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Abstract: The arc-sin transformation has long been used as a variance stabilizer

for the binomial sample proportion arising out of binary data. The natural back-

transformed function is useful for returning an estimate to the original scale of the

parameter of interest. However, it is known that such a transformation leads to bias

when estimating the original parameter of interest. In this study, we find explicit

asymptotic bias-adjusted empirical Bayes (EB) estimators for binomial sample pro-

portions in the context of small area estimation. We obtain an explicit second-order

correct approximation of the mean squared errors (MSEs) of such estimators, as well

as second-order correct estimators of these MSEs. Moreover, the proposed EB esti-

mators and corresponding MSE estimators outperform their competitors in terms

of the bias and variance, as demonstrated in a simulation study. We apply our

methodology to real data associated with Coronavirus Disease 2019 (COVID-19)

for each prefecture in Japan.

Key words and phrases: Area level model, COVID-19, linear mixed model, mean

squared error estimation.

1. Introduction

Small area estimation is receiving increasing attention from both from the

public and the private sectors. An important example is the small area estimation

of poverty and income undertaken by the United States Bureau of the Census.

Federal agencies are often mandated to produce reliable estimates for small areas,

such as counties, census tracts, and school districts. Of equal importance is to

provide reliable small domain estimates cross-classified by age, sex, race, and

ethnicity. For more details on small area estimation, refer to Ghosh and Rao

(1994), Pfeffermann (2002, 2013), and Rao and Molina (2015).

Small area estimation can either be at the area level or at the unit level. The

former is more popular, because in most instances, unit level data are not available

to secondary users of survey data. The classic area level model is attributed to Fay

and Herriot (1979), and is essentially a mixed effects normal linear model, with
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the area level effect being the random effect. There are two variance components,

the sampling error variance and the random effect variance. Owing to the non-

availability of microdata, in order to avoid non-identifiability, the sampling error

variance is often assumed to be known, whereas in reality, it is only an estimate.

We are interested in the analysis of binomial sample proportions. Then, the

normality assumption of the original data can only be justified when the sample

size within an area is very large. The sampling variance in a binomial model is a

function of the unknown sample mean, and can hardly be assumed to be known.

The arc-sin transformation (Anscombe (1952); Efron and Morris (1975)) is a

classical transformation that achieves the dual purpose of a closer approximation

to normality of the transformed data and a known variance.

In small area estimation, it is important to consider situations in which the

sample size within an area is quite small, as is common in several research fields,

such as survey studies at the early stage of a pandemic in epidemiology. Even in

such situations, the arc-sin transformation can very often justify the assumption

of a known sampling variance. Casas-Cordero, Encina and Lahiri (2015) also use

this transformation for poverty mapping.

We therefore focus on this transformation and use the Fay–Herriot model for

this transformed data. It is important to transform back properly to the original

scale to arrive at the final conclusion. However, the natural back transformation

could produce a severe bias, especially when the sample size within an area is not

sufficiently large.

The arc-sin transformation, a variance-stabilizing transformation, is a spe-

cial case of the general variable transformation. A popular choice is the log-

transformation of skewed data, resulting in more symmetrical transformed data,

and a readily implementable procedure based on the log-normal distribution.

Slud and Maiti (2006), Ghosh, Kubokawa and Kawakubo (2015), and Molina and

Martin (2018) adopted this approach, providing results for the back-transformed

original parameters. In contrast, Sugasawa and Kubokawa (2017) focused on a

more general dual-power one-to-one transformation of the original data, originally

proposed in Sugasawa and Kubokawa (2015).

Once the back transformation is made, Slud and Maiti (2006) proposed a

multiplicative method for this bias correction. Sugasawa and Kubokawa (2017)

suggested a non-explicit empirical Bayes (EB) estimator, and performed an anal-

ysis based on the general dual-power transformation in terms of the bias and the

mean squared error (MSE).

In this study, for arc-sin transformed data, we find an explicit EB estimator

that is also geared toward bias correction, but is more optimal in the present
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context than is the multiplicative approach proposed by Slud and Maiti (2006)

from an MSE point of view. Moreover, for the evaluation of the EB estimator, we

obtain an explicit second-order approximation of the MSE and its second-order

unbiased estimator, maintaining strict positivity.

The remainder of the paper proceeds as follows. In Section 2, we introduce

EB estimators for untransformed data and find an explicit EB estimator of the

original parameters of interest for arc-sin transformed data. In Section 3, we

analytically obtain the second-order MSE approximation and its explicit second-

order unbiased estimator for a large number of small areas. We evaluate our

method numerically in Section 4 by comparing it with other existing methods.

