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Abstract: Regulation is an important feature of dynamic phenomena, and is com-
monly tested within the threshold autoregressive setting, with the null hypothesis
being a global nonstationary process. Nonetheless, this setting is debatable, because
data are often corrupted by measurement errors. Thus, it is more appropriate to
consider a threshold autoregressive moving-average model as the general hypothesis.
We implement this new setting with the integrated moving-average model of order
one as the null hypothesis. We derive a Lagrange multiplier test that has an
asymptotically similar null distribution, and provide the first rigorous proof of
tightness in the context of testing for threshold nonlinearity against difference
stationarity, which is of independent interest. Simulation studies show that
the proposed approach enjoys less bias and higher power in detecting threshold
regulation than existing tests, especially when there are measurement errors. We
apply the new approach to time series of real exchange rates of a panel of European
countries.

Key words and phrases: Lagrange multiplier test, threshold autoregressive moving-
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1. Introduction

Regulation plays a fundamental role in fields such as economics, finance,
biological growth, and population fluctuations, among others. Growth processes
are generally regulation-free until they enter extreme phases. For instance, real
exchange rates should be regulated through a threshold that triggers the mean
reversion toward zero. However, existing tests fail to reject the null hypothesis of
a random walk, resulting in the so called purchasing power parity (PPP) puzzle;
see, for example, (Taylor and Taylor| (2004).

The random walk is a simple model for regulation-free dynamics. On
the other hand, regulation from above (below) can be captured using a first-
order threshold autoregressive (TAR) model that follows a random walk until
the process crosses a certain threshold, above (below) which, mean-reversion
takes place, while the process as a whole is stationary. In general, a nonlinear
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stationary process renders the impulse response to a random shock nonlinear
and state-dependent, which is consequential, and could be leveraged in economic
regulation. Hitherto, a standard approach for testing for dynamic regulation
is to adopt the preceding threshold model as the general model, and then to
test whether it reduces to a global random walk. This approach has received
much attention in the literature (Enders and Granger| (1998); |(Caner and Hansen
(2001); Bec, Ben Salem and Carrasco| (2004); Kapetanios and Shin| (2006); Seo
(2008); [Park and Shintani| (2016); |de Jong, Wang and Bae| (2007); (Giordano,
Niglio and Vitale (2017)). However, despite data almost always being corrupted
by measurement errors, to the best of our knowledge, this important issue
has not been addressed in the literature. In this case, the TAR model is not
appropriate, and the null hypothesis should be a global exponential smoothing
model instead, that is, the integrated moving-average IMA(1,1) model rather
than the IMA(1,0) model. Then, the general hypothesis may be taken as the
first-order threshold autoregressive moving-average model, TARMA(1,1), which
is driven by an IMA(1,1) model in one of its two regimes. In Section S1 of the
Supplementary Material we show that the TARMA(1, 1) model is approximately
invariant with respect to data corruption by independent measurement errors,
whereas the IMA(1, 1) model is exactly invariant with respect to the addition of
measurement errors. Above all, we cannot over-emphasize the importance of the
role of the moving average term in practical applications.

Just as ARMA models provide a parsimonious approximation to some long
AR models, TARMA models may do so for some high-order TAR models,
as noted in Goracci (2020, [2021)). Thus, although the TARMA model holds
substantial promise as a class of nonlinear time series models for exploring
nonlinear dynamics it remains underexplored, partly because of a lack of progress
in obtaining conditions on stationarity and ergodicity. Unlike in the AR-ARMA
analogy, incorporating a moving-average part in a nonlinear framework poses
major theoretical challenges, and has nontrivial implications for the probabilistic
structure of the process. |Chan and Goracci (2019) derive a set of necessary
and sufficient conditions for the (multi-regime) TARMA(1,1) model to admit an
irreducible and invertible state-space representation, and for its stationarity and
ergodicity.

By leveraging the recent results of (Chan and Goracci (2019), we develop
a supremum Lagrange multiplier test (supLM) for threshold regulation, with
the TARMA(1,1) model as the general framework. We specify an IMA(1,1)
model as the null hypothesis, and a TARMA(1, 1) with a unit-root regime as the
alternative. A difficulty arising from testing for a unit-root against a TARMA
model is that the threshold parameters are absent under the null hypothesis. This
nonstandard situation in the nonlinear time series context is well recognized, both
in the TAR setting (Chan|(1990); Hansen| (1996); Giannerini, Goracci and Rahbek
(2024)) and in the TARMA setting (Li and Li (2011)); |Goracci et al.| (2023)). The
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supLM framework overcomes this problem. We derive its asymptotic distribution
under both the null hypothesis and local alternatives. We prove that the test is
consistent and asymptotically similar in that its asymptotic null distribution does
not depend on the value of the MA parameter. Moreover, we provide the first
rigorous proof of tightness in the context of testing for threshold nonlinearity
against difference stationarity, which is of independent interest and constitutes
a general theoretical framework for ARIMA versus TARMA testing. We also
introduce a wild bootstrap version of the supLM statistic that, for finite samples,
possesses good properties and robustness against heteroskedasticity. We perform
a large-scale simulation study to compare our tests with existing tests, in which
the alternative hypothesis is that of a threshold model. In general, the size of the
latter tests is severely biased in a number of cases, to the extent that their use in
practical applications remains questionable, unless additional information on the
data generating process is available. In addition, the comparison includes some
of the best performing unit-root tests to date, where the alternative hypothesis
does not specify explicitly a nonlinear process.

The remainder of the paper is structured as follows. In Section 2, we present
some fundamentals of the first-order TARMA model and a parametrization that
reduces to the IMA(1,1) process under the null hypothesis. In Section 3, we
present the proposed supLM test, including the theoretical framework based on
Brownian local time. In Section 4, we develop the asymptotic distribution of
the supLM test statistic under the null hypothesis, and show that it is nuisance
parameter free and depends only on the search range of the threshold. The results
related to the local power of the proposed test are summarized in Section 5. In
Section 6, we perform a large-scale simulation study to show the performance of
the asymptotic supLM test and its wild bootstrap version, and compare them
with that of numerous existing tests. Section 7 contains an empirical illustration,
in which we apply the proposed tests to the pre-euro monthly real exchange rates
of a set of European countries. All proofs are collected in the Supplementary
Material, which also contains further results from the Monte Carlo study and
from the real-data application.

