
Statistica Sinica 34 (2024), 1951-1971
doi:https://doi.org/10.5705/ss.202022.0143

AN ADAPTIVE WEIGHTED COMPONENT TEST FOR

HIGH-DIMENSIONAL MEANS

Yidi Qu, Lianjie Shu and Jinfeng Xu∗

The University of Hong Kong, University of Macau

and City University of Hong Kong

Abstract: Two recent streams of two-sample tests for high-dimensional data are the

sum-of-squares-based and supremum-based tests. The former is powerful against

dense differences in two population means, and the latter is powerful against sparse

differences. However, the level of sparsity and signal strength are often unknown, in

practice, making it unclear which type of test to use. Here, we propose an adaptive

weighted component test that provides good power against a variety of alternative

hypotheses with unknown sparsity levels and varying signal strengths. The basic

idea is to first allocate different weights to components with varying magnitudes

in a sum-of-squares-based test, and then to combine multiple weighted component

tests to make the underlying test adaptive to different sparsity levels of the mean

differences. We examine the asymptotic properties of the proposed test, and use

numerical comparisons to demonstrate the superior performance of the proposed

test across a spectrum of situations.
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equality of mean vectors, weighted components.

1. Introduction

In real applications, it is often desirable to test whether the mean vectors of

two populations are the same. This can be formulated as a hypothesis testing

problem as follows:

H0 : µ1 = µ2 versus HA : µ1 ̸= µ2,

where µ1 and µ2 denote the two population mean vectors. To fix the notation, let

{X1i}n1

i=1 and {X2j}n2

j=1
be independent and identically distributed (i.i.d.) samples

from two populations with mean vectors µ1 and µ2, respectively, and p × p

covariance matrices Σ1 and Σ2, respectively. Here, n1 and n2 represent the size

of the first and second samples, respectively. Denote n as the sum of sample sizes,

that is, n = n1 + n2.

In low-dimensional cases, that is, p ≪ n, several methods have been

developed to test the difference in the mean vectors between two populations.

For example, the classical T 2 test of Hotelling (1931) has desirable properties and
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satisfactory power in conventional low-dimensional cases. However, with rapid

advances in sensing technology and data acquisition systems, high-dimensional

data are becoming more common, where the dimension of the data can exceed

the number of sampled observations, that is, p > n, leading to the so-called

“large-p-small-n” problem. For example, genetic data may contain thousands of

DNA segments from only a few hundred patients (Chen and Qin (2010)). In a

200mm fabrication line investigated by Kumar et al. (2011), which produces 250

chips per wafer in lots of 25 wafers, the manufactured product with 22 layers can

involve 524 processing steps, with more than 21,710 process variables.

In high-dimensional cases, traditional multivariate two-sample tests, such as

the T 2 test, either cannot be applied directly or their power is too low. For

example, the T 2 test statistic is undefined when p is larger than n, because it

involves inverting the p × p sample covariance matrix, which is singular. Even

when the T 2 test is defined, its detection power decreases as the dimension p

increases. As shown theoretically in Fan (1996), the standard Wald, score, and

likelihood ratio tests may have power that decrease in terms of the type-I error

rate as p increases, even for the simple one-sample test on the mean of a normal

distribution with a known covariance matrix.

Various two-sample tests for high-dimensional data have been proposed, and

can be grouped into two categories: sum-of-squares-based tests, and supremum-

based tests. The first category is motivated by the L2-type distance between

two mean vectors, where all entries are considered. Several researchers have

attempted to extend the T 2 statistic to the case of p > n by replacing the

sample covariance matrix with a nonsingular matrix. For example, Bai and

Saranadasa (1996) propose a straightforward procedure (referred to here as the

BS test), in which they replace the sample covariance matrix with an identity

matrix. In order to simplify the theoretical derivation, Chen and Qin (2010)

suggest a test (the CQ test) that removes the cross-product terms from the

BS test. To account for possibly varying variances of the components of the

data, one can replace the sample covariance matrix with a diagonal version; see,

for example, Srivastava and Du (2008), Srivastava (2009), and Srivastava and

Kubokawa (2013). In order to avoid a full estimation of the covariance matrix,

Gregory et al. (2015) propose a generalized component test (GCT) that assumes

that the p components admit a logical ordering such that the dependence between

components is related to their displacement. Moreover, to accommodate strongly

spiked eigenvalues (SSE) in high-dimensional data, Aoshima and Yata (2018)

and Ishii, Yata and Aoshima (2019) propose distance-based tests that use the

estimated eigen-structures, and obtain their limiting distributions. Zhang et al.

(2020) propose a Welch–Satterthwaite χ2-type test to further relax the restrictive

assumptions on the covariance structure. Other approaches use the random

projection method Srivastava, Li and Ruppert (2016)), interpoint distance

(Biswas and Ghosh (2014)), and spatial sign ranks (Wang, Peng and Li (2015),
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Chakraborty and Chaudhuri (2017)). The second category is motivated by the

L∞-type distance between two mean vectors, where only the largest deviation is

used. A sample of research in this category includes Chang et al. (2017) and the

CLX test proposed by Cai, Liu and Xia (2014).

However, these two streams of tests are designed for extreme situations. The

first category is particularly efficient in the dense case, in which almost all of the

components in the two mean vectors exhibit some differences. In contrast, the

second category is efficient in the sparse case in which a few leading components

in the two mean vectors suffer from substantial changes. As a result, no single

test performs relatively well in both cases.

