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Abstract: Regulation is an important feature of dynamic phenomena, and is com-

monly tested within the threshold autoregressive setting, with the null hypothesis

being a global nonstationary process. Nonetheless, this setting is debatable, because

data are often corrupted by measurement errors. Thus, it is more appropriate to

consider a threshold autoregressive moving-average model as the general hypothesis.

We implement this new setting with the integrated moving-average model of order

one as the null hypothesis. We derive a Lagrange multiplier test that has an

asymptotically similar null distribution, and provide the first rigorous proof of

tightness in the context of testing for threshold nonlinearity against difference

stationarity, which is of independent interest. Simulation studies show that

the proposed approach enjoys less bias and higher power in detecting threshold

regulation than existing tests, especially when there are measurement errors. We

apply the new approach to time series of real exchange rates of a panel of European

countries.

Key words and phrases: Lagrange multiplier test, threshold autoregressive moving-

average model, purchasing power parity.

1. Introduction

Regulation plays a fundamental role in fields such as economics, finance,

biological growth, and population fluctuations, among others. Growth processes

are generally regulation-free until they enter extreme phases. For instance, real

exchange rates should be regulated through a threshold that triggers the mean

reversion toward zero. However, existing tests fail to reject the null hypothesis of

a random walk, resulting in the so called purchasing power parity (PPP) puzzle;

see, for example, Taylor and Taylor (2004).

The random walk is a simple model for regulation-free dynamics. On

the other hand, regulation from above (below) can be captured using a first-

order threshold autoregressive (TAR) model that follows a random walk until

the process crosses a certain threshold, above (below) which, mean-reversion

takes place, while the process as a whole is stationary. In general, a nonlinear
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stationary process renders the impulse response to a random shock nonlinear

and state-dependent, which is consequential, and could be leveraged in economic

regulation. Hitherto, a standard approach for testing for dynamic regulation

is to adopt the preceding threshold model as the general model, and then to

test whether it reduces to a global random walk. This approach has received

much attention in the literature (Enders and Granger (1998); Caner and Hansen

(2001); Bec, Ben Salem and Carrasco (2004); Kapetanios and Shin (2006); Seo

(2008); Park and Shintani (2016); de Jong, Wang and Bae (2007); Giordano,

Niglio and Vitale (2017)). However, despite data almost always being corrupted

by measurement errors, to the best of our knowledge, this important issue

has not been addressed in the literature. In this case, the TAR model is not

appropriate, and the null hypothesis should be a global exponential smoothing

model instead, that is, the integrated moving-average IMA(1,1) model rather

than the IMA(1,0) model. Then, the general hypothesis may be taken as the

first-order threshold autoregressive moving-average model, TARMA(1,1), which

is driven by an IMA(1,1) model in one of its two regimes. In Section S1 of the

Supplementary Material we show that the TARMA(1, 1) model is approximately

invariant with respect to data corruption by independent measurement errors,

whereas the IMA(1, 1) model is exactly invariant with respect to the addition of

measurement errors. Above all, we cannot over-emphasize the importance of the

role of the moving average term in practical applications.

Just as ARMA models provide a parsimonious approximation to some long

AR models, TARMA models may do so for some high-order TAR models,

as noted in Goracci (2020, 2021). Thus, although the TARMA model holds

substantial promise as a class of nonlinear time series models for exploring

nonlinear dynamics it remains underexplored, partly because of a lack of progress

in obtaining conditions on stationarity and ergodicity. Unlike in the AR-ARMA

analogy, incorporating a moving-average part in a nonlinear framework poses

major theoretical challenges, and has nontrivial implications for the probabilistic

structure of the process. Chan and Goracci (2019) derive a set of necessary

and sufficient conditions for the (multi-regime) TARMA(1,1) model to admit an

irreducible and invertible state-space representation, and for its stationarity and

ergodicity.

By leveraging the recent results of Chan and Goracci (2019), we develop

a supremum Lagrange multiplier test (supLM) for threshold regulation, with

the TARMA(1,1) model as the general framework. We specify an IMA(1, 1)

model as the null hypothesis, and a TARMA(1, 1) with a unit-root regime as the

alternative. A difficulty arising from testing for a unit-root against a TARMA

model is that the threshold parameters are absent under the null hypothesis. This

nonstandard situation in the nonlinear time series context is well recognized, both

in the TAR setting (Chan (1990); Hansen (1996); Giannerini, Goracci and Rahbek

(2024)) and in the TARMA setting (Li and Li (2011); Goracci et al. (2023)). The
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supLM framework overcomes this problem. We derive its asymptotic distribution

under both the null hypothesis and local alternatives. We prove that the test is

consistent and asymptotically similar in that its asymptotic null distribution does

not depend on the value of the MA parameter. Moreover, we provide the first

rigorous proof of tightness in the context of testing for threshold nonlinearity

against difference stationarity, which is of independent interest and constitutes

a general theoretical framework for ARIMA versus TARMA testing. We also

introduce a wild bootstrap version of the supLM statistic that, for finite samples,

possesses good properties and robustness against heteroskedasticity. We perform

a large-scale simulation study to compare our tests with existing tests, in which

the alternative hypothesis is that of a threshold model. In general, the size of the

latter tests is severely biased in a number of cases, to the extent that their use in

practical applications remains questionable, unless additional information on the

data generating process is available. In addition, the comparison includes some

of the best performing unit-root tests to date, where the alternative hypothesis

does not specify explicitly a nonlinear process.

The remainder of the paper is structured as follows. In Section 2, we present

some fundamentals of the first-order TARMA model and a parametrization that

reduces to the IMA(1,1) process under the null hypothesis. In Section 3, we

present the proposed supLM test, including the theoretical framework based on

Brownian local time. In Section 4, we develop the asymptotic distribution of

the supLM test statistic under the null hypothesis, and show that it is nuisance

parameter free and depends only on the search range of the threshold. The results

related to the local power of the proposed test are summarized in Section 5. In

Section 6, we perform a large-scale simulation study to show the performance of

the asymptotic supLM test and its wild bootstrap version, and compare them

with that of numerous existing tests. Section 7 contains an empirical illustration,

in which we apply the proposed tests to the pre-euro monthly real exchange rates

of a set of European countries. All proofs are collected in the Supplementary

Material, which also contains further results from the Monte Carlo study and

from the real-data application.

2. Threshold Autoregressive Moving-Average Model

Consider the following first-order TARMA model:

Xt =

{
ϕ1,0 + ϕ1,1Xt−1 + εt − θεt−1, if Xt−d ≤ r

ϕ2,0 + ϕ2,1Xt−1 + εt − θεt−1 otherwise,
(2.1)

where ϕ2,1 is fixed at one, unless stated otherwise, the innovations {εt} are

independent and identically distributed (i.i.d.) random variables with mean zero

and variance σ2, εt is independent of Xt−j, for j ≥ 1, the delay d is a positive
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integer, taken as one, for simplicity, r is the real-valued threshold parameter, and

the ϕ and θ are unknown coefficients. Later, we relax the assumption of i.i.d.

innovations to a martingale difference sequence. The preceding (constrained)

TARMA model assumes that the sub-model in the upper regime is a first-order

IMA model, and the lower regime specifies a general first-order ARMA model.

