introduces a robust
weighting function capable of allocating different weights to components of
varying magnitudes in a sum-of-squares-based test. This naturally generalizes
the GCT, with equal weights on each component as a special case. Intuitively,
this improves the test power when the mean differences have different magnitudes
by putting relatively large weights onto leading components, and relatively small
weights onto small components. The second step combines the multiple weighted
component tests (WCTs) from the first step to select the most powerful test
from the candidate tests. This second step makes the proposed test adaptive
to different sparsity levels of mean differences, and is similar to the idea of the
adaptive sum-of-powers test (ASPU test) of | Xu et al.|(2016]). For simplicity, we
denote the proposed adaptive WCT as AWCT throughout the remainder of the
paper.

Note that our approach differs from the ASPU test in two important aspects.
First, the proposed approach dynamically allocates weights to components based
on their magnitudes. In contrast, the ASPU test always puts the same weight
on each component in each individual sum-of-powers-type test. In this sense,
the proposed approach is more flexible, because it is more reasonable to assume
that the components have different shifts in magnitudes in practice. Second,
although both the ASPU and the AWCT tests combine multiple individual tests
to improve the test power when the sparsity level of the signal is unknown, the
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individual tests work differently. The individual sum-of-powers test in the ASPU
test adjusts the power for detecting sparse or dense signals by tuning the power
index of the distances. In contrast, the individual WCT test does so by tuning
the weighting parameter of a robust weight function, such as Huber’s function.
Therefore, the proposed approach is expected to provide overall good test power
when the components have varying magnitudes of mean shifts, in addition to its
robustness to the sparsity level of the signals.

The remainder of the paper is organized as follows. Section 2 describes the
AWCT statistic in detail. Section 3 derives its asymptotic properties. Section 4
presents an extensive simulation study of the AWCT, comparing its performance
with that of the BS, CQ, GCT, CLX, and ASPU tests in terms of power
and maintenance of the nominal size. Section 5 presents two real examples.
Concluding remarks are presented in Section 6. Proofs of our asymptotic theories
are provided in the Supplementary Material.

2. Test Statistics

n
=17 ;
(j = 1,...,p) of the ith observation in sample k. Denote si ;; = 327" (Xy; —
X{)?/ny. as the sample variance of the jth component for the kth sample, where

X} =3* X{,/n. Define 12 as

For samples {X;} where k = 1,2, denote X,zi as the jth component

(X] - X3y

2
t. =
2 2 ’
Sl,jj/nl + 82’”/722

J

which then converges to a x? distribution as mnj,n, — oo under the null
hypothesis.

The statistic t? tests the mean difference in the jth component. To consider
all signal information, one can compute the sum of t? over all components, as in
the GCT statistic, for j = 1,...,p. However, the components often have varying
magnitudes. Thus, it is reasonable to assign larger weights to large components
to improve the power of the test statistic. For this purpose, we establish the

WCT statistics, as follows:
p

w12
Twer = Z ;J, (2.1)

Jj=1

where w; is the weight allocated to t;. Clearly, the WCT statistic is a natural
generalization of the GCT statistic, because it allows us to assign different weights
to each of the components t;. When w; is fixed as a constant, an equal weight
is assigned to all components. In this case, the WCT performs in essentially the
same way as the GCT.

Different weighting functions can be used. Here, we consider weights
motivated by robust procedures such as Huber’s function (Dutter and Huber
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(1981)) and Welsch’s function (Holland and Welsch| (1977)). For the sake of

simplicity, we restrict our discussion to Huber’s weight function:

1—-(1-r)R/t3, t; <—VR,
wj = { K, —VR<t; < VR,
1—(1-r)R/t3, t;> VR,

where x € (0,1], and R is a positive threshold that determines whether the
component t? is too large.

Note that when R — oo, w; = k; that is, the same weight is allocated to
t? along each component. Therefore, the value of R should not be too high in
practice in order to adaptively allocate weights to the components. In robust
weight functions, the value of R is often chosen based on the rule of thumb
R € [2.5,3.5] (Capizzi and Masarotto| (2003)). By doing so, the random variable ¢3
has a small probability of exceeding R. Note that t? converges to a x? distribution
as ny,ny — oo under the null hypothesis. For a x? random variable, there is only
a 11.38% probability of it exceeding R = 2.5, and a 6.13% probability of exceeding
R = 3.5. In this study, we choose R € [2.5,3.5], focusing on R = 3 for simplicity.