In reality, the sparsity level of the mean differences, that is, the number of

zero elements in µ1−µ2, is often unknown. Furthermore, the sparsity level may lie

somewhere between the two extreme cases, neither dense nor sparse. Therefore,

it is unclear how to choose a powerful test from the above two categories when

the sparsity level of the mean differences is unknown. Moreover, most of the

above tests assume that the signal strength (or magnitude) is equal for each

component of µ1 − µ2. In order to remove the assumptions of a known sparsity

level of µ1 − µ2 and an equal shift magnitude in each component, we require a

flexible two-sample test for comparing high-dimensional mean vectors. Motivated

by this, we develop a robust two-sample test for high-dimensional mean vectors

with unknown sparsity levels and varying magnitudes of the mean differences.

The proposed test compresses two steps. The first introduces a robust

weighting function capable of allocating different weights to components of

varying magnitudes in a sum-of-squares-based test. This naturally generalizes

the GCT, with equal weights on each component as a special case. Intuitively,

this improves the test power when the mean differences have different magnitudes

by putting relatively large weights onto leading components, and relatively small

weights onto small components. The second step combines the multiple weighted

component tests (WCTs) from the first step to select the most powerful test

from the candidate tests. This second step makes the proposed test adaptive

to different sparsity levels of mean differences, and is similar to the idea of the

adaptive sum-of-powers test (ASPU test) of Xu et al. (2016). For simplicity, we

denote the proposed adaptive WCT as AWCT throughout the remainder of the

paper.

Note that our approach differs from the ASPU test in two important aspects.

First, the proposed approach dynamically allocates weights to components based

on their magnitudes. In contrast, the ASPU test always puts the same weight

on each component in each individual sum-of-powers-type test. In this sense,

the proposed approach is more flexible, because it is more reasonable to assume

that the components have different shifts in magnitudes in practice. Second,

although both the ASPU and the AWCT tests combine multiple individual tests

to improve the test power when the sparsity level of the signal is unknown, the
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individual tests work differently. The individual sum-of-powers test in the ASPU

test adjusts the power for detecting sparse or dense signals by tuning the power

index of the distances. In contrast, the individual WCT test does so by tuning

the weighting parameter of a robust weight function, such as Huber’s function.

Therefore, the proposed approach is expected to provide overall good test power

when the components have varying magnitudes of mean shifts, in addition to its

robustness to the sparsity level of the signals.

The remainder of the paper is organized as follows. Section 2 describes the

AWCT statistic in detail. Section 3 derives its asymptotic properties. Section 4

presents an extensive simulation study of the AWCT, comparing its performance

with that of the BS, CQ, GCT, CLX, and ASPU tests in terms of power

and maintenance of the nominal size. Section 5 presents two real examples.

Concluding remarks are presented in Section 6. Proofs of our asymptotic theories

are provided in the Supplementary Material.

2. Test Statistics

For samples {Xki}nk

i=1, where k = 1, 2, denote Xj
ki as the jth component

(j = 1, . . . , p) of the ith observation in sample k. Denote s2k,jj =
∑nk

i=1(X
j
ki −

X̄j
k)

2/nk as the sample variance of the jth component for the kth sample, where

X̄j
k =

∑nk

i=1 X
j
ki/nk. Define t2j as

t2j =
(X̄j

1 − X̄j
2)

2

s21,jj/n1 + s22,jj/n2

,

which then converges to a χ2
1 distribution as n1, n2 → ∞ under the null

hypothesis.

The statistic t2j tests the mean difference in the jth component. To consider

all signal information, one can compute the sum of t2j over all components, as in

the GCT statistic, for j = 1, . . . , p. However, the components often have varying

magnitudes. Thus, it is reasonable to assign larger weights to large components

to improve the power of the test statistic. For this purpose, we establish the

WCT statistics, as follows:

TWCT =
p∑

j=1

ωjt
2
j

p
, (2.1)

where ωj is the weight allocated to tj. Clearly, the WCT statistic is a natural

generalization of the GCT statistic, because it allows us to assign different weights

to each of the components tj. When ωj is fixed as a constant, an equal weight

is assigned to all components. In this case, the WCT performs in essentially the

same way as the GCT.

Different weighting functions can be used. Here, we consider weights

motivated by robust procedures such as Huber’s function (Dutter and Huber
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(1981)) and Welsch’s function (Holland and Welsch (1977)). For the sake of

simplicity, we restrict our discussion to Huber’s weight function:

ωj =


1− (1− κ)R/t2j , tj < −

√
R,

κ, −
√
R ≤ tj ≤

√
R,

1− (1− κ)R/t2j , tj >
√
R,

where κ ∈ (0, 1], and R is a positive threshold that determines whether the

component t2j is too large.

Note that when R → ∞, ωj = κ; that is, the same weight is allocated to

t2j along each component. Therefore, the value of R should not be too high in

practice in order to adaptively allocate weights to the components. In robust

weight functions, the value of R is often chosen based on the rule of thumb

R ∈ [2.5, 3.5] (Capizzi and Masarotto (2003)). By doing so, the random variable t2j
has a small probability of exceeding R. Note that t2j converges to a χ

2
1 distribution

as n1, n2 → ∞ under the null hypothesis. For a χ2
1 random variable, there is only

a 11.38% probability of it exceeding R = 2.5, and a 6.13% probability of exceeding

R = 3.5. In this study, we choose R ∈ [2.5, 3.5], focusing on R = 3 for simplicity.

