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Abstract: We introduce a new sparse sliced inverse regression estimator called

Cholesky matrix penalization, and its adaptive version, for achieving sparsity when

estimating the dimensions of a central subspace. The new estimators use the

Cholesky decomposition of the covariance matrix of the covariates and include a

regularization term in the objective function to achieve sparsity in a computation-

ally efficient manner. We establish the theoretical values of the tuning parameters

that achieve estimation and variable selection consistency for the central subspace.

Furthermore, we propose a new projection information criterion to select the tuning

parameter for our proposed estimators, and prove that the new criterion facilitates

selection consistency. The Cholesky matrix penalization estimator inherits the ad-

vantages of the matrix lasso and the lasso sliced inverse regression estimator. Fur-

thermore, it shows superior performance in numerical studies and can be extended

to other sufficient dimension reduction methods in the literature.

Key words and phrases: Cholesky decomposition, information criterion, Lasso, spar-

sity, sufficient dimension reduction.

1. Introduction

In a regression problem with a scalar outcome y and a p-variate predictor

X = (X1, . . . , Xp)
>, sufficient dimension reduction refers to a class of methods

that try to express the outcome as a function of a few linear combinations of

covariates (Li (2018)). In other words, sufficient dimension reduction aims to

find a matrix B of dimension p× d, with d� p, such that

y ⊥ X | B>X, (1.1)

with ⊥ denoting statistical independence. Condition (1.1) implies that the d

linear combinations B>X contain all the information about y on X, so we can

replace X by B>X without loss of information. Dimension reduction is achieved

because the number of linear combinations d is usually much smaller than the
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number of covariates p. Let β1, . . . ,βd be the columns of B. An alternative

formulation of the relationship between y and X under (1.1) is provided by the

multiple index model

y = f(β>1 X, . . . ,β>d X, ε), (1.2)

where f is an unknown link function and ε is a random noise term independent

of X. In (1.1) and (1.2), the matrix B and the vectors β1, . . . ,βd are, in general,

not unique when d ≥ 1 (Li (2018)). Therefore, the goal in sufficient dimension

reduction is to identify the central subspace, which is defined as the intersec-

tion of all subspaces spanned by the column spaces of B satisfying (1.1). The

central subspace, denoted by Sy⊥X, is unique under mild conditions (Li (2018)).

The transformations β>j X, for j = 1, . . . , d, are called sufficient predictors. The

number of indices in the multiple index model, d, is also known as the structural

dimension of the central subspace. A variety of sufficient dimension reduction

methods have been proposed in the literature, including sliced inverse regression

(SIR, Li (1991)), sliced average variance estimation (SAVE, Cook (2000)), princi-

pal Hessian direction (pHd, Li (1992); Cook (1998)), minimum average variance

estimation (Xia et al. (2002)), and directional regression (Li and Wang (2007)),

among others. An overview of these methods can be found in Li (2018).

When the number of covariates is large, we often assume each dimension

β1, . . . ,βd is sparse; that is, for each j = 1, . . . , d, only a few elements of each

dimension βj = (βj1, . . . , βjp)
> are nonzero. Motivated by this idea, the last few

years have seen an emerging body of literature combining sparsity with SIR, as

well as with other sufficient dimension reduction methods by adding a regular-

ization term to an appropriate objective function. For example, Yin and Hilafu

(2015) proposed a sequential approach for estimating SIR. Lin, Zhao and Liu

(2018) first proposed a screening approach to perform variable selection; then,

the selected variables were included in the classical SIR. Assuming the covari-

ates follow the standard p-variate Gaussian distribution with at most s nonzero

components in each dimension, Lin et al. (2021) established the minimax rate

of the risk of the estimated projection matrix when the number of indices d is

bounded. Tan et al. (2018) proposed a convex formulation for sparse SIR in a

high-dimensional setting by adapting techniques from sparse canonical correla-

tion analysis. While most methods have been able to identify the theoretical

values of the regularization parameter necessary to obtain estimation consistency

of the central space, few have done so for variable selection consistency in each

estimated dimension; one example is Qian, Ding and Cook (2019). Even in that

case, the method used to select the regularization parameter in their numerical
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studies and data application does not guarantee selection consistency.

In this paper, we propose a new approach to constructing a sparse SIR es-

timator based on the Cholesky decomposition of the sample covariance matrix.

This Cholesky matrix penalization (CHOMP) estimator has a close connection

to the lasso SIR estimator proposed by Lin, Zhao and Liu (2019), but has several

advantages over it. First, while both the CHOMP and the lasso SIR achieve esti-

mation consistency for the central subspace, we generalize the CHOMP estimator

to an adaptive version that can achieve both estimation and variable selection

consistency. Furthermore, for both the CHOMP and its adaptive version, we

propose a new projection information criterion (PIC) to select the regularization

parameter in the corresponding objective function. To the best of our knowledge,

this is the first data-driven method that is theoretically demonstrated to achieve

variable selection consistency for the central subspace. Our simulation studies

show that the adaptive CHOMP estimator with the regularization parameter se-

lected by the PIC outperforms the lasso SIR in terms of both estimation error

and variable selection. Finally, the CHOMP-type estimator is easily generalized

to many other sufficient dimension reduction methods, such as SAVE and pHd,

and the corresponding adaptive CHOMP-type estimators are shown empirically

to have competitive performance in finite samples as well.

The following notation is used throughout the paper. For any p-dimensional

nonzero vector v = (v1, . . . , vp)
>, let P(v) = v(v>v)−1v> denote the projection

matrix associated with v, and let ‖v‖2 = (
∑p

j=1 v
2
j )

1/2, ‖v‖1 =
∑p

j=1 |vj |, ‖v‖0 =∑p
j=1 1(vj 6= 0), and ‖v‖∞ = maxj |vj | denote its `2, `1, `0, and `∞ norms

respectively. For any index set T , the notation vT and vT c denote the sub-

vectors consisting of the components of v in T and T c, respectively. For any

m× q nonsingular matrix A with entries aij , let P(A) = A(A>A)
−1

A> denote

the projection matrix associated with A. In addition, we define the Frobenius

norm of A to be ‖A‖F = (
∑m

i=1

∑q
j=1 a

2
ij)

1/2, whereas the `2 induced norm

‖A‖2 is its largest singular value σ1(A). Finally, for ease of notation, we let µj
generically denote the tuning parameter used to estimate the jth dimension of

the central subspace for all of the penalized methods.