2. Threshold Autoregressive Moving-Average Model
Consider the following first-order TARMA model:

) hot o X ter—0s, X 4<r

o= . (2.1)
P20+ P21 X1 + e — 0,1 otherwise,

where ¢, is fixed at one, unless stated otherwise, the innovations {e,} are
independent and identically distributed (i.i.d.) random variables with mean zero
and variance o2, ¢; is independent of X, ;, for j > 1, the delay d is a positive
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integer, taken as one, for simplicity, r is the real-valued threshold parameter, and
the ¢ and 6 are unknown coefficients. Later, we relax the assumption of i.i.d.
innovations to a martingale difference sequence. The preceding (constrained)
TARMA model assumes that the sub-model in the upper regime is a first-order
IMA model, and the lower regime specifies a general first-order ARMA model.
Statistical inference with a TARMA model hinges on whether the model is
invertible. We assume |f| < 1, because this is a necessary and sufficient condition
for the invertibility of Model (Chan and Tong| (2010))). By assuming that the
innovations admit a positive, continuous probability density function with finite
absolute first moment, (Chan and Goracci (2019) show that Model is an
ergodic Markov chain if and only if ¢ o < 0 and either (i) ¢1 1 < 1 or (ii) ¢p11 =1
and ¢; o > 0. Ergodicity then implies that the first-order TARMA model admits
a unique stationary distribution. Furthermore, under the stronger condition that
the innovations admit a finite absolute kth moment for some k£ > 2, |Chan and
Goracci (2019) provide a complete classification of the parametric regions of
Model into sub-regions of ergodicity, null recurrence, and transience. In
particular, the (constrained) first-order TARMA model defined by Model
is null recurrent if one of the following hold: (7ii) ¢11 = 1,¢20 = 0,010 > 0;
(iv) 11 = 1l,dao < 0,10 = 0; and (v) $11 < 1,¢90 = 0. If none of
conditions (7)—(v) hold, then the model is transient. Therefore, Model
encompasses both linear and nonlinear processes spanning a wide spectrum of
long-run behaviors, including ergodicity, null recurrence, and transience.

3. Lagrange Multiplier Test for Threshold Regulation

We first formulate a framework for testing for threshold regulation from
below. Let {X;,t = 0,1,...} be a time series, and assume that, for ¢ > 1,
X, satisfies the equation

H: Xi=¢o+Xi1+e—bOsi1+ (dr0+ 11 Xem1) x I(Xeqy <7),  (3.1)

which is a re-parameterization of Model with @9 = ¢2,0, and, with an abuse
of notation, ¢, ¢ and ¢, ; represent the difference between the intercept and the
slope of the lower regime relative to their upper-regime counterparts; the initial
value X, can be fixed at, say, zero. Here we wish to test whether ¢, o = ¢, =0,
in which case, the data are generated by the IMA(1,1) model

HO : Xt = ¢0 + Xt—l + & — 95t—17 (32)

where |0| < 1. If the intercept ¢ # 0, then the IMA(1,1) process has a linear
trend. If no such linear trend is apparent in the data, it is reasonable to omit
the intercept. Henceforth, we assume that ¢y = 0 under Hy. The case for ¢y # 0
requires a nontrivial modification of the test and its asymptotic distribution and
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is left for further research. However, the intercept terms on the two regimes of
any competing stationary first-order TARMA model are required to model the
mean of the data. Indeed, even for mean-deleted data, the intercept terms of the
first-order TARMA model are not necessarily zero. Thus, the intercept terms are
essential, and so are retained in the constrained TARMA model under H,. We
can test for threshold regulation from above by applying the test to {—X,}.

Under the null hypothesis, the threshold parameter is absent, thereby
complicating the test (Chan (1990); Hansen| (1996); Li and Li (2011)); |Goracci
et al. (2023)). Our approach is to develop a Lagrange multiplier test statistic
for Hy, with the threshold parameter fixed initially at some r. Denote the test
statistic as 7T,,(r). Because r is unknown and absent under Hy, we compute 75, (7)
for all r over some data-driven interval, say, [a, b], with the end points being some
percentiles of the observed data. For instance, a could be the 20th percentile and b
the 80th percentile. Then, the overall test statistic results in T;, = sup,.c(, 4 Tn(7)-
In addition to taking the supremum, other approaches, including integration, can
be used to derive an overall test statistic.

The Lagrange multiplier test is based on the following Gaussian likelihood
conditional on Xj:

n

0= —log(2mo?) x = — > i (3.3)
2 =20 '
where, with an abuse of notation, Vt > 1,
g0 =Xy — {0+ X1+ (10 + d11Xe1) X [( Xy <7)} + 0844, (3.4)

with the unknown ¢, set to zero. Note that e; in the preceding formula is a
function of ¢, ¢1,0, 11,0, and r, but the arguments are usually suppressed for
simplicity. Let ¥ = (¢o,0,0%, ¢1.0,¢1.1)T, with its components denoted by v;,
for j = 1,2,...,5, and let it be partitioned into ¥; = (¢, 0,0%)T and ¥, =
(¢1.0,%1.1)7. The null hypothesis can be succinctly expressed as Hy : 15 = 0.

First, consider the case of a known threshold r. Partition the Fisher
information matrix according to v;, for ¢ = 1,2 into

L(r) = <Ilj17"(7") 1172’"(7")) . (3.5)

The Lagrange multiplier test statistic is an asymptotic approximation of twice

the Gaussian likelihood ratio statistic, based on a second-order Taylor expansion.

