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Abstract: We develop a (nearly) unbiased particle filtering algorithm for a specific

class of continuous-time state-space models in which (a) the latent process Xt is

a linear Gaussian diffusion, and (b) the observations arise from a Poisson process

with intensity λ(Xt). The likelihood and the posterior probability density function

of the latent process include an intractable path integral. Our algorithm relies on

using Poisson estimates to approximate this integral in an unbiased manner. We

show how to tune these Poisson estimates to ensure that, with large probability, all

but a few of the estimates generated by the algorithm are positive. Then setting

the negative estimates to zero leads to a much smaller bias than that obtained

using discretization. We quantify the probability of negative estimates for certain

special cases, and show that our particle filter is effectively unbiased. We apply our

method to a challenging 3D single molecule tracking example using a Born–Wolf

observation model.

Key words and phrases: Continuous-time, Cox process, diffusions, hidden Markov

model, particle filter, path integral, Poisson estimate, sequential Monte Carlo.

1. Introduction

1.1. Background

Diffusion processes have been used extensively to model continuous-time

phenomena in a range of scientific areas, including finance (Merton (1975)), bio-

chemistry (McAdams and Arkin (1997); Gillespie (1977)), and physics (Obukhov

(1959)). These processes are usually applied to model both an observed process

and an unobserved signal/state process in a hierarchical model.

This study develops novel methods for the optimal filtering of multivariate

diffusion processes observed at irregular time instances, which follow a Cox

process with intensity that is a (nonnegative) function of the state process. The

complete data likelihood of such a model includes a path integral of the state

trajectory (in the intensity function), which is intractable. This precludes using

standard particle filters. Another common problem in continuous-time filtering
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for diffusion processes is the unavailability of transition densities (Fearnhead

et al. (2010)). In our problem though, the hidden state is described by a linear

stoachstic differential equation (SDE), and thus the state transition density is

available, although the likelihood remains intractable. Nicolau (2002) proposes a

Riemann sum approximation method for approximating intractable path integrals

(with respect to time). This approach uses a set number of intermediate points,

but results in biased estimates. Nevertheless, Durham and Gallant (2002) use it

to develop a transition density estimator in a filtering context.

A Poisson estimator is often used to remove the time-discretization error in

the numerical approximation of the path integral. The path integral estimate is

computed using an (infinite) series expansion expressed as a random finite series,

where the random truncation is given by a Poisson random variable. The first

Poisson estimator was introduced in the field of statistical physics by Wagner

(1988). It was developed further in the computational statistics literature, for

example, for unbiased estimations of diffusion transition densities by Beskos et al.

(2006), and for sequential importance sampling by Fearnhead, Papaspiliopoulos

and Roberts (2008); see Papaspiliopoulos (2011) for other developments. One

drawback of using a Poisson estimator is that it may return negative values,

which can result in an overall negative likelihood estimate, thus prohibiting us

from using the likelihood estimate for model calibration in a particle Markov-

chain Monte Carlo (MCMC) method (Andrieu, Doucet and Holenstein (2010)).

A naive way to ensure positive estimates is to truncate all negative estimates to

zero, which may introduce bias into the estimate. Fearnhead et al. (2010) use

Wald’s identity (for martingales) to generate an unbiased estimate of the path

integral that is guaranteed to be positive. However, this method does not seem

to yield an unbiased estimate of the likelihood itself (see Section 4.2.3 for an

elaboration on this point), and has a bias that appears difficult to quantify.

1.2. Contributions

We use the standard Poisson estimate, and retain only the positive part of

the returned estimate. (In Section 4.2.3, we discuss the retaining the absolute

value, which enables us to completely de-bias the estimate.) We quantify the

probability of encountering a negative weight (in certain idealized scenarios), and

show that this probability decreases exponentially with the inverse of the time

interval size over which the estimate is computed. (For some typical experimental

settings in our numerical work, the probability is exceptionally small, of the

order 10−50.) This exponential decrease in the probability of a negative estimate

has several advantages. The first is a rapidly diminishing mean squared error

(MSE), for the likelihood estimate within the available CPU time. Second, the

probability of a complete run of an N -particle approximation for T/∆ time steps

encountering a negative estimate (thus, needing truncation) is extremely small,

and is straightforward to control using our proposed (heuristic) tuning procedure.
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(Here, [0, T ] is the time interval for smoothing and ∆ is the interval over which

the path integral is estimated; thus, we need to estimate T/∆ path integrals for

each particle.) To control for a negative weight event, the extra simulation cost

per particle per time step is O(∆), and thus the total extra cost is N×(T/∆)×∆,

which does not increase significantly as ∆ tends to zero.

As our second contribution, we apply our methodology to a challenging model

calibration problem arising from single-molecule fluoresencence microscopy, which

is a very popular live-cell imaging technology. We combine our likelihood

estimate with the particle marginal Metropolis–Hastings (PMMH) algorithm

(Andrieu, Doucet and Holenstein (2010)) to estimate the model parameters for

data from observing a diffusing molecule in three dimensions, using a Cox process

and a Born–Wolf (BW) observation model. We show that our particle filter

significantly outperforms the conventional time discretization-based approach for

the intractable path integral, as implemented in d’Avigneau, Singh and Ober

(2022). Our method is shown to have negligible bias owing to our tuning heuristic

that controls the occurrence of a negative Poisson path integral estimate (and thus

the truncation-induced bias).

The remainder of the paper is organized as follows. Section 2 presents

the problem formulation, and Sections 3 and 4 present the particle filtering

methodology in continuous time. In Section 3, the particle filter uses a simple

time discretization of the path integral, and in Section 4, we present a more

sophisticated particle filter that uses a Poisson estimator of the path integral. Our

proposed algorithm and accompanying theoretical results on its performance are

also presented in Section 4. Experiments, including likelihood estimation, state

estimation (smoothing), and parameter estimation, are presented in Section 5.

Proofs and additional algorithms can be found in the Supplementary Material.

2. Problem Formulation

2.1. Notation

The latent continuous-time Markov process {Xt}t≥0 takes values in X ⊂ Rn.