2. A Review of SIR and the Matrix Lasso

We first review SIR, which is the basis for the other methods discussed in this

paper. Assuming the predictor vector X follows an elliptical distribution with

location vector zero and scale matrix Σ, it is demonstrated in Li (1991) that the
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column space of B in equation (1.1) satisfies

Σ col(B) = col(Λ), (2.1)

where Λ = var {E(X|y)}. If we observe independent and identically distributed

(i.i.d.) data pairs (x>i , yi), for i = 1, . . . , n, with xi = (xi1, . . . , xip)
>, let X

denote the n× p design matrix; without loss of generality, assume each predictor

is centered at zero, and let Σ̂ = n−1
∑n

i=1 xix
>
i = n−1X>X be the sample

covariance matrix. Next, if the outcome y is ordered, then the matrix Λ is

estimated by first dividing the data into H non-overlapping slices of roughly

equal sizes, J1, . . . , JH , based on the increasing order of y. If y is categorical,

each slice may correspond to one category in the outcome. Then, we compute

the vector of covariate averages within each slice, x̄>h = |Jh|−1
∑n

i=1 x
>
i 1(yi ∈ Jh),

with |Jh| being the size of slice Jh. As a result, an estimate for Λ is given by

Λ̂ = H−1
∑H

h=1 x̄hx̄
>
h . Let η̂1, . . . , η̂d be the eigenvectors corresponding to the d

largest eigenvalues of Λ̂. Then, Li (1991) showed that each dimension β̂j of the

central subspace can be estimated by

β̂j = Σ̂
−1
η̂j , j = 1, . . . , d. (2.2)

In a recent paper, Lin, Zhao and Liu (2019) introduced two sparse SIR es-

timators that are closely connected to the lasso estimator in the regular linear

model, namely the matrix lasso and the lasso SIR. Based on the relationship

(2.2), the matrix lasso estimator β̂
ML

j is defined as

β̂
ML

j = argmin
βj

1

2

∥∥∥η̂j − Σ̂βj

∥∥∥2
2

+ µj
∥∥βj∥∥1 , j = 1, . . . , d. (2.3)

Although the matrix lasso estimator was introduced in Lin, Zhao and Liu (2019),

it was largely dismissed, and its theoretical properties are yet to be examined.

One possible reason for this is because, similarly to any regularization method,

the performance of the matrix lasso estimator depends on how the tuning pa-

rameters µj , for j = 1, . . . , d, are chosen. However, selecting appropriate tuning

parameters for the matrix lasso is challenging from both theoretical and practical

perspectives, for two reasons. First, the outcome η̂j does not contain independent

observations, so regular cross-validation is not guaranteed to work. In addition,

unlike the linear model case, the matrix Σ̂ is a p × p symmetric matrix, so the

first term in (2.3) can be zero if Σ̂ is invertible, as occurs, for example, in low-

dimensional settings where n > p. In Section S4 of the Supplementary Material,

we demonstrate empirically that common methods for selecting tuning parame-
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ters for the matrix lasso do not guarantee good performance.

On the other hand, a main advantage of the matrix lasso that was not em-

phasized in Lin, Zhao and Liu (2019) is that the formulation (2.3) is convex and

directly mimics the population relationship that characterizes the SIR in (2.1).

As a result, the formulation of the matrix lasso can be extended to many other

sufficient dimension reduction methods that are formed by changing the matrix

Λ = var {E(X|y)} in equation (2.1) to another quantity. For example, a sliced av-

erage variance estimator is obtained with Λ = E {Σ− var(X|y)}2, and a principal

Hessian direction estimator is obtained with Λ = E
[
X X> {y − E(y)}

]
. Hence,

understanding the behavior of the matrix lasso estimator, and building upon it

to devise improved estimators provides a unified strategy for investigating sparse

dimensions of a central subspace, as shown in Section 7.

In fact, the lasso SIR estimator, also proposed by Lin, Zhao and Liu (2019),

can be considered a recasting of the matrix lasso. Lin, Zhao and Liu (2019)

suggest that we can write the matrix Λ̂ = (nc)−1X>M>MX for an appropriate

H×n matrix M and c = bn/Hc. As a result, each corresponding eigenvector can

be expressed as η̂j = n−1X>ỹj , where ỹj = (cλ̂−1j )M>MX , for j = 1, . . . , d, and

λ̂j is the eigenvalue of Λ̂ corresponding to η̂j ; see Section S3 of the Supplementary

Material for more detail. If we use the sample covariance matrix Σ̂ = n−1X>X
to estimate Σ, then (2.1) can be written as X>Xβj ∝ X>ỹj , and the lasso SIR

estimator is defined as

β̂
L

j = argmin
β

1

2n
‖ỹj −Xβ‖22 + µj‖β‖1, j = 1, . . . , d.

This formulation depends critically on the special form of Λ = var{E(X |y)} used

in SIR, when a good estimator for it can be written in the form Λ̂ = X>K for

an n × p matrix K. Therefore, it is not straightforward to extend it to other

sufficient dimension reduction methods that are obtained by changing Λ. For

example, if we want to perform sufficient dimension reduction using the SAVE

method, it is not obvious how to find a good estimator in the form Λ̂ = X>K for

Λ = E {Σ− var(X|y)}2 so that the idea of lasso SIR can be applied. In the next

section, we provide another reformulation of the matrix lasso that both inherits

desirable properties of the lasso SIR and can be applied to other methods in a

more straightforward way.
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3. Cholesky Matrix Penalization for SIR

3.1. Estimators

Recall that at the population level, the SIR estimator satisfies the relationship

(2.1). Let η1, . . . ,ηd be the eigenvectors associated with the d largest eigenvalues

of Λ. Then, the vector βj satisfies

Σβj = ηj , j = 1, . . . , d. (3.1)

For each j, equation (3.1) is a system of p linear equations. Because we do not

impose any additional structure on the symmetric and positive-definite matrix

Σ, an efficient way to solve the system is to use the Cholesky decomposition.

Specifically, letting Σ = LL>, where L is the Cholesky factor of Σ, equation

(3.1) is equivalent to

L>βj = κj , where Lκj = ηj , j = 1, . . . , d.

Because L is a lower triangular matrix, the vector κj is obtained by backward

substitution, and the vector βj is obtained by forward substitution. Next, denote

L̂ and η̂j as estimators for L and the eigenvector ηj , respectively. Typically, the

vector η̂j is the eigenvector of the matrix Λ̂.