For fixed 7, it is equal to

ol -1 90
o] O,

where 07 /01, (r) is equal to 9/8p,, evaluated at the constrained estimate b, =

To(r)

() { Boon(r) = Boan (I, (Vo)) 22 (), (3.6)
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1,@1 given ¥, = 0 and the threshold parameter fixed at r. Similarly defined
are fi’j,n(r), for 1 < 4,7, < 2; see Subsection 3.1 for the formulas. Because the
threshold 7 is unknown, the overall supLM statistic is T,, = sup,.c, ;) Tn(7), with
a and b, for instance, being some prespecified percentiles of the observed data;
see Subsection 3.2 for further discussion

3.1. Gaussian likelihood estimation
In this sub-section, we describe estimation of the model parameters under

the null hypothesis, and computation of the score vector and Fisher information
matrix. The score vector is

n n 2_ 2
%:_Zi% 1<j<5j+#3 ﬁzﬁzzgt g
=1

6’(/Jj —1 0'2 a’(/Jj’ - - ’ 61/13 80'2 20'4
where for ¢t > 1,
Oy (%t 1
14 == ¢, 3.7
56~ 1+ %4, Z (8.1
Oe 8&?
aiet:& 1+ - 29 €t—1—j, (3-8)
Oey 0€_1 L
(X, 1 <r)+0 - I (X1 <), 3.9
8¢1,0 ( = ) 8¢1,0 ; ( = ) ( )
Oe e !
t t—1
=-X, 1 I(X;,1 < 6 07X I(X, < 1
9o (X <)+ 8¢1,1 ; to1-; ] (Xeo1-; <7), (3.10)

with initial values given by 0e1/0¢g = —1,0¢1/00 = 0,0¢1/0¢10 = —1(Xo < 7),
and O0e1/0¢11 = —Xol(Xo < 7). Below, we sometimes write, as a typical
example, dg;/0¢,1 = —(1 — OB) ' {X;, 1I(X;_; <r)}, where B is the backshift
operator that shifts the indices backward by one time unit. The IMA(1,1)
model under the null hypothesis can be estimated by solving the score equation
ol/ovy, = 0, yleldlng z,bl 1&1 n = (gbOm 0,, 62)T. Thus, the overall estimator of
1 under H, is ¥ = (qﬁo 0,0 62,0,0)T, with the residuals given by

=X, — X, 1 — o+ 0,1, Vt>1, (3.11)
where §g = 0. The observed Fisher information (excluding the threshold
parameter) is given by I, = —8%*(/(0v%0vT), the (i,7)-th element of which

1,7 # 3, is given by
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" 1 8€t 8€t " E¢ 82€t - 1 agt agt
PR A = (140, (1) x> Hatat, 3.12
—1 0'2 (97,/11 8¢J —1 0'2 871)1an ( p( )) —1 O'2 8'¢1 8¢J ( )

its (3,4)th element with i # 3 is equal to > (g¢/0*)(0e:/Y;) = o0,(n), and
the (3,3)th element is equal to >, ((1/(20*)) — (¢7/5")), where the 0,(1) and
op(n) terms hold uniformly in r, when the expressions are evaluated at the

true parameter value under the null hypothesis. Hence they are asymptotically
negligible (from arguments similar to those in the proof of Theorem 1), and
thus are omitted henceforth. We sometimes write, for example, 9¢/0y;(1;r),
to highlight the role of the arguments, and further simplify the notation, for
example, from 00/0y;(vpy;r) to 0€/0v;(r), with 1, denoting the true value
under Hy. Moreover, I 1, (%o;7) and 0€/0v,(1;r) are further simplified as
I 1, and 9€/0, respectively, because they do not depend on r. With an abuse
of notation, the true values of the moving-average coefficient and the innovation
variance under H, are denoted simply by # and o2, respectively. There should
be no confusion because the context will make clear whether they represent the
generic parameters or their true values.

3.2. The choice of the threshold range

For theoretical analysis, the threshold range is specified as R,, = (n'/?(1 —
0)o x r,n'/?(1—0)o x 1), where r, < ry are two fixed finite numbers. We now
justify this choice of the threshold range. First, some heuristics are employed.
Under the null hypothesis (with ¢y = 0),

t—1

thst—l—(l—H)Zes—Hso—l—Xo.

s=1

Hence, {n™"/% X[;,,0 < s < 1}, where X5, = ZLS:”E X, and [sn] is the largest
integer less than or equal to sn, converges in distribution to {(1 —6)cW,}, where
{Ws} is the standard Brownian motion. It is well known (Bjork (2019, Thm. 3.1
and 3.2)) that the Brownian local time {L7,t > 0, —co < z < oo}, defined as:

t
L =W, — x| —|z| - / sign(W, — x)ds,
0

where sign(x) denotes the sign of z, is essentially the probability density function
of the Brownian realization, in the sense that, for any bounded real-valued Borel
function f,

/Olf(Ws)ds _ /Z F(z) L7 da. (3.13)

Thus, any quantile of {X,,t = 0,...,n} is asymptotically equal to n'/?(1 — 0)o
times the corresponding quantile of {W,,0 < s < 1}. Because the Brownian local
time process is a random process, the quantiles are realization specific. This
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motivates us to set the threshold to be of the form 7, = (1 — §)ron!/?

fixed 7, in which case,

o ¥
7]/2 71/2 -1 <

The right side of (3.14) is a Riemann-Stieltjes sum over [0,1], with a step
—1/2

, for some

integrator jumping at ¢/n with jump size (no?)~'/?¢,, and the integrand is a
piecewise constant function equal to 23;3 611 ({n'?*(1 - 0)o} ' X,_1_; < T) over
the interval [n='(t — 1),n ], for t = 1,2,...,n. The integrator converges
weakly to the standard Brownian motion, whereas the integrand converges to
(1—-6)"*'I(W, <) ast,n— oo, such that ¢/n — s in [0, 1]. Thus, heuristically,
n~Y200/0¢, o(r,) converges in distribution to (1 — 6)~lo~! fol I(W, < 7)dWj

under Hy and as n — oo,

ol 1 1
—2 9y Y w < paw, 1
n )~ g /0 (W, < r)dW. (3.15)

This asymptotic result and other heuristic results stated below can be justified
using Theorem 7.10 in Kurtz and Protter| (1996). Similarly,

or 1 X X
-1 -1/ -1 t—1 <
" 8(f>11 ; cl—-6B [n1/20 {n1/2(1—9)0 _T}]
1
- / WLI(W, < 7)dW, (3.16)
0

ot " 1 1 ' W
-1/2 Y% -1/2 <t 1) v ——M—M— d = 71 Nl

Note the different rates of normalization. Let K, be a 5 x 5 diagonal matrix with
the last diagonal elements being n, and the other diagonal elements all being
n'/2. We can also show that K1, (r,) K ! converges in probability to a matrix
denoted by Z(7), which can be blocked as I,; see Eq. (3.5). In particular, Z; ;
is a diagonal matrix comprising (1 — 0) 2072, (1 — 6*)7!, (40*)~! as its diagonal
elements,

Toa(7) = <{( Pt o I, < 7)ds {(L=0)0) 2 fy WI(W ST)d8>.
7 {1 = 0)a} " fy W I(W, < T)ds JIW2RI(W, < 7)ds ;

zm(T):({( Py o IOV, < r)ds 00).
’ {(1 =)o}t [} W I(W, < T)ds 0 0

Note that Z; ; does not depend on 7. Thus, 6 and o* are locally orthogonal to
the other parameters around the true parametric value under H,. Hence, their
estimates are expected to be asymptotically independent of the proposed test
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statistic, as shown below.