It has a time-inhomogeneous Markov transition density, Xtk |(Xtk−1
= xk−1) ∼

f θ
tk−1,tk

(xk|xk−1), and initial density νθ. The superscript θ is the parameter of

the model and is defined below. By X ∼ N (µ,Σ), we mean that X has the

distribution of a Gaussian random vector with mean µ and covariance Σ, whereas

N(x;µ,Σ) is the evaluation of this Gaussian density at x. We use the standard

notation i : j to denote the sequence {i, i+1, . . . , j− 1, j}, and ⌈x⌉ to denote the

smallest integer greater than or equal to x ∈ R. The Y ⊂ Rm-valued stochastic

process {Yk}k∈Z+
corresponds to the observed process with observation density

gθ(yk|xk). A realization of a Poisson point process on the positive real line is a

sequence of increasing time points 0 < t1 < t2 < · · · generated according to a

nonnegative intensity function t 7→ λt.
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2.2. Hidden Markov model formulation

Let {(ti, yti)}i∈{1:np} be an observed sequence of nonnegative increasing

arrival times 0 < ti < T and arrival locations yti of a marked Poisson point

process on the real line, recorded in the time interval [0, T ]. The arrival times

are generated by a Poisson point process on [0,∞) with stochastic intensity

function λ(Xt), which is determined by the latent continuous-time Markov

process {Xt}t≥0 ⊂ X and a nonnegative real-valued function λ : X → R. The

locations yti ∈ Y are marks of the point process, and are generated according to

the conditional (on Xti = x) probability density function

Yti |(Xti = x) ∼ gθ(y|x)dy, i ∈ {1 : np} .

The exact likelihood (Snyder and Miller (2012, Chap. 7.3.1)) is

L = E

{(
np∏
i=1

λ (Xti) g
θ (yti |Xti)

)
× exp

(
−
∫ T

0

λ (Xs) ds

)}
, (2.1)

where the expected value is computed with respect to the law of {Xt}0≤t≤T .

3. Particle Filtering

We adopt a discretization of the positive real axis, which is divided into

segments of maximum length ∆, defined sequentially as follows:

t∆0 = 0,

t∆k = t∆k−1 +min
{
∆, T − t∆k−1, min

ti>t∆k−1

ti − t∆k−1

}
, k > 1, (3.1)

where ti is the (observed) arrival time. Thus, (3.1) defines an increasing sequence

of time points t∆0 = 0 < t∆1 < · · · < t∆m−1 < t∆m = T , spaced ∆ apart, unless

the spacing is narrowed to coincide with the arrival of observation yti at time

ti, and ensures {t1, . . . , tnp
} ⊂ {t∆1 , . . . , t∆m−1}. The exact likelihood (2.1) may be

re-expressed using the time points t∆i as

L = E

[(
np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
×
{

m∏
j=1

exp

(
−
∫ t∆j

t∆j−1

λ(Xs)ds

)}]
. (3.2)

Using the exact likelihood (using an approach such as that in Algorithm 1)

for an unbiased estimation using particle filtering is not straightforward, because

of the path integrals of λ(Xs). A simple approach is to replace the path integral

over [0, T ] with the following Reimann approximation:

L∆ = E

[(
np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
×

m∏
j=1

exp
{
−λ(Xt∆j−1

)(t∆j − t∆j−1)
}]

. (3.3)
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Algorithm 1: Bootstrap particle filter.

1 for i ∈ {1 : N} do
2 Sample X

(i)
0 ∼ νθ(·).

3 Set W
(i)
0 = exp(−X(i)

0 (t∆1 − t∆0 )).

4 Resample {X(i)
0 ,W

(i)
0 } to obtain {X̃(i)

0 , 1/N}.
5 end
6 for k ∈ {1 : m− 1} do
7 for i ∈ {1 : N} do
8 Sample X

(i)
k ∼ fθ

t∆k−1,t
∆
k
(·|X̃(i)

k−1) and set X
(i)
0:k = (X̃

(i)
0:k−1, X

(i)
k ).

9 Set

W
(i)
k = exp{−X(i)

k (t∆k+1−t∆k )}×
∏np

j=1{λ(X
(i)
k )gθ(ytj |X

(i)
k )}I[t

∆
k ≤tj<t∆k+1].

10 % Find all ytj with tj ∈ [t∆k , t
∆
k+1).

11 Resample {X(i)
0:k,W

(i)
k } to obtain {X̃(i)

0:k, 1/N}.
12 end

13 end
14 Compute the (unbiased) estimate of the likelihood in (3.3):

L̂∆ =

m−1∏
k=0

(
1

N

N∑
i=1

W
(i)
k

)
. (3.5)

(The subscript ∆ denotes the dependence on the time discretization, and em-

phasizes that L∆ ̸= L.) The posterior density function of (X0, X1, . . . , Xm) =

(Xt∆0
, Xt∆1

, . . . , Xt∆m
) for this time-discretized model is defined in terms of integrals

of real-valued test functions h:∫
pθ∆(x0, . . . , xm)h(x0:m)dx0:m

∝ E

[
h
(
Xt∆0

, . . . , Xt∆m

)
×
{

np∏
i=1

λ(Xti)g
θ(yti |Xti)

}

×
m∏
j=1

exp
{
−λ(Xt∆j−1

)(t∆j − t∆j−1)
}]

. (3.4)

We can estimate this posterior density function and its likelihood using a

conventional particle filter’ as described in Algorithm 1 (d’Avigneau, Singh and

Ober (2022)).

The estimate L̂∆ returned by Algorithm 1 is an unbiased estimate of the

time-discretized likelihood L∆. In the next section, we develop a particle method

that approximates the exact (not-discretized) likelihood, and in the numerical

section (Section 5), we compare its estimation accuracy with that of Algorithm

1 applied to model (3.4).
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4. Particle Filtering to Mitigate the Model Discretization Error

We propose a simple method to nearly unbiasedly estimate the true likelihood

L. We discretize the path integrals into smaller ∆ length time integrals,

exp(−
∫ t+∆

t
λ(Xs)ds), which are amenable to a simple unbiased estimation, and

have a probability of being positive that approaches one rapidly as ∆ tends to

zero. We truncate a negative estimate to zero. Combined with the rarity of such

events, it is simple to quantify the bias, which is also shown to decrease rapidly as

∆ tends to zero. This estimate can be used within particle filtering and a particle

MCMC; such methods are known as particle filtering with “random weights”, as

in Rousset and Doucet (2006), Fearnhead, Papaspiliopoulos and Roberts (2008),

and Fearnhead et al. (2010).