The parameter x controls the relative weight allocated to the component
t?. To illustrate the effect of x, Figure 1 plots the weight w; as a function of ¢;
for different values of kK when R = 3, showing that a smaller x value allocates
relatively small weights to smaller components t?, but relatively large weights to
larger components t?. When & increases, the differences in the weights for all the
components tends to decrease. Consider two extreme cases. When x — 0, w; — 0
for 2 < R and w; = 1 — R/t] for t7 > R. This implies that we consider only
the extremely large components t? in the WCT statistic, and ignore the other
components. In this case, one can expect the WCT to perform like the CLX test,
which has good test power in the case of sparse signals. On the other hand, when
k=1 w; =1, for j =1,2,...,p. In this case, the same weight is used for all the
components. Therefore, one can expect the WCT to perform essentially like the
GCT, which has good test power in the case of dense signals.

Therefore, the parameter k has an important effect on the power of the WCT.
The WCT statistic in Equation can be rewritten as

P t2
TWCT(KI) = Z Wi (H) 2,
i=1 p

Whether Ty cr (k) is powerful depends on the unknown sparsity level, that is, the
pattern of nonzero signals. To provide overall good power, one can incorporate
multiple testing in the procedure so that at least one yields a high power for a
particular application with unknown truth. This can be achieved by combining



1956 QU, SHU AND XU

0.8F e
‘\~\ .‘~ ” ""
0.6 - . ; |
(1)] ' % om0 0mon0n0ron0n0-o0-0-F .,
045 7
021 ---k=0.05
-e-x=0.5
‘ T — - ‘ —~— k=095
I T A B 3 4
t

Figure 1. Plot of w; under different values of x when R = 3.

multiple WCTs, as follows:

Tawer = Twer < argmin P(“)) )
0<K<1
where P(k) is the p-value of the Ty or(k) test. The idea of taking the minimum
p-value to approximate the maximum power is widely used; see, for example, Xu
et al.| (2016) and [Yu et al.| (2009).

In practice, we need to choose candidate values for x for the proposed test
in order to improve the test performance when the sparsity level of the signal
is unknown. In principle, there are many candidate values for x. However, this
greatly complicates the underlying test for only a marginally improvement in the
test power. To achieve a trade-off between simplicity and test power, we choose
three candidate values of k € I" = {0.05,0.5,0.95}, aimed at detecting very sparse,
not-that-sparse, and dense shifts in the mean differences, respectively. However,
other choices of candidate values for k can be analyzed similarly. As shown later,
k€ T ={0.05,0.5,0.95} provides an overall good power under a wide variety of
alternative hypotheses when the sparsity level is unknown.

3. Main Results
3.1. Asymptotic theory

For a set of multivariate random vectors Z and integers a < b, let F? be the
o field generated by {Z7 : j € [a,b]}, that is, F? = o {Z, Z°*',..., Z"}, where

Z7 denotes the jth element of Z. For all positive integers s < p, the strong
mixing coefficients are defined as

az(s)= sup {|P(ANB)—P(A)PB)|:Aec F,BeFr.}.

1<k<p-—s
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Similar to the assumptions made in Xu et al.| (2016), the following Conditions
are assumed to derive the asymptotic distribution of Ty cr:

C.1 There exists some constant B such that
B_l S )\min (21) ) /\min (22) 7)\max (21) 7)\max (22) S B?

where Apin(A) and A\yax(A) denote the minimum and maximum eigenvalues,
respectively, of a matrix A. In addition, the correlations are bounded away
from -1 and 1, that is,

|0%.ij]
k=1,2;1<i#j<p (Uk’iigwj)uz UR

for some 1 > 0.

C.2 {(X],i=1,...,n) : j > 1} is a-mixing, for k = 1,2, and ax(s) < M§*,
for § € (0,1) and some constant M.

C.3 ny/ny — ¢ € (0,00) and p = o(n?); max, <<, Elexp{h(X}, — ul)?}] < oo for
h € [-M,M] and k = 1,2, where y], denotes the jth element of p.