Let κ̂j be calculated from L̂κ̂j = η̂j ; for κ̂j to be well defined, the estimator L̂

needs to be invertible. For the remainder of the paper, we assume n > p, so we can

choose L̂ as the Cholesky factor of the sample covariance matrix Σ̂. In Section S4

of the Supplementary Material, we investigate a high-dimensional setting (n <

p), where the Cholesky factor L can be estimated efficiently by imposing an

additional structure on Σ. We define the Cholesky matrix penalization (CHOMP)

estimator for the SIR as

β̂j = argmin
βj

1

2

∥∥∥L̂>βj − κ̂j∥∥∥2
2

+ µj
∥∥βj∥∥1 , j = 1, . . . , d, (3.2)

where µj is a nonnegative tuning parameter. Furthermore, we can penalize each

component of βj differently by introducing a vector of adaptive weights ωj =

(ωj1, . . . , ωjp)
> and defining

β̂
∗
j = argmin

βj

1

2

∥∥∥L̂>βj − κ̂j∥∥∥2
2

+ µj

p∑
k=1

ωjk|βjk|, j = 1, . . . , d. (3.3)

We refer to this estimator as the adaptive Cholesky matrix penalization

(adaptive CHOMP) estimator, in line with the adaptive lasso estimator pro-



CHOLESKY MATRIX PENALIZATION 2437

posed by Zou (2006). Moreover, similarly to Zou (2006), we set the weights to

ωjk = |β̄jk|−γ , with β̄jk being the kth component of an initial consistent estimate

β̄j and γ a positive constant. Because n > p, we choose β̄j to be the unpenalized

estimate β̄j = Σ̂
−1
η̂j . In the simulation study presented in Section 5, we find

that, as expected, the inclusion of these adaptive weights makes the performance

of the adaptive CHOMP superior to that of (the unweighted) CHOMP, the ma-

trix lasso and the lasso SIR estimator in terms of the both estimation error and

variable selection for the central subspace.

3.2. Matrix lasso, Cholesky matrix penalization, and Lasso SIR

The matrix lasso, CHOMP and lasso SIR estimators essentially derive from

the same relationship (2.1). Moreover, if no regulation is imposed, µj = 0, all

the estimators are equivalent. However, when regularization is needed to achieve

sparse solutions, the behavior of the tuning parameters for the matrix lasso differs

fundamentally from that of the other two.

In fact, from the definition of the matrix lasso estimator given in equation

(2.3) and the first-order optimality condition, each component of the matrix lasso

estimator β̂
ML

j = (β̂ML
j1 , . . . , β̂ML

jp )> satisfies

Σ̂
>
k

(
Σ̂β̂

ML

j − η̂j
)

+ µjb
ML
jk = 0, k = 1, . . . , p, (3.4)

where Σ̂
>
k denotes the kth row of Σ̂, the scalar bML

jk = sign(β̂ML
jk ) if β̂ML

jk 6= 0,

and bML
jk ∈ [−1, 1] if β̂ML

jk = 0. As a result, the entire vector β̂
ML

j is set to zero

if and only if µj > ‖Σ̂
>
η̂j‖∞. Because we do not impose any sparsity structure

on Σ̂, each component Σ̂
>
k η̂j is the sum of p terms, meaning it can diverge

to infinity when the dimension p grows. This fact does not change when each

covariate is standardized to have variance one and the sample covariance matrix

is a correlation matrix. As a result, when p is growing, the range of µj that needs

to be considered is unbounded.

On the other hand, the range of µj for both the CHOMP and the lasso SIR

estimator that needs to be considered is the unit interval. Each component of

the CHOMP estimate β̂j and of the lasso SIR estimate β̂
L

j satisfies

L̂>k

(
L̂β̂j − κ̂j

)
+ µjbjk = 0, i.e Σ̂

>
k β̂j − ηjk + µjbjk = 0 (3.5)

n−1x>k

(
X β̂Lj − ỹj

)
+ µjb

L
jk = 0 i.e Σ̂

>
k β̂

L

j − ηjk + µjb
L
jk = 0, (3.6)
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respectively, where L̂>k denotes the kth row of L̂, the scalar bjk = sign(β̂jk)

if β̂jk 6= 0, and bjk ∈ [−1, 1] if β̂jk = 0, with a similar definition for bLjk. This

implies that the CHOMP and the Lasso SIR estimators have the same estimating

equation for every tuning parameter µj . As a result, the whole vector β̂j = 0 is

set to zero if and only if µj ≥ ‖L̂κ̂j‖∞ = ‖η̂j‖∞. Because all the components of

η̂j are between −1 and 1, to choose an appropriate value for µj , we need only

consider µj ∈ [0, 1], regardless of the dimension p. In practice, we usually choose

the tuning parameter from a grid of values, so having a fixed upper bound on the

grid, regardless of p, is desirable to fine tune the estimator.

One way to restrict the bound of the tuning parameters for the matrix lasso

estimator is to work with the standardized covariates zi = Σ̂
−1/2

, for xi, i =

1, . . . , n. In that case, since the sample covariance matrix of the transformed

z-data is the identity matrix, the quantity ‖Σ̂η̂j‖∞ = ‖η̂j‖∞ is bounded by

one. However, a major disadvantage of this approach is that the matrix lasso

estimator on the zi-data, denoted as β̂
ML(z)

j , can be sparse, but the final estimator

β̂
ML

j = Σ̂
−1/2

β̂
ML(z)

j for βj is not guaranteed to be sparse, because we do not

impose any sparsity requirement on the matrix Σ̂
−1/2

. As a result, no variable

selection is achieved for any dimension of the central subspace.

Finally, unlike the lasso SIR estimator, the CHOMP estimator inherits the

flexibility of the matrix lasso in that it is easy to adapt to other sufficient dimen-

sion reduction methods. For example, for the sliced average variance estimator,

we change Λ = var{E(X |y)}} in equation (2.1) to Λ = E {Σ−var(X |y)}2, and

make the corresponding estimate Λ̂ its sample version. In this situation, it is not

as straightforward to define the vector ỹj such that the eigenvector η̂j of Λ̂ can

be written as η̂j = n−1X>ỹj to apply the idea of the lasso SIR. Nevertheless, we

can still compute the CHOMP estimate and its adaptive version by solving the

problem (3.2). We will elaborate on this point in Section 7.