Specifically, we construct real-valued random variables E1, . . . , Em, which

are conditionally independent given Xt∆0
, . . . , Xt∆m

(in the manner made precise in

(4.1)), and each unbiasedly estimates the corresponding term exp{−
∫ t∆i
t∆i−1

λ(Xs)ds}
in the manner of (4.2):

p(e1, . . . , em|xt∆0
, . . . , xt∆m

) =
m∏
i=1

pt∆i−1,t
∆
i
(ei|xt∆i−1

, xt∆i
) (4.1)∫ ∞

−∞
eipt∆i−1,t

∆
i
(ei|xt∆i−1

, xt∆i
)dei

= E

[
exp

{
−
∫ t∆i

t∆i−1

λ(Xs)ds

}∣∣Xt∆i−1
= xt∆i−1

, Xt∆i
= xt∆i

]
. (4.2)

With these random variables E1, . . . , Em, we retain the unbiasedness of the

estimate of the numerator and denominator (the likelihood),∫
pT (x0:m)h(x0:m)dx0:m

∝ E

[
h(Xt∆0

, Xt∆1
, . . . , Xt∆m

)×
{

np∏
i=1

λ(Xti)g
θ(yti |Xti)

}
×

m∏
j=1

Ej

]
,

which follows from a conditioning expectation argument. For k ∈ {1 : m}, let∫
pt∆k (x0, . . . , xk)hk(x0:k)dx0:k

∝ E

(
hk(Xt∆0

, Xt∆1
, . . . , Xt∆k

)×
[

np∏
i=1

{λ(Xti)g
θ(yti |Xti)}I[ti≤t∆k ]

]
×

k∏
j=1

Ej

)
(4.3)

where, tm = T . Once we have defined (4.1), it is straightforward to construct

a particle approximation of the conditional probability density functions (4.3).

These posterior densities, unlike (3.4), do not have a time discretization bias.
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Our particle filtering algorithm, detailed in Algorithm 3, also returns an estimate

of the exact likelihood (3.2). The next subsection explains how to construct these

variables Ei using the Poisson estimate approach. The following subsections will

explain how to ensure that the probability of Ei < 0 is negligible.

4.1. The Poisson estimator

We first consider a fixed trajectory {Xs}0<s≤t∆1
. Then,

exp

{
−
∫ t∆1

0

λ(Xs)ds

}
= exp(c) exp(I − c)

= exp(c)
∞∑
k=0

(I − c)k

k!

= exp(c+ η)
∞∑
k=0

exp(−η)η
k

k!

(
I − c

η

)k

= exp(c+ η)
∞∑
k=0

exp(−η)η
k

k!

k∏
i=1

Eτi

{
−t∆1 λ(Xτi)− c

η

}

= exp(c+ η)Eκ

[
κ∏

i=1

Eτi

{
−t∆1 λ(Xτi)− c

η

}]
,

where −t∆1 λ(Xτi) are the unbiased estimates of I = −
∫ t∆1
0

λ(Xs)ds. The above

derivation follows the approach outlined in Papaspiliopoulos (2011).

The inclusion of the constant c optimises the resulting estimator. The

inclusion of the Po(η) distribution allows an unbiased estimate to be based on

a truncated sum. Finally, Eκ(·) and Eτi(·) denote the expectations with respect

to the independent random variables κ ∼ Po(η) and τi ∼ U(0, t∆1 ), respectively,
and {Xs}0<s≤t∆1

is treated as a fixed trajectory. The final line yields the resulting

unbiased estimator

E1 = exp(c+ η)

[
I{κ=0} + I{κ>0}

{
κ∏

i=1

−t∆1 λ(Xτi)− c

η

}]
(4.4)

as the sample from E1 ∼ p(e1|x0, xt∆1
).

Papaspiliopoulos (2011) discusses how to choose c and η in order to minimize

the variance of the estimate showing that c⋆ = I−η is the value of c that minimizes

the variance (for a fixed η). Our approach is slightly different, in that we aim to

control the probability of the estimate being negative. For that purpose, we set

c = −t∆1 λ(X0) − η (which can also be seen as a tractable approximation of c⋆).

This yields



1222 JIN, SINGH AND CHOPIN

Algorithm 2: PE(η, t∆i−1, t
∆
i , Xt∆i−1

).

Input: η, t∆i−1, t
∆
i , Xt∆i−1

1 Generate κ ∼ Po
(
η
)
.

2 Generate τ1, τ2, . . . , τκ ∼ U(t∆i−1, t
∆
i ), sort them in ascending order and relabel

them so that τ1 < τ2 < · · · < τκ.
3 Sequentially sample Xτj from p(xτ |xτj−1) for j ∈ {1 : κ} where τ0 = t∆i−1.

Sample Xt∆i
from p(xt∆i

|xτκ).

4 Compute and return the estimate:

E =exp
{
−(t∆i − t∆i−1)× λ

(
Xt∆i−1

)}{
I{κ=0}+

I{κ>0}

(
κ∏

j=1

[
1 +

t∆i − t∆i−1

η

{
λ(Xt∆i−1

)− λ(Xτj )
}])}

.

Output: (E,Xt∆i
) % The sample from p(e, xt∆i

|Xt∆i−1
)

E1 = exp
{
−t∆1 λ (X0)

}{
I{κ=0} + I{κ>0}

(
κ∏

i=1

[
1 +

t∆1
η
{λ (X0)− λ (Xτi)}

])}
.

(4.5)

We discuss how to control the probability of a negative estimate using the

parameters (η,∆) in the next sub-section.

The Poisson estimator for any time interval t∆i−1 ≤ t ≤ t∆i is detailed in

Algorithm 2. Note that we assume we can exactly sample Xτj from p(xτ |xτj−1
),

for j ∈ {1 : κ}. This is possible for linear Gaussian diffusions, as discussed in

the introduction; see S1 of the Supplementary Material for details. The particle

filter with the Poisson estimator is described in Algorithm 3. Step 8 of this

algorithm makes a call to Algorithm 2 to obtain the desired samples E
(i)
k from

p(ek|X(i)

t∆k−1
, X

(i)

t∆k
).

4.2. Negative Poisson estimate control

Although the Poisson estimator can return negative values, the following

lemma shows that we can control the probability of this happening by adjusting

(η,∆) which decays exponentially fast in ∆.

Lemma 1. Let {Xs}0≤s≤∆ be a one-dimensional Brownian motion that starts

at X0 = x0. Consider the estimate (4.5) (with t∆1 = ∆) of the path integral

E{exp(−
∫ ∆

0
λ(Xs)ds)|X∆ = x∆}. Let λ(·) be a nonnegative l-Lipschitz function.

Then the following bound holds when η > ∆l |x∆ − x0|:

Pr
(
E1 < 0|κ > 0, X∆ = x∆

)
< 2 exp

[
− (2η/∆l){(η/∆l)− |x∆ − x0|}

∆

]
. (4.7)
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Algorithm 3: Bootstrap particle filter in continuous time.

1 Find ∆ (4.10) and define time steps (3.1).
2 for i ∈ {1 : N} do
3 Sample X̃

(i)

t∆0
∼ νθ(·) and set W

(i)
0 = 1/N .

4 Estimate l̂0. % See Section 4.2.1.

5 for k ∈ {1 : m} do
6 for i ∈ {1 : N} do
7 Set ηk =

(
t∆k − t∆k−1

)
l̂k−1.

8 Sample (E
(i)
k , X

(i)

t∆k
)←PE(ηk, t

∆
k−1, t

∆
k , X̃

(i)

t∆k−1

) and set(
X

(i)

t∆0
, . . . , X

(i)

t∆k

)
=
(
X̃

(i)

t∆0
, . . . , X̃

(i)

t∆k−1

, X
(i)

t∆k

)
.

