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Abstract: Computer experiments with both qualitative and quantitative input vari-

ables occur frequently in many scientific and engineering applications. As a result,

how to choose the input settings for such experiments is important for accurate

statistical analysis, uncertainty quantification, and decision-making. Sliced Latin

hypercube designs were the first systematic approach to address this issue. However,

the cost of such designs increases with an increasing number of level combinations

of the qualitative factors. To reduce the cost of the run size, marginally coupled

designs have been proposed, in which the design for the quantitative factors is a

sliced Latin hypercube design with respect to each qualitative factor. The draw-

back of such designs is that the corresponding data may not be able to capture

the effects between any two (or more) qualitative and quantitative factors. To bal-

ance the run size and design efficiency, we propose a new type of design, namely

doubly coupled designs. Here the design points for the quantitative factors form a

sliced Latin hypercube design with respect to the level of any qualitative factor, and

with respect to the level combinations of any two qualitative factors. The proposed

designs have a better stratification property between the qualitative and quantita-

tive factors compared with that of marginally coupled designs. Here, we establish

the existence of the proposed designs, introduce several construction methods, and

examine the properties of the resulting designs.

Key words and phrases: Completely resolvable orthogonal array, sliced Latin hy-

percube, stratification.

1. Introduction

Computer experiments provide an efficient way of representing real-world

complex systems, and have been increasingly popular in the physical, engineer-

ing, and social sciences (Santner, Williams and Notz (2003); Fang, Li and Sud-

jianto (2005)). For recent works on computer experiments, refer to Chen, Santner

and Dean (2018), Wang et al. (2018), Xiao and Xu (2018), Wang, Xiao and Xu
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(2018), Huang et al. (2021), and the reference therein. One way of selecting

the input settings for computer experiments is to use Latin hypercube designs

(LHDs), proposed by McKay, Beckman and Conover (1979), because of the de-

sirable feature that when projected onto any factor, the resulting design points

spread out uniformly and achieve the maximum stratification. However, an LHD

is not guaranteed to be space filling in two or more dimensions. As a result,

several improved LHDs have been discussed, such as maxmin LHDs (Morris and

Mitchell (1995); Joseph and Hung (2008); Wang, Xiao and Xu (2018)), orthogo-

nal array-based LHDs (Tang (1993)), orthogonal LHDs (Georgiou and Efthimiou

(2014); Sun and Tang (2017); Li, Liu and Tang (2020)), and strong orthogonal

array-based LHDs (He and Tang (2013); Zhou and Tang (2019); Shi and Tang

(2020); Wang, Yang and Liu (2021)). However, such designs can only be used

when all the factors are continuous or quantitative. In some applications, qual-

itative factors are inevitable by nature, and play a crucial role in the study of

complex systems (Rawlinson et al. (2006); Long and Bartel (2006); Joseph and

Delaney (2007); Qian, Wu and Wu (2008); Hung, Joseph and Melkote (2009); Han

et al. (2009); Zhou, Qian and Zhou (2011); Huang et al. (2016)). Consequently,

we require designs for computer experiments that include both qualitative and

quantitative factors.

The sliced Latin hypercube design (SLHD) introduced by Qian (2012) is an

LHD that can be divided into several slices, each of which constitutes a smaller

LHD. SLHDs maintain the maximum one-dimensional stratification for the whole

design, as well as for each slice. The first systematic approach to accommodate

both qualitative and quantitative factors in computer experiments uses an SLHD

for the quantitative factors and a (fractional) factorial design for the qualitative

factors. Here each slice for the quantitative factors corresponds to a level com-

bination of the qualitative factors. It is evident that the run sizes of the SLHDs

grow rapidly as the number of level combinations of the qualitative factors in-

creases. That is, an SLHD may be suitable for situations in which the number of

level combinations of the qualitative factors is relatively small, or the experiment

is not expensive to run. Inspired by this, Deng, Hung and Lin (2015) proposed

marginally coupled designs (MCDs), where the design points for the quantitative

factors form an SLHD with respect to any qualitative factor. For the construction

of MCDs, refer to Deng, Hung and Lin (2015), He, Lin and Sun (2017); He et al.

(2017), He, Lin and Sun (2019), and Zhou, Yang and Liu (2021).

MCDs select input settings that have the desirable stratification between each

qualitative factor and all quantitative factors. However, some MCDs may have

poor design properties between multiple qualitative factors and all quantitative
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factors. Intuitively, such design properties are important when studying the inter-

action effects between multiple qualitative factors and quantitative factors, thus

possibly affecting the accuracy of an emulator for the underlying computer sim-

ulator. Suppose that an experiment comprises three qualitative factors, namely

the kind of raw materials (say, M1, M2, and M3), the shape of the raw materials

(e.g., thick, medium, and thin), and the type of catalysts (C1, C2, and C3), as

well as other quantitative factors. Here, it is sensible to adopt a design in which,

for each kind, shape or catalyst, the associated design for the quantitative factors

has a desirable space-filling property. Furthermore it would be more desirable

if for each level combination of any two qualitative factors, such as (M1, thick),

the corresponding design points for the quantitative factors enjoy the appealing

space-filling property, which can help us to understand the effect between any

two qualitative factors and the quantitative factors. In this study, we focus on

designs with the appealing stratification properties between every two qualitative

factors and all quantitative factors, along with all the features of MCDs. We call

such designs doubly coupled designs (DCDs).