3.3. Projection information criterion

To choose the tuning parameter µj for the CHOMP and adaptive CHOMP

estimators, we propose minimizing the projection information criterion (PIC),

defined as

PIC(µj) =


∥∥∥P {β̂j(µj)}− P(β̄j)

∥∥∥2
F

+
log(p)

p

∥∥∥β̂j(µj)∥∥∥
0
, if β̂(µj) 6= 0

∞, if β̂j(µj) = 0,

(3.7)
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where for the jth dimension, the notation β̂j(µj) denotes either the CHOMP

or its adaptive version associated with the tuning parameter µj > 0. The main

difference between the projection and the usual information criteria is in the loss

function, and we motivate our choice as follows. In the multiple index model, each

vector βj is not unique, but the projection matrix associated with it is unique.

Hence, a sensible way of quantifying the goodness of fit is via the estimated

projection matrix. The specific form of the loss part, ‖P{β̂j(µj)} − P(β̄j)‖2F ,

measures the deviation of β̂(µj) from an already established consistent estimator.

Because the projection matrix is not well defined for the zero vector, we ignore

this case by setting the PIC to infinity when the parameter estimates are zero.

In other words, we do not expect the true vector βj to be a zero vector for any

dimension. The model complexity penalty term τj = log(p)/p controls the trade-

off between the model loss and the complexity part. Intuitively, this choice of

model complexity penalty proceeds as follows. Because the loss part is bounded

above by two and the number of nonzero components for each β̂j(µj) can range

from zero to p, the denominator of τj is set to p to make the two parts have

relatively the same magnitude. The numerator of τj follows the same spirit as

the Bayesian information criterion (BIC) penalty; however, it is set to log(p)

instead of to log(n) to make τj go to zero without imposing any further condition

on the growth rates of n and p. For each dimension j = 1, . . . , d, we demonstrate

in Section 4 that this model complexity term leads to selection consistency; that

is, the PIC asymptotically identifies the nonzero components of each dimension

βj correctly with this model complexity term.

Finally, we briefly mention the issue of estimating the number of indices d

from the data. In general, if the original data are divided into H slices, the

maximum number of dimensions that can be estimated by the SIR methods is

H − 1 (Li (2018)). When p is fixed, a variety of methods for determining d have

been proposed in the literature, including the sequential testing approach of Li

(1991) and the bootstrap methods of Ye and Weiss (2003), among others. When

p is growing , Lin, Zhao and Liu (2019) proposed a method for choosing the

number of indices for the lasso SIR based on a clustering of the eigenvalues of Λ̂.

We anticipate similar methods could be developed for the (adaptive) CHOMP

estimators, but the precise choice of d is outside the scope of this study. In the

numerical studies below, we assume d to be known.
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4. Theoretical Results

We prove several results related to the estimation consistency and variable

selection consistency of the estimated projection matrix P(B̂) and P(B̂
∗
), where

B̂ and B̂
∗

are p × d matrices, the columns of which are CHOMP and adaptive

CHOMP estimators, respectively. These theoretical results are derived by com-

bining the results for the lasso estimator for the regular linear model with the

results of the lasso SIR estimator developed in Lin, Zhao and Liu (2019), show-

ing another advantage of the CHOMP estimator over the matrix lasso estimator.

Furthermore, we demonstrate that using the new PIC leads to a selection consis-

tent estimator. In this section, we allow the number of covariates p to grow with

the sample size n, but the ratio p/n → 0 when n → ∞. This condition ensures

that the Cholesky factor L̂ of the sample covariance matrix Σ̂ is invertible with

probability one, so the vector κ̂j (and functions thereof) is well defined. Proofs

of all results can be found in Sections S1 and S2 of the Supplementary Material.

First, we state several technical conditions that are used throughout the

development below.

(C1) There exist constants Cmin and Cmax such that 0 < Cmin < λmin(Σ) <

λmax(Σ) < Cmax < ∞, where λmin(Σ) and λmax(Σ) denote the minimum

and maximum eigenvalues, respectively, of Σ.

(C2) The d largest eigenvalues λ1, . . . , λd of Λ = var{E(X|y)} satisfy 0 < λd ≤
· · · ≤ λ1 ≤ λmax(Σ) <∞.

(C3) The central curve m(y) = E(X | y) satisfies the sliced stability condition of

Lin, Zhao and Liu (2018).

Condition (C1) is usually imposed in analyses of high-dimensional linear regres-

sion models (Wainwright (2019)). This condition implies that the sample co-

variance matrix Σ̂ satisfies a so-called restricted value condition over a cone set,

which is described more clearly below. As discussed in Lin, Zhao and Liu (2019),

Condition (C2) is a refined version of a commonly imposed condition in the SIR

literature, that is, rank(Λ) = d, meaning the dimension of the space spanned

by the central curve is equal to the dimension of the central subspace. Finally,

Condition (C3) controls the smoothness of the central curve m and the tail dis-

tribution of m(y); see Lin, Zhao and Liu (2018) for a detailed discussion of this

condition.

Recall for each dimension j = 1, . . . , d, the vector ηj = Σβj = LL> βj is

the eigenvector associated with the jth largest eigenvalue of Λ = var{E(X | y)},
and η̂j is the same quantity of the estimated matrix Λ̂. Define η̃j = P(ηj)η̂j to
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be the projection of η̂j on ηj . The projection implies that η̃j ∝ ηj . As a result,

if we define β̃j = Σ−1η̃j , then β̃j = Σ−1P(ηj)η̂j = Σ−1ηj(η
>
j ηj)

−1η>j η̂j ∝ βj ;
in other words, β̃j has the same projection matrix as the true dimension βj . We

refer to β̃j as the “pseudo-true” parameter for the dimension j in the theoretical

development, and bound the difference δj = β̂j − β̃j to establish the consistency

of the estimated projection matrix.

Denote Sj = {k : βjk 6= 0}, the set of indices corresponding to nonzero

components of the true dimension βj , and sj = |Sj |, the cardinality of the set

Sj . Furthermore, denote S =
⋃d
j=1 Sj , the set of active covariates across all

dimensions, and s = |S|. Because β̃j ∝ βj , then β̃jk = 0 for any j ∈ Scj . The

following theorem establishes the consistency of the estimated projection matrix

from the CHOMP estimator.