Remark 1. In practice, the choice of r;, and ry must ensure adequate data for
the asymptotic distribution of 7" to be valid, which requires adequate data in
the left and right tails beyond the threshold range. Our simulation results in
Section 6 suggest a rough guideline that for normal innovations, there should be
at least 25 data points below r (above ry).

3.3. A wild bootstrap approach

In this section, we introduce a wild bootstrap version of our supLM statistic
that delivers valid inferences under heteroskedastic disturbances (Liu| (1988));
Mammen (1993); Davidson and Flachaire| (2008))). As shown in (Cavaliere and
Taylor| (2008]) in the context of unit-root testing, the wild bootstrap is capable of
correctly reproducing the first-order limiting null distribution of the statistics in
the case of nonstationary volatility. The algorithm has the following structure:

1. Compute X; = X, — BTdt, where d; is a vector of deterministic components,
and 3 is obtained using either OLS or GLS detrending;

2. Obtain 6, the maximum likelihood estimate for 6, and the residuals é, from
the following IMA(1,1) model: X; =&, — 0g;_1;

3. Compute wild bootstrap errors é; = é;7,, where 7, is a random variable such
that F(n;) = 0 and E(n?) = 1. Henceforth, we use the Rademacher scheme:
7; is equal to +1 with equal probability.

4. Obtain the bootstrap resample Xf = Z;Zl(éj — 9é;_1), and compute the
supLM statistic 7, upon it.

5. Repeat steps 3-4 B times to obtain the bootstrap test statistic, 7%, for
b =1,...B, and compute the bootstrap p-value as the relative frequency
that T** is not less than the observed T,,.
4. The Null Distribution

We now derive the asymptotic distribution of T;,(r) under the null hypothesis
of an IMA(1,1) model with a zero intercept. Using the second-order Taylor
expansion and after some routine algebra, it holds that

ol ol I
T%(Tn) ~ aTbZ(Tn) - 12’1’”(7“")[1’1’”8701'

More rigorously, letting

100
~1/2
Qn:<” 0), p,=nl010],

-1
0 n 001

(4.1)
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we prove below that uniformly for r, = n'/?(1 — 0)or € R, = (n*/?(1 — §)ox
rr,n'/?(1 — 0)o x ry), where rp < ry are fixed numbers,

ol I
Q”@d) ( ) Q7La¢2( ) [2,1(7-)‘[1’11Pn87'¢1+0p(1)
= or
= Qn%(rwl) - [2,1( )Il 11P a¢0 + Op(l) (4.2)

where, owing to the form of I, (1), 1:171 =(1-6)"%0"2 and

- ({020} [{ I(W, < 7)ds
=)oyt W (W, < 7)ds)

The intercept (;ASO,n admits the following asymptotic representation under H,
(Brockwell and Davis (2001} c.f. Eqn. (8.11.5))):

—1/5 or
P (pon — ¢o) = (111) Pn%+0p(1).

Then, a key step in deriving the limiting null distribution of the proposed test is
to demonstrate that uniformly for r,, = n*/?(1 — 0)or € R,,,

Qg (1) = Quig () = Ba(P G = 00) + 0,1, (43)
Let
1 1 1 T
H(r) = ( /O aw., /O (W, < 7)dW,, /0 WLI(W, < T)dws> (4.4)
and
1 Jy (W, < 7)ds [y W I(W, < 7)ds
Ar)y=| [JIW,<7)ds [ I(W,<7)ds [, WJI(W,<7)ds|. (4.5)

[y W I(Wy < 7)ds [, WI(W, <7)ds [, WI(W, < T)ds

S

Let A(7) be partitioned into a 2 x 2 block matrix with the (2,2)th block being
2 X 2 Then H(r ) (Hl( ), Ho(7))T is partitioned similarly. It follows from

Eq. and Egs. - that the asymptotic null distribution of T,,(r,)
is the same as that of

(AT (7)}22) 2 (Ha(7) = Do (1) Hy(7))

2

)

where || - ||* is the squared Euclidean norm of the enclosed vector. It is readily

shown that {A7'(7)}a2 = {A22(7) — Ag1(7)A12(7)} . The asymptotic null
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distribution of 7,, is derived in Theorem 1, under the following assumption:
(A1): Let r, < ry be two fixed real numbers. Let

_ & €t X1
1/22 Z@JI{TL< 1/2(1—39) ST}a

for r, < 7 < ry. Suppose (i) there exists a constant C' > 0 such that, for any
fixedry <7 <7 <ry,

_ < 3/2 4 |72 — Tl’) _
E{Tum) = '} <€(jre - mfo 4 2200, (46)
and (¢7) uniformly for a < 7 < 7 <D,

|Tn(72) — T,,(11)| < K x L(n)(nlog logn)1/2|7'2 — 71| + 0,(1) (4.7)

as n — oo, where the 0,(1) term holds uniformly, K is a constant that may
depend on 6, and L(-) is some slowly varying function; that is, for any A >
0,L(A\x)/L(z) - 1 as x — oo.