As in an MCD, a DCD uses an LHD for the quantitative factors. In addition,

this LHD not only satisfies the constraint that for each level of any qualitative

factor, the corresponding design points for the quantitative factors form an LHD,

but also the constraint that for each level combination of any two qualitative

factors, the corresponding design points for the quantitative factors form an LHD.

In other words, for a DCD, with respect to each qualitative factor, the design

for the quantitative factors is an SLHD, and with respect to any two qualitative

factors, the design for the quantitative factor is also an SLHD. The concept of

DCDs sounds straightforward. However, the construction procedure for DCDs is

not trivial, and cannot be achieved using simple extensions of the construction

for MCDs.

The rest of this paper is organized as follows. Section 2 presents the notations

and definitions of the relevant designs. The theoretical results of the existence

for the proposed designs are discussed in Section 3. Section 4 provides three

constructions for DCDs. The last section concludes the paper. All proofs are

given in the online Supplementary Material.

2. Notation and Definitions

An n×m matrix, of which the jth column has sj levels {0, 1, . . . , sj − 1}, is

an orthogonal array of n rows, m factors, and strength t if each of all possible

level combinations occurs with the same frequency in any n× t submatrix. Such
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an array is denoted by OA(n,m, s1 · · · sm, t). If some si are equal, we denote it

by OA(n,m, su1

1 · · · s
ul

l , t), where
∑l

i ui = m. Furthermore, if all si are identical,

we denote it by OA(n,m, s, t). An OA(n,m, s, 2) is called a completely resolvable

orthogonal array, denoted by CROA(n,m, s, 2), if its rows can be divided into

n/s subarrays, such that each is an OA(s,m, s, 1).

A Latin hypercube of n rows and m factors, denoted by LH(n,m), is an n×m
matrix, each column of which is a permutation of the n equally spaced levels, say

{0, 1, . . . , n − 1}. Given a Latin hypercube L = (lij), a random LHD D = (dij)

can be generated by dij = (lij +uij)/n, where uij is a random number from (0,1).

An LHD possesses the property that each of the n equally spaced intervals has

exactly one design point. A random LHD may not be space filling in two or more

dimensional projections. Orthogonal array-based Latin hypercubes, introduced

by Owen (1992) and Tang (1993), resolve this issue, and guarantee the same grid

stratification in low-dimensional projections as that of the original orthogonal

array. We review the construction method here. Assume an OA(n,m, s, t) exists.

For each column of the orthogonal array, replace the n/s positions of level i

by a random permutation of {i(n/s), i(n/s) + 1, . . . , (i + 1)(n/s) − 1}, for i =

0, 1, . . . , s − 1. The resulting design is an LH(n,m). Throughout this paper, we

refer to this method as the level-expansion method. Conversely, an array can be

obtained by replacing {i(n/s), i(n/s) + 1, . . . , (i + 1)(n/s) − 1} with the integer

i, for i = 0, . . . , s− 1, which we refer to as the level-collapsion method.

Let D1 and D2 be the n-run designs for q qualitative factors and p quanti-

tative factors, respectively, and denote D = (D1,D2). A design D = (D1,D2)

is called a marginally coupled design if D2 is a Latin hypercube and the rows in

D2 corresponding to each level of each factor in D1 form an LHD.

MCDs possess the appealing stratification property between each qualitative

and all quantitative factors. We extend the concept of MCDs, and introduce a

general notion, namely ω-way coupled designs, which have a stronger stratification

property between the two types of factors.

Definition 1. An n-run design D = (D1,D2) with q s-level qualitative factors

and p quantitative factors is called a ω-way coupled design if it satisfies the

following: (i) D2 is an LH(n, p); and (ii) the rows in D2 corresponding to each

level combination of any l factors in D1 form an LHD, for l = 1, . . . , ω.

Clearly, a ω-way coupled design is also an l-way coupled design for any l < ω.

In addition, a one-way coupled design is exactly an MCD. In this study, we

focus on a two-way coupled design called a DCD. We denote such a design by

DCD(n, sq, p). We concentrate on DCDs in which D1 is OA(n, q, s, 2).
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Table 1. Design D = (D1,D2) in Example 1.

DT
1

0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0

DT
2

1 0 6 7 4 5 3 2
0 4 2 6 5 1 7 3
0 4 6 2 5 1 3 7
1 0 2 3 4 5 6 7

Example 1 provides a DCD and its visualization.

Example 1. Consider the designD = (D1,D2) in Table 1. Let z1 and z2 be the

two qualitative factors, and d1,d2,d3, and d4 be the four quantitative factors.

Figures 1(a), (b), and (c) display the design points for the first two quanti-

tative factors d1 versus d2 with respect to the level combinations of (z1, z2), the

levels of z1, and the levels of z2, respectively. From Figure 1(a), it is apparent

that all eight points form an LHD, whereas the points of D2 corresponding to

each of the four level combinations of (z1, z2) are LHDs with two levels. Figures

1(b) and 1(c) reveal that the points in D2 corresponding to each level of z1 or z2
form an LHD. The plots for other quantitative dimensions are similar, so we omit

them to save space. From Definition 1, this is a DCD(8, 22, 4). Clearly, this DCD

has a better stratification property between the qualitative and quantitative fac-

tors than that of an MCD, because the design points for the quantitative factors

in an MCD may not enjoy the maximum one-dimensional projection uniformity

with respect to each level combination of any two qualitative factors, as shown

in Figure 1(a).