C.1 and C.3 are assumptions on the eigenvalues and covariance, respectively,
needed to establish the weak convergence of the WCT statistic and its joint
asymptotic normality. C.2 is a commonly used mixing condition that assumes
weak dependence for data sets with components that admit an ordering in
time, space, or some other index, such that their dependence diminishes as the
components become further apart. For example, measurements for methylation
values are taken along a chromosome. The location of each measurement is
recorded, providing an index over which dependence can be modeled. Under
C.1-C.3, the asymptotic normality of the test statistic Ty cr and its asymptotic
joint distribution are derived in Theorems 1 and 2, respectively.

Theorem 1. Assume that Conditions C.1-C.3 hold. Under Hy, we have

\/p(TWgT —Y) N(0,1)

asp — 0o, wherev = E(Twer) and ¢* = p-Var(Twer) are stated in Propositions
1 and 2.

Proof. See the Appendix.

Theorem 2. Assume that Conditions C.1-C.3 hold. Under Hy, for T = {ky, ka,
.oy kat €10,1]¢ (d < 00), we have

VP(Twer(T) —v(T))" =7 N(0, %),
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where X = (ry) with vy = (2 = pVar(Tweor(ks)) for 1 <s<d, and ry =% =
pCov(Twer(ks), Twor(ke)) for s #t € {1,2,...,d}.
Proof. See the Appendix.

Denote I; = I(t7 < R), and rewrite the mean of the Twcr statistic as
v =>"_ v;/p, where v; = E(w;t3). The following approximation holds for v,
¢% and ~2 under Hy : py = po.

Proposition 1. Under Hy : py = pa, we have

v; = E{Ljxt] 4+ (1 - I;)(1 — (1 — x)Rt;*)t7}

_ (1—/43){/0RF(:1:)da:—R} —i—/oooa:f(a:)da:—i—()(i),

where F(z) and f(x) denote the cumulative distribution function and probability
density function, respectively, of the x? distribution. Thus, the term fooo xf(x)dz
1s equal to one and is replaced by one in the following.

According to Proposition 1, we estimate v by o = (1 — m){fOR F(x)dx —
R} + 1. The consistency of v is shown in the Supplementary Material. Then,
denoting K; = (k — 1)[it} + 17 4 (1 — k) RI;, we have, (> = p~'Var(}_7_, w;t?) =
p ' Var{K;} +p ' X, Cov{K;, K;}.

Jj=1

Proposition 2. Assume that Conditions C.1-C.3 hold. Under Hy, we have
> =Var{K;}
R 00
= / (1-r)(R—2)[(1 —k)(R—2)+2z] f(x)dx —i—/ 2* f(x)dx
0 0

(k= 1) {/OR F(m)dm}Q (k1) /OR Fa)de — 1+ 0(;)

Note that Cov{K;, K;} = pi;s?, where p;; = Corr(K;, K;), which can be
estimated by

5o Ef:—l‘i_j‘(Kl - K)(Kl_ﬂi—jl - K)

Pij ) i7j:1727"'7p7
’ f:1(Kl_K)2

where K = Y1 K;/p.
We estimate ¢? by
Zi;éj p(\z B j’/L)/sijgz

52:§2+ ,
p

where p(z) is a piecewise function of z such that p(0) = 1, |p(x)| < 1 for all =,
and p(xz) = 0 for |z| > 1, and L is a user-selected lag window size. Here, we use



A ROBUST TWO-SAMPLE TEST FOR HIGH-DIMENSIONAL MEANS 1959

the Parzen window (Brockwell and Davis| (2013)), that is,

1—6lz>+6|z?, |z] <3,

The consistency of f 2 is shown in the Supplementary Material.
To derive the asymptotic joint distribution of the test statistics Twer(k),
we need the following result to approximate the covariance 72, = Cov(Twor(ks),

TWCT(Ht))-

Proposition 3. Assume that Conditions C.1-C.3 hold. Under H,, for 0 <
Ke, Ky < 1, we have

)

5 ' I Cov(K; Ks), K (ky
T ML)

i=1 j=1
where K;(k) = (k — 1) [;t? + t? + (1 — k)RI,;. Fori=j,
" = Cov(Ky(#s), Ki(k))

= /0 [(1— k)1 —ke)(R—2)*+ (2 — Ky — k) (R — 2)2] f(2)do

+/O°° 22 f(@)dz — (1— £.)(1 — k) {/OR F(x)da;}
2k — mt)/ORF(x)dx— 1 +o<;).