The parameter κ controls the relative weight allocated to the component

t2j . To illustrate the effect of κ, Figure 1 plots the weight ωj as a function of tj
for different values of κ when R = 3, showing that a smaller κ value allocates

relatively small weights to smaller components t2j , but relatively large weights to

larger components t2j . When κ increases, the differences in the weights for all the

components tends to decrease. Consider two extreme cases. When κ → 0, ωj → 0

for t2j ≤ R and ωj = 1 − R/t2j for t2j > R. This implies that we consider only

the extremely large components t2j in the WCT statistic, and ignore the other

components. In this case, one can expect the WCT to perform like the CLX test,

which has good test power in the case of sparse signals. On the other hand, when

κ = 1, ωj = 1, for j = 1, 2, . . . , p. In this case, the same weight is used for all the

components. Therefore, one can expect the WCT to perform essentially like the

GCT, which has good test power in the case of dense signals.

Therefore, the parameter κ has an important effect on the power of the WCT.

The WCT statistic in Equation (2.1) can be rewritten as

TWCT (κ) =
p∑

j=1

ωj(κ)
t2j
p
.

Whether TWCT (κ) is powerful depends on the unknown sparsity level, that is, the

pattern of nonzero signals. To provide overall good power, one can incorporate

multiple testing in the procedure so that at least one yields a high power for a

particular application with unknown truth. This can be achieved by combining
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Figure 1. Plot of ωj under different values of κ when R = 3.

multiple WCTs, as follows:

TAWCT = TWCT

(
argmin
0≤κ≤1

P (κ)

)
,

where P (κ) is the p-value of the TWCT (κ) test. The idea of taking the minimum

p-value to approximate the maximum power is widely used; see, for example, Xu

et al. (2016) and Yu et al. (2009).

In practice, we need to choose candidate values for κ for the proposed test

in order to improve the test performance when the sparsity level of the signal

is unknown. In principle, there are many candidate values for κ. However, this

greatly complicates the underlying test for only a marginally improvement in the

test power. To achieve a trade-off between simplicity and test power, we choose

three candidate values of κ ∈ Γ = {0.05, 0.5, 0.95}, aimed at detecting very sparse,

not-that-sparse, and dense shifts in the mean differences, respectively. However,

other choices of candidate values for κ can be analyzed similarly. As shown later,

κ ∈ Γ = {0.05, 0.5, 0.95} provides an overall good power under a wide variety of

alternative hypotheses when the sparsity level is unknown.

3. Main Results

3.1. Asymptotic theory

For a set of multivariate random vectors Z and integers a < b, let F b
a be the

σ field generated by {Zj : j ∈ [a, b]}, that is, F b
a = σ

{
Za, Za+1, . . . , Zb

}
, where

Zj denotes the jth element of Z. For all positive integers s < p, the strong

mixing coefficients are defined as

αZ(s) = sup
1≤k≤p−s

{
|P (A ∩B)− P (A)P (B)| : A ∈ Fk

1 , B ∈ Fp
k+s

}
.
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Similar to the assumptions made in Xu et al. (2016), the following Conditions

are assumed to derive the asymptotic distribution of TWCT :

C.1 There exists some constant B such that

B−1 ≤ λmin (Σ1) , λmin (Σ2) , λmax (Σ1) , λmax (Σ2) ≤ B,

where λmin(A) and λmax(A) denote the minimum and maximum eigenvalues,

respectively, of a matrix A. In addition, the correlations are bounded away

from -1 and 1, that is,

max
k=1,2;1≤i ̸=j≤p

|σk,ij|
(σk,iiσk,jj)

1/2
< 1− η,

for some η > 0.

C.2 {(Xj
ki, i = 1, . . . , nk) : j ≥ 1} is α-mixing, for k = 1, 2, and αX(s) ≤ Mδs,

for δ ∈ (0, 1) and some constant M .

C.3 n1/n2 → c ∈ (0,∞) and p = o(n2); max1⩽j⩽p E[exp{h(Xj
k1 − µj

k)
2}]<∞ for

h ∈ [−M,M ] and k = 1, 2, where µj
k denotes the jth element of µk.

C.1 and C.3 are assumptions on the eigenvalues and covariance, respectively,

needed to establish the weak convergence of the WCT statistic and its joint

asymptotic normality. C.2 is a commonly used mixing condition that assumes

weak dependence for data sets with components that admit an ordering in

time, space, or some other index, such that their dependence diminishes as the

components become further apart. For example, measurements for methylation

values are taken along a chromosome. The location of each measurement is

recorded, providing an index over which dependence can be modeled. Under

C.1–C.3, the asymptotic normality of the test statistic TWCT and its asymptotic

joint distribution are derived in Theorems 1 and 2, respectively.

Theorem 1. Assume that Conditions C.1–C.3 hold. Under H0, we have

√
p(TWCT − ν)

ζ
→d N(0, 1)

as p → ∞, where ν = E(TWCT ) and ζ2 = p·V ar(TWCT ) are stated in Propositions

1 and 2.

Proof. See the Appendix.

Theorem 2. Assume that Conditions C.1–C.3 hold. Under H0, for Γ = {κ1, κ2,

. . . , κd} ∈ [0, 1]d (d < ∞), we have

√
p(TWCT (Γ)− ν(Γ))T →d N(0,Σ),
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where Σ = (rst) with rss = ζ2s = pV ar(TWCT (κs)) for 1 ≤ s ≤ d, and rst = γ2
st =

pCov(TWCT (κs), TWCT (κt)) for s ̸= t ∈ {1, 2, . . . , d}.