Statistical inference with a TARMA model hinges on whether the model is

invertible. We assume |θ| < 1, because this is a necessary and sufficient condition

for the invertibility of Model (2.1) (Chan and Tong (2010)). By assuming that the

innovations admit a positive, continuous probability density function with finite

absolute first moment, Chan and Goracci (2019) show that Model (2.1) is an

ergodic Markov chain if and only if ϕ2,0 < 0 and either (i) ϕ1,1 < 1 or (ii) ϕ1,1 = 1

and ϕ1,0 > 0. Ergodicity then implies that the first-order TARMA model admits

a unique stationary distribution. Furthermore, under the stronger condition that

the innovations admit a finite absolute kth moment for some k > 2, Chan and

Goracci (2019) provide a complete classification of the parametric regions of

Model (2.1) into sub-regions of ergodicity, null recurrence, and transience. In

particular, the (constrained) first-order TARMA model defined by Model (2.1)

is null recurrent if one of the following hold: (iii) ϕ1,1 = 1, ϕ2,0 = 0, ϕ1,0 ≥ 0;

(iv) ϕ1,1 = 1, ϕ2,0 < 0, ϕ1,0 = 0; and (v) ϕ1,1 < 1, ϕ2,0 = 0. If none of

conditions (i)–(v) hold, then the model is transient. Therefore, Model (2.1)

encompasses both linear and nonlinear processes spanning a wide spectrum of

long-run behaviors, including ergodicity, null recurrence, and transience.

3. Lagrange Multiplier Test for Threshold Regulation

We first formulate a framework for testing for threshold regulation from

below. Let {Xt, t = 0, 1, . . .} be a time series, and assume that, for t ≥ 1,

Xt satisfies the equation

H : Xt = ϕ0 +Xt−1 + εt − θεt−1 + (ϕ1,0 + ϕ1,1Xt−1)× I(Xt−1 ≤ r), (3.1)

which is a re-parameterization of Model (2.1) with ϕ0 = ϕ2,0, and, with an abuse

of notation, ϕ1,0 and ϕ1,1 represent the difference between the intercept and the

slope of the lower regime relative to their upper-regime counterparts; the initial

value X0 can be fixed at, say, zero. Here we wish to test whether ϕ1,0 = ϕ1,1 = 0,

in which case, the data are generated by the IMA(1,1) model

H0 : Xt = ϕ0 +Xt−1 + εt − θεt−1, (3.2)

where |θ| < 1. If the intercept ϕ0 ̸= 0, then the IMA(1,1) process has a linear

trend. If no such linear trend is apparent in the data, it is reasonable to omit

the intercept. Henceforth, we assume that ϕ0 = 0 under H0. The case for ϕ0 ̸= 0

requires a nontrivial modification of the test and its asymptotic distribution and
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is left for further research. However, the intercept terms on the two regimes of

any competing stationary first-order TARMA model are required to model the

mean of the data. Indeed, even for mean-deleted data, the intercept terms of the

first-order TARMA model are not necessarily zero. Thus, the intercept terms are

essential, and so are retained in the constrained TARMA model under H0. We

can test for threshold regulation from above by applying the test to {−Xt}.
Under the null hypothesis, the threshold parameter is absent, thereby

complicating the test (Chan (1990); Hansen (1996); Li and Li (2011); Goracci

et al. (2023)). Our approach is to develop a Lagrange multiplier test statistic

for H0, with the threshold parameter fixed initially at some r. Denote the test

statistic as Tn(r). Because r is unknown and absent under H0, we compute Tn(r)

for all r over some data-driven interval, say, [a, b], with the end points being some

percentiles of the observed data. For instance, a could be the 20th percentile and b

the 80th percentile. Then, the overall test statistic results in Tn = supr∈[a,b] Tn(r).

In addition to taking the supremum, other approaches, including integration, can

be used to derive an overall test statistic.

The Lagrange multiplier test is based on the following Gaussian likelihood

conditional on X0:

ℓ = − log(2πσ2)× n

2
−

n∑
t=1

ε2t
2σ2

, (3.3)

where, with an abuse of notation, ∀t ≥ 1,

εt = Xt − {ϕ0 +Xt−1 + (ϕ1,0 + ϕ1,1Xt−1)× I(Xt−1 ≤ r)}+ θεt−1, (3.4)

with the unknown ε0 set to zero. Note that εt in the preceding formula is a

function of ϕ0, ϕ1,0, ϕ1,1, θ, and r, but the arguments are usually suppressed for

simplicity. Let ψ = (ϕ0, θ, σ
2, ϕ1,0, ϕ1,1)

⊺, with its components denoted by ψj,

for j = 1, 2, . . . , 5, and let it be partitioned into ψ1 = (ϕ0, θ, σ
2)⊺ and ψ2 =

(ϕ1,0, ϕ1,1)
⊺. The null hypothesis can be succinctly expressed as H0 : ψ2 = 0.

First, consider the case of a known threshold r. Partition the Fisher

information matrix according to ψi, for i = 1, 2 into

In(r) =

(
I1,1,n(r) I1,2,n(r)

I2,1,n(r) I2,2,n(r)

)
. (3.5)

The Lagrange multiplier test statistic is an asymptotic approximation of twice

the Gaussian likelihood ratio statistic, based on a second-order Taylor expansion.

For fixed r, it is equal to

Tn(r) =
∂ℓ̂

∂ψ⊺
2

(r)
{
Î2,2,n(r)− Î2,1,n(r)Î

−1
1,1,n(r)Î1,2,n(r)

}−1 ∂ℓ̂

∂ψ2

(r), (3.6)

where ∂ℓ̂/∂ψ2(r) is equal to ∂ℓ/∂ψ2, evaluated at the constrained estimate ψ1 =
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ψ̂1 given ψ2 = 0 and the threshold parameter fixed at r. Similarly defined

are Îi,j,n(r), for 1 ≤ i, j,≤ 2; see Subsection 3.1 for the formulas. Because the

threshold r is unknown, the overall supLM statistic is Tn = supr∈[a,b] Tn(r), with

a and b, for instance, being some prespecified percentiles of the observed data;

see Subsection 3.2 for further discussion

3.1. Gaussian likelihood estimation

In this sub-section, we describe estimation of the model parameters under

the null hypothesis, and computation of the score vector and Fisher information

matrix. The score vector is

∂ℓ

∂ψj

= −
n∑

t=1

εt
σ2

∂εt
∂ψj

, 1 ≤ j ≤ 5, j ̸= 3,
∂ℓ

∂ψ3

=
∂ℓ

∂σ2
=

n∑
t=1

ε2t − σ2

2σ4

where for t > 1,

∂εt
∂ϕ0

= −1 + θ
∂εt−1

∂ϕ0

= −
t−1∑
j=0

θj, (3.7)