3. Existence of DCDs

This section focuses on the properties of DCDs, and establishes the existence

of a DCD(n, sq, p) that quantifies all the characteristics of the sub-designs D1

and D2 in a DCD.

For ease of expression, we introduce some additional notations. For D1 =

(z1, . . . ,zq) and D2 = (d1, . . . ,dp) in a DCD, we define D̃2 and
˜̃
D2 as

D̃2 =

⌊
D2

s

⌋
= (d̃1, . . . , d̃p) and

˜̃
D2 =

⌊
D̃2

s

⌋
= (

˜̃
d1, . . . ,

˜̃
dp), (3.1)

where bac represents the largest integer not exceeding a. Because D2 is an

LH(n, p), we have that D̃2 is an OA(n, p, n/s, 1) and
˜̃
D2 is an OA(n, p, n/s2, 1).
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Figure 1. Scatterplots of d1 versus d2 in Example 1: (a) the points represented by ∗,+, ◦,
and ♦ correspond to the level combinations (0, 0), (0, 1), (1, 0), and (1, 1) of the factors
(z1, z2) ; (b) the points marked by M and � correspond to the levels 0 and 1 of z1; (c)
the points represented by M and � correspond to the levels 0 and 1 of z2.

Conversely, D2 can be obtained from D̃2 using the level-expansion method.

Theorem 1 provides the necessary and sufficient conditions on both D1 and

D2 to ensure that a DCD exists.

Theorem 1. Suppose D1=(z1, . . . ,zq) is an OA(n, q, s, 2) and D2=(d1, . . . ,dp)

is an LH(n, p). The design D = (D1,D2) is a DCD(n, sq, p) if and only if

(a) (zi, d̃k) is an OA(n, 2, s (n/s) , 2), for any 1 ≤ i ≤ q, 1 ≤ k ≤ p; and

(b) (zi, zj ,
˜̃
dk) is an OA(n, 3, s2

(
n/s2

)
, 3), for any 1 ≤ i 6= j ≤ q, 1 ≤ k ≤ p.

Condition (a) of Theorem 1 is the necessary and sufficient condition for

(D1,D2) to be an MCD; see He, Lin and Sun (2017). Condition (b) states

that for an MCD to be a DCD, (zi, zj ,
˜̃
dk) must be a full factorial design.

In addition, note that Conditions (a) and (b) are independent; that is, if a

design satisfies Condition (a), it may not meet Condition (b), and vice versa.

We give two designs to illustrate this point. Let D(a) = (D1,D
(a)
2 ) and D(b) =

(D1,D
(b)
2 ), whereD1 is from Table 1, D

(a)
2 = ((1, 0, 6, 7, 3, 2, 4, 5)T , (0, 4, 2, 6, 5, 1,

7, 3)T ), and D
(b)
2 =

(
(6, 0, 1, 4, 3, 5, 7, 2)T , (2, 4, 0, 5, 7, 1, 6, 3)T

)
. Clearly, D(a)

meets Condition (a), but not (b), whereas D(b) satisfies Condition (b), but not

(a).

Remark 1. In Theorem 1, Condition (a) indicates that (D1, d̃k) is an OA(n, q+

1, sq (n/s) , 2). In addition, Condition (b) implies that (D1,
˜̃
dk) is an OA(n, q +

1, sq(n/s2), 2).

We now revisit Example 1 to apply Theorem 1.
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Table 2. The D1, D̃2 and
˜̃
D2 in Example 2.

D1 D̃2
˜̃
D2

0 0 0 0 0 0 0 0 0 0
1 1 0 2 2 0 0 1 1 0
0 1 3 1 3 1 1 0 1 0
1 0 3 3 1 1 1 1 0 0
0 0 2 2 2 2 1 1 1 1
1 1 2 0 0 2 1 0 0 1
0 1 1 3 1 3 0 1 0 1
1 0 1 1 3 3 0 0 1 1

Example 2. (Example 1 continued) For the given D2, we can obtain D̃2 and˜̃
D2 using (3.1). We display these two designs and D1 in Table 2. Here (zi, d̃k)

is an OA(8, 2, 2× 4, 2) and (zi, zj ,
˜̃
dk) is an OA(8, 3, 2, 3), for any 1 ≤ i 6= j ≤ 2

and 1 ≤ k ≤ 4. According to Theorem 1, the design D in Example 1 is a

DCD(8, 22, 4).

Theorem 1 establishes the existence of DCDs in terms of the relationship

between the individual columns in D1 and d̃k, and the relationship between any

pair of columns in D1 and
˜̃
dk. Interestingly, we can also give the existence of

DCDs in terms of the design property of the entire design D1, which shows the

required structure of D1 in a DCD. The precise result is presented in Theorem

2.