9 Update l̂k using (4.11).

10 Set W
(i)
k = max{E(i)

k , 0} ×
∏np

j=1{λ(X̃
(i)

t∆k−1

)gθ(ytj |X̃
(i)

t∆k−1

)}I[tj=t∆k−1].

11 % Incorporating ytj with tj = t∆k−1.

12 Resample
{
(X

(i)

t∆0
, . . . , X

(i)

t∆k
),W

(i)
k

}
to obtain {(X̃(i)

t∆0
, . . . , X̃

(i)

t∆k
), 1/N}.

13 Compute the likelihood estimate:

L̂ =

m∏
k=1

(
1

N

N∑
i=1

W
(i)
k

)
. (4.6)

Proof. See S2 of the Supplementary Material.

Note that the estimate is trivially positive when κ = 0, and hence the bound

is given conditionally on κ > 0. Figure 1a shows how Pr(E1 < 0|κ > 0) and its

corresponding bound evolve as ∆ changes for different choices of η. Each data

point is a Monte Carlo estimate of the conditional probability (conditioned on

κ > 0) that the random variable (4.4), with t∆1 = ∆, is negative. The Monte

Carlo estimate of the conditional probability is computed for various choices of η

and |x∆−x0| using 108 experiments each. (4.7) suggests that choosing η = c∆3/2l

with |x∆ − x0| = d∆1/2 (for some positive constants c and d) results in a constant

bound. This is reflected in the straight line behavior of Data 1 in Figure 1a. For

contrast, we also show the bound on the conditional probabilities and compute the

bound when averaging over X∆. Combining the bound (4.7) with the expansion

I[E1<0] ≤ I[E1<0]I[η>∆l|X∆−x0|] + I[η≤∆l|X∆−x0|], we compute the unqualified bound

for Pr(E1 < 0|κ > 0) as

Pr(E1 < 0|κ > 0) ≤ 2 + 4Φ

(
2η

∆3/2l

)
− 6Φ

( η

∆3/2l

)
, (4.8)

where Φ is the cumulative distribution function of a standard normal distribution.

(The proof is provided in S3 of the Supplementary Material.) In Section 4.2.1,
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Figure 1. Plot of (a) (4.7) for various choices of η, and (b) (4.8) multiplied by T/∆ for
the design choice of η = ∆l when T = 1 with fitted relationship vs. ∆.

we advocate a design choice of η = ∆l (with the Lipschitz constant estimated

in a causal manner with the population of particles) to ensure the simulation

cost decreases proportionally with the time discretization ∆. An estimate of

E{exp(−
∫ T

0
λ(Xt)dt)} or E{exp(−

∫ ∆

0
λ(Xt)dt) · · · exp(−

∫ T

⌊T/∆⌋∆ λ(Xt)dt)} incl-

udes the product of T/∆ (conditionally independent) estimates for the individual

intervals. Using (4.8), this estimate is negative with a probability no greater than

Pr(E1 < 0|κ > 0) × T/∆. Figure 1b illustrates how the bound in (4.8), when

multiplied by T/∆, decays with the choice η = ∆l.

4.2.1. Design choice for (η,∆)

We employ reasoning similar to the above to bound the probability of

Algorithm 3 encountering a negative Poisson estimate. For a step-size ∆, an N -

particle implementation has ⌈T/∆⌉ forward steps, and the event of encountering

at least one negative Poisson estimate is {
⋃N

n=1

⋃⌈T/∆⌉
i=1 {E(n)

i < 0}}. Using Lemma

1, its probability may be bounded above by the union bound

Pr

 N⋃
n=1

⌈T/∆⌉⋃
i=1

{E(n)
i < 0}

 ≤ N∑
n=1

⌈T/∆⌉∑
i=1

Pr
(
E

(n)
i < 0

)

<

⌈
NT

∆

⌉
× 2 exp

{
−(2η/∆l)((η/∆l)− d

√
∆)

∆

}
,

where we assume that |x∆ − x(i−1)∆| ≤ d
√
∆, for all i ∈ {1 : ⌈T/∆⌉}, for some

constant d > 0 and η/(∆l) > d
√
∆. (A similar heuristic can also be found

using (4.8).) We can choose η and ∆ (within the constraints η ≥ ∆3/2l and

η/(∆l) > d
√
∆) to ensure that the probability of encountering a negative estimate
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is at most ϵ, as follows:⌈
NT

∆

⌉
× 2 exp

{
− (2η/∆l)((η/∆l)− d

√
∆)

∆

}
≤ ϵ. (4.9)

For example, using η = ∆l, the bound will fall below ϵ once ∆ is sufficiently

small, say ∆ = ∆̄, and will continue to hold as ∆ decreases further because the

left-hand side decreases as ∆ decreases. A similar heuristic can also be found

using (4.8). In summary, set η = ∆l and

∆ = sup

{
∆ > 0 : (4.9) and

⌈
NT

∆

⌉
× (4.8) ≤ ϵ

}
. (4.10)

One can apply numerical methods such as Newton’s method to solve (4.9). In

addition, ϵ can be exceptionally small, for example, ∆ = 0.01, NT = 104, d = 3,

and η = ∆l yields ϵ ≈ 10−55.

The design choice ηk = ∆l̂k−1 can be computed sequentially in Algorithm 3.

Here, l̂k−1 is the empirical Lipschitz constant, updated sequentially, as follows:

l̂k := max

 max
i∈{1:N}

|λ(X(i)

t∆k
)− λ(X

(i)

t∆k−1
)|

|X(i)

t∆k
−X

(i)

t∆k−1
|

, l̂k−1

 , (4.11)

where the initial estimate l̂0 is chosen as the maximum ratio estimate, as in (4.11),

but computed using the particle set at time t∆0 only, and the maximum is found

over i ̸= j ∈ {1 : N}. These design choices for l̂k and ηk for Algorithm 3 are used

in all the numerical experiments presented in Section 5.

4.2.2. Truncation bias

In Algorithm 3, we truncate the negative Poisson estimates to zero, which

induces a bias. Hence, we wish to study the bias of this truncated estimate for

time discretization, 0 < ∆ < · · · < m∆ = T , when ∆ approaches zero, that is,

E
{
exp

(
−
∫ T

0

λ(Xs)ds

)}
− E

{
E+

1 · · ·E+
m

}
,

where E+
i = EiIAc

i
is the truncated Poisson estimate, and Ai denotes the event

Ei < 0. To do so, we bound the omitted term IA
∏m

i=1 Ei, where A = A1∪. . .∪Am,

using the following lemma.