∂εt
∂θ

= εt−1 + θ
∂εt−1

∂θ
=

t−1∑
j=0

θjεt−1−j, (3.8)

∂εt
∂ϕ1,0

= −I(Xt−1 ≤ r) + θ
∂εt−1

∂ϕ1,0

= −
t−1∑
j=0

θjI (Xt−1−j ≤ r) , (3.9)

∂εt
∂ϕ1,1

= −Xt−1I(Xt−1 ≤ r) + θ
∂εt−1

∂ϕ1,1

= −
t−1∑
j=0

θjXt−1−jI (Xt−1−j ≤ r) , (3.10)

with initial values given by ∂ε1/∂ϕ0 = −1, ∂ε1/∂θ = 0, ∂ε1/∂ϕ1,0 = −I(X0 ≤ r),

and ∂ε1/∂ϕ1,1 = −X0I(X0 ≤ r). Below, we sometimes write, as a typical

example, ∂εt/∂ϕ1,1 = −(1 − θB)−1 {Xt−1I(Xt−1 ≤ r)}, where B is the backshift

operator that shifts the indices backward by one time unit. The IMA(1,1)

model under the null hypothesis can be estimated by solving the score equation

∂ℓ/∂ψ1 = 0, yielding ψ̂1 = ψ̂1,n = (ϕ̂0,n, θ̂n, σ̂
2
n)

⊺. Thus, the overall estimator of

ψ under H0 is ψ̂ = (ϕ̂0,n, θ̂n, σ̂
2
n, 0, 0)

⊺, with the residuals given by

ε̂t = Xt −Xt−1 − ϕ̂0 + θ̂ε̂t−1, ∀t ≥ 1, (3.11)

where ε̂0 = 0. The observed Fisher information (excluding the threshold

parameter) is given by In = −∂2ℓ/(∂ψ∂ψ⊺), the (i, j)-th element of which

i, j ̸= 3, is given by



TESTING FOR THRESHOLD REGULATION 1419

n∑
t=1

1

σ2

∂εt
∂ψi

∂εt
∂ψj

+
n∑

t=1

εt
σ2

∂2εt
∂ψi∂ψj

= (1 + op(1))×
n∑

t=1

1

σ2

∂εt
∂ψi

∂εt
∂ψj

, (3.12)

its (3, i)th element with i ̸= 3 is equal to
∑n

t=1(εt/σ
4)(∂εt/∂ψi) = op(n), and

the (3, 3)th element is equal to
∑n

t=1 ((1/(2σ
4))− (ε2t/σ

6)) , where the op(1) and

op(n) terms hold uniformly in r, when the expressions are evaluated at the

true parameter value under the null hypothesis. Hence they are asymptotically

negligible (from arguments similar to those in the proof of Theorem 1), and

thus are omitted henceforth. We sometimes write, for example, ∂ℓ/∂ψj(ψ; r),

to highlight the role of the arguments, and further simplify the notation, for

example, from ∂ℓ/∂ψj(ψ0; r) to ∂ℓ/∂ψj(r), with ψ0 denoting the true value

under H0. Moreover, I1,1,n(ψ0; r) and ∂ℓ/∂ψ1(ψ0; r) are further simplified as

I1,1,n and ∂ℓ/∂ψ1, respectively, because they do not depend on r. With an abuse

of notation, the true values of the moving-average coefficient and the innovation

variance under H0 are denoted simply by θ and σ2, respectively. There should

be no confusion because the context will make clear whether they represent the

generic parameters or their true values.

3.2. The choice of the threshold range

For theoretical analysis, the threshold range is specified as Rn = (n1/2(1 −
θ)σ× rL, n1/2(1− θ)σ× rU), where rL < rU are two fixed finite numbers. We now

justify this choice of the threshold range. First, some heuristics are employed.

Under the null hypothesis (with ϕ0 = 0),

Xt = εt + (1− θ)
t−1∑
s=1

εs − θε0 +X0.

Hence, {n−1/2X[sn], 0 ≤ s ≤ 1}, where X[sn] =
∑[sn]

t=1Xt and [sn] is the largest

integer less than or equal to sn, converges in distribution to {(1− θ)σWs}, where
{Ws} is the standard Brownian motion. It is well known (Björk (2019, Thm. 3.1

and 3.2)) that the Brownian local time {Lx
t , t ≥ 0,−∞ < x <∞}, defined as:

Lx
t = |Wt − x| − |x| −

∫ t

0

sign(Ws − x)ds,

where sign(x) denotes the sign of x, is essentially the probability density function

of the Brownian realization, in the sense that, for any bounded real-valued Borel

function f , ∫ 1

0

f(Ws)ds =

∫ ∞

−∞
f(x)Lx

1dx. (3.13)

Thus, any quantile of {Xt, t = 0, . . . , n} is asymptotically equal to n1/2(1 − θ)σ

times the corresponding quantile of {Ws, 0 ≤ s ≤ 1}. Because the Brownian local

time process is a random process, the quantiles are realization specific. This
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motivates us to set the threshold to be of the form rn = (1− θ)τσn1/2, for some

fixed τ , in which case,

n−1/2 ∂ℓ

∂ϕ1,0

(rn) = n−1/2
n∑

t=1

εt
σ2

1

1− θB

{
I

(
Xt−1

n1/2(1− θ)σ
≤ τ

)}
. (3.14)

The right side of (3.14) is a Riemann–Stieltjes sum over [0, 1], with a step

integrator jumping at t/n with jump size (nσ2)−1/2εt, and the integrand is a

piecewise constant function equal to
∑t−1

j=0 θ
jI
(
{n1/2(1− θ)σ}−1Xt−1−j ≤ τ

)
over

the interval [n−1(t − 1), n−1t], for t = 1, 2, . . . , n. The integrator converges

weakly to the standard Brownian motion, whereas the integrand converges to

(1− θ)−1I(Ws ≤ τ) as t, n→ ∞, such that t/n→ s in [0, 1]. Thus, heuristically,

n−1/2∂ℓ/∂ϕ1,0(rn) converges in distribution to (1 − θ)−1σ−1
∫ 1

0
I(Ws ≤ τ)dWs

under H0 and as n→ ∞,

n−1/2 ∂ℓ

∂ϕ1,0

(rn)⇝
1

(1− θ)σ

∫ 1

0

I(Ws ≤ τ)dWs. (3.15)

This asymptotic result and other heuristic results stated below can be justified

using Theorem 7.10 in Kurtz and Protter (1996). Similarly,

n−1 ∂ℓ

∂ϕ1,1

(rn) = n−1/2
n∑

t=1

εt
σ

1

1− θB

[
Xt−1

n1/2σ
I

{
Xt−1

n1/2(1− θ)σ
≤ τ

}]
⇝
∫ 1

0

WsI(Ws ≤ τ)dWs (3.16)

n−1/2 ∂ℓ

∂ϕ0

= n−1/2
n∑

t=1

εt
σ2

1

1− θB
(1)⇝

1

(1− θ)σ

∫ 1

0

dWs =
W1

(1− θ)σ
. (3.17)