For i # j, Cov{K;(ks), K;(k)} = 0i;", where g;; = Corr(K;(ks), K;(k)) is
estimated by

p—li—j|

by = Y [(Ki(ks) = K(8))(Kipjimg () — K (k1))

=1

(B (k) = K (k) (Kipjimg (k) — K (k)]
2) (Ki(ry) — K (k) (Ki(ke) = K (k)|

=1

fori,j=1,2,...,p, where K(r) =Y7_, Ki(k)/p.

Finally, we estimate v2 by

R i —3|/L);:¢"
73t2§/2+zp(’ jl/L)oi; .
i#7 p
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3.2. Asymptotic type-I error and power analysis

Denote T' = /p(Twcr — v)/C. Assuming that Conditions C.1-C.3 hold, the
asymptotic type-I error of the AWCT test based on T' = {k, ko, ..., K4} € [0,1]%
(d < 00) can be calculated as

p = pr(Tawer > C|H, true)
=1—pr(Tawer < C|H, true)
=1 —pT( max T; < C|H, true)

0<i<d

=1 —p’l"(Tl < O, TQ < C, NN ,Td < C|H(] true)

—1 —/ 64(0, 2)dT, ... dT},
(700,C)d

where ¢4(0, £2) denotes the probability distribution function of a d-dimensional
multivariate normal distribution with mean vector 0 and covariance §2. Here,
{2 is equal to the correlation matrix corresponding to the covariance matrix
estimated using Proposition 3. For a given critical value C, the value of p can be
calculated using the R package mvtnorm.

The test power of Tawer under H, satisfies pr(ming<.<; P(k) < «a) >
pr(P(k) < a), for any 0 < k < 1, where « is the significance level. Therefore,
the asymptotic power of the proposed test is one if there exists 0 < k < 1 such
that pr(P(k) < a) — 1; that is, Twer(x) has asymptotic power equal to one.
Hence, to study the asymptotic power of the adaptive test, we need only focus
on the power of Ty cor(k), for 0 < k < 1. In the following, we write Ty cor (k)
as Ty cr for conciseness. Denote ®(x) as the cumulative distribution function of
the standard normal, and z, as the corresponding (1 — «)th quantile.

Denote ¢; = u{ — ,ug, for j = 1,2,...,p. Then, the alternative hypothesis
Hy @ py # po means that an unknown proportion ¢ (0 < ¢ < 1) of ¢;'s is not
equal to zero. Denote vy = E(Twcr|Ha true). Then, the power of the WCT,
that is, P(y/p(Twer — va)/C > zq|Hy true), is equal to

1—P(W(TW§T_VA) P M‘HA true>.

The asymptotic normality of \/p (Twer — va) / ¢ and the consistency of ¢ for
¢ can be invoked under conditions C.1-C.3. We then approximate the power of

the WCT using
| (Za _ W) ,

which is a function of /p(v4a —v)/(. Define G, (x) and g;,, () as the cumulative
distribution function and probability density function, respectively, of t? under ¢;.
Under the alternative hypothesis, when ¢; # 0, as ny,n, — 00, the distribution
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of t? converges to a noncentral chi-squared distribution, with degree of freedom
one and noncentrality parameter (%, denoted as x7(¢5). From Proposition 1,

va—v = E(Twer|Ha true) — E(Tywer|Hp true)

_ 1_5{ U Gy e~ [ Gt dx”

o {pj{/owxgm )dq:—/o e )d:c}

Jj=1
P

p
'1 - k) Z{HRJ Lj) HR,j(O)}“‘p_lZ{L?"’O(n_l)}
j=1 j=1
P ke (T)02
~p ! Z { (1-k lhRJ(O)Lj + R’](QT])L]

— pilz {aK7R(Tj)L§ + O(nil)},

+ [5+0(n™)] }

where H,;(z) = [5 Gj.(y)dy, h,;(x) = 0H, ;(x)/0x, h, (z) = 0*H, ;(x)/0x?,
and amR(T]) =14 (1 = r)hy ;(75)/2, with 7; € (0,¢;). Now, the power can be
expressed as

e <Za —p 2= {a”’R(Tag% +0(n~ )}> .