Lemma 2. Let {Xs}0≤s≤∆ be a one-dimensional Brownian motion that starts

at X0 = x0. Let λ(·) be a nonnegative l-Lipschitz function, and consider the

estimate of the path integral

E
{
exp

(
−
∫ ∆

0

λ(Xt)dt

)
· · · exp

(
−
∫ m∆

(m−1)∆

λ(Xt)dt

)}
= E {E1 · · ·Em} ,
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where (Ei+1, X(i+1)∆) ← PE(∆l, i∆, (i + 1)∆, Xi∆) (see Algorithm 2), for i =

0, . . . ,m− 1. Then, the following bound holds:∣∣∣∣∣E
{
IA

m∏
i=1

Ei

}∣∣∣∣∣ ≤ exp

(
T l

2

)
×
(
1 + 4∆2l

1− 4∆2l

)m/2

×m1/2

[
2 exp

(
− 1

2∆

)]1/2
.

Proof. See S4 of the Supplementary Material.

For m = T/∆, the second (ratio) term in the product recedes quickly to

one as ∆ approaches zero, which implies the final term dominates the bias. For

m = T/∆, the final term also tends to zero. Based on this result, as an indicative

trend, the square of the relative bias (which contributes additively in the relative

MSE (rMSE) calculation) of Algorithm 3 is of the order(
L − E(L̂)

)2
L2

≤ const(T )× 1

∆
exp

(
− 1

2∆

)
,

where L̂ is given in (4.6). This result is commented on further in Section 5.1.

4.2.3. Further comments

The following idea, based on Wald’s identity for sampling, is used by

Fearnhead et al. (2010) to deal with negative weights in particle filtering. We

describe it here in the context of a single step within particle filtering, and discuss

its implications for estimating the likelihood. ConsiderX0 ∼ νθ, and letGθ(x0) be

a nonnegative function, also assumed to be θ-dependent. The aim is to estimate

the likelihood L(θ) = Eθ
(
Gθ(X0)

)
. Assume there exists an unbiased estimate of

Gθ(x0) for any (θ, x0), defined as follows. Let pθ(e|x0) be a conditional probability

density function on the real line with mean
∫∞
−∞ epθ(e|x0)de = Gθ(x0). Given

X0, let E(i), for i = 1, 2, . . . , be independent samples from pθ(e|X0), and let

K = inf
{
k > 0 : E(1) + · · ·+ E(k) > 0

}
. Then, L̂ =

∑K
i=1 E

(i) has mean

Eθ(L̂) = Eθ
(
Gθ(X0)Eθ(K|X0)

)
̸= L(θ)× constant,

where the product Gθ(X0)Eθ(K|X0) is Wald’s identity, Eθ(K|X0) is the mean of

the number of independent draws needed to ensure positivity, and the constant

on the right is θ-independent; we need the θ-independent constant to use the

method for model calibration. This approach of sampling until the estimate

is positive is proposed in Fearnhead et al. (2010) to address the event that a

negative estimate is returned by pθ(e|X0). The constant Eθ(K|X0) seems to

play no role in a particle filtering algorithm, because the weights are normalized

before being used as an input to the resampling step. However, Eθ(K|X0), which

is clearly X0-dependent, can be θ-dependent as well, for example, as it would for

Gθ(x0) = Eθ
x0
{exp(−

∫ ∆

0
λ(Xs)ds)} and its estimate E(i) returned by Algorithm
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2 (for PE(η, 0,∆, x0)), because K depends on the law of {Xt}t. Furthermore,

the function Gθ(x0) can be θ-dependent. Because there is no easy way to

compute or remove the factor Eθ(K|X0), this precludes its use in, for example,

a PMMH sampler, which requires a (positive) unbiased estimator of L(θ) to

generate MCMC samples from the posterior density of the model parameters θ.

We provide several experiments in S5 of the Supplementary Material to show

that the idea of using Wald’s identity for sampling returns biased estimates.

Finally, note that it is possible to adapt our approach slightly to return

(perfectly) unbiased estimates. Recall that a particle filter such as Algorithm 3

may return an unbiased estimate of not only the normalizing constant, but also,

more generally, of any unnormalized path expectation (Del Moral (2004)); that

is, the quantity

L̂ ×
∑N

i=1 W
(i)
m φ(X

(i)

t∆0
, . . . , X

(i)

t∆m
)∑N

i=1 W
(i)
m

(4.12)

is an unbiased estimate of

E

{(
np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
Ψ(Xt∆0

, . . . , Xt∆m
)× φ(Xt∆0

, . . . , Xt∆m
)

}
,

where Ψ(·) is the expectation of a product of Poisson estimates of the form∏m
i=1 max(0, Ei). This quantity is equal to exp(−

∫ T

0
λ(Xs)ds) if we replace each

truncated estimate max(0, Ei) with the estimate Ei itself.

We may use this to estimate the marginal likelihood of an alternative model

in an unbiased way, based on a different likelihood for the data (given the states).

In particular, consider a variant of Algorithm 3 in which max{E(i)
k , 0} is replaced

with |E(i)
k | in line 11. (Adapt the definition of Ψ accordingly.) The weights remain

nonnegative, and the output remains biased (for estimating the true likelihood

L). In (4.12), replace φ(·) with (−1)n, where n is the number of negative Poisson

estimates Ek that have occurred while constructing the considered trajectory (the

argument of φ(·)). It is easy to see that this is an unbiased estimate of the true

likelihood L. (Formally, φ is then a function of both the state trajectory and the

Ek variables generated while constructing that trajectory).

In our numerical experiments, we set the tuning parameters to make the

number of occurrences of negative weights almost zero, so we find no practical

benefit in removing the bias (entirely). However, this approach may be useful for

more complicated scenarios.

5. Numerical Experiments

In this section, we present numerical examples to compare Algorithm 1

and Algorithm 3 in terms of their likelihood estimation, smoothing, and model

calibration using a particle MCMC.
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Figure 2. Plot of relative variance, defined as E{(L̂∆)
2}/L2

∆ − 1, for L̂∆ given by
Algortihm 1 in (a) versus 1/N and in (b) as ∆ varies on a log scale.

5.1. One-dimensional example with exact calculation

We first consider a simple example in which the state Xt is a one-dimensional

Brownian motion and Xt is observed in zero-mean unit-variance Gaussian noise.

The intensity function of the Cox process is λ(x) = x + 10. The state starts at

x0 = 0 at time t = 0, and the record of observations stops at time T = 2.

The integration that defines this likelihood can be computed exactly, and

thus can serve as a ground truth; see S6 of the Supplementary Material. We

assume we observe np = 2 data-points to make it possible to perform a large

number of runs; see S8 of the Supplementary Material for extra results with

np > 2. For the analysis below, we use the relative MSE (rMSE) as the metric

to measure the quality of the likelihood estimates.