Note the different rates of normalization. Let Kn be a 5×5 diagonal matrix with

the last diagonal elements being n, and the other diagonal elements all being

n1/2. We can also show that K−1
n In(rn)K

−1
n converges in probability to a matrix

denoted by I(τ), which can be blocked as In; see Eq. (3.5). In particular, I1,1

is a diagonal matrix comprising (1 − θ)−2σ−2, (1 − θ2)−1, (4σ4)−1 as its diagonal

elements,

I2,2(τ) =

(
{(1− θ)2σ2}−1

∫ 1

0
I(Ws ≤ τ)ds {(1− θ)σ}−1

∫ 1

0
WsI(Ws ≤ τ)ds

{(1− θ)σ}−1
∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
W 2

s I(Ws ≤ τ)ds

)
;

I2,1(τ) =

(
{(1− θ)2σ2}−1

∫ 1

0
I(Ws ≤ τ)ds 0 0

{(1− θ)σ}−1
∫ 1

0
WsI(Ws ≤ τ)ds 0 0

)
.

Note that I1,1 does not depend on τ . Thus, θ and σ2 are locally orthogonal to

the other parameters around the true parametric value under H0. Hence, their

estimates are expected to be asymptotically independent of the proposed test
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statistic, as shown below.

Remark 1. In practice, the choice of rL and rU must ensure adequate data for

the asymptotic distribution of T to be valid, which requires adequate data in

the left and right tails beyond the threshold range. Our simulation results in

Section 6 suggest a rough guideline that for normal innovations, there should be

at least 25 data points below rL (above rU).

3.3. A wild bootstrap approach

In this section, we introduce a wild bootstrap version of our supLM statistic

that delivers valid inferences under heteroskedastic disturbances (Liu (1988);

Mammen (1993); Davidson and Flachaire (2008)). As shown in Cavaliere and

Taylor (2008) in the context of unit-root testing, the wild bootstrap is capable of

correctly reproducing the first-order limiting null distribution of the statistics in

the case of nonstationary volatility. The algorithm has the following structure:

1. Compute X̃t = Xt−β̂⊺dt, where dt is a vector of deterministic components,

and β̂ is obtained using either OLS or GLS detrending;

2. Obtain θ̂, the maximum likelihood estimate for θ, and the residuals êt from

the following IMA(1,1) model: X̃t = εt − θεt−1;

3. Compute wild bootstrap errors ê∗t = êtηt, where ηt is a random variable such

that E(ηt) = 0 and E(η2t ) = 1. Henceforth, we use the Rademacher scheme:

ηt is equal to ±1 with equal probability.

4. Obtain the bootstrap resample X̂∗
t =

∑t
j=1(ê

∗
j − θ̂ê∗j−1), and compute the

supLM statistic T ∗
n upon it.

5. Repeat steps 3–4 B times to obtain the bootstrap test statistic, T ∗b
n , for

b = 1, . . . B, and compute the bootstrap p-value as the relative frequency

that T ∗b
n is not less than the observed Tn.

4. The Null Distribution

We now derive the asymptotic distribution of Tn(r) under the null hypothesis

of an IMA(1,1) model with a zero intercept. Using the second-order Taylor

expansion and after some routine algebra, it holds that

∂ℓ̂

∂ψ2

(rn) ≈
∂ℓ

∂ψ2

(rn)− I2,1,n(rn)I
−1
1,1,n

∂ℓ

∂ψ1

. (4.1)

More rigorously, letting

Qn =

(
n−1/2 0

0 n−1

)
, Pn = n−1/2

1 0 0

0 1 0

0 0 1

 ,
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we prove below that uniformly for rn = n1/2(1 − θ)στ ∈ Rn = (n1/2(1 − θ)σ×
rL, n

1/2(1− θ)σ × rU), where rL < rU are fixed numbers,

Qn

∂ℓ̂

∂ψ2

(rn) = Qn

∂ℓ

∂ψ2

(rn)− I2,1(τ)I
−1
1,1Pn

∂ℓ

∂ψ1

+ oP (1)

= Qn

∂ℓ

∂ψ2

(rn)− Ĩ2,1(τ)Ĩ
−1
1,1Pn

∂ℓ

∂ϕ0

+ oP (1), (4.2)

where, owing to the form of I2,1(τ), Ĩ1,1 = (1− θ)−2σ−2 and

Ĩ2,1 =

(
{(1− θ)2σ2}−1

∫ 1

0
I(Ws ≤ τ)ds

{(1− θ)σ}−1
∫ 1

0
WsI(Ws ≤ τ)ds

)
.

The intercept ϕ̂0,n admits the following asymptotic representation under H0

(Brockwell and Davis (2001, c.f. Eqn. (8.11.5))):

P−1
n (ϕ̂0,n − ϕ0) = (Ĩ1,1)

−1Pn

∂ℓ

∂ϕ0

+ oP (1).

Then, a key step in deriving the limiting null distribution of the proposed test is

to demonstrate that uniformly for rn = n1/2(1− θ)στ ∈ Rn,

Qn

∂ℓ̂

∂ψ2

(rn) = Qn

∂ℓ

∂ψ2

(rn)− Ĩ2,1(τ)P
−1
n (ϕ̂0,n − ϕ0) + op(1). (4.3)

Let

H(τ) =

(∫ 1

0

dWs,

∫ 1

0

I(Ws ≤ τ)dWs,

∫ 1

0

WsI(Ws ≤ τ)dWs

)⊺

(4.4)

and

Λ(τ) =


1

∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
I(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
WsI(Ws ≤ τ)ds

∫ 1

0
W 2

s I(Ws ≤ τ)ds

 . (4.5)

Let Λ(τ) be partitioned into a 2 × 2 block matrix with the (2, 2)th block being

2 × 2. Then, H(τ) = (H1(τ), H2(τ))
⊺ is partitioned similarly. It follows from

Eq. (4.2) and Eqs. (3.15)–(3.17) that the asymptotic null distribution of Tn(rn)

is the same as that of∥∥∥({Λ−1(τ)}2,2)1/2 (H2(τ)− Λ2,1(τ)H1(τ))
∥∥∥2 ,

where ∥ · ∥2 is the squared Euclidean norm of the enclosed vector. It is readily

shown that {Λ−1(τ)}2,2 = {Λ2,2(τ) − Λ2,1(τ)Λ1,2(τ)}−1. The asymptotic null
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distribution of Tn is derived in Theorem 1, under the following assumption:

(A1): Let rL < rU be two fixed real numbers. Let

Tn(τ) = n−1/2
n∑

t=2

εt
σ

t−2∑
j=0

θjI

{
rL <

Xt−1−j

n1/2(1− θ)σ
≤ τ

}
,

for rL ≤ τ ≤ rU . Suppose (i) there exists a constant C > 0 such that, for any

fixed rL ≤ τ1 < τ2 ≤ rU ,

E
{
|Tn(τ2)− Tn(τ1)|4

}
≤ C

(
|τ2 − τ1|3/2 +

|τ2 − τ1|
n

)
, (4.6)

and (ii) uniformly for a ≤ τ1 < τ2 ≤ b,

|Tn(τ2)− Tn(τ1)| ≤ K × L(n)(n log logn)1/2|τ2 − τ1|+ op(1) (4.7)

as n → ∞, where the op(1) term holds uniformly, K is a constant that may

depend on θ, and L(·) is some slowly varying function; that is, for any λ >

0, L(λx)/L(x) → 1 as x→ ∞.

