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Abstract: We develop a (nearly) unbiased particle filtering algorithm for a specific
class of continuous-time state-space models in which (a) the latent process X is
a linear Gaussian diffusion, and (b) the observations arise from a Poisson process
with intensity A(X:). The likelihood and the posterior probability density function
of the latent process include an intractable path integral. Our algorithm relies on
using Poisson estimates to approximate this integral in an unbiased manner. We
show how to tune these Poisson estimates to ensure that, with large probability, all
but a few of the estimates generated by the algorithm are positive. Then setting
the negative estimates to zero leads to a much smaller bias than that obtained
using discretization. We quantify the probability of negative estimates for certain
special cases, and show that our particle filter is effectively unbiased. We apply our
method to a challenging 3D single molecule tracking example using a Born-Wolf
observation model.
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1. Introduction
1.1. Background

Diffusion processes have been used extensively to model continuous-time
phenomena in a range of scientific areas, including finance (Merton| (1975)), bio-
chemistry (McAdams and Arkin (1997)); |Gillespie (1977))), and physics (Obukhov,
(1959)). These processes are usually applied to model both an observed process
and an unobserved signal/state process in a hierarchical model.

This study develops novel methods for the optimal filtering of multivariate
diffusion processes observed at irregular time instances, which follow a Cox
process with intensity that is a (nonnegative) function of the state process. The
complete data likelihood of such a model includes a path integral of the state
trajectory (in the intensity function), which is intractable. This precludes using
standard particle filters. Another common problem in continuous-time filtering
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for diffusion processes is the unavailability of transition densities (Fearnhead
et al. (2010))). In our problem though, the hidden state is described by a linear
stoachstic differential equation (SDE), and thus the state transition density is
available, although the likelihood remains intractable. Nicolau (2002)) proposes a
Riemann sum approximation method for approximating intractable path integrals
(with respect to time). This approach uses a set number of intermediate points,
but results in biased estimates. Nevertheless, Durham and Gallant| (2002) use it
to develop a transition density estimator in a filtering context.

A Poisson estimator is often used to remove the time-discretization error in
the numerical approximation of the path integral. The path integral estimate is
computed using an (infinite) series expansion expressed as a random finite series,
where the random truncation is given by a Poisson random variable. The first
Poisson estimator was introduced in the field of statistical physics by [Wagner
(1988). It was developed further in the computational statistics literature, for
example, for unbiased estimations of diffusion transition densities by [Beskos et al.
(2006), and for sequential importance sampling by |[Fearnhead, Papaspiliopoulos
and Roberts| (2008)); see Papaspiliopoulos| (2011) for other developments. One
drawback of using a Poisson estimator is that it may return negative values,
which can result in an overall negative likelihood estimate, thus prohibiting us
from using the likelihood estimate for model calibration in a particle Markov-
chain Monte Carlo (MCMC) method (Andrieu, Doucet and Holenstein (2010))).
A naive way to ensure positive estimates is to truncate all negative estimates to
zero, which may introduce bias into the estimate. Fearnhead et al. (2010) use
Wald’s identity (for martingales) to generate an unbiased estimate of the path
integral that is guaranteed to be positive. However, this method does not seem
to yield an unbiased estimate of the likelihood itself (see Section 4.2.3 for an
elaboration on this point), and has a bias that appears difficult to quantify.

1.2. Contributions

We use the standard Poisson estimate, and retain only the positive part of
the returned estimate. (In Section 4.2.3, we discuss the retaining the absolute
value, which enables us to completely de-bias the estimate.) We quantify the
probability of encountering a negative weight (in certain idealized scenarios), and
show that this probability decreases exponentially with the inverse of the time
interval size over which the estimate is computed. (For some typical experimental
settings in our numerical work, the probability is exceptionally small, of the
order 1075%.) This exponential decrease in the probability of a negative estimate
has several advantages. The first is a rapidly diminishing mean squared error
(MSE), for the likelihood estimate within the available CPU time. Second, the
probability of a complete run of an N-particle approximation for T'/A time steps
encountering a negative estimate (thus, needing truncation) is extremely small,
and is straightforward to control using our proposed (heuristic) tuning procedure.
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(Here, [0,7] is the time interval for smoothing and A is the interval over which
the path integral is estimated; thus, we need to estimate 7'/A path integrals for
each particle.) To control for a negative weight event, the extra simulation cost
per particle per time step is O(A), and thus the total extra cost is N x (T'/A) x A,
which does not increase significantly as A tends to zero.

As our second contribution, we apply our methodology to a challenging model
calibration problem arising from single-molecule fluoresencence microscopy, which
is a very popular live-cell imaging technology. We combine our likelihood
estimate with the particle marginal Metropolis-Hastings (PMMH) algorithm
(Andrieu, Doucet and Holenstein (2010)) to estimate the model parameters for
data from observing a diffusing molecule in three dimensions, using a Cox process
and a Born-Wolf (BW) observation model. We show that our particle filter
significantly outperforms the conventional time discretization-based approach for
the intractable path integral, as implemented in |d’Avigneau, Singh and Ober
(2022). Our method is shown to have negligible bias owing to our tuning heuristic
that controls the occurrence of a negative Poisson path integral estimate (and thus
the truncation-induced bias).

The remainder of the paper is organized as follows. Section 2 presents
the problem formulation, and Sections 3 and 4 present the particle filtering
methodology in continuous time. In Section 3, the particle filter uses a simple
time discretization of the path integral, and in Section 4, we present a more
sophisticated particle filter that uses a Poisson estimator of the path integral. Our
proposed algorithm and accompanying theoretical results on its performance are
also presented in Section 4. Experiments, including likelihood estimation, state
estimation (smoothing), and parameter estimation, are presented in Section 5.
Proofs and additional algorithms can be found in the Supplementary Material.