Theorem 1. Suppose Hy holds so that {X;,t =0,1,...,} is an IMA(1,1) process
satisfying Eq. , with the intercept ¢o = 0, |0] < 1, and the innovations are
i.4.d. with zero mean and finite positive variance. Suppose there exist two real
numbers v, < ry such that (A1) holds. Then, as n — oo, T, = sup{T,(r),r €
[nY2(1 — 0)ory,n*/?(1 — 0)ory]} converges in distribution to

2

HAT () Yo] VP {Hao(7) — Mon (M) HL (D)}, (4.8)

F(W;rp,ry) = sup

TE[rL,rU]

which has a parameter-free distribution, although it depends on the search range

of the threshold.

Note that the assumption of i.i.d. innovations in the preceding theorem can
be relaxed to {&;} being a stationary, ergodic, martingale difference sequence with
respect to the o-algebra F; generated by e;_,, for s < 0; the proof is essentially
the same.

Remark 2. Conditions — provide a new set of general sufficient
conditions for the tightness of a sequence of stochastic processes, specifically,
the tightness of {T},(n*/?(1 — 0)7),r, < 7 < ry}. These sufficient conditions
are motivated by the approach taken by [Billingsley| (1968), Theorem 22.1, for
studying the tightness of empirical processes for stationary mixing data, and are
ideal for coping with nonstationarity under the null. To the best of our knowledge,
this is the first rigorous proof of tightness for testing threshold nonlinearity
against difference stationarity, and constitutes a general theoretical framework
that can be used in different settings.
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The preceding theorem assumes a deterministic threshold search interval. It can
be extended readily to the case that the end points are fixed quantiles of the data,
which are realization specific. We omit the proof, because it is based on routine
analysis that builds on Theorem 1 and that, for any fixed 0 < p < 1, (i) the
p-quantile of {W,0 < s < 1} is O,(1), following Bjork| (2019), Proposition 3.2,
and the Markov inequality, and (i7) under H,, the p-quantile of {X;,t =0,...,n}
is asymptotically equal to its counterpart of {W,,0 < s < 1} times n'/2(1 — 6)o;
see the discussion below .

The following result shows that Theorem 1 holds for normally distributed
innovations.

Theorem 2. Conditions (4.6) and (4.7) hold if (i) |#| < 1 and (it) {e:}
are independent and identically normally distributed with zero mean and finite
positive variance.

Because the null distribution of T,, is asymptotically similar, its quantiles
can be derived numerically. The tabulated quantiles of the null distribution
for different threshold ranges can be found in Section S4 of the Supplementary
Material.

5. Local Power

In this section, we derive the asymptotic distribution of the supLM statistic
under a sequence of local threshold alternatives, and prove its consistency in
having power approaching one with increasing departure in some direction from
the null hypothesis. The mathematical framework is as follows. For each positive
integer n, the system of hypotheses is

HO,'n.: (Xo, e 7X'n,) follow the IMA(I,I) model Xt = Xt—l + & — 051&—1-

Hi,: (Xo,...,X,) follow the TARMA(1,1) model

n_1/2h1 o+ (]. + n_lhl 1) thl + & — 95t,1 if L < To
’ ’ on'/2(1—-6) —

Xt — ) ) Xt—l (51)
nil/ hgﬁo + (1 + n71h271) Xt—l + & — Hgt—l if m > 7o,

where h = (hy9,h20,h11,h21)T7 is a fixed vector, with h, ; <0, for i = 1,2, and
7o is a fixed threshold. Note that if hy; < 0 (ha; < 0), then the model is locally
stable in the lower (upper) regime, for a sufficiently large n. In order to derive
the local power, we henceforth impose the following mild regularity conditions:

C1: The innovations are assumed to be i.i.d., with a zero mean, finite positive
standard deviation, o, and probability density function f(-/o)/o, where (4)
f is a bounded function, and log(f(x)) is twice differentiable with Lipschitz-
continuous first and second derivatives over the support of the probability
density function, (i7) the moment-generating function of the innovations
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exists and is finite over some open interval around zero, and (iii) Z; =
— [(ff = F?*/f*)(z) x f(z)dz is a finite positive number, where the first

(second) derivative of f is denoted by f (f).
C2: —7'['/2 < h171, h271 < 0, and h171 + h271 < 0.

Note that Z; is the Fisher information for the location model f(- — u), where
i is the location parameter. Let P, and P;, be the probability measures
induced by (Xo,...,X,) under Hy, and H,,, respectively. Condition (C1)
holds for many commonly used innovation distributions, including the normal
distribution and the Student’s t-distribution. Condition (C2) ensures that the
local alternative first-order TARMA model is asymptotically locally stable in at
least one regime. These two conditions are imposed to ensure that {P;,} is
contiguous to {P,,,}. Finally, let p be the correlation between e, and (f/f)(e,),
that is, p = [ @ f(z)dz/\/Zs, where Z; is the Fisher information of the innovation
distribution with unit o, as defined in condition (C1).

Theorem 3. Suppose all the conditions stated in Theorem 1 hold. Assume (C1)
and (C2) hold. Under H,,, and as n — oo, T,, = sup{T,(r), for r € [n*/?(1 —
O)ory,n*'?(1 — 0)ory]}, where rr, and ry are two fized numbers, converges in

distribution to F(W;rp,ry) defined in Eq. (4.8]) but with W now being a threshold
diffusion process satisfying the following stochastic differential equation (SDE):

PVIs|hio/{o(1 —=0)} + hi Wilds, of W, <o,

W, = W+ Vg [hio/{o(1 =)} + by W] 0 (5.2)
oIy [hao/{o(1 —0)} + ho 1 W] ds, otherwise,

where Wy = 0 almost surely, and {dW],s > 0} is a standard Brownian motion.

S

Henceforth, in this section, W denotes the threshold diffusion satisfying Eq. .
Note that if h; o = h;1 = 0, for i = 1, 2, then we get the limiting null distribution
for T,,. Otherwise, W is a threshold diffusion process (Su and Chan, (2015))). Thus,
the building block W that determines the limiting distribution of the supLM
statistic changes from a standard Brownian motion under H,, to a threshold
diffusion under H; ,, if p # 0. Consequently, the proposed test has the power
to detect local threshold alternatives. Because the functional F'(-;r,ry) is quite
complex, in Section S2.4 of the Supplementary Material, we provide an example
that demonstrates the consistency of the proposed test.