Proof. See the Appendix.

Denote Ij = I(t2j ≤ R), and rewrite the mean of the TWCT statistic as

ν =
∑p

j=1 νj/p, where νj = E(ωjt
2
j). The following approximation holds for ν,

ζ2, and γ2
st under H0 : µ1 = µ2.

Proposition 1. Under H0 : µ1 = µ2, we have

νj = E
{
Ijκt

2
j + (1− Ij)(1− (1− κ)Rt−2

j )t2j
}

= (1− κ)

{∫ R

0

F (x)dx−R

}
+

∫ ∞

0

xf(x)dx+O

(
1

n

)
,

where F (x) and f(x) denote the cumulative distribution function and probability

density function, respectively, of the χ2
1 distribution. Thus, the term

∫∞
0

xf(x)dx

is equal to one and is replaced by one in the following.

According to Proposition 1, we estimate ν by ν̂ = (1 − κ){
∫ R

0
F (x)dx −

R} + 1. The consistency of ν̂ is shown in the Supplementary Material. Then,

denoting Ki = (κ− 1)Iit
2
i + t2i + (1− κ)RIi, we have, ζ2 = p−1V ar(

∑p
j=1 ωjt

2
j) =

p−1
∑p

j=1 V ar {Kj}+ p−1
∑

i ̸=j Cov {Ki,Kj}.

Proposition 2. Assume that Conditions C.1–C.3 hold. Under H0, we have

ς2 = V ar {Kj}

=

∫ R

0

(1− κ)(R− x) [(1− κ)(R− x) + 2x] f(x)dx+

∫ ∞

0

x2f(x)dx

−(κ− 1)2
{∫ R

0

F (x)dx

}2

− 2(κ− 1)

∫ R

0

F (x)dx− 1 +O

(
1

n

)
.

Note that Cov {Ki,Kj} = ρijς
2, where ρij = Corr(Ki,Kj), which can be

estimated by

ρ̂ij =

∑p−|i−j|
l=1 (Kl − K̄)(Kl+|i−j| − K̄)∑p

l=1(Kl − K̄)2
, i, j = 1, 2, . . . , p,

where K̄ =
∑p

l=1 Kl/p.

We estimate ζ2 by

ζ̂2 = ς2 +

∑
i̸=j p(|i− j|/L)ρ̂ijς2

p
,

where p(x) is a piecewise function of x such that p(0) = 1, |p(x)| ≤ 1 for all x,

and p(x) = 0 for |x| > 1, and L is a user-selected lag window size. Here, we use
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the Parzen window (Brockwell and Davis (2013)), that is,

p(x) =


1− 6|x|2 + 6|x|3, |x| < 1

2
,

2(1− |x|)3, 1
2
≤ x ≤ 1,

0, |x| > 1.

The consistency of ζ̂2 is shown in the Supplementary Material.

To derive the asymptotic joint distribution of the test statistics TWCT (κ),

we need the following result to approximate the covariance γ2
st = Cov(TWCT (κs),

TWCT (κt)).

Proposition 3. Assume that Conditions C.1–C.3 hold. Under H0, for 0 ≤
κs, κt ≤ 1, we have

γ2
st =

p∑
i=1

p∑
j=1

Cov(Ki(κs),Kj(κt))

p
,

where Ki(κ) = (κ− 1)Iit
2
i + t2i + (1− κ)RIi. For i = j,

ς ′2 = Cov(Ki(κs),Ki(κt))

=

∫ R

0

[
(1− κs)(1− κt)(R− x)2 + (2− κs − κt)(R− x)x

]
f(x)dx

+

∫ ∞

0

x2f(x)dx− (1− κs)(1− κt)

{∫ R

0

F (x)dx

}2

−(2− κs − κt)

∫ R

0

F (x)dx− 1 +O

(
1

n

)
.

For i ̸= j, Cov {Ki(κs),Kj(κt)} = ϱijς
′2, where ϱij = Corr(Ki(κs),Kj(κt)) is

estimated by

ϱ̂ij =

p−|i−j|∑
l=1

[(Kl(κs)− K̄(κs))(Kl+|i−j|(κt)− K̄(κt))

+(Kl(κt)− K̄(κt))(Kl+|i−j|(κs)− K̄(κs))][
2

p∑
l=1

(Kl(κs)− K̄(κs))(Kl(κt)− K̄(κt))

]−1

,

for i, j = 1, 2, . . . , p, where K̄(κ) =
∑p

l=1 Kl(κ)/p.

Finally, we estimate γ2
st by

γ̂2
st = ς ′2 +

∑
i̸=j

p(|i− j|/L)ϱ̂ijς ′2

p
.
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3.2. Asymptotic type-I error and power analysis

Denote T =
√
p(TWCT − ν)/ζ. Assuming that Conditions C.1–C.3 hold, the

asymptotic type-I error of the AWCT test based on Γ = {κ1, κ2, . . . , κd} ∈ [0, 1]d

(d < ∞) can be calculated as

p = pr(TAWCT > C|H0 true)

= 1− pr(TAWCT ≤ C|H0 true)

= 1− pr

(
max
0≤i≤d

Ti ≤ C|H0 true

)
= 1− pr(T1 ≤ C, T2 ≤ C, . . . , Td ≤ C|H0 true)

= 1−
∫
(−∞,C)d

ϕd(0,Ω)dT1 . . . dTd,

where ϕd(0,Ω) denotes the probability distribution function of a d-dimensional

multivariate normal distribution with mean vector 0 and covariance Ω. Here,

Ω is equal to the correlation matrix corresponding to the covariance matrix

estimated using Proposition 3. For a given critical value C, the value of p can be

calculated using the R package mvtnorm.