Theorem 1. Consider a multiple index model with nλd = pν , for ν > 1. Assume

Conditions (C1)–(C3) hold and the number of dimensions d is known. Let B̂ be

the matrix the columns β̂1, . . . , β̂d of which are solutions of (3.2) with tuning

parameter µj = M{log(p)/(nλ̂j)}1/2 for a sufficiently large constant M , where

λ̂j is the jth largest eigenvalue of the matrix Λ̂. Then, the estimated projection

matrix P(B̂) satisfies

∥∥∥P(B̂)− P(B)
∥∥∥ ≤ C {s log(p)

nλd

}1/2

for a sufficiently large constant C with probability tending to one as n→∞.

For the adaptive CHOMP estimator, let ρn = minj=1,...,d mink∈Sj
|βjk|, the

smallest magnitude of nonzero component across all dimensions. As n grows, we

allow ρn to converge to a positive finite constant or to zero at a relatively slow

rate. In particular, we assume

(C4) For each dimension j = 1, . . . , d, the initial estimator β̄j satisfies ‖β̄j −
β̃j‖∞ = Op(δn), for some sequence δn → 0, such that δn = o(ρn).

(C5) (Mutual incoherence) There exists a constant C such that∥∥∥∥X>ScXS
(
X>S XS

)−1∥∥∥∥
∞
≤ C <∞,

where the notation XS denotes the submatrix of X with column indices

belonging to S.

Condition (C4) focuses on the initial estimator and is critical to ensure the weight

vector is appropriately defined such that the weights for nonzero coefficients con-
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verge to a finite constant, and the weights for the zero coefficients diverge to

infinity as the sample size grows. Similar conditions for the initial estimator

have been used extensively in analyses of the adaptive lasso for high-dimensional

sparse linear models, such as in Zou (2006) and Huang, Ma and Zhang (2008).

The mutual incoherence condition (C5), which is also commonly used in anal-

yses of the adaptive lasso, is a relatively weak condition on the correlatedness

between the active and nonactive covariates. With these conditions, we establish

the selection consistency of the adaptive CHOMP estimator.

Theorem 2. Consider a multiple index model with nλd = pν for ν > 1. Assume

Conditions (C1)–(C5) hold, and the number of dimensions d is known. For each

dimension j = 1, . . . , d assume

ρ−γn s3/2n−1/2 → 0,
δγn
µj
→ 0, n−1ρ−2γn s log(p)→ 0; ρ−2γn µjs

1/2 → 0.

Then, the adaptive CHOMP estimator β̂
∗
j defined in (3.3) is selection consistent:

pr(β̂∗jk 6= 0) → 1 if k ∈ Sj, and pr(β̂∗jk = 0) → 1 if k /∈ Sj. Furthermore, if

s/n→ 0, then the projection matrix P(B̂∗) associated with the adaptive Cholesky

matrix estimator satisfies∥∥∥P(B̂∗)− P(B)
∥∥∥
F
≤ C

{
s log(p)

nλd

}1/2

,

for a sufficiently large constant C, with probability tending to one as n→∞.

When the initial estimator β̄j is the unpenalized estimate, the quantity δn =

(p/n)1/2 → 0. If ρn = O(1), Theorem 2 implies selection consistency holds if

s = O(nα) with α < 1/3, s log(p)/n → 0, and the tuning parameter µj = O(nζ)

with ζ ∈ [γ(ν−1 − 1),−α/2].

Next, we study the large-sample properties of using the PIC to select the

tuning parameters µj for the adaptive CHOMP estimator. To facilitate the the-

oretical analysis, we study a generalized form of the PIC, defined as

PIC(µj ; τj) =


∥∥∥P {β̂j(µj)}− P(β̄j)

∥∥∥2
F

+ τj

∥∥∥β̂j(µj)∥∥∥
0
, if β̂j(µj) 6= 0

∞, if β̂j(µj) = 0,

(4.1)

where τj > 0 is a model complexity term. Now, for a given value of the tuning

parameter µj , let β̂∗j (µj) be the corresponding solution of the minimization prob-

lem (3.3) and Ŝj (µj) = {k : β̂∗jk(µj) 6= 0}. Next, we establish the following result
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for the selection consistency of the PIC.

Theorem 3. Consider the multiple index model with the same conditions as those

in Theorem 2. For each dimension j = 1, . . . , d, denote

ξj = min

{
β2jk

β>j βj
, βjk 6= 0

}
,

and assume that ξj goes to zero at a slower rate than p/n. For any sequence τj that

goes to zero at a rate slower than p/n, but faster than ξj, that is p/n
<∼ τj

<∼ ξj,

the adaptive CHOMP estimator with tuning parameter µj selected by minimizing

PIC(µj ; τj) defined in (4.1), with the initial estimate β̄j being the unpenalized

estimate, satisfies pr{Ŝj (µj) = Sj} → 1 as n→∞.

In Theorem 3, the quantity ξj controls the relative magnitude of the min-

imum nonzero coefficient compared to the `2 norm of the jth dimension. The

condition that the model complexity term τj goes to zero faster than ξj ensures

that minimizing the PIC does not lead to underfitting; in other words, when ξj
is small, the model complexity term τj has to be small as well. Furthermore, the

term τj has to go to zero at a rate slower than p/n to avoid overfitting. If all

the nonzero components of βj have the same magnitude, that is, ξj = o(s−1j ),

then Theorem 3 implies that the rate of convergence to zero is between p/n and

s−1j , so we can set τj = log(p)/p, as defined in equation (3.7). In the simula-

tion below, we verify that this choice of τj leads to strong variable selection in

finite sample settings. To the best of our knowledge, our proposed PIC is the

first data-driven approach to select a regularization parameter that theoretically

guarantees achieving variable selection consistency for a central subspace.

5. Simulation Studies

5.1. Single-index model

We conduct simulation studies to investigate the performance of the proposed

estimators in finite-sample settings. In all the settings below, the number of true

dimensions d is assumed to be known. For the first simulation, we generate data

pairs (x>i , yi) from one of the following models: (I) yi = sin(x>i β0) exp(x>i β0)+εi,

(II) yi = 0.5(x>i β0)
3 + εi, and (III) yi = exp(x>i β0 +εi). These models are also

considered by Lin, Zhao and Liu (2019) in their simulation study of the single-

index model. Each row vector xi is independently generated from a p-variate

Gaussian distribution with mean zero and covariance matrix Σ = DΩ̃D, where

Ω̃ = (σ̃)ij is a correlation matrix with elements being either (a) σ̃ij = 0.5|i−j|
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(autoregressive structure) or (b) σ̃ii = 1 and σ̃ij = 0.5 when i 6= j (homogeneous

structure), and D is a diagonal matrix with elements generated randomly from

the uniform distribution Unif(0.5, 2). As a result, each covariate has a different

variance. Next, the vector β0 is generated with the first s = 5 components being

nonzero. These nonzero components have random sign and magnitude generated

from the uniform distribution Unif(1, 1.5). Finally, each random noise term εi
is generated independently from the standard normal distribution. The sample

size is fixed at n = 1,000, as in Lin, Zhao and Liu (2019), while the number

of covariates varies over p ∈ {100, 200}. For each combination of the above

parameters, 500 samples are generated. We set the number of slices to H = 20

when computing all the estimators as in Lin, Zhao and Liu (2019).