Theorem 2. A DCD(n, sq, p) exists if and only if D1 can be partitioned into

n/s2 CROA(s2, q, s, 2).

Theorem 2 presents the requirement on D1 in a DCD. In the construction of

a DCD, the D1 required by Theorem 2 is the cornerstone. For the given design

parameters, only when the expectedD1 exists can we construct the corresponding

D2 such that D = (D1,D2) is a DCD.

As an example of Theorem 2, see D1 in Table 1. The first four rows and the

last four rows of D1 are CROA(4, 2, 2, 2). The sufficiency of the proof provides a

procedure for constructing D2. The detailed process is shown in Construction 1

of Section 4.

Theorem 3 states the existence of a DCD in terms of the relationship between

the columns of D1 and the columns of two relevant arrays, denoted as B and C,

respectively.

Theorem 3. Suppose D1 is an OA(n, q, s, 2) and D2 is an LH(n, p). The design

D = (D1,D2) is a DCD(n, sq, p) if and only if there exist two arrays, B =
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OA(n, p, n/s2, 1) and C = OA(n, p, s, 1), such that for any 1 ≤ i 6= j ≤ q and

1 ≤ k ≤ p, both (zi, zj , bk) and (zi, ck, bk) are OA(n, 3, s2
(
n/s2

)
, 3), where zi is

the ith column of D1, bk and ck are the kth columns of B and C, respectively,

and D̃2 in (3.1) can be written as D̃2 = sB +C.

Remark 2. The condition D̃2 = sB +C in Theorem 3 implies
˜̃
D2 = B, which

further implies that the space-filling property of D2 relies heavily on that of B,

and is slightly affected by C. If B has a better stratification property, so does

D2. For example, if B is an OA(n, p, n/s2, 2) instead of an OA(n, p, n/s2, 1), D2

achieves stratifications on (n/s2)× (n/s2) grids for any two quantitative factors.

Theorems 1, 2, and 3 provide the necessary and sufficient conditions for

a DCD to exist. These conditions are essentially the same, but are described

in different ways for different purposes and usages. Theorem 3 reveals that to

construct a DCD, we need to find the D1, B, and C that satisfy the conditions.

The next section provides three ways of providing such D1, B, and C.

Before we move on to the construction of DCDs, we consider a theoretically

and practically important topic in the study of DCDs, that is, the maximum

number of s-level qualitative factors that an n-run DCD can entertain. The

following corollary gives the upper bound of the qualitative factors in a DCD.

Corollary 1. If a DCD with D1 being an OA(n, q, s, 2) exists, then q 6 s.

The proof of Corollary 1 is straightforward by Theorem 2 and Lemma 1 of

Deng, Hung and Lin (2015), and is thus omitted. This corollary shows that the

number of qualitative factors in a DCD cannot exceed s. Although the result

seems restrictive, it is still practical. There are applications in the literature in

which the number of qualitative factors is no more than the number of qualitative

levels. For example, Phadke (1989) considered a router bit experiment with two

qualitative four-level factors and seven quantitative factors. Moreover, when s

is a prime power, there always exists a CROA(s2, s, s, 2) by deleting one column

from the saturated OA(s2, s+1, s, 2). By stacking n/s2 such CROAs to obtain the

desired D1 in Theorem 2, the number of the qualitative factors of the resulting

design D1 reaches the upper bound, s.

4. Construction of DCDs

When constructing DCDs, the computational search approach is often in-

feasible. This section presents three constructions for generating various DCDs.

The two methods in Subsection 4.1 construct DCDs by using the permutation
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approach, which can accommodate a large number of quantitative factors. Sub-

section 4.2 provides DCDs with the guaranteed projection space-filling properties

on the quantitative factors, whereas the number of quantitative factors in DCDs

may be relatively limited. The constructions use orthogonal arrays of strength

two or three, which are readily available in, for example, Hedayat, Sloane and

Stufken (1999) and the design catalogues in Sloane (2014).

4.1. Constructions of design D2 using permutations

In this subsection, we give two procedures based on permutations to construct

DCDs with a large number of quantitative factors.

Let A1, . . . ,Aλ be OA(s2, q+ 1, s, 2). Without loss of generality, assume the

last column of every Ai is (0Ts ,1
T
s , . . . , (s− 1)Ts )T , where ys represents a column

vector of length s, with all elements being y. The λ orthogonal arrays are used

to generate D1 in this subsection.

One construction procedure of D1, B, and C in Theorem 3 works as follows,

using the idea of the proof of Theorem 2.

Construction 1.

Step 1. Obtain the array D1 by deleting the last column of (AT
1 , . . . ,A

T
λ )T .

Step 2. Let bk = vk⊗1s2, where vk is a random permutation of (0, 1, . . . , λ−1)T ,

for 1 ≤ k ≤ p, and denote B = (b1, . . . , bp).

Step 3. Let ck = ((wk1 ⊗ 1s)
T , . . . , (wkλ ⊗ 1s)

T )T , where wkj is a random per-

mutation of (0, 1, . . . , s − 1)T , for 1 ≤ k ≤ p and 1 ≤ j ≤ λ, and denote

C = (c1, . . . , cp).

Step 4. Let D̃2 = sB + C, and obtain D2 = (d1, . . . ,dp) from D̃2 using the

level-expansion method. Denote D = (D1,D2).