2. Problem Formulation
2.1. Notation

The latent continuous-time Markov process { X }+>o takes values in X C R™.
It has a time-inhomogeneous Markov transition density, X;, (X, _, = ®r_1) ~
ffk,l,tk (x1|zr_1), and initial density v?. The superscript 6 is the parameter of
the model and is defined below. By X ~ N(u,Y), we mean that X has the
distribution of a Gaussian random vector with mean p and covariance 3, whereas
N(z; p,2) is the evaluation of this Gaussian density at x. We use the standard
notation 7 : j to denote the sequence {i,i+1,...,5—1,j}, and [x] to denote the
smallest integer greater than or equal to x € R. The ) C R™-valued stochastic
process {Y;}rez, corresponds to the observed process with observation density
g% (yr|zr). A realization of a Poisson point process on the positive real line is a
sequence of increasing time points 0 < ¢; < t; < --- generated according to a
nonnegative intensity function ¢ — ;.
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2.2. Hidden Markov model formulation

Let {(ti,ys.)}ic(1.m,) Pe an observed sequence of nonnegative increasing
arrival times 0 < ¢; < T and arrival locations y;, of a marked Poisson point
process on the real line, recorded in the time interval [0,7]. The arrival times
are generated by a Poisson point process on [0,00) with stochastic intensity
function A(X;), which is determined by the latent continuous-time Markov
process {X,;};>0 C X and a nonnegative real-valued function A : X — R. The
locations y;, € Y are marks of the point process, and are generated according to
the conditional (on X;, = x) probability density function

Yil(Xe, =) ~ g (yla)dy,  i€{l:n,}.

The ezact likelihood (Snyder and Miller| (2012, Chap. 7.3.1)) is

{(ﬁxxtz ytLXt)>><exp</)\ d)}, (2.1)

where the expected value is computed with respect to the law of { X, }o<i<r.

3. Particle Filtering

We adopt a discretization of the positive real axis, which is divided into
segments of maximum length A, defined sequentially as follows:

t5& =0,
ty =t +min {AT — 2, min ¢ -t }, k> 1, (3.1)
t; >t

k—1

where ¢; is the (observed) arrival time. Thus, defines an increasing sequence
of time points t§ = 0 < t& < --- <t | < t5 = T, spaced A apart, unless
the spacing is narrowed to coincide with the arrival of observation y;, at time
t;, and ensures {t1,...,t,,} C {t7,...,t5_,}. The ezact likelihood may be
re-expressed using the time points ¢ as

(H)\Xt ytth> {ﬁexp< / MX )H (3.2)

Using the exact likelihood (using an approach such as that in Algorithm 1)

for an unbiased estimation using particle filtering is not straightforward, because
of the path integrals of \(X). A simple approach is to replace the path integral
over [0, 7] with the following Reimann approximation:

(H)\ (X.)6° (e, ) X ﬁexp {fA(thA_l)(tjA - tf_l)}] . (3.3)

Lar=E
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Algorithm 1: Bootstrap particle filter.
forie {1: N} do
Sample X7 ~ 10(-).

=

2

3 Set Wéi) = exp(—XOi) (D —t8)).

4 | Resample {X\", W{"} to obtain {X{",1/N}.

5 end

6 for ke {1:m—1} do

7 forie {1: N} do

s Sample X" ~ ffy 2 (|X;”) and set XG5 = (X§i_,, X;7).

9 Set

i i » i i Ay 4
W = exp{— X" (10, — )} < T2 AN ) g? (e, | X ) Yl St <tic),

10 4 ' % Find all y;, with t; € (2,0 )-
11 Resample {Xé?,l, W,Ez)} to obtain {Xéfll, 1/N}.

12 end
13 end

14 Compute the (unbiased) estimate of the likelihood in (3.3):

m—1 N
La=1]] (;ZM”) . (3.5)
k=0 =1

(The subscript A denotes the dependence on the time discretization, and em-
phasizes that £o # L£.) The posterior density function of (Xo, X1,...,X,,) =
(Xia, Xia,..., X;a) for this time-discretized model is defined in terms of integrals
of real-valued test functions h:

th)}

X ﬁexp {—)\(Xtﬁl)(tf - tfl)}l . (3.4)

/pGA($07 ... 7xm)h('r0:m)dx02m

x E

h (Xt§7 e 7Xt$L) X {1—1 )\(Xti)ge(yti
i=1

We can estimate this posterior density function and its likelihood using a
conventional particle filter’ as described in Algorithm 1 (d’Avigneau, Singh and
Ober| (2022)).

The estimate £ returned by Algorithm 1 is an unbiased estimate of the
time-discretized likelihood L. In the next section, we develop a particle method
that approximates the exact (not-discretized) likelihood, and in the numerical
section (Section 5), we compare its estimation accuracy with that of Algorithm

1 applied to model (3.4)).
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4. Particle Filtering to Mitigate the Model Discretization Error

We propose a simple method to nearly unbiasedly estimate the true likelihood
L. We discretize the path integrals into smaller A length time integrals,
exp(— tt+A A(X,)ds), which are amenable to a simple unbiased estimation, and
have a probability of being positive that approaches one rapidly as A tends to
zero. We truncate a negative estimate to zero. Combined with the rarity of such
events, it is simple to quantify the bias, which is also shown to decrease rapidly as
A tends to zero. This estimate can be used within particle filtering and a particle
MCMC; such methods are known as particle filtering with “random weights”, as
in Rousset and Doucet| (2006), Fearnhead, Papaspiliopoulos and Roberts| (2008)),
and |[Fearnhead et al.| (2010)).