We compare the performance of the matrix lasso, CHOMP, adaptive CHOMP

with γ = 1 and γ = 2, and the lasso SIR estimators, based on three metrics: the

estimation error ‖P(β0) − P(β̂)‖F , the false positive rate (FPR), and the false

negative rate (FNR). These metrics are averaged across the 500 samples. For the

CHOMP-type estimators, the tuning parameters are selected based on the PIC

proposed in Section 3.3. For the lasso SIR estimator, we used a tuning parameter

chosen using 10-fold cross-validation. In Section S3 of the Supplementary Mate-

rial, we demonstrate that the lasso SIR with tuning parameter chosen in this way

exhibits roughly the same performance as that of the lasso SIR estimator with

a tuning parameter chosen to minimize the actual estimation error. The latter

is not available in practice, because it requires knowledge of the true projection

matrix P(β0). For the matrix lasso estimator, we examine its performance for

different choices of tuning parameters (see Section S4 of the Supplementary Ma-

terial). We find that a 10-fold cross-validation procedure often leads to the lowest

estimation error among the methods that can be used in practice. In general,

this tuning parameter selection method does not guarantee optimal performance;

however, we use it to compare the performance of matrix lasso with that of other

methods. How to select the best tuning parameter for the matrix lasso is outside

the scope of this study. The results for the simulation settings when Ω̃ has the

autoregressive structure are presented in Table 1; the results for the settings when

Ω̃ has the homogeneous structure show similar conclusions, and are presented in

Section S6 of the Supplementary Material.

Table 1 shows that the adaptive CHOMP estimator consistently has the best

performance in terms of all three metrics. In particular, the estimation error of

the CHOMP with a tuning parameter selected using the PIC is much lower than

that of the matrix lasso estimator; these numerical results confirm the benefit of

using the Cholesky decomposition. This benefit is strengthened further by the
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Table 1. Performance of the estimators in the single-index model simulation with the
correlation matrix Ω̃ having an autoregressive structure. Standard errors are included
in parentheses. The lowest estimation error for each setting is highlighted.

Model p Metric CHOMP Adaptive CHOMP Lasso SIR MLasso

γ = 1 γ = 2

(I) 100 Error 0.26 (0.12) 0.12 (0.06) 0.10 (0.05) 0.19 (0.06) 0.39 (0.16)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.19 (0.09) 0.66 (0.23)

FNR 0.00 (0.03) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 0.02 (0.10)

200 Error 0.29 (0.13) 0.13 (0.07) 0.12 (0.06) 0.23 (0.08) 0.49 (0.09)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.12 (0.06) 0.72 (0.16)

FNR 0.01 (0.04) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01)

(II) 100 Error 0.07 (0.04) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.10 (0.08)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.18 (0.09) 0.40 (0.15)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.03)

200 Error 0.08 (0.04) 0.03 (0.01) 0.03 (0.01) 0.06 (0.02) 0.11 (0.02)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.12 (0.06) 0.50 (0.12)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

(III) 100 Error 0.11 (0.05) 0.04 (0.02) 0.04 (0.02) 0.08 (0.02) 0.13 (0.10)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.19 (0.09) 0.51 (0.16)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.05)

200 Error 0.11 (0.06) 0.04 (0.02) 0.04 (0.02) 0.09 (0.03) 0.17 (0.03)

FPR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.12 (0.06) 0.62 (0.13)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

adaptive CHOMP; the adaptive estimators with γ = 1 and γ = 2 both have the

smallest estimation error in all the settings. With regard to variable selection,

both the matrix lasso and the lasso SIR estimators tend to overfit. The adaptive

CHOMP estimator is able to fully recover the sparsity pattern of β0, with the

average FPRs and FNRs being zero in all settings.

5.2. Multiple-index model

For the multiple-index model, we generate independent data pairs (x>i , yi)

from the model (IV) yi = (x>i β1)
{

exp(x>i β2) + εi
}
, i = 1, . . . , n. The model

is also considered by Lin, Zhao and Liu (2019) in their simulation study of the

multiple-index model. The predictors xi and the random noise εi are generated

in the same manner as in Section 5.1. We consider two different sparsity patterns

in β1 and β2. In the first case, the two vectors have the same sparsity patterns;

specifically, both have the first s1 = s2 = 5 components nonzero. In the second
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Table 2. Performance of estimators in the multiple-index model simulation. Standard
errors are in parentheses. The lowest estimation error for each setting is highlighted.

p Sparsity Metric CHOMP Adaptive CHOMP Lasso SIR MLasso

γ = 1 γ = 2

100 Same Error 0.31 (0.25) 0.22 (0.27) 0.21 (0.28) 0.28 (0.27) 0.49 (0.32)

FPR 0.00 (0.01) 0.00 (0.02) 0.01 (0.02) 0.32 (0.11) 0.63 (0.16)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.13)

Different Error 0.38 (0.13) 0.24 (0.10) 0.22 (0.09) 0.26 (0.06) 0.48 (0.26)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.39 (0.11) 0.63 (0.16)

FNR 0.00 (0.02) 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.03 (0.14)

200 Same Error 0.32 (0.26) 0.21 (0.28) 0.22 (0.29) 0.29 (0.26) 0.48 (0.24)

FPR 0.00 (0.00) 0.00 (0.01) 0.00 (0.02) 0.21 (0.08) 0.66 (0.08)

FNR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00)

Different Error 0.40 (0.13) 0.24 (0.09) 0.22 (0.09) 0.30 (0.08) 0.46 (0.10)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.26 (0.09) 0.66 (0.08)

FNR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.01)

case, the two vectors have different, but overlapping sparsity patterns. Specif-

ically, the first s1 = 5 components of β1 are nonzero, while the fourth to the

seventh components of β2 are nonzero (s2 = 4). The nonzero components are

generated in the same way as those of β0 in the single-index model simulation.