The numerical results displayed in Figure 2a show that the estimate of

L∆ given by Algorithm 1, for any ∆, has a relative variance that is inversely

proportional to the number of particles N used in the particle filter, where the

relative variance is defined as E{(L̂∆)
2}/L2

∆ − 1. (Note though that the slope

varies very slightly with 1/N .) In Figure 2b, as expected, the relative variance

for a fixed N stabilizes as ∆ decreases. This is because a time-discretized particle

system with systematic resampling converges to a continuous time limit as ∆

approaches zero, as shown in Chopin et al. (2022). For any sufficiently smooth

function λ(·), the weak error of the Euler scheme (i.e., the relative bias (L∆/L)−1
in our case) is at most of order ∆ (Kloeden and Platen (2011, Chap. 17)). Overall,

this implies the following empirical relationship for all values of np when ∆ is

small:

rMSE =
1

L2
E
{(
L̂∆ − L

)2}
=

c1
N

+ c2∆
2 =

c1
C∆

+ c2∆
2, (5.1)

where C denotes the CPU time spent running the particle filter (Algorithm 1)
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Figure 3. Plot of rMSE versus ∆ for a fixed 1.5s CPU time for likelihood estimates
computed by Algorithm 1 (using (3.5)) for (a) np = 2 and (b) np = 13. Overlaid is
the fitted relationship in (5.1) to a range of ∆-values around the minimum of rMSE,
illustrated by the solid segment of the line. The dashed segment covers data points not
used in fitting. The coefficients of the fitted curve to rMSEϵ are only 2.4% different to
that of the rMSE data points; hence, it would be indistinguishable graphically.

to completion. In the last equality, we use the relationship that C increases

linearly withNT/∆, which corresponds to T/∆ propagation steps forN particles.

(Figure 3 confirms (5.1).) For a fixed CPU time C, the value of ∆ that minimizes

the rMSE is ∆∗ = (c1/(c2C))1/3. Substituting this ∆∗ into (5.1) gives the best

rMSE value for each C, of order O(C−2/3) as shown in Figure 4. Similarly, we can

apply the same idea to determine ∆ that minimizes the rMSE for Algorithm 3,

as follows:

rMSE ≤ c1
N

+
c2
∆

exp

(
− 1

2∆

)
=

c1
C∆

+
c2
∆

exp

(
− 1

2∆

)
. (5.2)

Because the minimization problem cannot be solved exactly, we use a surrogate

for ∆∗, in its vicinity, by minimizing f(∆) = c1/(C∆)+ c2 exp (−(1/(2∆))). Note

that rMSE(∆) > f(∆), for 0 < ∆ < 1. Minimizing this equation gives ∆∗ =

(2 log(c2C/(2c1)))−1
. Hence, ∆∗, not being the true minimizer of (5.2), is a more

conservative solution. Substituting this ∆∗ into (5.2) gives an indication of the

best rMSE value for each C, of order O (C−1log(C)). In practice, we do not

recommend this optimization. Instead, choose (∆, η), as discussed in Section

4.2.1, and then stick to this choice, even if more CPU time C becomes available.

We define rMSEϵ as in (5.1), with L replaced with LMC = L+ ϵ. Recall that

we denote by LMC the Monte Carlo estimate returned by the modified Algorithm

3, which uses the true path integral given by S6.1 of the Supplementary Material,

rather than the Poisson estimate. We ensure that the Monte Carlo error ϵ is

sufficiently small that our conclusions when comparing the accuracy of Algorithms
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(using (3.5)) and Algorithm 3 (using (4.6)). The true likelihood is approximated using
Algorithm 3 with N = 104 particles and ∆ = 0.02. Note that Algorithm 1 uses optimized
∆ and N to obtain the best MSE for a given CPU budget. Algorithm 3 uses fixed
∆ = 0.02 and the design choice for η described in Section 4.2.1.

1 and 3 are not rendered inaccurate for the case np > 2. We use np = 2 to choose

a value of ϵ that ensures that the best ∆ found using rMSEϵ is close enough to

the desired (best) ∆ for the rMSE.

Continuing with np = 2, Figure 3a reports the rMSE and rMSEϵ of Algorithm

1 for a fixed CPU budget and different ∆-values, with the expected relationship in

(5.1) fitted to a range of ∆-values around the minimum. Here, rMSEϵ uses LMC,

which is the average estimate of L given by 106 runs of the modified Algorithm

3, with each run using N = 106 particles. We calculate the relative error between

∆∗
ϵ and ∆∗, and between rMSEϵ(∆

∗
ϵ) and rMSE(∆∗), using their fitted values for

c1 and c2,∣∣∣∣∆∗
ϵ −∆∗

∆∗

∣∣∣∣ = 1.1× 10−9,

∣∣∣∣rMSEϵ(∆
∗
ϵ)− rMSE(∆∗)

rMSE(∆∗)

∣∣∣∣ = 0.024.

This shows that 106-averaged runs of the modified Algorithm 3 with N = 106

particles is more than sufficient to produce an accurate estimate LMC as a

substitute for L. We use the same number of Monte Carlo repetitions and N

for values of np > 2 up to np = 13, which are reported in Figure 3b. Figures 3a

and 3b validate the expression for the rMSE (5.1) in the locality of the minimum

∆. We continue to use LMC to compare Algorithms 1 and 3. We use LMC to find

the smallest rMSE that Algorithm 1 can achieve for a given CPU budget, and

use LMC to compute the rMSE of Algorithm 3 for the same CPU budget. For

Algorithm 1, for each value of C, we repeat the procedure illustrated in Figure 3 to

find ∆ that yields the smallest rMSEϵ; this ∆ is the minimizer of the fitted line, as

illustrated in Figure 3b. For Algorithm 3, we spend the budget on increasing the

number of particles N , while using a fixed value of ∆ = 0.02. The results of this

comparison are shown in Figure 4. It appears that Algorithm 3 achieves the best
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decay rate of the rMSE within a CPU budget, which is the inverse relationship,

whereas Algorithm 1 achieves only a rate of C−2/3.

5.2. Three-dimensional single-molecule model

In this section, we apply our method to track a moving biological molecule

in a live cell, in three dimensions, arising from single molecule fluorescence

microscopy. An illustration of how the data are generated is given in Figure 5a.