Proposition 1. The design D = (D1,D2) generated by Construction 1 is a

DCD(λs2, sq, p).

The proof is straightforward, and thus we omit it. In Construction 1, Step

1 constructs D1 to meet the requirement in Theorem 2. The orthogonal arrays

A1, . . . ,Aλ are OA(s2, q+ 1, s, 2). Note that Ai can be either the same or differ-

ent (isomorphic or non-isomorphic), respectively. However, using different Ai is

more desirable for generating D1 with higher strength. The proposed procedure

produces (s!)λs · (s!)λ · λ! different quantitative columns in Proposition 1; that

is, Construction 1 provides DCDs with a considerable number of quantitative
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factors. For 2 ≤ s ≤ 11 and a positive integer λ, Construction 1 can produce the

DCDs with λs2 runs, q qualitative factors, and p quantitative factors, where q = s

for a prime power s, q = 2, 3 for s = 6, 10, respectively, and p ≤ (s!)λs · (s!)λ ·λ!.

Details are given in Table 1 of the online Supplementary Material.

Example 3 illustrates Construction 1. To save space, we set p = 3.

Example 3. Suppose we aim to construct a DCD(27, 33, 3); that is, s = 3, λ =

3, q = 3, and p = 3. We use the following three OA(9, 4, 3, 2) below:

A1 =



0 0 0 0

1 1 2 0

2 2 1 0

0 2 2 1

1 0 1 1

2 1 0 1

0 1 1 2

1 2 0 2

2 0 2 2


, A2 =



0 0 1 0

1 1 0 0

2 2 2 0

0 2 0 1

1 0 2 1

2 1 1 1

0 1 2 2

1 2 1 2

2 0 0 2


, A3 =



0 0 2 0

1 1 1 0

2 2 0 0

0 2 1 1

1 0 0 1

2 1 2 1

0 1 0 2

1 2 2 2

2 0 1 2


. (4.1)

In Step 1, stack A1,A2,A3 by row, and delete the last column of the resulting

design to obtain D1, which is an OA(27, 3, 3, 2), and can be divided into three

CROA(9, 3, 3, 2). In Steps 2 and 3, let v1 = (1, 2, 0)T ,v2 = (0, 2, 1)T ,v3 =

(1, 0, 2)T , w11 = (0, 1, 2)T , w12 = (1, 0, 2)T , w13 = (0, 2, 1)T , w21 = (1, 2, 0)T ,

w22 = (1, 0, 2)T , w23 = (0, 1, 2)T , w31 = (2, 0, 1)T , w32 = (0, 1, 2)T , and w33 =

(1, 0, 2)T . Then by Construction 1, we obtain

B =

 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2


T

and

C =

 0 0 0 1 1 1 2 2 2 1 1 1 0 0 0 2 2 2 0 0 0 2 2 2 1 1 1

1 1 1 2 2 2 0 0 0 1 1 1 0 0 0 2 2 2 0 0 0 1 1 1 2 2 2

2 2 2 0 0 0 1 1 1 0 0 0 1 1 1 2 2 2 1 1 1 0 0 0 2 2 2


T

.

In Step 4, let D̃2 = 3B + C and obtain D2. According to Proposition 1, the

resulting design D = (D1,D2) is a DCD(27, 33, 3), shown in Table 3. Moreover,

the generated D1 is of strength three. The number of qualitative factors in this

example achieves the upper bound in Corollary 1.
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Table 3. D = (D1,D2) in Example 3.

DT
1

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 2 0 1 1 2 0 0 1 2 2 0 1 1 2 0 0 1 2 2 0 1 1 2 0

0 2 1 2 1 0 1 0 2 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1

DT
2

9 10 11 13 14 12 15 16 17 22 23 21 19 18 20 24 25 26 2 0 1 7 8 6 4 5 3

3 5 4 6 7 8 0 1 2 21 22 23 19 20 18 26 24 25 11 10 9 13 14 12 16 15 17

16 17 15 10 11 9 12 13 14 1 2 0 4 5 3 8 7 6 21 22 23 19 20 18 24 25 26

Remark 3. If an OA(λs2, q, s, t) with t > 3 can be partitioned into λ CROA(s2, q,

s, 2), a DCD with D1 of strength t > 3 can be constructed, such as the D1 in

Example 3.

We now introduce the second method for constructing the required arrays

D1, B, and C in Theorem 3, based on the permutation method.

Construction 2.

Step 1. Obtain the array D1 by deleting the last column of 1λ ⊗A1.

Step 2. Let B = (b1, . . . , bp), where {bi,k, bi+s2,k, . . . , bi+(λ−1)s2,k} is a random

permutation of {0, 1 . . . , λ− 1} and bi,k is the ith entry of bk, for 1 ≤ i ≤ s2

and 1 ≤ k ≤ p.

Step 3. Let ck = 1λ⊗(wk⊗1s), where wk is a random permutation of (0, 1, . . . , s−
1)T , for 1 ≤ k ≤ p, and denote C = (c1, . . . , cp).

Step 4. Let D̃2 = sB + C, and obtain D2 = (d1, . . . ,dp) from D̃2 using the

level-expansion method. Denote D = (D1,D2).