Specifically, we construct real-valued random variables F4,...,FE,,, which
are conditionally independent given Xya, ..., X;a (in the manner made precise in

A
(4.1))), and each unbiasedly estimates the corresponding term exp{— fttA, A Xs)ds}

in the manner of (4.2)):
plers .y em|Tia, ..., Ta) HptA (eilmea a4a) (4.1)

m

oo
/ €iPis 2 (€i|$tﬁl ) xtf)dei

¢
=E exp { - A(Xs)d8}|Xt4 = XA 7Xt_A = .’L't_A‘| . (4.2)
tA_ i—1 i—1 (3 (3
With these random variables E1,..., E,,, we retain the unbiasedness of the

estimate of the numerator and denominator (the likelihood),
/pT(xO:m)h(xO:m)de:m

h(Xa, Xpa, ..., Xpa) X {H/\Xt yt]Xt}XHEj‘|,
j=1

which follows from a conditioning expectation argument. For k € {1 : m}, let

x E

/ptkA (.CCO, ... ,xk)hk(CCo;k)d«TO:k

O<E<hk(Xt§,thA,...,XtA lH{A (X7 (i, | Xy, ) st 1] xHE) (4.3)

j=1

where, t,, = T. Once we have defined (4.1)), it is straightforward to construct
a particle approximation of the conditional probability density functions (4.3)).
These posterior densities, unlike (3.4]), do not have a time discretization bias.
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Our particle filtering algorithm, detailed in Algorithm 3, also returns an estimate
of the exact likelihood . The next subsection explains how to construct these
variables F; using the Poisson estimate approach. The following subsections will
explain how to ensure that the probability of F; < 0 is negligible.

4.1. The Poisson estimator

We first consider a fixed trajectory {X,}o<s<ia. Then,

exp{ - /Otl )\(Xs)ds} = exp(c) exp(I — ¢)

= exp(c i

k=0

:expc+nZeXP Z(I_Cf
- exple+ )Y esotn g [ {0}

e (2]

where —t2\(X,,) are the unbiased estimates of I = — (flA A(X;)ds. The above
derivation follows the approach outlined in [Papaspiliopoulos| (2011)).

The inclusion of the constant ¢ optimises the resulting estimator. The

.w\s

=exp(c+ n)E

inclusion of the Po(n) distribution allows an unbiased estimate to be based on
a truncated sum. Finally, E.(-) and E,, (-) denote the expectations with respect
to the independent random variables x ~ Po(n) and 7; ~ U(0,t%), respectively,
and { X, }ocs<ea is treated as a fixed trajectory. The final line yields the resulting

unbiased estimator
EtANX,) — ¢
Iir=0y + H{n>0}{ H 1(77)}] (4.4)
=1

Ey = exp(c+n)

as the sample from E; ~ p(ei|zo, 7;2).

Papaspiliopoulos (2011]) discusses how to choose ¢ and 7 in order to minimize
the variance of the estimate showing that ¢* = I—n is the value of ¢ that minimizes
the variance (for a fixed 7). Our approach is slightly different, in that we aim to
control the probability of the estimate being negative. For that purpose, we set
¢ = —t2\(Xy) — 1 (which can also be seen as a tractable approximation of ¢*).
This yields
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Algorithm 2: PE(n, t2 |, t2

i

Input: 7, tiflv tiAv XtiA_l

Generate Kk ~ 770( )

2 Generate 71, 7o, ..., Tx ~ Z/l(tlA 1, t2), sort them in ascending order and relabel
them so that 71 < 79 < - < Tg-

Sequentially sample X, from p(zr|zr,_,) for j € {1: Kk} where 7o =12,
Sample X;a from p(za |zr,).

X ).

[u

w

a4 Compute and return the estimate:
B —exp {2121 (%)) {H{N_Oﬁ

K A A
I (x>0} ( I+ %{A(Xtﬁl) - )\(er)}] ) }

j=1
Output: (E, X;a) % The sample from p(e,z;a[Xa )

FE, =exp {_tlA)\ (XO)} {H{K_O} + H{n>0} ( ) |: 0) A (XT7)}:|> } .

(4.5)
We discuss how to control the probability of a negative estimate using the
parameters (1, A) in the next sub-section.

The Poisson estimator for any time interval t2, < t < t2 is detailed in
Algorithm 2. Note that we assume we can exactly sample X, from p(z,|z,,_,),
for j € {1 : k}. This is possible for linear Gaussian diffusions, as discussed in
the introduction; see S1 of the Supplementary Material for details. The particle
filter with the Poisson estimator is described in Algorithm 3. Step 8 of this
algorithm makes a call to Algorithm 2 to obtain the desired samples E,(:) from
pleel X X2).

4.2. Negative Poisson estimate control

Although the Poisson estimator can return negative values, the following
lemma shows that we can control the probability of this happening by adjusting
(n, A) which decays exponentially fast in A.

Lemma 1. Let {X }o. .o be a one-dimensional Brownian motion that starts
at Xy = To.- Conszder the estimate (4.5) (with t& = A) of the path integral
E{exp(— fo $)ds)| Xa = xa}. Let A(+) be a nonnegative l-Lipschitz function.
Then the followmg bound holds when n > Al |xa — zol:

Pr (E1 <0k >0,Xp = :pA) < 2exp [— (2"/Al>{(’7/Ai) —lza @} g
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Algorithm 3: Bootstrap particle filter in continuous time.
1 Find A (4.10) and define time steps (3.1)).
2 forie {1: N} do
L Sample )N(t(z) ~19(-) and set W = 1/N.
0

w

4 Estimate lo. % See Section 4.2.1.
5 for k€ {1: m} do
6 forie {1: N} do
7 Set mi, = (t5 =t 1) l—1.
8 Sample (E,(Cl),Xt(Z)) ePE(nk,tkA_l,tkA,,Xt(Z) ) and set
k—1

k
@) @Y _ (@ o (4) (@)

(XtDA,...,Xt%) - (XtDA""’th,l’th)'

9 Update I}, using (&11).

10 Set Wi = max{E”, 0} x [T}2 {MXE ) (ye, | X2 )}I=rial,
1 ‘ . ‘ % Incorporatin_g Yt wi‘;h t; = tkA_l.
12 Resample {<Xt(2)’ . ,Xt(i)), ngl)} to obtain {(f(t(i), ... ,XEZ)L 1/N}.

— 0 k 0 k

13 Compute the likelihood estimate:

Proof. See S2 of the Supplementary Material.