In Section 5, we illustrate the proposed method by predicting the positive rate in

polymerase chain reaction (PCR) testing for Coronavirus Disease 2019 (COVID-

19) for each prefecture in Japan. All technical proofs are relegated to the online

Supplementary Material.

2. EB Estimation for Arc-sin Transformation

The Fay–Herriot model (1979) is a well-known area level model for small-area

estimation, and is given as follows:

For i = 1, . . . ,m,

Level 1 : g(yi)|θi
ind.∼ N(θi, Di),

Level 2 : θi
ind.∼ N(x′iβ,A), (2.1)

where g(·) is a smoothed monotone function of the original data y = (y1, . . . , ym)′,

with m small areas. In small area estimation, yi is referred to as the direct

estimate, and is obtained from data for the ith area only. In the level-1 model,

θi and Di denote the true mean and the sampling variance, respectively, of g(yi)

for each area i. The area-specific auxiliary variables xi = (xi1, . . . , xip)
′ can be

linked to θi for each area i, where xi are p-dimensional vectors with p < m. The

unknown parameters are the coefficient vector β ∈ Rp and the model variance

parameter A. The sampling variance Di is assumed to be known in the Fay–

Herriot model (2.1) to avoid non-identifiability.

In this section, we first recall some well-known results for untransformed

data, that is, g(yi) = yi. We obtain a Bayes estimator θ̂Bi of θi that minimizes

the MSE E[(θ̂i−θi)2] among all predictors θ̂i, where the expectation E is defined

with respect to the joint distribution of y and θ = (θ1, . . . , θm)′:

θ̂Bi ≡ θ̂Bi (β,A) = (1−Bi)yi +Bix
′
iβ,
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where the shrinkage factor Bi = Di/A+Di shrinks yi toward x′iβ. Instead of θ̂Bi ,

EB estimator of θi is used in practice, which replaces the unknown parameters β

and A in θ̂Bi with β̂(Â) = (X ′V̂ −1X)−1X ′V̂ −1y and some consistent estimators

of A, respectively for large m. Here, X = (x1, . . . , xm)′ and V = diag{A +

D1, . . . , A+Dm}:

θ̂EB
i ≡ θ̂EB

i (Â, β̂) = (1− B̂i)yi + B̂ix
′
iβ̂.

One can adopt the iterative moment-based approach of Fay and Herriot

(1979) or an explicit method of a moment estimator of A, as suggested in Prasad

and Rao (1990). Other options are the maximum likelihood (ML), the residual

maximum likelihood (REML) estimator of Datta and Lahiri (2000), and some

adjusted likelihood (AL) estimators (Li and Lahiri (2010); Yoshimori and Lahiri

(2014); Hirose and Lahiri (2018)). In this study, to establish our theoretical

results, we consider an estimator Â of A such that

i) Â ≡ Â(g(y)) is even and translation invariant for arbitrary g(y) and Xβ, as

in Kackar and Harville (1981, 1984).

ii) Â(g(y)+µ) = Â(g(y))+r(g(y), µ), where r(g(y), µ) is such that E[r(g(y), µ)2] =

O(m−2).

iii) E[Â−A] = O(m−1) and E[(Â−A)8] = O(m−4), for large m,

where g(y) = (g(y1), . . . , g(ym))′.

These conditions hold for the estimators mentioned above under certain reg-

ularity conditions.

Second-order unbiased MSE estimation was developed by Prasad and Rao

(1990), Datta and Lahiri (2000), Datta, Rao and Smith (2005), and others. For

instance, Prasad and Rao (1990) obtained the second-order approximation of the

MSE of θ̂EB
i and its second-order unbiased estimator using the explicit moment

estimator of A, namely ÂPR, as follows:

E[(θ̂EB
i (ÂPR)− θi)2] = g1i(A) + g2i(A) + gPR

3i (A) + o(m−1),

E[g1i(ÂPR) + g2i(ÂPR) + 2gPR
3i (ÂPR)] = E[(θ̂EB

i (Â)− θi)2] + o(m−1), (2.2)

respectively, where g1i(A) = Di(1−Bi), g2i(A) = B2
i x
′
i(X

′V 1X)−1xi, and gPR
3i (A)

= B2
i V

PR
A /(A+Di), with V PR

A = 2
∑

i(A + Di)
2/m2. The residual maximum

likelihood estimator of A, namely ÂRE , is also widely used in practice. Datta

and Lahiri (2000) and Das, Jiang and Rao (2004) obtained the second-order

approximation of the MSE of θ̂EB
i using ÂRE , and its second-order unbiased
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estimator, as follows:

E[(θ̂EB
i (ÂRE)− θi)2] = g1i(A) + g2i(A) + gDL

3i (A) + o(m−1),

E[g1i(ÂRE) + g2i(ÂRE) + 2gDL
3i (ÂRE)] = E[(θ̂EB

i (ÂRE)− θi)2] + o(m−1), (2.3)

respectively, where gDL
3i (A) = B2

i V
DL
A /(A+Di), with V DL

A = 2/tr[V −2].