Proposition 2. The design D = (D1,D2) produced by Construction 2 is a

DCD(λs2, sq, p).

In Proposition 2, DCDs with at most (s!)λs · s! · (λ!)s
2

distinct quantitative

columns can be generated, which indicates that Construction 2 can also construct

DCDs containing a large number of quantitative factors.

Example 4 below provides an illustration of Construction 2.

Example 4. Generate a DCD(27, 33, 3) and choose A1 shown in Example 3. In

Step 1, delete the last column of 1λ ⊗A1 to obtain D1. In Step 2, let

B =

 2 0 1 2 0 1 2 0 1 0 1 2 0 1 2 0 1 2 1 2 0 1 2 0 1 2 0

2 1 0 0 2 1 1 0 2 0 2 1 1 0 2 2 1 0 1 0 2 2 1 0 0 2 1

0 2 1 2 1 0 1 0 2 1 0 2 0 2 1 2 1 0 2 1 0 1 0 2 0 2 1


T

.



1934 YANG ET AL.

Table 4. D = (D1,D2) in Example 4.

DT
1

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 2 0 1 1 2 0 0 1 2 2 0 1 1 2 0 0 1 2 2 0 1 1 2 0

0 2 1 2 1 0 1 0 2 0 2 1 2 1 0 1 0 2 0 2 1 2 1 0 1 0 2

DT
2

19 1 9 22 3 13 25 8 17 0 11 18 5 14 21 6 16 24 10 20 2 12 23 4 15 26 7

23 12 4 7 26 17 10 1 19 3 22 14 16 8 25 18 9 0 13 5 21 24 15 6 2 20 11

8 26 17 20 10 2 13 5 21 16 7 25 1 19 11 22 14 3 24 15 6 9 0 18 4 23 12

One can easily check that {bi,k, bi+9,k, bi+18,k} is a permutation of {0, 1, 2}, for

1 ≤ i ≤ 9 and 1 ≤ k ≤ 3. In Step 3, let w1 = (0, 1, 2)T ,w2 = (1, 2, 0)T , and

w3 = (2, 0, 1)T , yielding

C =

 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0

2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1


T

.

The obtained design D = (D1,D2) is a DCD, as shown in Table 4.

In practice, for a predetermined p, an optimal D2 according to some opti-

mization criteria (e.g., the maximin distance, uniform discrepancies, etc.) can

be found by ranking all possible candidate designs or by using the greedy search

algorithms, such as the simulated annealing or threshold accepting algorithms, if

the number of candidate designs is exceedingly large (Morris and Mitchell (1995);

Ba, Myers and Brenneman (2015)).

4.2. Constructions for a better space-filling property on quantitative

factors

This subsection provides a construction method that uses one array we call

A to provide D1 and C required in Theorem 3. That is, the new construc-

tion involves only two arrays, A and B. Two specific cases of the construction

are provided to produce the required A and B, where the resulting DCDs may

share some extra high-dimensional space-filling properties between the quantita-

tive factors. Suppose A is an OA(n, q + 1, s, 2) and B is an OA(n, p, n/s2, 1).

Construction 3 works as follows.

Construction 3.

Step 1. Randomly choose q columns from A to obtain D1. Denote the remaining

column of A by a∗.

Step 2. Let C = (c1, . . . , cp), where ck is obtained by permuting the levels of a∗,
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for any 1 ≤ k ≤ p.

Step 3. Let D̃2 = sB + C, and obtain D2 = (d1, . . . ,dp) from D̃2 using the

level-expansion method. Denote D = (D1,D2).

Theorem 4. Suppose A = (a1, . . . ,aq+1) is an OA(n, q + 1, s, 2) and B =

(b1, . . . , bp) is an OA(n, p, n/s2, 1). If (ai,aj , bk) is an OA(n, 3, s2
(
n/s2

)
, 3),

for any 1 ≤ i 6= j ≤ q + 1 and 1 ≤ k ≤ p, then D obtained using Construction 3

is a DCD(n, sq, p).

Theorem 4 tells us that to construct a DCD(n, sq, p), the most important task

is to find the two required arrays, A and B. Under the condition of Theorem 4,

it can be verified that the three arrays D1, B, and C in Construction 3 meet the

conditions in Theorem 3. Hence, the obtained D of Construction 3 is a DCD. As

such Theorem 4 can be viewed as a special case of Theorem 3.

Next, we present an example in which we apply Construction 3.

Example 5. Suppose we want to construct a DCD(8, 22, 4). Let

A = (a1,a2,a3) =



0 0 0

0 1 1

1 0 1

1 1 0

0 0 0

0 1 1

1 0 1

1 1 0


and B = (b1, b2, b3, b4) =



0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 0

1 1 1 1

1 0 0 1

0 1 0 1

0 0 1 1


.

It can be checked thatA is an OA(8, 3, 2, 2),B is an OA(8, 4, 2, 2), and (ai,aj , bk)

is an OA(8, 3, 2, 3), for 1 ≤ i 6= j ≤ 3, 1 ≤ k ≤ 4. Thus, A and B satisfy

the requirements in Theorem 4. In Step 1, select a2,a3 of A to be D1, and

denote a∗ = a1. In Step 2, each column of C is generated by a1 using the

level permutation. Without loss of generality, let ck = a1, for 1 ≤ k ≤ 4. In

Step 3, we obtain the corresponding D̃2 and apply the level-expansion method.