6. Finite-Sample Performance

To better approximate the finite-sample distribution of T,,, we simulated the
null distributions for the sample sizes in use. Moreover, because the finite-sample
distribution of 7,, changes appreciably only when || is close to one, we adopted
the following conservative approach: if \é\ > 0.3, we use the quantiles of the
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Table 1. Rejection percentages from the TARMA model of Eq.(6.1)), with nominal size
at a = 5%. Sizes over 15% are highlighted in bold.

asymptotic bootstrap

0 sLM M& M® MPt ADF ADF® KS BBC EG sLMb KSb
n = 100
-09 22 77 70 7.1 2.5 3.8 8.1 11.2 7.1 5.1 4.9
-05 16 63 6.1 5.8 4.8 5.1 7.0 6.1 5.7 5.0 5.6
0.0 16 51 5.1 4.6 5.3 5.6 8.1 2.7 5.0 4.5 5.3
05 1.7 56 59 5.1 6.7 74 64.5 102 57.5 5.2 58.6
09 113 6.5 17.7 64 779 17.8 100.0 92.4 100.0 5.7  99.8
n = 300
-0.9 55 6.7 6.3 6.1 3.3 4.2 6.3 14.0 6.5 5.3 3.8
0.5 47 52 5.1 4.8 4.5 4.5 5.1 8.5 5.4 5.0 4.5
0.0 29 49 49 4.4 5.1 4.6 6.9 3.2 4.4 5.6 4.3
05 23 55 54 5.1 5.4 5.8 74.5 19.0 61.1 49 67.7
09 49 19 24 1.9 86.0 15.8 100.0 99.7 100.0 4.9 100.0
n = 500
-0.9 81 64 6.1 6.0 74 4.7 5.7 16.0 6.1 5.9 4.0
-0.5 53 55 53 5.0 5.1 4.8 5.2 9.2 5.4 4.7 4.2
0.0 35 49 48 4.5 4.9 4.6 7.3 3.5 5.0 3.8 4.5
0.5 25 52 5.1 4.8 5.1 5.3 78.4 23.7 62.3 45 T1.7
09 33 13 14 1.4 83.2 14.5 100.0 99.9 100.0 5.4 100.0

simulated null with 6 = sign(f) - 0.9. Furthermore, we add a wild bootstrap
scheme (see Section 3.3) to improve the empirical size of the test. We denote our
asymptotic test and its wild bootstrap version as sLM and sLMb, respectively.

We compare the empirical performance of the proposed test with that of
several competing tests, namely, those designed for threshold alternatives, and
those without a specific nonlinear alternative. The former tests include those
proposed by Kapetanios and Shin| (2006) (KS), Enders and Granger| (1998)) (EG),
and Bec, Ben Salem and Carrasco (2004) (BBC), with their bootstrap variants
(if implemented) denoted as KSb, and so on. The latter set includes the ADF
test of Dickey and Fuller| (1979), the class of M tests of Ng and Perron| (2001))
(M#), the MP; "~ test of Ng and Perron| (2001) (MP+) and the GLS detrended
version of the ADF test (ADF®), and the test MS™5 of Perron and Qu| (2007)
(M#). Note that we report only the results for the best performing tests.

The sample sizes considered are 100, 300, and 500. The rejection percentages
are derived with a nominal size a = 5%, and are based upon 10,000 replications.
In order to reduce the computational burden, for the bootstrap tests, we use
1,000 replications and B = 1000 bootstrap resamples. The threshold search
ranges from 25% to 75% of the sample distribution. We simulate data from the
following first-order TARMA model:
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Table 2. Size-corrected power of the asymptotic and bootstrap tests at nominal size
a = 5%.

n = 300 asymptotic bootstrap

T; 0 sLM M# M# MPr ADF ADF® KS BBC EG sLMb KSb
0.0;-0.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0.5;-0.9 257 176 178 182 10.2 194 51 165 1.6 23.7 83
1.0;-0.9 525 26.7 269 27.7 158 304 174 319 3.8 54.3 27.0
1.5:-09 771 335 340 351 221 382 369 50.1 82 75.6  45.5
0.0;-0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1
0.5;-0.5 21.7 228 228 227 11.6 224 112 156 3.3 23.5 9.1
1.0;-0.5 483 345 349 349 182 35.0 323 31.1 8.2 478 29.1
1.5;-0.5 72.6 45.0 45.8 46.1 259 45.7 555 50.1 17.1 74.9 53.6
0.0;0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1
0.5;0.0 224 258 261 269 11.0 26.6 379 152 226 22.5 40.7
1.0,0.0 50.5 41.3 42.0 41.7 18.0 42.0 66.7 33.6 43.5 46.9 69.7
1.5:0.0 75.3 54.7 55.7 557 27.7 55.7 84.8 55.8 65.8 73.8 84.7
0.0;0.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 0.0
0.5,0.56 206 250 251 245 129 25.6 429 188 35.3 21.8 0.0
1.0;0.5  50.1 39.5 40.1 39.2 26.2 409 709 45.1 65.8 49.2 0.0
1.5;0.5 769 49.8 519 499 43.1 53.1 889 725 88.0 7.3 0.0
0.0;0.9 50 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.9 0.0
0509 248 162 199 160 149 182 6.4 346 29.6 14.3 0.0
1.0,09 628 229 345 225 328 26.5 124 63.6 524 36.1 0.0
1.5;0.9 86.3 253 449 25.0 4738 29.5 235 772 6538 61.7 0.0

X, = {¢1,0 + P11 X1+ — 0Oy, it Xy <0, (6.1)