Theorem 1. Suppose H0 holds so that {Xt, t = 0, 1, . . . , } is an IMA(1,1) process

satisfying Eq. (3.2), with the intercept ϕ0 = 0, |θ| < 1, and the innovations are

i.i.d. with zero mean and finite positive variance. Suppose there exist two real

numbers rL < rU such that (A1) holds. Then, as n → ∞, Tn = sup{Tn(r), r ∈
[n1/2(1− θ)σrL, n

1/2(1− θ)σrU ]} converges in distribution to

F (W ; rL, rU) = sup
τ∈[rL,rU ]

∥∥∥[{Λ−1(τ)}2,2
]1/2 {H2(τ)− Λ2,1(τ)H1(τ)}

∥∥∥2 , (4.8)

which has a parameter-free distribution, although it depends on the search range

of the threshold.

Note that the assumption of i.i.d. innovations in the preceding theorem can

be relaxed to {εt} being a stationary, ergodic, martingale difference sequence with

respect to the σ-algebra Ft generated by εt−s, for s ≤ 0; the proof is essentially

the same.

Remark 2. Conditions (4.6)–(4.7) provide a new set of general sufficient

conditions for the tightness of a sequence of stochastic processes, specifically,

the tightness of {Tn(n
1/2(1 − θ)τ), rL ≤ τ ≤ rU}. These sufficient conditions

are motivated by the approach taken by Billingsley (1968), Theorem 22.1, for

studying the tightness of empirical processes for stationary mixing data, and are

ideal for coping with nonstationarity under the null. To the best of our knowledge,

this is the first rigorous proof of tightness for testing threshold nonlinearity

against difference stationarity, and constitutes a general theoretical framework

that can be used in different settings.
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The preceding theorem assumes a deterministic threshold search interval. It can

be extended readily to the case that the end points are fixed quantiles of the data,

which are realization specific. We omit the proof, because it is based on routine

analysis that builds on Theorem 1 and that, for any fixed 0 < p < 1, (i) the

p-quantile of {Ws, 0 ≤ s ≤ 1} is Op(1), following Björk (2019), Proposition 3.2,

and the Markov inequality, and (ii) under H0, the p-quantile of {Xt, t = 0, . . . , n}
is asymptotically equal to its counterpart of {Ws, 0 ≤ s ≤ 1} times n1/2(1− θ)σ;

see the discussion below (3.13).

The following result shows that Theorem 1 holds for normally distributed

innovations.

Theorem 2. Conditions (4.6) and (4.7) hold if (i) |θ| < 1 and (ii) {εt}
are independent and identically normally distributed with zero mean and finite

positive variance.

Because the null distribution of Tn is asymptotically similar, its quantiles

can be derived numerically. The tabulated quantiles of the null distribution

for different threshold ranges can be found in Section S4 of the Supplementary

Material.

5. Local Power

In this section, we derive the asymptotic distribution of the supLM statistic

under a sequence of local threshold alternatives, and prove its consistency in

having power approaching one with increasing departure in some direction from

the null hypothesis. The mathematical framework is as follows. For each positive

integer n, the system of hypotheses is

H0,n: (X0, . . . , Xn) follow the IMA(1,1) model Xt = Xt−1 + εt − θεt−1.

H1,n: (X0, . . . , Xn) follow the TARMA(1,1) model

Xt =


n−1/2h1,0 + (1 + n−1h1,1)Xt−1 + εt − θεt−1 if

Xt−1

σn1/2(1− θ)
≤ τ0

n−1/2h2,0 + (1 + n−1h2,1)Xt−1 + εt − θεt−1 if
Xt−1

σn1/2(1− θ)
> τ0,

(5.1)

where h = (h1,0, h2,0, h1,1, h2,1)
⊺ is a fixed vector, with hi,1 ≤ 0, for i = 1, 2, and

τ0 is a fixed threshold. Note that if h1,1 < 0 (h2,1 < 0), then the model is locally

stable in the lower (upper) regime, for a sufficiently large n. In order to derive

the local power, we henceforth impose the following mild regularity conditions:

C1: The innovations are assumed to be i.i.d., with a zero mean, finite positive

standard deviation, σ, and probability density function f(·/σ)/σ, where (i)

f is a bounded function, and log(f(x)) is twice differentiable with Lipschitz-

continuous first and second derivatives over the support of the probability

density function, (ii) the moment-generating function of the innovations
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exists and is finite over some open interval around zero, and (iii) If =

−
∫
(f̈f − ḟ2/f2)(x) × f(x)dx is a finite positive number, where the first

(second) derivative of f is denoted by ḟ (f̈).

C2: −π/2 < h1,1, h2,1 ≤ 0, and h1,1 + h2,1 < 0.

Note that If is the Fisher information for the location model f(· − µ), where

µ is the location parameter. Let P0,n and P1,n be the probability measures

induced by (X0, . . . , Xn) under H0,n and H1,n, respectively. Condition (C1)

holds for many commonly used innovation distributions, including the normal

distribution and the Student’s t-distribution. Condition (C2) ensures that the

local alternative first-order TARMA model is asymptotically locally stable in at

least one regime. These two conditions are imposed to ensure that {P1,n} is

contiguous to {P0,n}. Finally, let ρ be the correlation between εt and (ḟ/f)(εt),

that is, ρ =
∫
xḟ(x)dx/

√
If , where If is the Fisher information of the innovation

distribution with unit σ, as defined in condition (C1).

Theorem 3. Suppose all the conditions stated in Theorem 1 hold. Assume (C1)

and (C2) hold. Under H1,n and as n → ∞, Tn = sup{Tn(r), for r ∈ [n1/2(1 −
θ)σrL, n

1/2(1 − θ)σrU ]}, where rL, and rU are two fixed numbers, converges in

distribution to F (W ; rL, rU) defined in Eq. (4.8) but with W now being a threshold

diffusion process satisfying the following stochastic differential equation (SDE):

dWs = dW †
s +

ρ
√
If [h1,0/{σ(1− θ)}+ h1,1Ws] ds, if Ws ≤ τ0,

ρ
√
If [h2,0/{σ(1− θ)}+ h2,1Ws] ds, otherwise,

(5.2)

where W0 = 0 almost surely, and {dW †
s , s ≥ 0} is a standard Brownian motion.