Single molecule fluorescence microscopy is a live cell imaging technique in which

molecules of interest are tagged with a fluorophore, which are then excited using

light at a particular frequency. These molecules fluoresce under excitation and

emit light at different frequencies, which is then captured by a CCD camera after

optical magnification. The recorded images are used to uncover their motion. In

particular, the moving molecule follows a diffusion model, and its observations

are the (random) arrival times and locations of individual photons. The photon

emission process is modeled as a Poisson process (Ober, Ward and Chao (2020)),

where its photon rate, denoted as λ(t), is the rate at which photons are emitted

by the object at time t. d’Avigneau, Singh and Ober (2022) and Vahid, Hanzon

and Ober (2020) assume a static molecule on the optical axis, where they apply

particle filtering to jointly calibrate the model and localize the single molecule. In

contrast, we follow the approach of Szalai et al. (2021) to incorporate movement

in all three coordinates, where the photon arrival times are governed by the

depth of the molecule (see Figure 5b). The excitation of the molecule varies

inversely with the molecule’s depth, owing to the attenuation of the excitation

light. Szalai et al. (2021) show that the photon rate λ(·) decays exponentially

along the x3-axis, λ(x3) = λ0 exp(−x3/d), where λ0 denotes the rate of photons

emitted by a fluorophore at x3 = 0. Photon arrival locations are imprecise (noise

corrupted) observations of the molecule’s location in the other two dimensions,

as governed by diffraction theory. The relevant photon location model is the

three-dimensional BW model for the point spread function, which describes how

a point light source appears in an image as it moves in and out of focus (Ober,

Ward and Chao (2020)). Hence, the molecule’s depth affects the photon arrival

rate and arrival locations, the former through a state (depth)-dependent photon

detection rate λ(Xt), and the latter through the three-dimensional BW model.

We let (Xt)0≤t≤T := (X1,t, X2,t, X3,t)
⊤
0≤t≤T denote the three-dimensional

location of the molecule at time t. The three components of the molecule state

are its (x1, x2, x3)
⊤ location, and are assumed to follow the Ornstein–Uhlenbeck

(OU) model,

dXi,t = −ϕi(Xi,t − µi)dt+ dWi,t, for i = 1, 2, 3,

where ϕi > 0 and (Wi,t)0≤t≤T , for i = 1, 2, 3, are independent Brownian motions.

We assume that the initial distribution that generates X0 is N (µ,Σ0), where the
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(a) (b)

Figure 5. Illustration of (a) how the image is acquired by a microscope, and (b) the total
internal reflection fluorescence. An excitation beam with wavelength λv traveling from
a high refractive index (n1) medium into a lower refractive index (n2) medium is totally
internal reflected at a planar interface. The reflection generates a thin layer of light in the
lower refractive index medium, which has an intensity that decays exponentially along
the x3-axis with a characteristic constant d. While the molecule moves in the field, it is
illuminated and thus fluoresces. Parameter µ along the x3-direction is the mean of X3,t,
which the molecule diffuses about.

covariance matrix Σ0 = p0 × I3×3. The transition density f θ
δ (x

′|x) of the process

is

Xi,t+δ|
(
Xi,t = xi

)
∼ N

(
µi + e−δϕi(xi − µi),

1

2ϕi

(1− e−2δϕi)

)
, i = 1, 2, 3.

(5.3)

For an object located at (x1, x2, x3)
T ∈ R3 in the object space (prior to

magnification), the location (on the detector) at which a photon is detected is

specified probabilistically using a two-dimensional probability density function as

gθ(y|x) := 1

|M |
qx3

(
M−1y − (x1, x2)

⊺), y ∈ R2, (5.4)

where M ∈ R2×2 is an invertible lateral magnification matrix, and the image

function qx3
: R2 → R describes the image of an object in the detector space

when that object is located at (0, 0, x3) in the object space, where x3 ∈ R is the

location of the object on the optical axis. This three-dimensional BW model is

the resulting image function, derived from diffraction theory, for a point source

that can also be out of focus (Born and Wolf (2013)). For (x1, x2) ∈ R2,

qx3
(x1, x2) =

4πn2
α

λ2
e

∣∣∣∣∫ 1

0

J0

(
2πnα

λe

√
x2
1 + x2

2ρ

)
exp

(
jπn2

αx3

n0λe

ρ2
)
ρdρ

∣∣∣∣2 , (5.5)

where n0 is the refractive index of the objective lens immersion medium, and nα

is the numerical aperture of the objective lens. In addition, λe is the emission

wavelength of the molecule, and J0(·) and J1(·) represent the zero-th-order and
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(a) (b)

(c) (d)

Figure 6. (a) True trajectory of a molecule; (b) observed photon locations; (c) estimated
(x1, x2) molecule locations; and (d) true x3 molecule locations and estimated location.

the first-order Bessel function, respectively, of the first kind. The probability

density functions of the BW model at different defocus levels are plotted in S9 of

the Supplementary Material. Note that a large defocus tends to produce images

of poor quality, making it more difficult to estimate the molecule’s position.

Under this setup, instead of considering the molecular movement as a

reflected diffusion process, we adopt a simpler approach by assuming a standard

OU process, which is suitable if the molecule does not hit a boundary (i.e.,

either cover slip x3 = 0 or its maximum depth d) over its observation period,

for example, if the observation period is short and/or the molecule is diffusing

about a mean depth µ in the middle of a cell with large ϕ3 (i.e., stronger attraction

to µ); see Figure 5b.

In Figure 6a, we plot the true trajectory of the molecule for the numerical

studies, which is generated by the SDE in (5.3) with the parameters {ϕ =

(ϕ1, ϕ2, ϕ3)
⊤ = (1, 1, 4)⊤, µ = (µ1, µ2, µ3)

⊤ = (0, 0, 2)⊤, p0 = 1/(2ϕ)} for the
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Figure 7. Plot of rMSEϵ of likelihood estimates versus CPU time for Algorithm 3 with
∆ = 0.1 and Algorithm 1 with ∆ = 0.03, 0.003 and 0.0003. rMSE of likelihood estimates
based on the average estimate of L given by 106 runs of Algorithm 3 with each run using
N = 106 particles, and the design choice for l and η given in Section 4.2.1. Here 600
CPU seconds corresponds to 2× 105 particles for Algorithm 3.

time interval [0, 5.0]. We used a thinning algorithm (detailed in S10 in the

Supplementary Material) to generate the observation times by using the intensity

function (see (5.2)) with parameters {λ0 = 100, d = 20µm}. Given these

observation times, we generate the observed photon locations using the photon

distribution profile given by (5.4) and (5.5). The associated parameters are

{M = mI2×2,m = 100, nα = 1.4, λe = 0.52µm, n0 = 1.515, σ2
a = 49 × 10−4µm2},

and the corresponding data set of photon locations is shown in Figure 6b. The

colors in Figure 6a indicate time, becoming lighter as more time passes. Figure

6c shows the mean of the estimated (X1, X2) locations of the molecule found

using Algorithm 3, which does track the true trajectory. Figure 6d shows the

true X3 position of the molecule, the mean of the estimated X3 positions (also

obtained using Algorithm 3), and the standard deviations. During periods with

no observations, the estimated X3-value is larger, as expected, because this

corresponds to a smaller photon arrival intensity function. Figure 6d also shows

that largeX3-values degrade the estimation quality (which is more clearly seen for

the X3-values), owing the BW observation model for an out-of-focus molecule;

see (5.5). Additional results of this phenomenon are reported in S11 of the

Supplementary Material.