$2,0 + 21 X1+, —be,_1, otherwise,

where (¢1,0, 91,1, P20, P2.1) = 7 x (0,0.7,—0.02,0.99) + (1 — 7) x (0,1,0,1), with
T increasing from zero to 1.5 with increments of 0.5. When 7 = 0, the model
is an IMA(1,1) model with a zero intercept. When 7 > 0, the model becomes
a stationary first-order TARMA model that becomes increasingly distant from
the IMA(1,1) model with increasing 7. For the MA parameter, we set § =
—0.9,—-0.5,0,0.5,0.9. The empirical sizes of the tests are displayed in Table 1.
Note that we have partitioned the set of 11 tests according to their nature: the
first nine are asymptotic, and the last two are bootstrap tests. Clearly, the ADF,
KS, BBC and EG tests are severely oversized as 6 approaches unity. Moreover,
the wild bootstrap sLMb test is the only test to show a correct size in all settings,
whereas both the sSLM and the M class of tests show some bias, albeit small. Note
that, when # = 0, the TARMA model reduces to a TAR model. In this case, the
auxiliary models of the KS, BBC, EG tests are specified correctly and their sizes
are correct; however, when 6 becomes positive, their sizes are severely biased,
raising concerns about their practical utility.
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The size-corrected power of the tests is presented in Table 2. Here, the
sample size is 300; see Section S5 of the Supplementary Material for the results for
n = 100, 500. The rows for 7 = 0 correspond to the size, and the other rows give
the size-corrected power. The size correction for the bootstrap tests is achieved
by calibrating the p-values. In some cases, the corrected size deviates from the
nominal 5% because of discretization effects on the empirical distribution of the
bootstrap p-values. Clearly, the supLM tests are almost always more powerful
than the other tests, especially as 7 increases. For instance, when 7 = 1.5, the
sLM test has almost double the power of the M tests in several instances. As
mentioned before, the case # = 0 (central panel) corresponds to a TAR model,
and this is one of two instances in which the KS tests are slightly more powerful
than the supLM tests. The power of the bootstrap version of the KS test is zero
in three cases, owing to its 100% oversize. See the Supplementary Material for
further simulation results.

6.1. Measurement error and heteroskedasticity

In this section, we assess the effect of measurement errors and heteroskedas-
ticity on the behavior of the tests. We simulate from the following IMA(1,1)
model:

X, =X, 1+ 0 + &4, (6.2)

where § = —0.9 (model M1), -0.5 (model M2), 0.5 (model M3) and 0.9 (model
M4). We add measurement noise as follows:

Y; — Xt + 77t> (63)

where the measurement error 7, ~ N (0,0727) is such that the signal-to-noise
ratio SNR = 0% /07 is equal to {+00,50,10,5}. Here, 0% is the variance of X,
computed by means of simulation. Because the variance in the non-stationary
case depends on the sample size n, we compute it on simulated trajectories for
varying values of n to replicate it for the sample size in use. The case without
noise (SNR = +o00) is taken as the benchmark. The empirical sizes (rejection
percentages) for models M1-M4 are presented in Table 3, for n = 300 and the
results for n = 100 and 500 can be found in Section S6 of the Supplementary
Material. Clearly, the measurement noise has little effect on the size of the
supLM tests. In contrast, the size bias of the KS, BBC, and EG tests increases
appreciably when 6 is positive (Models M3-M4). Worst still, the bias does not
reduce when the sample size increases.

The results shown in Section S6 of the Supplementary Material show that
the supLM tests are well behaved in the presence of heteroskedasticity and
measurement errors, particularly the sLMb wild bootstrap test. The KS, BBC,
and EG tests are severely affected by the combined presence of heteroskedasticity
and measurement errors and their size bias gets worse as the sample size increases.
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Table 3. Empirical size (rejection percentage) at nominal o = 5% and n = 300 for the
IMA(1,1) models M1-M4, with increasing levels of measurement error.

asymptotic bootstrap

SNk sLM Mg M8 MPp ADF ADF® KS BBC EG sLMb KSb
00 44 71 6.7 6.8 3.4 4.8 6.2 125 6.7 5.0 5.3

M1 50 36 64 64 5.4 4.8 4.9 5.8 104 6.5 3.8 4.7
10 2.8 5.0 5.0 4.2 6.1 4.7 4.9 5.7 5.1 5.0 4.0

5 5.5 5.3 5.0 4.8 5.2 4.8 4.9 3.1 3.1 5.3 3.8

00 4.0 6.4 6.2 5.6 5.6 5.4 4.2 5.5 5.6 5.2 3.4
M2 50 4.7 6.3 5.9 5.9 5.8 5.4 4.0 4.8 5.4 6.1 3.2
10 59 6.3 6.1 5.1 6.6 5.3 3.6 4.1 4.6 6.4 2.3

5 54 55 5.3 5.1 6.3 5.2 5.4 2.5 5.6 5.4 3.8

00 2.8 5.8 5.8 4.4 5.6 6.3 67.8 14.1 59.9 5.2 62.0
M3 50 34 56 5.7 4.2 5.7 5.9 68.2 15.7 60.9 5.0 62.7
10 24 6.2 6.0 5.0 5.8 7.0 74.2  19.7 67.4 4.8 66.7

5 25 56 5.5 4.2 5.2 6.7 84.3 284 77.6 5.3 76.7

00 6.1 1.2 2.1 0.9 86.6 154 100.0 98.5 100.0 4.3 99.5
M4 50 58 1.2 1.8 1.1 87.8 15.6 100.0 98.8 100.0 3.6 99.6
10 4.2 25 2.7 1.4 89.8 17.1  100.0 99.3 100.0 2.2 99.9

5 6.7 3.5 45 29 949 19.5 100.0 99.8 100.0 3.6 100.0

In addition, the sLM and sLMb tests, are affected nontrivially. For instance,
in Tables 6-8 of the Supplementary Material for Model M7 (integrated AR-
GARCH), the two tests present a size that varies with both the sample size
and the SNR. However, overall, the tests are well behaved. The class of M tests
is also robust in this respect, but display low power in a number of instances,
especially when the DGP is nonlinear, see also |Chan et al.| (2020).

7. A Real Application: Testing the PPP Hypothesis

In this section, we apply our supLM tests to the post-Bretton Woods
and pre-euro real exchange rates of a panel of European countries. Based on
macroeconomic theory, there is some consensus on the fact that price gaps
(measured in a common currency) for the same goods in different countries should
rapidly disappear. However, empirical evidence points to a strong persistence,
and, in general, unit-root tests fail to reject the null hypothesis of a random walk.
As noted in Taylor| (2001)), this can be ascribed to the incorrect linear specification
for the price dynamics. The presence of trading costs implies that the mechanisms
governing price adjustments are nonlinear. Threshold models provide a solution
to the problem by allowing a “band of inaction” random walk regime, where
arbitrage does not occur, and other regimes in which mean reversion takes place
so that the model is globally stationary; see Bec, Ben Salem and Carrasco| (2004)
and references therein for further discussion. For a review on how TAR models
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Table 4. Results for the set of unit-root tests applied to the eight monthly series of real
exchange rates. The first two rows report the p-values for the supLM tests; the remaining
rows show a checkmark v'if the test are significant at 1%.