Henceforth, in this section,W denotes the threshold diffusion satisfying Eq. (5.2).

Note that if hi,0 = hi,1 = 0, for i = 1, 2, then we get the limiting null distribution

for Tn. Otherwise,W is a threshold diffusion process (Su and Chan (2015)). Thus,

the building block W that determines the limiting distribution of the supLM

statistic changes from a standard Brownian motion under H0,n to a threshold

diffusion under H1,n, if ρ ̸= 0. Consequently, the proposed test has the power

to detect local threshold alternatives. Because the functional F (·; rL, rU) is quite
complex, in Section S2.4 of the Supplementary Material, we provide an example

that demonstrates the consistency of the proposed test.

6. Finite-Sample Performance

To better approximate the finite-sample distribution of Tn, we simulated the

null distributions for the sample sizes in use. Moreover, because the finite-sample

distribution of Tn changes appreciably only when |θ| is close to one, we adopted

the following conservative approach: if |θ̂| > 0.3, we use the quantiles of the
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Table 1. Rejection percentages from the TARMA model of Eq.(6.1), with nominal size
at α = 5%. Sizes over 15% are highlighted in bold.

asymptotic bootstrap

θ sLM M̄g Mg MPT ADF ADFg KS BBC EG sLMb KSb

n = 100

-0.9 2.2 7.7 7.0 7.1 2.5 3.8 8.1 11.2 7.1 5.1 4.9

-0.5 1.6 6.3 6.1 5.8 4.8 5.1 7.0 6.1 5.7 5.0 5.6

0.0 1.6 5.1 5.1 4.6 5.3 5.6 8.1 2.7 5.0 4.5 5.3

0.5 1.7 5.6 5.9 5.1 6.7 7.4 64.5 10.2 57.5 5.2 58.6

0.9 11.3 6.5 17.7 6.4 77.9 17.8 100.0 92.4 100.0 5.7 99.8

n = 300

-0.9 5.5 6.7 6.3 6.1 3.3 4.2 6.3 14.0 6.5 5.3 3.8

-0.5 4.7 5.2 5.1 4.8 4.5 4.5 5.1 8.5 5.4 5.0 4.5

0.0 2.9 4.9 4.9 4.4 5.1 4.6 6.9 3.2 4.4 5.6 4.3

0.5 2.3 5.5 5.4 5.1 5.4 5.8 74.5 19.0 61.1 4.9 67.7

0.9 4.9 1.9 2.4 1.9 86.0 15.8 100.0 99.7 100.0 4.9 100.0

n = 500

-0.9 8.1 6.4 6.1 6.0 7.4 4.7 5.7 16.0 6.1 5.5 4.0

-0.5 5.3 5.5 5.3 5.0 5.1 4.8 5.2 9.2 5.4 4.7 4.2

0.0 3.5 4.9 4.8 4.5 4.9 4.6 7.3 3.5 5.0 3.8 4.5

0.5 2.5 5.2 5.1 4.8 5.1 5.3 78.4 23.7 62.3 4.5 71.7

0.9 3.3 1.3 1.4 1.4 83.2 14.5 100.0 99.9 100.0 5.4 100.0

simulated null with θ = sign(θ̂) · 0.9. Furthermore, we add a wild bootstrap

scheme (see Section 3.3) to improve the empirical size of the test. We denote our

asymptotic test and its wild bootstrap version as sLM and sLMb, respectively.

We compare the empirical performance of the proposed test with that of

several competing tests, namely, those designed for threshold alternatives, and

those without a specific nonlinear alternative. The former tests include those

proposed by Kapetanios and Shin (2006) (KS), Enders and Granger (1998) (EG),

and Bec, Ben Salem and Carrasco (2004) (BBC), with their bootstrap variants

(if implemented) denoted as KSb, and so on. The latter set includes the ADF

test of Dickey and Fuller (1979), the class of M tests of Ng and Perron (2001)

(M̄g), the M̄P
GLS

T test of Ng and Perron (2001) (MPT) and the GLS detrended

version of the ADF test (ADFg), and the test MGLS of Perron and Qu (2007)

(Mg). Note that we report only the results for the best performing tests.

The sample sizes considered are 100, 300, and 500. The rejection percentages

are derived with a nominal size α = 5%, and are based upon 10,000 replications.

In order to reduce the computational burden, for the bootstrap tests, we use

1,000 replications and B = 1000 bootstrap resamples. The threshold search

ranges from 25% to 75% of the sample distribution. We simulate data from the

following first-order TARMA model:
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Table 2. Size-corrected power of the asymptotic and bootstrap tests at nominal size
α = 5%.

n = 300 asymptotic bootstrap

τ ; θ sLM M̄g Mg MPT ADF ADFg KS BBC EG sLMb KSb

0.0;-0.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

0.5;-0.9 25.7 17.6 17.8 18.2 10.2 19.4 5.1 16.5 1.6 23.7 8.3

1.0;-0.9 52.5 26.7 26.9 27.7 15.8 30.4 17.4 31.9 3.8 54.3 27.0

1.5;-0.9 77.1 33.5 34.0 35.1 22.1 38.2 36.9 50.1 8.2 75.6 45.5

0.0;-0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1

0.5;-0.5 21.7 22.8 22.8 22.7 11.6 22.4 11.2 15.6 3.3 23.5 9.1

1.0;-0.5 48.3 34.5 34.9 34.9 18.2 35.0 32.3 31.1 8.2 47.8 29.1

1.5;-0.5 72.6 45.0 45.8 46.1 25.9 45.7 55.5 50.1 17.1 74.9 53.6

0.0;0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1

0.5;0.0 22.4 25.8 26.1 26.9 11.0 26.6 37.9 15.2 22.6 22.5 40.7

1.0;0.0 50.5 41.3 42.0 41.7 18.0 42.0 66.7 33.6 43.5 46.9 69.7

1.5;0.0 75.3 54.7 55.7 55.7 27.7 55.7 84.8 55.8 65.8 73.8 84.7

0.0;0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 0.0

0.5;0.5 20.6 25.0 25.1 24.5 12.9 25.6 42.9 18.8 35.3 21.8 0.0

1.0;0.5 50.1 39.5 40.1 39.2 26.2 40.9 70.9 45.1 65.8 49.2 0.0

1.5;0.5 76.9 49.8 51.9 49.9 43.1 53.1 88.9 72.5 88.0 77.3 0.0

0.0;0.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.9 0.0

0.5;0.9 24.8 16.2 19.9 16.0 14.9 18.2 6.4 34.6 29.6 14.3 0.0

1.0;0.9 62.8 22.9 34.5 22.5 32.8 26.5 12.4 63.6 52.4 36.1 0.0

1.5;0.9 86.3 25.3 44.9 25.0 47.8 29.5 23.5 77.2 65.8 61.7 0.0

Xt =

{
ϕ1,0 + ϕ1,1Xt−1 + εt − θεt−1, if Xt−1 ≤ 0,

ϕ2,0 + ϕ2,1Xt−1 + εt − θεt−1, otherwise,
(6.1)

where (ϕ1,0, ϕ1,1, ϕ2,0, ϕ2,1) = τ × (0, 0.7,−0.02, 0.99) + (1 − τ) × (0, 1, 0, 1), with

τ increasing from zero to 1.5 with increments of 0.5. When τ = 0, the model

is an IMA(1,1) model with a zero intercept. When τ > 0, the model becomes

a stationary first-order TARMA model that becomes increasingly distant from

the IMA(1,1) model with increasing τ . For the MA parameter, we set θ =

−0.9,−0.5, 0, 0.5, 0.9. The empirical sizes of the tests are displayed in Table 1.