Note that the estimate is trivially positive when x = 0, and hence the bound
is given conditionally on x > 0. Figure la shows how Pr(E; < 0|x > 0) and its
corresponding bound evolve as A changes for different choices of 7. Each data
point is a Monte Carlo estimate of the conditional probability (conditioned on
k > 0) that the random variable (4.4)), with ¢& = A, is negative. The Monte
Carlo estimate of the conditional probability is computed for various choices of 7
and |za — x| using 10® experiments each. suggests that choosing 7 = cA3/2]
with [za — 29| = dA/? (for some positive constants ¢ and d) results in a constant
bound. This is reflected in the straight line behavior of Data 1 in Figure la. For
contrast, we also show the bound on the conditional probabilities and compute the
bound when averaging over X,. Combining the bound with the expansion
]I[E1<0] < H[E1<0]H[n>AlIXA—wo|] + H[WSA”XA_QCOH, we compute the unqualified bound
for Pr(E; < 0|k > 0) as

21 n
Pr(E, < Olr > 0) < 2+ 4 (Aml) —6<I>(A3/2l), (4.8)

where ® is the cumulative distribution function of a standard normal distribution.
(The proof is provided in S3 of the Supplementary Material.) In Section 4.2.1,
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Figure 1. Plot of (a . ) for various choices of 7, and (b) (4.8) multiplied by T/A for
the design choice of n = Al when T' = 1 with fitted relationship vs. A.

we advocate a design choice of n = Al (with the Lipschitz constant estimated
in a causal manner with the population of particles) to ensure the simulation
cost decreases proportionally with the time discretization A. An estimate of
E{exp(— fo (X;)dt)} or E{exp(— fo (X,)dt) - exp(— fE,/AJA)\(Xt)dt)} incl-
udes the product of T'/A (conditionally 1ndependent) estimates for the individual
intervals. Using , this estimate is negative with a probability no greater than
Pr(E; < 0|x > 0) x T/A. Figure 1b illustrates how the bound in (4.8), when
multiplied by T'/A, decays with the choice n = Al.

4.2.1. Design choice for (n, A)

We employ reasoning similar to the above to bound the probability of
Algorithm 3 encountering a negative Poisson estimate. For a step-size A, an N-
particle implementation has [T/A] forward steps, and the event of encountering
at least one negative Poisson estimate is {{J)_, UrT/ Al {Ef") < 0}}. Using Lemma
1, its probability may be bounded above by the union bound

N [T/A] N [T/A]
U UEY <] <> Y pe(E” <0)
_ {Nﬂ < 2exp {_ (2o/Al)(n/20 - dVA) } |

where we assume that [za — 2 1a| < dV/A, for all i € {1: [T/A]}, for some
constant d > 0 and n/(Al) > dvA. (A similar heuristic can also be found
using (4.8).) We can choose n and A (within the constraints n > A2 and
n/(Al) > dv/A) to ensure that the probability of encountering a negative estimate
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is at most €, as follows:

{NTW < 20 { ~ (2n/AD((n/Al) - d\@} <e (4.9)

A A

For example, using n = Al, the bound will fall below € once A is sufficiently
small, say A = A, and will continue to hold as A decreases further because the
left-hand side decreases as A decreases. A similar heuristic can also be found
using . In summary, set n = Al and

A = sup {A >0: and F\LT-‘ x (4.8) < e}. (4.10)

One can apply numerical methods such as Newton’s method to solve . In
addition, € can be exceptionally small, for example, A = 0.01, NT = 10*,d = 3,
and n = Al yields € ~ 1075°.

The design choice 7, = Alj,_; can be computed sequentially in Algorithm 3.
Here, [, is the empirical Lipschitz constant, updated sequentially, as follows:

INXR) = AXE )|
; SN N (4.11)

[, := max ‘max o ol
i€{1:N} |thA _ thA,il‘

where the initial estimate le is chosen as the maximum ratio estimate, as in ,
but computed using the particle set at time ¢5* only, and the maximum is found
over i # j € {1: N}. These design choices for [, and i, for Algorithm 3 are used
in all the numerical experiments presented in Section 5.

4.2.2. Truncation bias

In Algorithm 3, we truncate the negative Poisson estimates to zero, which
induces a bias. Hence, we wish to study the bias of this truncated estimate for
time discretization, 0 < A < --- <mA =T, when A approaches zero, that is,

]E{exp <— /OT /\(Xs)ds>} —E{Ef---E!},

where E = Eillac is the truncated Poisson estimate, and A; denotes the event
E; < 0. To do so, we bound the omitted term I, [}", F;, where A = A,U...UA,,,
using the following lemma.

Lemma 2. Let {X,}o<s<a be a one-dimensional Brownian motion that starts
at Xo = x9. Let A(-) be a nonnegative l-Lipschitz function, and consider the
estimate of the path integral

E {exp ( /OA )\(Xt)dt> e exp ( /(:AM )\(Xt)dt) } —E{E, - B},
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where (Eip1, X+1a) < PE(ALA, (i + 1)A, X;a) (see Algorithm 2), for i =
0,...,m— 1. Then, the following bound holds:

Ti 14+ 4A2\"? 1\1Y?
2 Tm )| <o () (LAY o oo ()]
{ 1 2 1 — 4A2] 2A

Proof. See S4 of the Supplementary Material.

For m = T/A, the second (ratio) term in the product recedes quickly to
one as A approaches zero, which implies the final term dominates the bias. For
m =T /A, the final term also tends to zero. Based on this result, as an indicative
trend, the square of the relative bias (which contributes additively in the relative
MSE (rMSE) calculation) of Algorithm 3 is of the order

(£-ED)

1 1
2 < const(T") x — exp (— ) ,

A 2A
where £ is given in (4.6). This result is commented on further in Section 5.1.