For each sample, we compute the same estimators for the first and second

dimensions separately. All the other parameters, including the tuning parameters

for the estimators, are chosen in the same way as in Section 5.1. We assess the

estimators based on the estimation error of the projection matrix, FPR, and

FNR. Similarly to Tan et al. (2018), for the multiple-index model, the FPR and

FNR are assessed based on the diagonal of the projection matrix. For example,

a false positive for the jth component is counted when P(B̂)jj is non-zero but

P(B)jj is zero.

Table 2 shows that the adaptive CHOMP estimator with γ = 2 performs best

overall among the considered estimators. Similarly to the single-index model,

the CHOMP has considerably a smaller estimation error than that of the matrix

lasso. With regard to variable selection, as in the single-index simulation, the

matrix lasso and lasso SIR estimators tend to overfit. The CHOMP and adap-

tive CHOMP estimators are able to recover all the important covariates in two

dimensions by having both average FPRs and FNRs zero or very close to zero in

all the considered settings.

In summary, the simulation studies both verify the theoretical results, and
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demonstrate the superior performance of the adaptive CHOMP estimator, in con-

junction with the PIC, in terms of both the estimation error and variable selection

for the central subspace. In Section S3.1 of the Supplementary Material, we also

examine the numerical performance of an adaptive version of the lasso SIR, and

find that its performance is similar or worse than that of the adaptive CHOMP.

Furthermore, as demonstrated in Section 7, the adaptive CHOMP estimator has

a distinct advantage over the adaptive lasso SIR estimator in that it can be eas-

ily extended to other inverse-regression methods for the sparse estimation of a

central subspace.

6. Data Application

We apply the methods to a cancer trial data set that contains informa-

tion about the mean cancer mortality rate and 33 socioeconomic variables over

the period 2010–2016 for n = 3,047 counties in the United States. The data

set was created from merging several data, and is publicly available at https:

//data.world/nrippner/cancer-trials. It is of interest to model the mean

cancer mortality rate (y) from all of the other variables. For illustration pur-

poses, we remove one interval-censored predictor (binnedInc), which represents

the median income per capita, binned by decile, and three other predictors hav-

ing a considerable degree of missingness. This leaves us with p = 28 covariates

(X), all of which are then standardized before the analysis.

First, we use the dr package in R to compute the (unpenalized) SIR estimator

and estimate the number of dimensions using the chi-square marginal dimension

test of Cook (2004). The number of slices is set to H = 20. As a result, the

number of dimensions of the central subspace is estimated to be three. Next, we

calculate the CHOMP, adaptive CHOMP with γ = 1, adaptive CHOMP with γ =

2, and lasso SIR estimators. The tuning parameters for these penalized estimators

are selected in the same fashion as in the simulation study. Because the true

coefficient is not available for real data, we use the distance correlation between

the sufficient predictors XB̂ and the response y as a performance measure of the

methods, where B̂ is a 28×3 estimated matrix of the three dimensions. A higher

distance correlation means a stronger association (both linear and nonlinear)

between two variables, thus implying a better prediction ability; see Székely,

Rizzo and Bakirov (2007) and Wang, Shin and Wu (2018). We also examine the

number of covariates selected by each method across all three dimensions.

Figure 1 shows that the methods produce similar sufficient dimensions for the

first two dimensions. The response appears to have a strong linear relationship

https://data.world/nrippner/cancer-trials
https://data.world/nrippner/cancer-trials
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Table 3. Performance of SDR methods in the cancer trial data set.

Methods Distance correlation # of important variables

Unpenalized SIR 0.59 28

CHOMP 0.61 4

Adaptive CHOMP (γ = 1) 0.59 4

Adaptive CHOMP (γ = 2) 0.66 16

Lasso SIR 0.42 28
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Figure 1. Plots of the response versus each sufficient predictor obtained by each method
in the Cancer Trial dataset application.

with the first sufficient predictor, while the relationship between the response

and the second sufficient predictor is more varied. For the third dimension,

different methods produce sufficient estimators with quite different relationships

with the response. Table 3 shows that the adaptive CHOMP estimator with

γ = 2 produces sufficient predictors that have the highest distance correlation

with the response, while the lasso SIR leads to sufficient predictors with the

lowest distance correlation. For variable selection, on the one hand, the lasso

SIR estimator selects all the covariates. As seen in the simulation results, the

lasso SIR estimates tend to have a high FPR; this is likely to happen in this data

application as well. On the other hand, the CHOMP estimator and adaptive

CHOMP estimator with γ = 1 produce very sparse estimates, with only four

covariates across all three dimensions; the adaptive CHOMP estimator with γ = 2
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selects 16 estimates. Three covariates are selected by all three estimators: the

mean number of diagnoses per capita, poverty rate, and percentage of residents

whose highest education level attained is bachelor degree or higher. Compared

with the simulation results, the performance of the adaptive CHOMP estimator in

the data application is more sensitive to the choice of γ; this may be because the

true nonzero coefficients may have a wider spread than they do in the simulation

study. The optimal choice for γ is left as a topic for future research.

7. CHOMP for Other Inverse Regression Methods

As discussed at the end of Section 3, one advantage of the (adaptive) CHOMP

estimator is its ability to extend to other sufficient dimension reduction methods.

For example, we consider a class of methods that satisfy the population equation

Σ col(B) = col(Q), where the matrix Q is a method-specific kernel matrix. For

example, the SIR corresponds to Q = var{E(X |y)}; the SAVE corresponds to

Q = E {Σ− var(X |y)}2, and the pHd corresponds to Q = E
[
X X> {y − E(y)}

]
,

among many others. Next, let η1, . . . ,ηd be the eigenvectors associated with

the d largest eigenvalues of the kernel matrix Q. Then, the jth method-specific

sufficient dimension satisfies Σβj = ηj , for j = 1, . . . , d. Following the same

argument as in Section 3.1, we can then calculate κ̂j such that L̂κ̂j = η̂j , where

η̂j is the jth eigenvector of the sample counterpart of the Q matrix. The CHOMP

estimator corresponding to each sufficient dimension reduction method can then

be constructed as the solution to the minimization problem (3.2). Similarly, the

adaptive CHOMP estimator is the solution of the minimization problem (3.3),

where the weights are set to ωjk = |β̄jk|−γ , with β̄jk being the kth element of the

unpenalized method-specific estimator β̄j = Σ̂
−1
η̂j . We refer to the resulting

estimators as, for example, CHOMP-SAVE and adaptive CHOMP-SAVE when

the CHOMP and adaptive CHOMP, respectively, are applied to the SAVE; similar

definitions hold for the pHd.