The test power of TAWCT under HA satisfies pr(min0≤κ≤1 P (κ) < α) ≥
pr(P (κ) < α), for any 0 ≤ κ ≤ 1, where α is the significance level. Therefore,

the asymptotic power of the proposed test is one if there exists 0 ≤ κ ≤ 1 such

that pr(P (κ) < α) → 1; that is, TWCT (κ) has asymptotic power equal to one.

Hence, to study the asymptotic power of the adaptive test, we need only focus

on the power of TWCT (κ), for 0 ≤ κ ≤ 1. In the following, we write TWCT (κ)

as TWCT for conciseness. Denote Φ(x) as the cumulative distribution function of

the standard normal, and zα as the corresponding (1− α)th quantile.

Denote ιj = µj
1 − µj

2, for j = 1, 2, . . . , p. Then, the alternative hypothesis

HA : µ1 ̸= µ2 means that an unknown proportion q (0 < q ≤ 1) of ιj
′s is not

equal to zero. Denote νA = E(TWCT |HA true). Then, the power of the WCT,

that is, P (
√
p(TWCT − νA)/ζ̂ > zα|HA true), is equal to

1− P

(√
p (TWCT − νA)

ζ̂
< zα −

√
p(νA − ν)

ζ̂

∣∣∣HA true

)
.

The asymptotic normality of
√
p (TWCT − νA) /ζ̂ and the consistency of ζ̂ for

ζ can be invoked under conditions C.1–C.3. We then approximate the power of

the WCT using

1− Φ

(
zα −

√
p(νA − ν)

ζ

)
,

which is a function of
√
p(νA−ν)/ζ. Define Gj,ιj (x) and gj,ιj (x) as the cumulative

distribution function and probability density function, respectively, of t2j under ιj.

Under the alternative hypothesis, when ιj ̸= 0, as n1, n2 → ∞, the distribution
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of t2j converges to a noncentral chi-squared distribution, with degree of freedom

one and noncentrality parameter ι2j , denoted as χ2
1(ι

2
j). From Proposition 1,

νA − ν = E(TWCT |HA true)− E(TWCT |H0 true)

= p−1(1− κ)

{
p∑

j=1

[∫ R

0

Gj,ιj (x)dx−
∫ R

0

Gj,0(x)dx

]}

+p−1

p∑
j=1

{∫ ∞

0

xgj,ιj (x)dx−
∫ ∞

0

xgj,0(x)dx

}

= p−1(1− κ)
p∑

j=1

{HR,j(ιj)−HR,j(0)}+ p−1

p∑
j=1

{
ι2j +O(n−1)

}
≈ p−1

p∑
j=1

{
(1− κ)

[
hR,j(0)ιj +

h′
R,j(τj)ι

2
j

2

]
+
[
ι2j +O(n−1)

]}

= p−1

p∑
j=1

{
aκ,R(τj)ι

2
j +O(n−1)

}
,

where Hr,j(x) =
∫ r

0
Gj,x(y)dy, hr,j(x) = ∂Hr,j(x)/∂x, h

′
r,j(x) = ∂2Hr,j(x)/∂x

2,

and aκ,R(τj) = 1 + (1− κ)h′
R,j(τj)/2, with τj ∈ (0, ιj). Now, the power can be

expressed as

1− Φ

(
zα − p−1/2

∑p
j=1

{
aκ,R(τj)ι

2
j +O(n−1)

}
ζ

)
.

4. Simulation Studies

In this section, we illustrate the performance of the proposed test, the AWCT,

by comparing it with that of existing methods in simulations. The other tests

included in the comparison are the BS, CQ, GCT, and ASPU tests, all of which

are sum-of-squares-based tests. We also include the CLX test for testing sparse

alternatives. The test performance is compared in terms of size control and power

under various settings.

Without loss of generality, with µ1 = 0, let µ2 = 0 under the null hypothesis,

and set the first [p1−β] elements of µ2 unequal to zero under the alternative

hypothesis, where β ∈ [0, 1] controls the signal sparsity. Three values of β = 0.3,

0.5, 0.7 are considered, corresponding to the cases with dense, medium, and sparse

differences in the two population means, respectively. The magnitudes of µ2−µ1

measure the signal strength. Two settings of magnitudes are considered: (i) the

case with equal magnitude of µi
2 = {2r (1/n1 + 1/n2) log p}1/2, for i = 1, 2, . . . ,m,

where r is a constant controlling the signal strength, and (ii) µi
2 increases linearly

over the range [{1.5r (1/n1 + 1/n2) log p}1/2, {2.5r (1/n1 + 1/n2) log p}1/2 ], for

i = 1, 2, . . . ,m.
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We choose three specific models for the covariance structure from the work

of Cai, Liu and Xia (2014), given as follows:

(a) Σ = (σi,j), where σi,j = 0.6|i−j|, for 1 ≤ i, j ≤ p.

(b) Σ = (σi,j), where σi,i = 1, σi,j = 0.8, for 2(k − 1) + 1 ≤ i ̸= j ≤ 2k, where

k = 1, 2, . . . , [p/2], and σi,j = 0 otherwise.