4.2.3. Further comments

The following idea, based on Wald’s identity for sampling, is used by
Fearnhead et al.| (2010) to deal with negative weights in particle filtering. We
describe it here in the context of a single step within particle filtering, and discuss
its implications for estimating the likelihood. Consider X, ~ v, and let G?(z,) be
a nonnegative function, also assumed to be #-dependent. The aim is to estimate
the likelihood L(6) = E? (G(X,)). Assume there exists an unbiased estimate of
G’ (x) for any (6, x¢), defined as follows. Let p?(e|xy) be a conditional probability
density function on the real line with mean [~ _ep’(e|zo)de = G?(z,). Given
Xo, let E® for i = 1,2,..., be independent samples from p’(e|X,), and let
K=inf{k>0:ED ...+ E® >0}, Then, L = 31| E® has mean

E’(L) = E? (G*(Xo)E’(K|X,)) # L(0) x constant,

where the product GY(X,)E?(K|X,) is Wald’s identity, E?(K|Xj) is the mean of
the number of independent draws needed to ensure positivity, and the constant
on the right is #-independent; we need the 6-independent constant to use the
method for model calibration. This approach of sampling until the estimate
is positive is proposed in [Fearnhead et al.| (2010) to address the event that a
negative estimate is returned by p?(e|Xy). The constant E?(K|X,) seems to
play no role in a particle filtering algorithm, because the weights are normalized
before being used as an input to the resampling step. However, E?(K|X,), which
is clearly X,-dependent, can be 6-dependent as well, for example, as it would for
G (xo) = Ef {exp(— fOA A(X,)ds)} and its estimate E(® returned by Algorithm
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2 (for PE(n,0,A,z)), because K depends on the law of {X;};. Furthermore,
the function G?(z,) can be 6-dependent. Because there is no easy way to
compute or remove the factor E?(K|X,), this precludes its use in, for example,
a PMMH sampler, which requires a (positive) unbiased estimator of L(#) to
generate MCMC samples from the posterior density of the model parameters 6.
We provide several experiments in S5 of the Supplementary Material to show
that the idea of using Wald’s identity for sampling returns biased estimates.

Finally, note that it is possible to adapt our approach slightly to return
(perfectly) unbiased estimates. Recall that a particle filter such as Algorithm 3
may return an unbiased estimate of not only the normalizing constant, but also,
more generally, of any unnormalized path expectation (Del Moral (2004)); that
is, the quantity

iy YL WX, X))

S 751 (4.12)

is an unbiased estimate of
{ <H)\ Xt yt |Xt )) \I/(th, ce 7Xt9n) X SO(XtDAa ce aXtﬁl)} )

where W(-) is the expectation of a product of Poisson estimates of the form
1%, max(0, E;). This quantity is equal to exp(— fo s)ds) if we replace each
truncated estimate max(0, ;) with the estimate E; 1tself.

We may use this to estimate the marginal likelihood of an alternative model
in an unbiased way, based on a different likelihood for the data (given the states).
In particular, consider a variant of Algorithm 3 in which maX{E,(f), 0} is replaced
with \E,(:)] in line 11. (Adapt the definition of ¥ accordingly.) The weights remain
nonnegative, and the output remains biased (for estimating the true likelihood
L£). In (4.12), replace ¢(-) with (—1)", where n is the number of negative Poisson
estimates Ej that have occurred while constructing the considered trajectory (the
argument of ¢(-)). It is easy to see that this is an unbiased estimate of the true
likelihood L. (Formally, ¢ is then a function of both the state trajectory and the
E,. variables generated while constructing that trajectory).

In our numerical experiments, we set the tuning parameters to make the
number of occurrences of negative weights almost zero, so we find no practical
benefit in removing the bias (entirely). However, this approach may be useful for
more complicated scenarios.

5. Numerical Experiments

In this section, we present numerical examples to compare Algorithm 1
and Algorithm 3 in terms of their likelihood estimation, smoothing, and model
calibration using a particle MCMC.
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Figure 2. Plot of relative variance, defined as E{(£x)?}/L% — 1, for La given by
Algortihm 1 in (a) versus 1/N and in (b) as A varies on a log scale.

5.1. One-dimensional example with exact calculation

We first consider a simple example in which the state X, is a one-dimensional
Brownian motion and X, is observed in zero-mean unit-variance Gaussian noise.
The intensity function of the Cox process is A(x) = x 4+ 10. The state starts at
xo = 0 at time ¢ = 0, and the record of observations stops at time 17" = 2.

The integration that defines this likelihood can be computed exactly, and
thus can serve as a ground truth; see S6 of the Supplementary Material. We
assume we observe n, = 2 data-points to make it possible to perform a large
number of runs; see S8 of the Supplementary Material for extra results with
n, > 2. For the analysis below, we use the relative MSE (rMSE) as the metric
to measure the quality of the likelihood estimates.

The numerical results displayed in Figure 2a show that the estimate of
LA given by Algorithm 1, for any A, has a relative variance that is inversely
proportional to the number of particles N used in the particle filter, where the
relative variance is defined as E{(£1)?}/£% — 1. (Note though that the slope
varies very slightly with 1/N.) In Figure 2b, as expected, the relative variance
for a fixed N stabilizes as A decreases. This is because a time-discretized particle
system with systematic resampling converges to a continuous time limit as A
approaches zero, as shown in |Chopin et al.| (2022)). For any sufficiently smooth
function A(-), the weak error of the Euler scheme (i.e., the relative bias (£a/L)—1
in our case) is at most of order A (Kloeden and Platen| (2011, Chap. 17)). Overall,
this implies the following empirical relationship for all values of n, when A is
small:

N 2
rMSE = 1E{(£A - ) } =L b A= L A2 (5.1)

L2 N CA
where C denotes the CPU time spent running the particle filter (Algorithm 1)
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Figure 3. Plot of rMSE versus A for a fixed 1.5s CPU time for likelihood estimates
computed by Algorithm 1 (using (3.5)) for (a) n, = 2 and (b) n, = 13. Overlaid is
the fitted relationship in (5.1) to a range of A-values around the minimum of rMSE,
illustrated by the solid segment of the line. The dashed segment covers data points not
used in fitting. The coefficients of the fitted curve to rMSE, are only 2.4% different to
that of the rMSE data points; hence, it would be indistinguishable graphically.