The resulting design D = (D1,D2) is shown in Example 1. In addition, B

is an orthogonal array of strength two. Therefore, the resulting D2 achieves

stratifications on 2× 2 grids for any two quantitative factors, which we verify in

Figure 1.

We now present two cases to generate the required arrays A and B in The-

orem 4, which can produce DCDs with s3 and su runs, respectively, for u > 3.
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Furthermore, Case 1 is suitable for any s > 2, whereas Case 2 works for any

prime power s. In both cases, the resulting DCDs enjoy extra two-dimensional

space-filling properties between the quantitative factors.

Case 1. Let G be an OA(s3,m, s, 3). Split the columns of G randomly into

two arrays, A and B, where A has q + 1 columns and B has p columns, and

m = p+ q + 1.

The orthogonal array G of strength three in Case 1 can be taken directly

from, for example, Sloane (2014).

Proposition 3. The D = (D1,D2) constructed using Construction 3 by using

A and B in Case 1 is a DCD(s3, sq, p), where q + p = m − 1. Furthermore, we

have

(a) D1 is an OA(s3, q, s, t), where t = q if q < 3, and t = 3 if q > 3;

(b) (d̃k, d̃k′), for any 1 ≤ k 6= k′ ≤ p, achieves a stratification on s2 × s and

s× s2 grids; and

(c)
˜̃
D2 is an OA(s3, p, s, t), where t = p if p < 3, and t = 3 if p > 3.

Parts (b) and (c) in Proposition 3 mean that D2 enjoys the two-dimensional

and three-dimensional space-filling properties. For s ≤ 10, the sum of the num-

ber of qualitative and quantitative factors of the DCDs produced by Case 1 of

Construction 3 is no more than three for s = 2, 3, 6, 10, five for s = 4, 5, seven for

s = 7, and nine for s = 8, 9. Table 2 of the online Supplementary Material shows

the details.

We now introduce Case 2, which is based on regular fractional factorial de-

signs (Wu and Hamada (2009)). For any prime power s and any integer u ≥ 3,

let ξ1, . . . , ξu be independent columns of length su with entries from GF (s), the

Galois field of order s.

Case 2.

Step 1. Let

A = {ξ1 + µ2ξ2 | µ2 ∈ GF (s)} ∪ {ξ2} = (a1, . . . ,as+1),

Rv = {ξ1 + µ2ξ2 + µv+2ξv+2 | µ2 ∈ GF (s), µv+2 ∈ GF (s)\{0}}
∪ {ξ2 + µv+2ξv+2 | µv+2 ∈ GF (s)\{0}}
∪ {ξv+2} = (rv,1, . . . , rv,s2),

(4.2)

where rv,f is a column vector of length su, for 1 ≤ v ≤ u−2 and 1 ≤ f ≤ s2.



DOUBLY COUPLED DESIGNS FOR COMPUTER EXPERIMENTS 1937

Step 2. For any 1 ≤ f ≤ s2, let

Bf = (r1,f , . . . , ru−2,f )T , (4.3)

where

T =


su−3 1 · · · su−5 su−4

su−4 su−3 · · · su−6 su−5
...

...
...

...
...

s s2 · · · su−3 1

1 s · · · su−4 su−3

 = (t1, . . . , tu−2).

There are u− 2 columns in each Bf .

Step 3. Let B = (B1, . . . ,Bs2) = (b1, . . . , b(u−2)s2).

Clearly, A consists of the independent columns ξ1, ξ2 and all possible inter-

actions of these two columns, and thus A has s+ 1 columns. The column vectors

in Rv must involve ξv+2 and may contain ξ1 and ξ2. Lemma 1 summarizes the

design properties of A,R1, . . . ,Ru−2. The proof is straightforward, and is thus

omitted.

Lemma 1. For A,R1, . . . ,Ru−2 in Case 2, we have,

(a) A is an OA(su, s+ 1, s, 2);

(b) (R1, . . . ,Ru−2) is an OA(su, (u− 2)s2, s, 2);

(c) (ai,aj , r1,f , . . . , ru−2,f ) is an OA(su, u, s, u), for any 1 ≤ f ≤ s2 and 1 ≤
i 6= j ≤ s+ 1; and

(d) (r1,f , . . . , ru−2,f , rv,l) is an OA(su, u − 1, s, u − 1), for any 1 ≤ v ≤ u − 2

and 1 ≤ f 6= l ≤ s2.

Lemma 1(c) means that taking two distinct columns from A and one column

from each Rv, for v = 1, . . . , u − 2, the resulting u columns form an s-level

orthogonal array of su runs and strength u, that is, a full factorial design of s

levels and u columns. Similarly, Lemma 1(d) implies that the array of u − 1

columns, consisting of two distinct columns of Rv and one column of each of the

remaining u− 3 arrays R1, . . . ,Rv−1,Rv+1, . . . ,Ru−2, is an orthogonal array of

strength u− 1, that is, a full factorial design of s levels and u− 1 columns.

From Lemma 1 and Case 2, we have the following result.