(c) Σ = (σi,j) , where σi,i = 1 and σi,j = |i− j|−5/2, for i ̸= j.

In Model (a), the covariance matrix has a bandable structure, but has a sparse

structure in Model (b). The entries of the covariance structure in Model (c) decay

as a function of the lag |i − j|, which arises naturally in time series analysis. In

this case, neither the covariance matrix nor its inverse is sparse.

Under each model, two independent random samples {X1i}n1

i=1 and {X2j}n2

j=1

are generated from a multivariate distribution with means µ1 and µ2, respectively,

and a common covariance matrix Σ. The dimension p takes p = 400 and the

sample sizes take n1 = n2 = 200. To illustrate the effects of the distributions,

we examine three types of distributions: (i) the multivariate normal, (ii) the

multivariate t-distribution with degrees of freedom v = 3, and (iii) a multivariate

gamma distribution. The functions rmvnorm and rmvt from the R package

mvtnorm and the function rmvgamma from the package lcmix, respectively, are

used to generate the three types of distributions. Note that the parameter sigma

in rmvt denotes the scale matrix, which is equal to (v − 2)Σ/v. To generate the

third distribution, we generate a gamma(4,2) distribution with a shape parameter

of four and a scale parameter of two for each dimension. To center its mean to

zero, one can subtract the random samples from the mean of 4/2 = 2.

The nominal significance level is set to α = 0.05 and κ is adaptively selected

from Γ = {0.05, 0.5, 0.95}. For the choice of L and R in our proposed test, the

results are qualitatively the same for L = 10, 20, and 30 and for R = 2.5, 3,

and 3.5. The results are also similar under different covariance matrix structures.

For the sake of simplicity, we present only the results based on L = 10 and

R = 3 under covariance Model (a). The power and empirical type-I error rate

are calculated from 1,000 replications.

4.1. Empirical type-I error rate

Table 1 summarizes the empirical type-I error rates of the above tests under

the multivariate normal distributions based on Model (a). Denote c as the ratio

of p to n, that is, c = p/n. The results based on 1,000 and 2,000 replicates are

presented, showing that the difference in the type-I error rate based on 1,000

and 2,000 replicates is negligible. For simplicity, we obtain the simulation results

based on 1,000 replicates throughout the remainder of the paper.

In addition, we compare the computation times of among the AWCT, ASPU,

and GCT tests. Consider p = 400 and n1 = n2 = 200 as an example. On
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Table 1. The empirical type-I error rates of various tests under a multivariate normal
distribution based on Model (a).

Number of replicates = 1,000

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.06 0.05 0.10 0.05 0.04 0.04 0.06 0.05 0.08 0.06 0.05 0.04

250 0.05 0.04 0.09 0.05 0.04 0.04 0.05 0.05 0.07 0.05 0.04 0.04

300 0.06 0.06 0.09 0.05 0.04 0.05 0.06 0.05 0.07 0.05 0.04 0.05

Number of replicates = 2,000

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.06 0.05 0.10 0.06 0.04 0.04 0.06 0.06 0.07 0.06 0.05 0.05

250 0.05 0.04 0.09 0.05 0.04 0.04 0.05 0.05 0.07 0.05 0.04 0.04

300 0.06 0.06 0.09 0.05 0.04 0.05 0.06 0.05 0.07 0.05 0.04 0.05

Table 2. The empirical type-I error rates of various tests under a multivariate gamma
distribution based on Model (a).

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.06 0.04 0.11 0.05 0.04 0.04 0.06 0.06 0.08 0.06 0.05 0.05

250 0.05 0.06 0.09 0.06 0.05 0.04 0.06 0.04 0.08 0.05 0.05 0.05

300 0.05 0.05 0.10 0.05 0.04 0.05 0.05 0.06 0.07 0.06 0.05 0.05

Table 3. The empirical type-I error rates of various tests under a multivariate t3
distribution based on Model (a).

c=1 c=2

n AWCT ASPU GCT CQ BS CLX AWCT ASPU GCT CQ BS CLX

200 0.05 0.04 0.09 0.05 0.01 0.03 0.05 0.05 0.07 0.05 0.00 0.04

250 0.06 0.04 0.08 0.06 0.01 0.04 0.06 0.04 0.07 0.06 0.00 0.05

300 0.05 0.03 0.08 0.05 0.01 0.03 0.04 0.04 0.06 0.04 0.00 0.04

a personal computer (MacBook Air with a 1.6 GHz Dual-Core Intel Core i5

processor and 8 GB memory), it takes around 6.78 seconds for the ASPU test

to approximate the type-I error rate, 0.37 seconds for the AWCT test, and 0.05

seconds for the GCT test. Thus, the GCT and AWCT tests are clealy more

computationally efficient than the ASPU test.

Table 1 shows that under the multivariate normal distribution, nearly all

tests maintain close-to-nominal type-I error rates. Only the GCT exhibits inflated

type-I error rates, perhaps because of its low convergence rate to the asymptotic

null distribution. Tables 2 and 3 present the empirical type-I error rates of

the above tests under the multivariate gamma and t3 distributions, respectively.

Table 2 show that, under the multivariate gamma distribution, the results are

similar to those under the multivariate normal distribution. From Table 3, under

the multivariate t3 distribution, in addition to the GCT method, the BS method
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Figure 2. Power curves of the various tests against r under different sparsity levels of β,
based on Model (a), with normal innovations and Σ1 = Σ2.

also fails to maintain the nominal type-I error rate, whereas the other tests

maintain close-to-nominal type-I error rates.