Figure 7 shows a comparison between the estimation quality of Algorithms 1

(with ∆ = 0.03, 0.003 and 0.0003) and 3 (with ∆ = 0.1) for this single-molecule

example. For both methods, the CPU time increases with the number of particles

used in the algorithms. The superiority of Algorithm 3 is apparent, as measured

using rMSE of the likelihood estimate. The best ∆ for Algorithm 1 is not
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necessarily the smallest one for a fixed CPU budget. This also has practical

consequences. High-frequency data have potentially more time intervals between

observation arrivals that are much smaller than ∆. This leads to a small bias

for Algorithm 1, although at a higher computational cost. Further reducing the

bias, the rMSE is dominated by the variance if the CPU budget permits only a

smaller number of particles.

5.2.1. Model calibration using a particle MCMC

Estimating the parameters of the molecular dynamics is also important

in single molecule studies. For example, d’Avigneau, Singh and Ober (2022)

calibrate the model using a maximum likelihood estimation after discretizing

the path integral. In contrast, we use the PMMH algorithm Andrieu, Doucet

and Holenstein (2010) to sample from the posterior density p(θ, x0:m|y0:m), where
θ = (ϕ, µ). Data are simulated from the model {ϕ = (1, 1, 4)⊤, µ = (0, 0, 2)⊤, p0 =

(0.5, 0.5, 0.125)⊤}, with the intensity function parametrized by {λ0 = 25, d = 20}.
The parameters of the BWmodel remain the same as before. A precise estimation

of ϕ3 requires a longer time series, because it is weakly identified; we use 350

observations collected in the time interval [0, 15s]. The following independent

priors are used: ϕ3 ∼ U(0, 10) and µ3 ∼ U(0, 10). We use a normal random-

walk Metropolis–Hastings proposal with initial covariance 0.1 × I2×2 to update

the parameters jointly. We use the continuous covariance adaptation scheme of

Haario, Saksman and Tamminen (2001) in the PMMH algorithm. We chose the

following three experimental settings:

• Experiment 1 (low CPU budget): C = 1.5s, allowing a coarse time discretiza-

tion that coincides with the times of arrivals of the data for both Algorithms

1 and 3. This forces a large ∆ in L∆ for Algorithm 1. We adjust N so that

the CPU budget is the same for both algorithms.

• Experiment 2 (larger CPU budget): C = 2.5s permits a finer time discretiza-

tion than the observation arrival times. The best ∆ and N (within the CPU

budget) are chosen for Algorithm 1 using the procedure outlined in Section

5.1. Using a larger CPU budget allows a smaller ∆ than that in Experiment

1 in L∆. For Algorithm 3, we use ∆ = 0.01 and its cost-adjusted N .

• Experiment 3 (effective sample size-based comparison): C = 2.0s; here, we find

the effective sample size (ESS) for the PMMH using Algorithm 3 with ∆ =

0.01, and then choose the best ∆ and N for Algorithm 1, while ensuring its

ESS matches that of Algorithm 3. The ESS, which measures the number

of “independent samples”, is M/(−1 + 2
∑K

t=0 (ρ2t + ρ2t+1)), where ρt is the

estimated autocorrelation at lag n, and K is the last integer for which the

sum in the sum bracket is still positive. The general trend is that the ESS of

the PMMH with Algorithm 1 increases with ∆ (i.e., larger N for the fixed

CPU budget), although the estimation is more biased for Algorithm 1.
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Figure 8. PMMH experiments: posterior densities p(µ3|yt1:tnp
) and p(ϕ3|yt1:tnp

).

We ran the algorithms 105 times with 104 burn-in iterations. Figure 8

displays the estimates of the marginal posterior densities for µ3 and ϕ3 for all

three experiments. Experiment 1 shows that Algorithm 3 effectively removes the

bias in the estimation of the parameters, whereas the performance of Algorithm

1 is compromised by the limited CPU budget. Experiment 2 shows that, given a

sufficient budget, Algorithm 1 achieves almost the same performance as that of

Algorithm 3. A comparison between experiments 1 and 2 shows that the unbiased

posterior produced by Algorithm 3 is unaffected by the CPU budget. Experiment

3 is carried out under the setting that both algorithms produce equally “efficient”

MCMC samples for a fixed CPU budget. The results show that Algorithm 1 still

yields some bias in the estimation.
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6. Conclusion

We have examined smoothing and model calibration for a partially observed

diffusion with a Cox process observation model. We estimate the intractable

likelihood using the positive part of a Poisson estimate, for the path integrals

within, embedded within particle filtering. The probability of encountering a

negative Poisson estimate in one complete particle filtering pass through the

data is strongly controlled by adjusting η = O(∆l). As such, because of

the rarity of the occurrence of a negative estimate, which triggers the particle

weight truncation, we effectively remove the time discretization error that biases

conventional particle implementations, such as that of d’Avigneau, Singh and

Ober (2022).

Our numerical results show that the proposed particle method (Algorithm 3)

outperforms the conventional (discretization-based) particle filter in terms of the

rMSE, where ours decays with order O(C−1) compared to O(C−2/3), where C is the
computational budget. We then applied our particle filter to a challenging three-

dimensional single molecule microscopy example to both estimate the trajectory

of the moving molecule and calibrate the model. We clearly show the bias in the

posterior distribution for the model parameters computed using a conventional

implementation, such as that of d’Avigneau, Singh and Ober (2022), whereas

using the proposed method, the bias is not discernible. Although the bias in

the conventional method can be reduced by employing a smaller ∆, the time

discretization interval, this not only requires significant additional CPU time,

but also prohibits the application of backward sampling steps in particle filtering.

This is a possible direction for future work, that is, defining a forward filtering

backward sampling implementation of our method. In the context of diffusions,

this is a challenging problem; see Yonekura and Beskos (2022) for a recent study.

7. Supplementary Material

Section S1 contains the derivation of bridge density for linear Gaussian

diffusion. Section S2 provides the proof of Lemma 1. Section S3 presents

the derivation of expectation of the unqualified probability bound. Section S4

presents the proof of Lemma 2. Section S5 provides the experiments for the use

of Wald’s identity. Section S6 shows the exact computation of the likelihood

function. Section S7 includes no observation case and two observations case.

Sections S8 provides the empirical relationship between relative variance and ∆.

Section S9 provides the BW model and its point spread function. Section S10

describes the thinning algorithm for creating single-molecule data. Section 11

provides the results of additional single-molecule experiments.
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