4. Simulation Studies

In this section, we illustrate the performance of the proposed test, the AWCT,
by comparing it with that of existing methods in simulations. The other tests
included in the comparison are the BS, CQ, GCT, and ASPU tests, all of which
are sum-of-squares-based tests. We also include the CLX test for testing sparse
alternatives. The test performance is compared in terms of size control and power
under various settings.

Without loss of generality, with g1 = 0, let o = 0 under the null hypothesis,
and set the first [p' =] elements of p, unequal to zero under the alternative
hypothesis, where 3 € [0, 1] controls the signal sparsity. Three values of 8 = 0.3,
0.5, 0.7 are considered, corresponding to the cases with dense, medium, and sparse
differences in the two population means, respectively. The magnitudes of po — 41
measure the signal strength. Two settings of magnitudes are considered: (i) the
case with equal magnitude of p& = {2r (1/n, 4+ 1/ny) logp}'/?, fori=1,2,...,m,
where r is a constant controlling the signal strength, and (ii) ! increases linearly
over the range [{1.57 (1/ny + 1/n2)logp}"?, {2.57 (1/ny + 1/ny) logp}'/? |, for
1=1,2,....m
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We choose three specific models for the covariance structure from the work
of |(Cai, Liu and Xia| (2014)), given as follows:

(a) X = (0y,), where o, ; = 0.6/"79l for 1 <i,j < p.

(b) ¥ = (0y,), where 0;; =1, 0;; = 0.8, for 2(k — 1) + 1 < ¢ # j < 2k, where
k=1,2,...,[p/2], and 0, ; = 0 otherwise.

(C) Y= (0'1'7]'>7 where Oii = 1 and 05 = ‘Z —j’75/2, for ¢ 7& ]

In Model (a), the covariance matrix has a bandable structure, but has a sparse
structure in Model (b). The entries of the covariance structure in Model (c) decay
as a function of the lag |i — j|, which arises naturally in time series analysis. In
this case, neither the covariance matrix nor its inverse is sparse.

Under each model, two independent random samples {X1,};; and {X5;}72,
are generated from a multivariate distribution with means p; and p,, respectively,
and a common covariance matrix 3. The dimension p takes p = 400 and the
sample sizes take n; = n, = 200. To illustrate the effects of the distributions,
we examine three types of distributions: (i) the multivariate normal, (ii) the
multivariate t-distribution with degrees of freedom v = 3, and (iii) a multivariate
gamma distribution. The functions rmvnorm and rmvt from the R package
mvtnorm and the function rmvgamma from the package lcmix, respectively, are
used to generate the three types of distributions. Note that the parameter sigma
in rmvt denotes the scale matrix, which is equal to (v — 2)X /v. To generate the
third distribution, we generate a gamma(4,2) distribution with a shape parameter
of four and a scale parameter of two for each dimension. To center its mean to
zero, one can subtract the random samples from the mean of 4/2 = 2.

The nominal significance level is set to a = 0.05 and & is adaptively selected
from T' = {0.05,0.5,0.95}. For the choice of L and R in our proposed test, the
results are qualitatively the same for L = 10,20, and 30 and for R = 2.5, 3,
and 3.5. The results are also similar under different covariance matrix structures.
For the sake of simplicity, we present only the results based on L = 10 and
R = 3 under covariance Model (a). The power and empirical type-I error rate
are calculated from 1,000 replications.

4.1. Empirical type-I error rate

Table 1 summarizes the empirical type-1 error rates of the above tests under
the multivariate normal distributions based on Model (a). Denote ¢ as the ratio
of p to n, that is, ¢ = p/n. The results based on 1,000 and 2,000 replicates are
presented, showing that the difference in the type-1 error rate based on 1,000
and 2,000 replicates is negligible. For simplicity, we obtain the simulation results
based on 1,000 replicates throughout the remainder of the paper.

In addition, we compare the computation times of among the AWCT, ASPU,
and GCT tests. Consider p = 400 and n; = ny = 200 as an example. On
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Table 1. The empirical type-I error rates of various tests under a multivariate normal
distribution based on Model (a).