to completion. In the last equality, we use the relationship that C increases
linearly with NT'/A, which corresponds to T'/A propagation steps for N particles.
(Figure 3 confirms (5.1)).) For a fixed CPU time C, the value of A that minimizes
the rMSE is A* = (cl/(02C))1/3. Substituting this A* into gives the best
rMSE value for each C, of order O(C~?/?) as shown in Figure 4. Similarly, we can
apply the same idea to determine A that minimizes the rMSE for Algorithm 3,
as follows:

1 1
<a,2 2 .
rMSE +Axp< QA) CA+AXP( 2A> (5.2)

Because the minimization problem cannot be solved exactly, we use a surrogate
for A*, in its vicinity, by minimizing f(A) = ¢;/(CA) 4+ ¢y exp (—(1/(2A))). Note
that tMSE(A) > f(A), for 0 < A < 1. Minimizing this equation gives A* =
(2log(c2C/(2¢1))) " . Hence, A*, not being the true minimizer of (5-2), is a more
conservative solution. Substituting this A* into gives an indication of the
best TMSE value for each C, of order O (C'log(C)).

recommend this optimization.

In practice, we do not
Instead, choose (A,n), as discussed in Section
4.2.1, and then stick to this choice, even if more CPU time C becomes available.
We define rMSE, as in , with £ replaced with Ly = £ + €. Recall that
we denote by Lyc the Monte Carlo estimate returned by the modified Algorithm
3, which uses the true path integral given by S6.1 of the Supplementary Material,
rather than the Poisson estimate. We ensure that the Monte Carlo error € is
sufficiently small that our conclusions when comparing the accuracy of Algorithms
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Figure 4. Comparison between the likelihood estimates computed by Algorithm 1
(using ) and Algorithm 3 (using (4.6)). The true likelihood is approximated using
Algorithm 3 with N = 10% particles and A = 0.02. Note that Algorithm 1 uses optimized
A and N to obtain the best MSE for a given CPU budget. Algorithm 3 uses fixed
A = 0.02 and the design choice for 1 described in Section 4.2.1.

1 and 3 are not rendered inaccurate for the case n, > 2. We use n, = 2 to choose
a value of e that ensures that the best A found using rMSE, is close enough to
the desired (best) A for the rMSE.

Continuing with n, = 2, Figure 3a reports the rMSE and rMSE, of Algorithm
1 for a fixed CPU budget and different A-values, with the expected relationship in
fitted to a range of A-values around the minimum. Here, rMSE, uses Lyc,
which is the average estimate of £ given by 10° runs of the modified Algorithm
3, with each run using N = 10° particles. We calculate the relative error between
A* and A*, and between rMSE,(A?) and rMSE(A*), using their fitted values for
c; and cg,

rMSE,(A¥) — rMSE(A*)
rMSE(A*)

=1.1x10"7, = 0.024.

AF — A
A*

This shows that 10%-averaged runs of the modified Algorithm 3 with N = 10°
particles is more than sufficient to produce an accurate estimate Lyc as a
substitute for £. We use the same number of Monte Carlo repetitions and N
for values of n, > 2 up to n, = 13, which are reported in Figure 3b. Figures 3a
and 3b validate the expression for the rMSE in the locality of the minimum
A. We continue to use Lyc to compare Algorithms 1 and 3. We use Ly to find
the smallest rMSE that Algorithm 1 can achieve for a given CPU budget, and
use Lyc to compute the rMSE of Algorithm 3 for the same CPU budget. For
Algorithm 1, for each value of C, we repeat the procedure illustrated in Figure 3 to
find A that yields the smallest rMSE,; this A is the minimizer of the fitted line, as
illustrated in Figure 3b. For Algorithm 3, we spend the budget on increasing the
number of particles N, while using a fixed value of A = 0.02. The results of this
comparison are shown in Figure 4. It appears that Algorithm 3 achieves the best
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decay rate of the rMSE within a CPU budget, which is the inverse relationship,
whereas Algorithm 1 achieves only a rate of C~2/3.

5.2. Three-dimensional single-molecule model

In this section, we apply our method to track a moving biological molecule
in a live cell, in three dimensions, arising from single molecule fluorescence
microscopy. An illustration of how the data are generated is given in Figure 5a.
Single molecule fluorescence microscopy is a live cell imaging technique in which
molecules of interest are tagged with a fluorophore, which are then excited using
light at a particular frequency. These molecules fluoresce under excitation and
emit light at different frequencies, which is then captured by a CCD camera after
optical magnification. The recorded images are used to uncover their motion. In
particular, the moving molecule follows a diffusion model, and its observations
are the (random) arrival times and locations of individual photons. The photon
emission process is modeled as a Poisson process (Ober, Ward and Chao| (2020))),
where its photon rate, denoted as A(t), is the rate at which photons are emitted
by the object at time ¢. [d’Avigneau, Singh and Ober| (2022) and Vahid, Hanzon
and Ober| (2020) assume a static molecule on the optical axis, where they apply
particle filtering to jointly calibrate the model and localize the single molecule. In
contrast, we follow the approach of |Szalai et al.| (2021) to incorporate movement
in all three coordinates, where the photon arrival times are governed by the
depth of the molecule (see Figure 5b). The excitation of the molecule varies
inversely with the molecule’s depth, owing to the attenuation of the excitation
light. [Szalai et al| (2021) show that the photon rate A(-) decays exponentially
along the z3-axis, A\(x3) = Agexp(—z3/d), where )¢ denotes the rate of photons
emitted by a fluorophore at z3 = 0. Photon arrival locations are imprecise (noise
corrupted) observations of the molecule’s location in the other two dimensions,
as governed by diffraction theory. The relevant photon location model is the
three-dimensional BW model for the point spread function, which describes how
a point light source appears in an image as it moves in and out of focus (Ober,
Ward and Chao (2020)). Hence, the molecule’s depth affects the photon arrival
rate and arrival locations, the former through a state (depth)-dependent photon
detection rate A\(X;), and the latter through the three-dimensional BW model.