Note that we have partitioned the set of 11 tests according to their nature: the

first nine are asymptotic, and the last two are bootstrap tests. Clearly, the ADF,

KS, BBC and EG tests are severely oversized as θ approaches unity. Moreover,

the wild bootstrap sLMb test is the only test to show a correct size in all settings,

whereas both the sLM and the M class of tests show some bias, albeit small. Note

that, when θ = 0, the TARMA model reduces to a TAR model. In this case, the

auxiliary models of the KS, BBC, EG tests are specified correctly and their sizes

are correct; however, when θ becomes positive, their sizes are severely biased,

raising concerns about their practical utility.
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The size-corrected power of the tests is presented in Table 2. Here, the

sample size is 300; see Section S5 of the Supplementary Material for the results for

n = 100, 500. The rows for τ = 0 correspond to the size, and the other rows give

the size-corrected power. The size correction for the bootstrap tests is achieved

by calibrating the p-values. In some cases, the corrected size deviates from the

nominal 5% because of discretization effects on the empirical distribution of the

bootstrap p-values. Clearly, the supLM tests are almost always more powerful

than the other tests, especially as τ increases. For instance, when τ = 1.5, the

sLM test has almost double the power of the M tests in several instances. As

mentioned before, the case θ = 0 (central panel) corresponds to a TAR model,

and this is one of two instances in which the KS tests are slightly more powerful

than the supLM tests. The power of the bootstrap version of the KS test is zero

in three cases, owing to its 100% oversize. See the Supplementary Material for

further simulation results.

6.1. Measurement error and heteroskedasticity

In this section, we assess the effect of measurement errors and heteroskedas-

ticity on the behavior of the tests. We simulate from the following IMA(1,1)

model:

Xt = Xt−1 + θεt−1 + εt, (6.2)

where θ = −0.9 (model M1), -0.5 (model M2), 0.5 (model M3) and 0.9 (model

M4). We add measurement noise as follows:

Yt = Xt + ηt, (6.3)

where the measurement error ηt ∼ N(0, σ2
η) is such that the signal-to-noise

ratio SNR = σ2
X/σ

2
η is equal to {+∞, 50, 10, 5}. Here, σ2

X is the variance of Xt

computed by means of simulation. Because the variance in the non-stationary

case depends on the sample size n, we compute it on simulated trajectories for

varying values of n to replicate it for the sample size in use. The case without

noise (SNR = +∞) is taken as the benchmark. The empirical sizes (rejection

percentages) for models M1–M4 are presented in Table 3, for n = 300 and the

results for n = 100 and 500 can be found in Section S6 of the Supplementary

Material. Clearly, the measurement noise has little effect on the size of the

supLM tests. In contrast, the size bias of the KS, BBC, and EG tests increases

appreciably when θ is positive (Models M3–M4). Worst still, the bias does not

reduce when the sample size increases.

The results shown in Section S6 of the Supplementary Material show that

the supLM tests are well behaved in the presence of heteroskedasticity and

measurement errors, particularly the sLMb wild bootstrap test. The KS, BBC,

and EG tests are severely affected by the combined presence of heteroskedasticity

and measurement errors and their size bias gets worse as the sample size increases.
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Table 3. Empirical size (rejection percentage) at nominal α = 5% and n = 300 for the
IMA(1,1) models M1–M4, with increasing levels of measurement error.

asymptotic bootstrap

snr sLM M̄g Mg MPT ADF ADFg KS BBC EG sLMb KSb

M1

∞ 4.4 7.1 6.7 6.8 3.4 4.8 6.2 12.5 6.7 5.0 5.3

50 3.6 6.4 6.4 5.4 4.8 4.9 5.8 10.4 6.5 3.8 4.7

10 2.8 5.0 5.0 4.2 6.1 4.7 4.9 5.7 5.1 5.0 4.0

5 5.5 5.3 5.0 4.8 5.2 4.8 4.9 3.1 3.1 5.3 3.8

M2

∞ 4.0 6.4 6.2 5.6 5.6 5.4 4.2 5.5 5.6 5.2 3.4

50 4.7 6.3 5.9 5.9 5.8 5.4 4.0 4.8 5.4 6.1 3.2

10 5.9 6.3 6.1 5.1 6.6 5.3 3.6 4.1 4.6 6.4 2.3

5 5.4 5.5 5.3 5.1 6.3 5.2 5.4 2.5 5.6 5.4 3.8

M3

∞ 2.8 5.8 5.8 4.4 5.6 6.3 67.8 14.1 59.9 5.2 62.0

50 3.4 5.6 5.7 4.2 5.7 5.9 68.2 15.7 60.9 5.0 62.7

10 2.4 6.2 6.0 5.0 5.8 7.0 74.2 19.7 67.4 4.8 66.7

5 2.5 5.6 5.5 4.2 5.2 6.7 84.3 28.4 77.6 5.3 76.7

M4

∞ 6.1 1.2 2.1 0.9 86.6 15.4 100.0 98.5 100.0 4.3 99.5

50 5.8 1.2 1.8 1.1 87.8 15.6 100.0 98.8 100.0 3.6 99.6

10 4.2 2.5 2.7 1.4 89.8 17.1 100.0 99.3 100.0 2.2 99.9

5 6.7 3.5 4.5 2.9 94.9 19.5 100.0 99.8 100.0 3.6 100.0

In addition, the sLM and sLMb tests, are affected nontrivially. For instance,

in Tables 6–8 of the Supplementary Material for Model M7 (integrated AR-

GARCH), the two tests present a size that varies with both the sample size

and the SNR. However, overall, the tests are well behaved. The class of M tests

is also robust in this respect, but display low power in a number of instances,

especially when the DGP is nonlinear, see also Chan et al. (2020).

7. A Real Application: Testing the PPP Hypothesis

In this section, we apply our supLM tests to the post-Bretton Woods

and pre-euro real exchange rates of a panel of European countries. Based on

macroeconomic theory, there is some consensus on the fact that price gaps

(measured in a common currency) for the same goods in different countries should

rapidly disappear. However, empirical evidence points to a strong persistence,

and, in general, unit-root tests fail to reject the null hypothesis of a random walk.