Number of replicates = 1,000
c=1 c=2
n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX
200  0.06 0.05 0.10 0.05 0.04 0.04 0.06 0.05 0.08 0.06 0.05 0.04
250  0.05 0.04 0.09 0.05 0.04 0.04 0.05 0.05 0.07 0.05 0.04 0.04
300  0.06 0.06 0.09 0.05 0.04 0.05 0.06 0.05 0.07 0.05 0.04 0.05
Number of replicates = 2,000
c=1 c=2
n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX
200  0.06 0.05 0.10 0.06 0.04 0.04 0.06 0.06 0.07 0.06 0.05 0.05
250  0.05 0.04 0.09 0.05 0.04 0.04 0.05 0.05 0.07 0.05 0.04 0.04
300  0.06 0.06 0.09 0.05 0.04 0.05 0.06 0.05 0.07 0.05 0.04 0.05

Table 2. The empirical type-I error rates of various tests under a multivariate gamma
distribution based on Model (a).

c=1 c=2
n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX
200  0.06 0.04 0.11 0.05 0.04 0.04 0.06 0.06 0.08 0.06 0.05 0.05
250  0.05 0.06 0.09 0.06 0.05 0.04 0.06 0.04 0.08 0.05 0.05 0.05
300  0.05 0.05 0.10 0.05 0.04 0.05 0.05 0.06 0.07 0.06 0.05 0.05

Table 3. The empirical type-I error rates of various tests under a multivariate ts
distribution based on Model (a).

c=1 c=2
n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX
200 0.05 0.04 0.09 0.05 0.01 0.03 0.05 0.05 0.07 0.05 0.00 0.04
250 0.06 0.04 0.08 0.06 0.01 0.04 0.06 0.04 0.07 0.06 0.00 0.05
300 0.05 0.03 0.08 0.05 0.01 0.03 0.04 0.04 0.06 0.04 0.00 0.04

a personal computer (MacBook Air with a 1.6 GHz Dual-Core Intel Core i5
processor and 8 GB memory), it takes around 6.78 seconds for the ASPU test
to approximate the type-I error rate, 0.37 seconds for the AWCT test, and 0.05
seconds for the GCT test. Thus, the GCT and AWCT tests are clealy more
computationally efficient than the ASPU test.

Table 1 shows that under the multivariate normal distribution, nearly all
tests maintain close-to-nominal type-I error rates. Only the GCT exhibits inflated
type-I error rates, perhaps because of its low convergence rate to the asymptotic
null distribution. Tables 2 and 3 present the empirical type-I error rates of
the above tests under the multivariate gamma and ¢3 distributions, respectively.
Table 2 show that, under the multivariate gamma distribution, the results are
similar to those under the multivariate normal distribution. From Table 3, under
the multivariate t3 distribution, in addition to the GCT method, the BS method
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Figure 2. Power curves of the various tests against r under different sparsity levels of 3,
based on Model (a), with normal innovations and ¥; = 3.

also fails to maintain the nominal type-I error rate, whereas the other tests
maintain close-to-nominal type-I error rates.

4.2. Power comparisons

Figure 2 compares the power curves of the above tests against r under
different sparsity levels of 3 based on Model (a) with normal innovations and
¥, = X,. For the case of dense signals (8 = 0.3), the AWCT has the highest
power, and the CLX has the lowest power. This is not surprising, the CLX is a
supremum-based test, which is less efficient in terms of detecting dense signals.
When S increases to § = 0.5, the AWCT has higher power than the ASPU,
CQ, and BS, followed by the CLX and GCT, which has the lowest power. This
illustrates that the power of the GCT decreases substantially as the sparsity level
of the signals increases. When S further increases to § = 0.7, the AWCT, ASPU,
and CLX methods exhibit competitive power, and outperform the CQ, BS, and
GCT methods. To compare the power performance under skewed innovations,
Figure 3 compares the power curves of the above tests against r» under different
sparsity levels of 3 based on Model (a), with centered gamma(4, 2) innovations
and XY; = X,. The results are similar to those with normal innovations.

To illustrate the effect of heavy-tailedness on the performance of the proposed
test, Figure 4 shows the power curves of the various tests against r under different
sparsity levels of /3, based on Model (a) with multivariate t3 innovations and
33, = 3,. The results do not differ greatly from those of the normal and skewed
innovations.