We let (X;)o<t<r = (Xi4, Xos Xs4)oeper denote the three-dimensional
location of the molecule at time ¢. The three Eomponents of the molecule state
are its (w1, s, w3)" location, and are assumed to follow the Ornstein—Uhlenbeck
(OU) model,

dX’i,t = _gbi(Xi,t — ,U/Z)dt + dWi,ta fOI' 7= 1, 2, 3,

where ¢; > 0 and (W, ;)o<i<r, for ¢ = 1,2,3, are independent Brownian motions.
We assume that the initial distribution that generates X is N (p, Xo), where the
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Figure 5. Tllustration of (a) how the image is acquired by a microscope, and (b) the total
internal reflection fluorescence. An excitation beam with wavelength A, traveling from
a high refractive index (n1) medium into a lower refractive index (ns) medium is totally
internal reflected at a planar interface. The reflection generates a thin layer of light in the
lower refractive index medium, which has an intensity that decays exponentially along
the z3-axis with a characteristic constant d. While the molecule moves in the field, it is
illuminated and thus fluoresces. Parameter i along the z3-direction is the mean of X3,
which the molecule diffuses about.

object space — image space

covariance matrix Yy = py X I3x3. The transition density f{(z'|z) of the process
is

1
Xirrs|(Xip = ;) ~ N(ui + e (zy — pi), =— (1 — 625¢i)>, i=1,2,3.

" 2¢;
(5.3)

For an object located at (z1,z2,7z3)T € R? in the object space (prior to
magnification), the location (on the detector) at which a photon is detected is
specified probabilistically using a two-dimensional probability density function as

' (0le) = G (M7l = (mm)T). ye R (5.4)
where M € R?*? is an invertible lateral magnification matrix, and the image
function ¢,, : R* — R describes the image of an object in the detector space
when that object is located at (0,0, z3) in the object space, where z3 € R is the
location of the object on the optical axis. This three-dimensional BW model is
the resulting image function, derived from diffraction theory, for a point source
that can also be out of focus (Born and Wolf| (2013))). For (xy,x,) € R?,

1 21, Jmnias
[ a5+ o) exo (T8 o

where ng is the refractive index of the objective lens immersion medium, and n,,

2

, (5.5)

2
4mnZ

AZ

Quy (21, 22) =

is the numerical aperture of the objective lens. In addition, A, is the emission
wavelength of the molecule, and Jo(-) and J;(-) represent the zero-th-order and
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Figure 6. (a) True trajectory of a molecule; (b) observed photon locations; (c¢) estimated
(21, z2) molecule locations; and (d) true xs molecule locations and estimated location.

the first-order Bessel function, respectively, of the first kind. The probability
density functions of the BW model at different defocus levels are plotted in S9 of
the Supplementary Material. Note that a large defocus tends to produce images
of poor quality, making it more difficult to estimate the molecule’s position.

Under this setup, instead of considering the molecular movement as a
reflected diffusion process, we adopt a simpler approach by assuming a standard
OU process, which is suitable if the molecule does not hit a boundary (i.e.,
either cover slip 3 = 0 or its maximum depth d) over its observation period,
for example, if the observation period is short and/or the molecule is diffusing
about a mean depth p in the middle of a cell with large ¢3 (i.e., stronger attraction
to p); see Figure 5b.

In Figure 6a, we plot the true trajectory of the molecule for the numerical
studies, which is generated by the SDE in with the parameters {¢ =

(¢17¢27¢3)T = (17174)T7N (M17M27M3)T = (07072)T7p0 1/(2¢)} for the
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Figure 7. Plot of rMSE, of likelihood estimates versus CPU time for Algorithm 3 with
A = 0.1 and Algorithm 1 with A = 0.03,0.003 and 0.0003. rMSE of likelihood estimates
based on the average estimate of £ given by 10 runs of Algorithm 3 with each run using
N = 10° particles, and the design choice for [ and 7 given in Section 4.2.1. Here 600
CPU seconds corresponds to 2 x 10° particles for Algorithm 3.

time interval [0, 5.0]. We used a thinning algorithm (detailed in S10 in the
Supplementary Material) to generate the observation times by using the intensity
function (see (5.2))) with parameters {\¢ = 100,d = 20um}. Given these
observation times, we generate the observed photon locations using the photon
distribution profile given by and . The associated parameters are
{M = mlyyp,m = 100,n, = 1.4, \, = 0.52um, ng = 1.515,02 = 49 x 10~ *pm?},
and the corresponding data set of photon locations is shown in Figure 6b. The
colors in Figure 6a indicate time, becoming lighter as more time passes. Figure
6¢ shows the mean of the estimated (X, X,) locations of the molecule found
using Algorithm 3, which does track the true trajectory. Figure 6d shows the
true X3 position of the molecule, the mean of the estimated X3 positions (also
obtained using Algorithm 3), and the standard deviations. During periods with
no observations, the estimated Xjs-value is larger, as expected, because this
corresponds to a smaller photon arrival intensity function. Figure 6d also shows
that large X3-values degrade the estimation quality (which is more clearly seen for
the Xjs-values), owing the BW observation model for an out-of-focus molecule;
see . Additional results of this phenomenon are reported in S11 of the
Supplementary Material.

Figure 7 shows a comparison between the estimation quality of Algorithms 1
(with A = 0.03,0.003 and 0.0003) and 3 (with A = 0.1) for this single-molecule
example. For both methods, the CPU time increases with the number of particles
used in the algorithms. The superiority of Algorithm 3 is apparent, as measured
using TMSE of the likelihood estimate. The best A for Algorithm 1 is not



DE-BIASING PARTICLE FILTERING FOR A CONTINUOUS TIME HIDDEN MARKOV MODEL 1235

necessarily the smallest one for a fixed CPU budget. This also has practical
consequences. High-frequency data have potentially more time intervals between
observation arrivals that are much smaller than A. This leads to a small bias
for Algorithm 1, although at a higher computational cost. Further reducing the
bias, the rMSE is dominated by the variance if the CPU budget permits only a
smaller number of particles.