4.2. Power comparisons

Figure 2 compares the power curves of the above tests against r under

different sparsity levels of β based on Model (a) with normal innovations and

Σ1 = Σ2. For the case of dense signals (β = 0.3), the AWCT has the highest

power, and the CLX has the lowest power. This is not surprising, the CLX is a

supremum-based test, which is less efficient in terms of detecting dense signals.

When β increases to β = 0.5, the AWCT has higher power than the ASPU,

CQ, and BS, followed by the CLX and GCT, which has the lowest power. This

illustrates that the power of the GCT decreases substantially as the sparsity level

of the signals increases. When β further increases to β = 0.7, the AWCT, ASPU,

and CLX methods exhibit competitive power, and outperform the CQ, BS, and

GCT methods. To compare the power performance under skewed innovations,

Figure 3 compares the power curves of the above tests against r under different

sparsity levels of β based on Model (a), with centered gamma(4, 2) innovations

and Σ1 = Σ2. The results are similar to those with normal innovations.

To illustrate the effect of heavy-tailedness on the performance of the proposed

test, Figure 4 shows the power curves of the various tests against r under different

sparsity levels of β, based on Model (a) with multivariate t3 innovations and

Σ1 = Σ2. The results do not differ greatly from those of the normal and skewed

innovations.

In summary, Figures 2 to 4 indicate a good property of the proposed test. In

particular, the AWCT always has the highest power, or power close to the highest.

This indicates the capability of the AWCT to provide overall good power in a
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Figure 3. Power curves of the various tests against r under different sparsity levels of β,
based on Model (a) with centered gamma(4, 2) innovations and Σ1 = Σ2.

wide variety of situations. The simulation results under Models (b) and (c) are

provided in the Supplementary Material, because they are similar to those under

Model (a).

4.3. Effect of heteroscedasticity

Extreme values of t2j tend to occur if s21,jj and s22,jj are very small under

the alternative hypothesis. On the other hand, large values of s21,jj and s22,jj
tend to reduce t2j , and thus extreme values do not occur. The size of a test is

expected to be robust to any scaling of the variances. To investigate the effect of

heteroscedasticity on the performance of the above tests, following the method

of Gregory et al. (2015), we scale the standard deviation of each component by

the square root of a realization from the exponential distribution with mean 1/2,

shifted to the right by 1/2. Thus, the average scaling is one and the scaled

variances are bounded away from zero.

We repeat the power simulation using the centered gamma(4,2) under

Model (a) under the heteroscedastic condition; the results are shown in the

Supplementary Material for simplicity. Our results show that the AWCT method

maintains overall good power under the heteroscedastic condition in comparison

with other tests.

4.4. Performance under unequal magnitudes of mean differences

The above analysis focuses mainly on the case with equal magnitude for the

nonzero-mean differences. Here, we investigate the performance under unequal

magnitudes for the nonzero-mean differences, which is more general, and natural

in practice. A potential benefit of the AWCT is that it allocates different weights

to the components with varying magnitudes, in contrast to the GCT.



1966 QU, SHU AND XU

1.00

0.75

0.50

0.25

0.00

AWCT    GCT        BS

ASPU          CQ      CLX

0.000  0.036 0.072  0.108 0.144  0.180
𝜸

𝛽=0.3 𝛽=0.5 𝛽=0.7

E
m

p
ir

ic
a

l 
p

o
w

er

0.000  0.104  0.208  0.312  0.416  0.520 
𝜸

E
m

p
ir

ic
a

l 
p

o
w

e
r

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

E
m

p
ir

ic
a

l 
p

o
w

er

𝜸
0.00  0.26  0.52  0.78  1.04  1.30

Figure 4. Power curves of the various tests against r under different sparsity levels of β,
based on Model (a) with multivariate t3 innovations and Σ1 = Σ2.

Therefore, when the true mean differences between the two populations have

unequal magnitudes, we expect the AWCT method to outperform the GCT

significantly.

Figure 5 shows the power curves of the various tests against r under unequal

magnitudes of mean differences, based on Model (a) with multivariate normal in-

novations andΣ1 = Σ2. For the components with nonzero means, the magnitudes

are set to be linearly increasing over the range from {1.5r (1/n1 + 1/n2) log p}1/2

to {2.5r (1/n1 + 1/n2) log p}1/2, following the setting of Benjamini and Hochberg

(1995). As shown in Figure 5, the AWCT outperforms the GCT, regardless of

the value of β.

5. Real-Data Analysis

In this section, we apply the aforementioned methods to two real data sets:

a DNA methylation data set and a data set from a semiconductor manufacturing

process. Both data sets are publicly available. The first can be downloaded from

the NCBI GEO website with GEO number GSE19711, and the second is available

from the UC Irvine Machine Learning Repository https://archive.ics.uci.

edu/ml/datasets/SECOM. Here, we present the application to DNA methylation

data; the application to a semiconductor manufacturing process is given in the

Supplementary Material. Death from ovarian cancer among women ranks fifth

in the United States (Jemal et al. (2006)), and has been found to be associated

with aberrant DNA methylation. A genome-wide DNA methylation profiling of

the United Kingdom Ovarian Cancer Population Study (UKOPS) was conducted

to identify methylation signatures associated with carcinogenesis (Teschendorff

et al. (2010)). The data originate from the Illumina Infinium 27k Human DNA

https://archive.ics.uci.edu/ml/datasets/SECOM
https://archive.ics.uci.edu/ml/datasets/SECOM
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Figure 5. Power curves of the various tests against r under unequal magnitudes of mean
differences, based on Model (a) with multivariate normal innovations and Σ1 = Σ2 when
β = 0.3, 0.5, 0.7.

methylation Beadchip v1.2 with 27,578 CpGs, from 540 whole blood samples,

including 266 samples from post-menopausal ovarian cancer patients, and 274

samples from age-matched normal controls.