In summary, Figures 2 to 4 indicate a good property of the proposed test. In
particular, the AWCT always has the highest power, or power close to the highest.
This indicates the capability of the AWCT to provide overall good power in a
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Figure 3. Power curves of the various tests against r under different sparsity levels of 3,
based on Model (a) with centered gamma(4, 2) innovations and 3; = 3s.

wide variety of situations. The simulation results under Models (b) and (c) are
provided in the Supplementary Material, because they are similar to those under

Model (a).

4.3. Effect of heteroscedasticity

Extreme values of ¢ tend to occur if s7,; and s3 ;; are very small under
the alternative hypothesis. On the other hand, large values of s7,; and sj
tend to reduce t?, and thus extreme values do not occur. The size of a test is
expected to be robust to any scaling of the variances. To investigate the effect of
heteroscedasticity on the performance of the above tests, following the method
of |Gregory et al. (2015, we scale the standard deviation of each component by
the square root of a realization from the exponential distribution with mean 1/2,
shifted to the right by 1/2. Thus, the average scaling is one and the scaled
variances are bounded away from zero.

We repeat the power simulation using the centered gamma(4,2) under
Model (a) under the heteroscedastic condition; the results are shown in the
Supplementary Material for simplicity. Our results show that the AWCT method
maintains overall good power under the heteroscedastic condition in comparison
with other tests.

4.4. Performance under unequal magnitudes of mean differences

The above analysis focuses mainly on the case with equal magnitude for the
nonzero-mean differences. Here, we investigate the performance under unequal
magnitudes for the nonzero-mean differences, which is more general, and natural
in practice. A potential benefit of the AWCT is that it allocates different weights
to the components with varying magnitudes, in contrast to the GCT.
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Figure 4. Power curves of the various tests against r under different sparsity levels of 3,
based on Model (a) with multivariate t3 innovations and 3; = 3s.

Therefore, when the true mean differences between the two populations have
unequal magnitudes, we expect the AWCT method to outperform the GCT
significantly.

Figure 5 shows the power curves of the various tests against r under unequal
magnitudes of mean differences, based on Model (a) with multivariate normal in-
novations and 3; = 3,. For the components with nonzero means, the magnitudes
are set to be linearly increasing over the range from {1.5r (1/n; 4+ 1/n,) log p}1/2
to {2.5r (1/n1 + 1/ns)log p}'/?, following the setting of Benjamini and Hochberg
(1995). As shown in Figure 5, the AWCT outperforms the GCT, regardless of
the value of 3.

5. Real-Data Analysis

In this section, we apply the aforementioned methods to two real data sets:
a DNA methylation data set and a data set from a semiconductor manufacturing
process. Both data sets are publicly available. The first can be downloaded from
the NCBI GEO website with GEO number GSE19711, and the second is available
from the UC Irvine Machine Learning Repository https://archive.ics.uci.
edu/ml/datasets/SECOM. Here, we present the application to DNA methylation
data; the application to a semiconductor manufacturing process is given in the
Supplementary Material. Death from ovarian cancer among women ranks fifth
in the United States (Jemal et al. (2006)), and has been found to be associated
with aberrant DNA methylation. A genome-wide DNA methylation profiling of
the United Kingdom Ovarian Cancer Population Study (UKOPS) was conducted
to identify methylation signatures associated with carcinogenesis (Teschendorft
et al| (2010)). The data originate from the Illumina Infinium 27k Human DNA
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Figure 5. Power curves of the various tests against r under unequal magnitudes of mean
differences, based on Model (a) with multivariate normal innovations and 3; = 35 when
8 =0.3,0.5,0.7.

methylation Beadchip v1.2 with 27,578 CpGs, from 540 whole blood samples,
including 266 samples from post-menopausal ovarian cancer patients, and 274
samples from age-matched normal controls.

In genomic data analysis, [-values and M-values are commonly used to
quantify the level of DNA methylation (Bibikova et al. (2011)). The S-value
is calculated from the intensity of the methylated allele (Max(M,0)) and the
unmethylated allele (Max(U, 0)), as follows:

Max(M, 0)
[Max (M, 0) + Max(U, 0) + 100]-1"

8=

The (-values are usually preprocessed for the downstream statistical analysis,
including quality control, background correction, and normalization. For differ-
ential DNA methylation analysis, the average -value denotes the methylation
level, or the percentage for an interrogated locus. The average (-value varies
between zero and one. In an ideal situation, zero indicates that no copy of the
CpG site in the sample is methylated. The value one indicates that every copy
of the site is methylated. The average (-value approximates the methylation
percentage for the population of a sampled CpG site. As an alternative, some
investigators use the M-value, considering it to be statistically more valid (Du
et al.| (2010))). However, the interpretation of M-values is not as intuitive as it is
for p-values. For this reason, we restrict our discussion to -values.