As noted in Taylor (2001), this can be ascribed to the incorrect linear specification

for the price dynamics. The presence of trading costs implies that the mechanisms

governing price adjustments are nonlinear. Threshold models provide a solution

to the problem by allowing a “band of inaction” random walk regime, where

arbitrage does not occur, and other regimes in which mean reversion takes place

so that the model is globally stationary; see Bec, Ben Salem and Carrasco (2004)

and references therein for further discussion. For a review on how TAR models
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Table 4. Results for the set of unit-root tests applied to the eight monthly series of real
exchange rates. The first two rows report the p-values for the supLM tests; the remaining
rows show a checkmark ✓if the test are significant at 1%.

PT DE FR BE AT GB NL IT

sLM 0.167 0.002 0.126 0.900 0.329 0.318 0.900 0.874

sLMb 0.384 0.009 0.292 0.833 0.417 0.259 0.802 0.836

M̄g . . . . . . . .

Mg . . . . . . . .

MPT . . . . . . . .

ADF . . . . . . . .

ADFg . . . . . . . .

KS . . . . . . . .

BBC . . . . . . . ✓
EG . . . . . . . .

are used to analyze exchange rates dynamics, see also Hansen (2011). Caner

and Kilian (2001) provide a critical investigation on the practical usefulness of

combining unit-root tests and other stationarity tests in the PPP debate.

We consider the monthly log10 real exchange rates for the following countries:

Portugal (PT), Germany (DE), France (FR), Belgium (BE), Austria (AT), Great

Britain (GB), the Netherlands (NL) and Italy (IT). The series range from

1973:09 to 1998:12 (n = 304), and are produced by the Bank of International

Settlements (BIS) by taking the geometric weighted average of a basket of

bilateral exchange rates (27 economies), adjusted using the corresponding relative

consumer prices. These weights are constructed using manufacturing trade

flows, so as to encompass both third-market competition and direct bilateral

trade by means of a double-weighting scheme. See Klau and Fung (2006) and

https://www.bis.org/ for more details on the construction of the indices.

Table 4 reports the results of applying the battery of unit-root tests described

in the previous section on the eight monthly series of real exchange rates. The first

two rows show the p-values from our supLM tests, where the threshold search

ranges from the 15th to the 85th quantile of the data. Furthermore, for the

sLMb test, we chose 9,999 bootstrap resamples and the Rademacher auxiliary

distribution. To enhance readability, the remaining rows show a checkmark if

the corresponding test rejects the null hypothesis at the 1% level. Based on

our tests, we can reject the null hypothesis with some confidence for Germany

(DE) (p-values in bold). Interestingly, the other tests all fail to reject the null

hypothesis, a finding that is somehow consistent with that of Bec, Ben Salem and

Carrasco (2004), where the authors rejected the null hypothesis for the pairwise

real exchange rates of Germany versus France, Italy, Belgium, the Netherland and

Portugal. The BBC also rejects for Italy but our tests do not, possibly because

of the oversize of the former. Moreover, as shown in Table 2, the M tests have

https://www.bis.org/
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Table 5. Parameter estimates from the TARMA(1,1) fit of Eq. (7.1) on the monthly real
exchange rates for Germany (DE), with r̂ = 4.700.

θ ϕ1,0 ϕ1,1 ϕ2,0 ϕ2,1
estimate 0.31 -1.25 0.74 -0.15 0.97

s.e. (0.06) (0.28) (0.06) (0.09) (0.02)

very little power against some TARMA alternatives, which explains their failure

to reject the null hypothesis. This result suggests that we should determine

whether a TARMA model is plausible for the series for Germany. Hence, we fit

the following TARMA(1,1) model:

Xt =

{
ϕ1,0 + ϕ1,1Xt−1 + εt − θεt−1, if Xt−1 > r

ϕ2,0 + ϕ2,1Xt−1 + εt − θεt−1, if Xt−1 ≤ r.
(7.1)

In Figure 2(left) of the Supplementary Material, we plot the values of the

LM statistic Tr computed over a threshold grid that ranges from the 15th to the

85th percentiles of the data. The estimated threshold r̂ = 4.700 that maximizes

Tr also minimizes the AIC over the same grid. In the right panel of the figure,

we plot the time series of the monthly real exchange rates for Germany, where we

indicate the selected threshold using a red line. The gray shaded area indicates the

months associated with the upper regime. The parameter estimates are presented

in Table 5, pointing to a lower regime with a possible unit-root, and an upper

regime in which the slope is strictly smaller than one. This is consistent with the

idea of a nonlinear adjustment mechanism that activates when the rate crosses

the threshold. Figure 2(right) of the Supplementary Material shows that the

intervention regime is visited mostly before 1980 and after 1995. This is in general

agreement with the results of Bec, Ben Salem and Carrasco (2004), obtained on

the real exchange rate series of the French franc against the Deutsche mark. The

MA parameter θ greatly enhances the fitting ability of the model, while retaining

parsimony. This is witnessed by the diagnostics computed on the residuals that do

not show any unaccounted dependence or deviation from normality; see Figure 3

and Figure 4 of the Supplementary Material.

8. Conclusion

In this paper, we argue that measurement errors are often neglected in the

regulation/unit-root literature, with serious consequences. Furthermore, their

ubiquity implies that to test for regulation in dynamics, it is more appropriate,

and perhaps even crucially important, to formulate the test within a TARMA

specification. We adopt the TARMA(1,1) model as the general hypothesis, and

the IMA(1,1) model as the null hypothesis. To the best of our knowlwdge, this is

the first time that a TARMA specification has been used in the present context,
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although it has been used for linearity testing under stationarity (Li and Li (2011);

Goracci et al. (2023)). We derive a Lagrange multiplier test that is asymptotically

similar, given the threshold search range. Empirical studies confirm that the

proposed approach enjoys much higher power in terms of detecting regulation in

dynamics than that of existing tests that do not address measurement errors. The

surprisingly good size property of our tests may be because of the versatility of

the IMA(1,1) model in approximating general nonseasonal difference stationary

processes. In particular, the empirical results reported in Chan et al. (2020) and

in the Supplementary Material indicate that, owing to the wild bootstrap scheme,

our new tests perform well under heteroskedasticity, in general, even when the

null hypothesis entails a nonstationary process different from the IMA(1,1) model,

and remain powerful for other forms of regulation. Finally, an application of our

proposed tests to real exchange rates shows that TARMA models could represent

a modest step toward a positive resolution of the PPP puzzle.

Supplementary Material

The online Supplementary Material contains all proofs, further results from

the real-data analysis, the tabulated quantiles of the null distribution, and

additional Monte Carlo investigations. The routines for the sLM tests are

included in the R package tseriesTARMA (Giannerini and Goracci (2023)),

publicly available at https://cran.r-project.org/package=tseriesTARMA.
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