In genomic data analysis, β-values and M -values are commonly used to

quantify the level of DNA methylation (Bibikova et al. (2011)). The β-value

is calculated from the intensity of the methylated allele (Max(M, 0)) and the

unmethylated allele (Max(U, 0)), as follows:

β =
Max(M, 0)

[Max(M, 0) +Max(U, 0) + 100]−1
.

The β-values are usually preprocessed for the downstream statistical analysis,

including quality control, background correction, and normalization. For differ-

ential DNA methylation analysis, the average β-value denotes the methylation

level, or the percentage for an interrogated locus. The average β-value varies

between zero and one. In an ideal situation, zero indicates that no copy of the

CpG site in the sample is methylated. The value one indicates that every copy

of the site is methylated. The average β-value approximates the methylation

percentage for the population of a sampled CpG site. As an alternative, some

investigators use the M -value, considering it to be statistically more valid (Du

et al. (2010)). However, the interpretation of M -values is not as intuitive as it is

for β-values. For this reason, we restrict our discussion to β-values.

We apply the AWCT, ASPU, GCT, CQ, BS, and CLX tests to test whether

there is a significant difference in the DNA methylation levels between the cancer

group and the normal group. The 27,578 CpGs of the ovarian cancer data

are from all 23 pairs of chromosomes, including the sex chromosomes, namely,
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Table 4. The p-values of the tests for the equality of the DNA methylation levels,
measured using β-values on each chromosome (Chr).

Chr No. 1 2 3 4 5 6 7 8

AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

CQ 0 0 0 0 0 0 0 0

BS 0.03 0.03 0.02 2.03×10−3 6.15×10−3 3.72×10−3 0.01 6.51×10−3

CLX 3.34×10−14 7.44×10−13 1.04×10−12 5.87×10−13 7.17×10−12 1.47×10−13 7.77×10−16 0

Chr No. 9 10 11 12 13 14 15 16

AWCT 0 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0 0

CQ 0 1.11×10−16 0 0 0 0 0 2.11×10−15

BS 0.01 0.03 0.02 0.01 5.33×10−4 0.02 0.02 0.09

CLX 9.75×10−11 5.80×10−14 1.11×10−16 4.88×10−15 0 1.87×10−14 1.05×10−14 6.66×10−16

Chr No. 17 18 19 20 21 22 X

AWCT 0 0 0 0 0 0 0

ASPU 0 0 0 0 0 0 0

GCT 0 0 0 0 0 0 0

CQ 0 8.62×10−14 0 0 0 1.83×10−13 0

BS 0.05 0.02 0.06 3.72×10−3 4.28×10−4 0.04 0

CLX 1.35×10−14 2.35×10−6 1.55×10−13 2.55×10−15 4.69×10−13 1.20×10−10 2.72×10−12

chromosomes X and Y. We exclude chromosome Y from our analysis, because

there are only seven CpGs from this chromosome, in which the sample size is

larger than the dimension of the data. Prior to analysis, each missing value is

replaced with the mean of the nonmissing values for the same CpGs in the same

group.

Table 4 shows the p-values produced by the six tests for the equality of the

methylation levels measured using the β-values on each chromosome. The R

value is set to three for the AWCT. Nearly all the tests reject the null hypothesis

at the 5% significance level. The only exception is the BS test on chromosomes

16 and 19. The p-values of the AWCT, ASPU, and GCT methods are nearly zero

for all chromosomes.

The small p-values in Table 4 indicate that the differences in the DNA

methylation levels on each CpGs between the cancer and the normal group are

dense, and that some are large in magnitude. Thus, after identifying the CpGs

with significant differences, the remaining CpGs are still likely to yield additional

signals, which need more further investigation. For this purpose, we first exclude

those CpGs with significant differences in the following analysis. In particular, we

exclude those CpGs with p-values less than 0.05, based on the univariate t-test,

with a Bonferroni correction within each chromosome. The differences in the

remaining CpGs are of the “dense, but weak” pattern.
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6. Conclusion

The classical two-sample tests for high-dimensional mean vectors are often

designed to focus on sparse or dense mean differences. However, the sparsity

level of mean differences is often unknown. In addition, the mean differences can

have varying magnitudes, but are often assumed to be equal in existing methods.

Here, we propose a robust test, capable of performing relatively well without the

assumptions on the mean differences or the magnitude of each component. The

proposed test comprises two steps: dynamically allocating weights to components

with varying magnitudes, and then combining multiple WCTs to be adaptive to

different sparsity levels of the mean differences.

The proposed test, the AWCT, can be viewed as a generalization of the

GCT, which places equal weight on each component. Furthermore, the AWCT

shares the idea of the ASPU by optimizing the power among a class of tests.

Our simulation studies and real examples both demonstrate that the proposed

test achieves good overall performance with a wide variety of signal sparsity,

especially for the medium case, as opposed to existing approaches that focus on

either sparse or dense signals.

Supplementary Material

The online Supplementary Material includes the Appendix (Proofs of Main

Theorems), related proofs and additional numerical results.
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