5.2.1. Model calibration using a particle MCMC

Estimating the parameters of the molecular dynamics is also important
in single molecule studies. For example, |d’Avigneau, Singh and Ober| (2022)
calibrate the model using a maximum likelihood estimation after discretizing
the path integral. In contrast, we use the PMMH algorithm |Andrieu, Doucet
and Holenstein| (2010) to sample from the posterior density p(6, ., |Yo.m ), where
0 = (¢, ). Data are simulated from the model {¢ = (1,1,4)7, u = (0,0,2)",py =
(0.5,0.5,0.125) " }, with the intensity function parametrized by {\¢ = 25,d = 20}.
The parameters of the BW model remain the same as before. A precise estimation
of ¢3 requires a longer time series, because it is weakly identified; we use 350
observations collected in the time interval [0,15s]. The following independent
priors are used: ¢3 ~ U(0,10) and pz ~ U(0,10). We use a normal random-
walk Metropolis—Hastings proposal with initial covariance 0.1 x I,42 to update
the parameters jointly. We use the continuous covariance adaptation scheme of
Haario, Saksman and Tamminen| (2001)) in the PMMH algorithm. We chose the
following three experimental settings:

e Experiment 1 (low CPU budget): C = 1.5s, allowing a coarse time discretiza-
tion that coincides with the times of arrivals of the data for both Algorithms
1 and 3. This forces a large A in L for Algorithm 1. We adjust IV so that
the CPU budget is the same for both algorithms.

e Experiment 2 (larger CPU budget): C = 2.5s permits a finer time discretiza-
tion than the observation arrival times. The best A and N (within the CPU
budget) are chosen for Algorithm 1 using the procedure outlined in Section
5.1. Using a larger CPU budget allows a smaller A than that in Experiment
1in LA. For Algorithm 3, we use A = 0.01 and its cost-adjusted V.

e Experiment 3 (effective sample size-based comparison): C = 2.0s; here, we find
the effective sample size (ESS) for the PMMH using Algorithm 3 with A =
0.01, and then choose the best A and N for Algorithm 1, while ensuring its
ESS matches that of Algorithm 3. The ESS, which measures the number
of “independent samples”, is M/(—1+ 2 ZtK: o (P2t + pais1)), where p, is the
estimated autocorrelation at lag n, and K is the last integer for which the
sum in the sum bracket is still positive. The general trend is that the ESS of
the PMMH with Algorithm 1 increases with A (i.e., larger N for the fixed
CPU budget), although the estimation is more biased for Algorithm 1.
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Figure 8. PMMH experiments: posterior densities p(u3|yt1:tnp) and p(¢3|yt1;tnp).

We ran the algorithms 10° times with 10* burn-in iterations.
displays the estimates of the marginal posterior densities for ps and ¢5 for all
three experiments. Experiment 1 shows that Algorithm 3 effectively removes the
bias in the estimation of the parameters, whereas the performance of Algorithm
1 is compromised by the limited CPU budget. Experiment 2 shows that, given a
sufficient budget, Algorithm 1 achieves almost the same performance as that of
Algorithm 3. A comparison between experiments 1 and 2 shows that the unbiased
posterior produced by Algorithm 3 is unaffected by the CPU budget. Experiment
3 is carried out under the setting that both algorithms produce equally “efficient”
MCMC samples for a fixed CPU budget. The results show that Algorithm 1 still

yields some bias in the estimation.

Figure 8



DE-BIASING PARTICLE FILTERING FOR A CONTINUOUS TIME HIDDEN MARKOV MODEL 1237

6. Conclusion

We have examined smoothing and model calibration for a partially observed
diffusion with a Cox process observation model. We estimate the intractable
likelihood using the positive part of a Poisson estimate, for the path integrals
within, embedded within particle filtering. The probability of encountering a
negative Poisson estimate in one complete particle filtering pass through the
data is strongly controlled by adjusting n = O(Al). As such, because of
the rarity of the occurrence of a negative estimate, which triggers the particle
weight truncation, we effectively remove the time discretization error that biases
conventional particle implementations, such as that of |[d’Avigneau, Singh and
Ober| (2022).

Our numerical results show that the proposed particle method (Algorithm 3)
outperforms the conventional (discretization-based) particle filter in terms of the
rMSE, where ours decays with order O(C~!) compared to O(C~2/3), where C is the
computational budget. We then applied our particle filter to a challenging three-
dimensional single molecule microscopy example to both estimate the trajectory
of the moving molecule and calibrate the model. We clearly show the bias in the
posterior distribution for the model parameters computed using a conventional
implementation, such as that of |[d’Avigneau, Singh and Ober| (2022)), whereas
using the proposed method, the bias is not discernible. Although the bias in
the conventional method can be reduced by employing a smaller A, the time
discretization interval, this not only requires significant additional CPU time,
but also prohibits the application of backward sampling steps in particle filtering.
This is a possible direction for future work, that is, defining a forward filtering
backward sampling implementation of our method. In the context of diffusions,
this is a challenging problem; see Yonekura and Beskos| (2022) for a recent study.

7. Supplementary Material

Section S1 contains the derivation of bridge density for linear Gaussian
diffusion. Section S2 provides the proof of Lemma 1. Section S3 presents
the derivation of expectation of the unqualified probability bound. Section S4
presents the proof of Lemma 2. Section S5 provides the experiments for the use
of Wald’s identity. Section S6 shows the exact computation of the likelihood
function. Section S7 includes no observation case and two observations case.
Sections S8 provides the empirical relationship between relative variance and A.
Section S9 provides the BW model and its point spread function. Section S10
describes the thinning algorithm for creating single-molecule data. Section 11
provides the results of additional single-molecule experiments.
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