We conduct a simulation study to demonstrate the performance of these

estimators in scenarios where a SIR is unable to estimate the sufficient dimen-

sion. One such common scenario is when the link function f in (1.1) is sym-

metric around zero (Li (2018, Sec. 3.2)). We generate data from the single-

index model (V) yi = (x>i β0)
2 + εi and the multiple-index model (VI) yi =

(x>i β1)
2 − (x>i β2)

4 + εi for i = 1, . . . , n. Each row vector xi is generated from

a multivariate normal distribution with the autoregressive correlation structure

outlined in Section 5.1, and the random noise εi is generated from the stan-

dard normal distribution. The vector β0 is generated as in Section 5.1, while
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Table 4. Performance of sufficient dimension estimators in the single-index simulation
when the true link function f is symmetric. Standard errors are included in parentheses.
The lowest estimation error is highlighted for each setting.

Model Metric Lasso SIR CHOMP Adaptive CHOMP (γ = 2)

SIR SAVE pHd SIR SAVE pHd

(V) Error 1.41 (0.03) 1.40 (0.03) 0.88 (0.35) 0.54 (0.22) 1.41 (0.02) 0.60 (0.45) 0.29 (0.20)

FPR 0.18 (0.11) 0.03 (0.03) 0.02 (0.03) 0.01 (0.02) 0.09 (0.05) 0.02 (0.04) 0.01 (0.02)

FNR 0.82 (0.20) 0.96 (0.09) 0.36 (0.37) 0.08 (0.15) 0.90 (0.14) 0.20 (0.35) 0.02 (0.10)

(VI) Error 1.99 (0.05) 2.00 (0.05) 0.84 (0.28) 1.57 (0.12) 1.99 (0.02) 0.66 (0.32) 1.54 (0.12)

FPR 0.27 (0.13) 0.06 (0.05) 0.01 (0.03) 0.03 (0.05) 0.16 (0.06) 0.02 (0.04) 0.11 (0.06)

FNR 0.71 (0.22) 1.00 (0.11) 0.00 (0.13) 0.57 (0.15) 0.86 (0.15) 0.00 (0.09) 0.43 (0.11)

the vectors β1 and β2 are generated to have different sparsity patterns as in

the multiple-index model simulation in Section 5.2. We set the sample size to

n = 1000 and the number of covariates to p = 100. We consider the lasso SIR,

CHOMP-SIR, CHOMP-SAVE, and CHOMP-pHd estimators, and the adaptive

version with γ = 2 for each CHOMP-based estimator. We use the PIC to select

the tuning parameters for all the (adaptive) CHOMP estimators. We run each

setting on 500 samples and compare the estimators based on the same perfor-

mance metrics as those used in Section 5.

Table 4 shows that, in general, the SIR-based estimators do not perform well

in terms of either estimation or variable selection when the true link function f is

symmetric around zero. Using CHOMP combined with SAVE or pHd leads to a

substantially smaller estimation error and improved variable selection. Further-

more, the adaptive CHOMP-SAVE and CHOMP-pHd estimators improve on the

performance of the corresponding non-adaptive estimators. For the single-index

model (V), these adaptive estimators have low FPRs and FNRs, and the adaptive

CHOMP-pHd with γ = 2 has the lowest estimation error. For the multiple-index

model (VI), the adaptive CHOMP-SAVE estimator with γ = 2 has the lowest

estimation error and performs best in terms of variable selection. The CHOMP-

pHd estimators have a relatively high FPR. In low-dimensional settings without

any sparsity assumption, the empirical behavior of SAVE and pHd are known

to be somewhat similar (Li (2018, Chap. 8, p.102)). However, the preliminary

simulation results in this section suggest that the corresponding CHOMP-type

estimators may have different performance when sparsity is imposed, depending

on various factors, such as the true number of dimensions. We leave a full inves-

tigation of these CHOMP-type estimators to further research. However, overall,

the results demonstrate that the CHOMP estimator can be extended to other suf-

ficient dimension reduction methods, and confirm the advantages of the adaptive
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CHOMP-type approach for the sparse estimation of a central subspace.

8. Conclusion

This paper presents three main contributions to the literature on sparse suf-

ficient dimension reduction. First, we introduce the CHOMP approach, which is

based on the Cholesky decomposition of the sample covariance matrix, for SIR

estimation of a central subspace, along with the first data-driven PIC theoret-

ically guaranteed to achieve variable selection consistency. Second, though the

CHOMP estimator alone may not be as good as the lasso SIR in simulation stud-

ies, the CHOMP approach can be generalized easily to an adaptive version that

not only achieves estimation and variable selection consistency, but also exhibits

superior performance to that of the lasso SIR. Finally, the CHOMP approach is

easily extended to other inverse regression-based estimators, for which the corre-

sponding adaptive CHOMP estimators show superior empirical performance in

terms of both estimation and variable selection.

In this paper, we focus on the CHOMP estimators when n > p and p/n→ 0

as n → ∞. In this setting, the sample covariance matrix Σ̂ is positive-definite

and invertible, and so is its Cholesky factor L̂. In high-dimensional settings

when n < p, the main challenge when using CHOMP is how to estimate L given

that the matrix Σ̂ is no longer positive-definite and invertible. In Section S5 of

the Supplementary Material, we explore using of CHOMP in a high dimensional

setting where the Cholesky factor L can be estimated efficiently from regression

techniques. Future research may investigate the theoretical properties of the

CHOMP estimator in such high-dimensional settings as well as when combining

CHOMP with other sufficient dimension reduction methods. Finally, how to

estimate the number of dimensions d from the data in a sparse setting remains

an open problem.

Supplementary Material

The Supplementary Material contains proofs of all technical results in Section

4, a brief review of the lasso SIR estimator, an adaptive version of it, an extension

of the CHOMP technique to a high-dimensional setting, and additional simulation

results, including the performance of the matrix lasso estimator under different

choices of tuning parameters. Furthermore, the R code is available on the Github

page of the corresponding author at github.com/lnghiemum.

github.com/lnghiemum
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