Lemma 2. For A and B in Case 2, we have
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(a) (ai,aj , bk) is an OA(su, 3, s2(su−2), 3), for any 1 ≤ i 6= j ≤ s + 1 and

1 ≤ k ≤ (u− 2)s2; and

(b) A is an OA(su, s+ 1, s, 2) and B is an OA(su, (u− 2)s2, su−2, 1).

Lemma 2 states that A and B in Case 2 are the required arrays in Theorem

4. For s = 2 and u = 3, the two arrays A and B in Case 2 are shown in Example

5.

Proposition 4. For any prime power s and any integer u > 3, D = (D1,D2)

constructed from Construction 3 by using A and B in Case 2 is a DCD(su, ss, (u−
2)s2), with D1 being an OA(su, s, s, 2) and D2 being an LH(su, (u − 2)s2). In

addition, D2 has the following properties:

(a) if b(i − 1)/(u − 2)c = b(i′ − 1)/(u − 2)c, ˜̃
di and

˜̃
di′ achieve s × s grids

stratification; and

(b) if b(i − 1)/(u − 2)c 6= b(i′ − 1)/(u − 2)c, ˜̃
di and

˜̃
di′ achieve su−2 × s and

s× su−2 grids stratification.

Obviously, the number of qualitative factors for the DCDs in Proposition 4 is

s, which reaches the upper bound in Corollary 1, and the number of quantitative

factors is (u− 2)s2.

5. Conclusion

In this paper, we have proposed ω-way coupled designs, with ω > 2, for

computer experiments involving both qualitative and quantitative factors. We

focus on the properties and constructions of the two-way coupled designs, which

we call DCDs. Similarly to MCDs, such designs are an economical alternative

to SLHDs. In contract to MCDs, they require that for each level combination of

every two qualitative factors, the corresponding design points for the quantitative

factors must form an LHD. This additional requirement leads to the result that

given the same run size, DCDs can accommodate fewer qualitative factors than

MCDs can. In addition, DCDs are equipped with better stratification properties

between the qualitative and quantitative factors than those of MCDs.

When the design for the qualitative factorsD1 is an OA(n, q, s, 2), we provide

the necessary and sufficient conditions for the existence of a DCD, and give a tight

upper bound for the number of qualitative factors. Three construction methods

are provided, which are different, but related. In particular, Constructions 1 and

2 are both based on the idea of permutations, but they generate D1,B, and C

in different ways. More specifically, Step 1 of Construction 2 uses λ identical
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orthogonal arrays, whereas A1, . . . ,Aλ used in Step 1 of Construction 1 can be

identical, isomorphic, or non-isomorphic. Step 2 of Construction 1 is a special

case of Step 2 of Construction 2 when {bi,k, bi+s2,k, . . . , bi+(λ−1)s2,k} is the same

random permutation of {0, 1, . . . , λ − 1}, for 1 ≤ i ≤ s2. Step 3 of Construction

2 is a special case of Step 3 of Construction 1 when ωkj is the same permutation

of {0, 1, . . . , λ − 1}, for 1 ≤ j ≤ λ. Construction 3 differs from Constructions

1 and 2 in that it uses an array A to provide D1 and C. Thus, the building

blocks of Construction 3 are the arrays A and B that meet the conditions in

Theorem 4. Two cases of such A and B are given. Because B in Case 1 and R

in Case 2 are orthogonal arrays, the D2 of the DCDs produced by Construction

3 involving Cases 1 and 2 are orthogonal array-based Latin hypercubes. Con-

structions 1 and 2 can accommodate a larger number of quantitative factors than

Construction 3 can, but their limitation is that we cannot ensure the space-filling

properties of the designs for the quantitative factors. On the other hand, the D2

constructed using Construction 3 with Case 1 and Case 2 can guarantee some

desirable stratification on the grids for the quantitative factors. However, the

number of quantitative factors of the resulting designs may be relatively limited.

Because all the constructions are algebraic, they incur a low cost in terms of

computing time. For practical use, we list examples of the DCDs provided by the

proposed construction methods in the online Supplementary Material.

The needed arrays D1, B, and C in Theorem 3 can be constructed using

other approaches in the future. The methods used to generate the two arrays

A and B required by Theorem 4 are not limited to the two cases given in this

paper, and additional pairs of A and B can be considered. Furthermore, we

can consider the DCD D = (D1,D2), with D1 being a mixed-level orthogonal

array of strength t or possessing some good space-filling properties. Further

investigation of the space-filling property of D1 is an important topic. Zhou

and Xu (2014) studied the space-filling property of orthogonal arrays under two

commonly used space-filling measures, namely, the discrepancy and maximin

distance. Because of the required relationship between the columns in D1 and

the columns in D2, this would require additional effort to explore the theoretical

space-filling property of D1 in a DCD. Another possible direction is to construct

DCDs in which D2 has high-dimensional space-filling properties, such as three

or four dimensions. In addition, an interesting, but challenging direction is to

construct ω-way coupled designs with ω > 2. The construction of such designs is

not trivial, and cannot be easily extended. We hope to study this and report the

results in future work.
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Supplementary Material

The supplementary material gives all the proofs, and the tables of some

possible DCDs produced by the proposed constructions.
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