PT DE FR BE AT GB NL IT
sLM 0.167 0.002 0.126 0.900 0.329 0.318 0.900 0.874
sLMb 0.384 0.009 0.292 0.833 0417 0.259 0.802 0.836
Ve
WE
MP~
ADF
ADF®
BBC . . . . . . . v
EG

are used to analyze exchange rates dynamics, see also Hansen| (2011). Caner
and Kilian| (2001) provide a critical investigation on the practical usefulness of
combining unit-root tests and other stationarity tests in the PPP debate.

We consider the monthly log,, real exchange rates for the following countries:
Portugal (PT), Germany (DE), France (FR), Belgium (BE), Austria (AT), Great
Britain (GB), the Netherlands (NL) and Italy (IT). The series range from
1973:09 to 1998:12 (n = 304), and are produced by the Bank of International
Settlements (BIS) by taking the geometric weighted average of a basket of
bilateral exchange rates (27 economies), adjusted using the corresponding relative
consumer prices. These weights are constructed using manufacturing trade
flows, so as to encompass both third-market competition and direct bilateral
trade by means of a double-weighting scheme. See [Klau and Fung| (2006]) and
https://www.bis.org/|for more details on the construction of the indices.

Table 4 reports the results of applying the battery of unit-root tests described
in the previous section on the eight monthly series of real exchange rates. The first
two rows show the p-values from our supLM tests, where the threshold search
ranges from the 15th to the 85th quantile of the data. Furthermore, for the
sLMb test, we chose 9,999 bootstrap resamples and the Rademacher auxiliary
distribution. To enhance readability, the remaining rows show a checkmark if
the corresponding test rejects the null hypothesis at the 1% level. Based on
our tests, we can reject the null hypothesis with some confidence for Germany
(DE) (p-values in bold). Interestingly, the other tests all fail to reject the null
hypothesis, a finding that is somehow consistent with that of|Bec, Ben Salem and
Carrascol| (2004)), where the authors rejected the null hypothesis for the pairwise
real exchange rates of Germany versus France, Italy, Belgium, the Netherland and
Portugal. The BBC also rejects for Italy but our tests do not, possibly because
of the oversize of the former. Moreover, as shown in Table 2, the M tests have
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Table 5. Parameter estimates from the TARMA(1,1) fit of Eq. (7.1 on the monthly real
exchange rates for Germany (DE), with # = 4.700.

0 ?1,0 b1,1 ®2,0 $2,1
estimate 0.31 -1.25 0.74 -0.15 0.97
se. (0.06) (0.28) (0.06) (0.09) (0.02)

very little power against some TARMA alternatives, which explains their failure
to reject the null hypothesis. This result suggests that we should determine
whether a TARMA model is plausible for the series for Germany. Hence, we fit
the following TARMA(1,1) model:

+ Xy 1+e —0s_4, X, 1>r
_ {¢1,0 ¢1,1 t—1 t t—1 t—1 (71)

¢ = .
G20+ P21 X1+ —0Opq, X, <

In Figure 2(left) of the Supplementary Material, we plot the values of the
LM statistic T, computed over a threshold grid that ranges from the 15th to the
85th percentiles of the data. The estimated threshold 7 = 4.700 that maximizes
T, also minimizes the AIC over the same grid. In the right panel of the figure,
we plot the time series of the monthly real exchange rates for Germany, where we
indicate the selected threshold using a red line. The gray shaded area indicates the
months associated with the upper regime. The parameter estimates are presented
in Table 5, pointing to a lower regime with a possible unit-root, and an upper
regime in which the slope is strictly smaller than one. This is consistent with the
idea of a nonlinear adjustment mechanism that activates when the rate crosses
the threshold. Figure 2(right) of the Supplementary Material shows that the
intervention regime is visited mostly before 1980 and after 1995. This is in general
agreement with the results of [Bec, Ben Salem and Carrasco| (2004)), obtained on
the real exchange rate series of the French franc against the Deutsche mark. The
MA parameter 0 greatly enhances the fitting ability of the model, while retaining
parsimony. This is witnessed by the diagnostics computed on the residuals that do
not show any unaccounted dependence or deviation from normality; see Figure 3
and Figure 4 of the Supplementary Material.

8. Conclusion

In this paper, we argue that measurement errors are often neglected in the
regulation/unit-root literature, with serious consequences. Furthermore, their
ubiquity implies that to test for regulation in dynamics, it is more appropriate,
and perhaps even crucially important, to formulate the test within a TARMA
specification. We adopt the TARMA(1,1) model as the general hypothesis, and
the IMA(1,1) model as the null hypothesis. To the best of our knowlwdge, this is
the first time that a TARMA specification has been used in the present context,
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although it has been used for linearity testing under stationarity (Li and Li (2011));
Goracci et al.|(2023)). We derive a Lagrange multiplier test that is asymptotically
similar, given the threshold search range. Empirical studies confirm that the
proposed approach enjoys much higher power in terms of detecting regulation in
dynamics than that of existing tests that do not address measurement errors. The
surprisingly good size property of our tests may be because of the versatility of
the IMA(1,1) model in approximating general nonseasonal difference stationary
processes. In particular, the empirical results reported in |Chan et al.| (2020) and
in the Supplementary Material indicate that, owing to the wild bootstrap scheme,
our new tests perform well under heteroskedasticity, in general, even when the
null hypothesis entails a nonstationary process different from the IMA(1,1) model,
and remain powerful for other forms of regulation. Finally, an application of our
proposed tests to real exchange rates shows that TARMA models could represent
a modest step toward a positive resolution of the PPP puzzle.

Supplementary Material

The online Supplementary Material contains all proofs, further results from
the real-data analysis, the tabulated quantiles of the null distribution, and
additional Monte Carlo investigations. The routines for the sLM tests are
included in the R package tseriesTARMA (Giannerini and Goracci (2023))),
publicly available at https://cran.r-project.org/package=tseriesTARMA.
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