We apply the AWCT, ASPU, GCT, CQ, BS, and CLX tests to test whether
there is a significant difference in the DNA methylation levels between the cancer
group and the normal group. The 27,578 CpGs of the ovarian cancer data
are from all 23 pairs of chromosomes, including the sex chromosomes, namely,
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Table 4. The p-values of the tests for the equality of the DNA methylation levels,
measured using S-values on each chromosome (Chr).

Chr No. 1 2 3 4 5 6 7 8

AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

cQ 0 0 0 0 0 0 0 0

BS 0.03 0.03 0.02 2.03x1073 6.15x1073 3.72x1073 0.01 6.51x1073
CLX 3.34x107 1 7.44x10713 1.04x10712 5.87x10713 7.17x10712 1.47x10~13 7.77x10716 0

Chr No. 9 10 11 12 13 14 15 16
AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

cQ 0 1.11x10716 0 0 0 0 0 2.11x10715
BS 0.01 0.03 0.02 0.01 5.33x10~*  0.02 0.02 0.09
CLX  9.75x1071 5.80x107'* 1.11x1076 4.88x1071% 0 1.87x107™ 1.05x107* 6.66x1016
Chr No. 17 18 19 20 21 22 X

AWCT 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0

cQ 0 8.62x107* 0 0 0 1.83x1071% 0

BS 0.05 0.02 0.06 3.72x107%  4.28x10~* 0.04 0

CLX 1.35%107 2.35%1076  1.55%x1071% 2.55%x1071% 4.69%x1071% 1.20x10710 2.72x10~12

chromosomes X and Y. We exclude chromosome Y from our analysis, because
there are only seven CpGs from this chromosome, in which the sample size is
larger than the dimension of the data. Prior to analysis, each missing value is
replaced with the mean of the nonmissing values for the same CpGs in the same
group.

Table 4 shows the p-values produced by the six tests for the equality of the
methylation levels measured using the (-values on each chromosome. The R
value is set to three for the AWCT. Nearly all the tests reject the null hypothesis
at the 5% significance level. The only exception is the BS test on chromosomes
16 and 19. The p-values of the AWCT, ASPU, and GCT methods are nearly zero
for all chromosomes.

The small p-values in Table 4 indicate that the differences in the DNA
methylation levels on each CpGs between the cancer and the normal group are
dense, and that some are large in magnitude. Thus, after identifying the CpGs
with significant differences, the remaining CpGs are still likely to yield additional
signals, which need more further investigation. For this purpose, we first exclude
those CpGs with significant differences in the following analysis. In particular, we
exclude those CpGs with p-values less than 0.05, based on the univariate t-test,
with a Bonferroni correction within each chromosome. The differences in the
remaining CpGs are of the “dense, but weak” pattern.
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6. Conclusion

The classical two-sample tests for high-dimensional mean vectors are often
designed to focus on sparse or dense mean differences. However, the sparsity
level of mean differences is often unknown. In addition, the mean differences can
have varying magnitudes, but are often assumed to be equal in existing methods.
Here, we propose a robust test, capable of performing relatively well without the
assumptions on the mean differences or the magnitude of each component. The
proposed test comprises two steps: dynamically allocating weights to components
with varying magnitudes, and then combining multiple WCTs to be adaptive to
different sparsity levels of the mean differences.

The proposed test, the AWCT, can be viewed as a generalization of the
GCT, which places equal weight on each component. Furthermore, the AWCT
shares the idea of the ASPU by optimizing the power among a class of tests.
Our simulation studies and real examples both demonstrate that the proposed
test achieves good overall performance with a wide variety of signal sparsity,
especially for the medium case, as opposed to existing approaches that focus on
either sparse or dense signals.

Supplementary Material

The online Supplementary Material includes the Appendix (Proofs of Main
Theorems), related proofs and additional numerical results.
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