In the present scenario, the responses y1 . . . , ym from m local areas are mod-

eled as

yi|pi
ind.∼ Bin(ni, pi), (i = 1, . . . ,m).

The arc-sin transformation is given by zi ≡ g(yi) = sin−1(2yi − 1), with the

corresponding parameters θi = sin−1(2pi − 1). This transformation has been

employed as a variance-stabilizing transformation for direct-proportion estimates,

as in Efron and Morris (1975).

Our interest lies in estimating the proportion pi. We also consider the Fay–

Herriot model for the transformed data zi, namely,

zi|θi
ind.∼ N(θi, Di),

θi
ind.∼ N(x′iβ,A). (2.4)

where Di = 1/ni.

We now state a basic lemma and its corollary.

Lemma 1. Let some n-dimensional random vector Wn ∼ N(0,Σ) with nonsin-

gular matrix Σ, and let f(Wn) be some integrable function such that f(Wn) ∈ R.

Then,

(i) E[cos(c′Wn)f(Wn)] =
1

2
exp

(
− c
′Σc

2

)
{E[f(Wn+iuΣc)]+E[f(Wn−iuΣc)]},

(ii) E[sin(c′Wn)f(Wn)] =
1

2iu
exp

(
− c
′Σc

2

)
{E[f(Wn+iuΣc)]−E[f(Wn−iuΣc)]},

where c denotes some n-dimensional vectors of which the components are all

constants, and iu =
√
−1 denotes some constant vectors and the imaginary unit,

respectively.

The above lemma is proved in Section S1.1 of the Supplementary Material,

and leads immediately to the following corollary.
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Corollary 1. Let the n-dimensional random vector Wn ∼ N(µ,Σ) with nonsin-

gular matrix Σ. Then, we have

(i) E[cos(c′Wn)] = exp

(
− c′Σc

2

)
cos(c′µ),

(ii) E[sin(c′Wn)] = exp

(
− c′Σc

2

)
sin(c′µ).

Using the model-based approach, we have the posterior

θi|zi
ind.∼ N

(
(1−Bi)zi +Bix

′
iβ,

1−Bi

ni

)
, (2.5)

where Bi = 1/(1 + niA).

For notational convenience, henceforth, we write θ̂Bi = (1 − Bi)zi + Bix
′
iβ. The

Bayes estimator of pi is then given by

p̂Bi = E[pi|zi] =
1

2
(1 + E[sin θi|zi]), (i = 1, . . . ,m).

By (2.5) and Corollary 1, we have

p̂Bi =
1

2

[
1 + exp

(
− g1i(A)

2

)
sin(θ̂Bi )

]
. (2.6)

To find an EB estimator of pi, we continue to consider the estimator of the model

variance parameter A mentioned in the previous section. We now propose the

explicit EB estimator of pi as follows:

p̂EB
i =

1

2

[
1 + exp

(
− g1i(Â)

2

)
sin(θ̂EB

i )

]
, (2.7)

where θ̂EB
i = (1− B̂i)zi + B̂ix

′
iβ̂, with Z = (z1, . . . , zm)′ and β̂ = (X ′V̂ −1X)−1X ′

V̂ −1Z.

Hereafter, we assume the following regularity conditions:

R1 rank(X) = p is fixed for large m;

R2 supi≥1 hii = O(m−1) for large m, where hii = x′i(X
′X)−1xi;

R3 0 < infi≥1 ni ≤ supi≥1 ni <∞, 0 < A <∞.

One may consider using the following empirical natural back-transformed

predictor p̂N of pi:
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p̂Ni (θ̂EB
i ) =

1

2
[1 + sin(θ̂EB

i )], (i = 1, . . . ,m). (2.8)

However, this still does not take bias into account under the above regularity

conditions. For this model, the bias-corrected empirical predictor p̂SMi can be

obtained explicitly using the definition λ = (A, x′iβ), as suggested in Slud and

Maiti (2006):

p̂SMi = ρ(λ̂)p̂Ni (θ̂EB
i ), (i = 1, . . . ,m), (2.9)

where

ρ(λ) =
E[p̂Ni (θi)]

E[p̂Ni (θ̂Bi )]
=

1 + sin(x′iβ) exp(−A/2)

1 + sin(x′iβ) exp{−A2/(2(A+Di))}
.

To obtain ρ, we use Corollary 1. However, this approach, unlike the log-normal

case used in Slud and Maiti (2006), does not provide an optimal estimator from

an MSE perspective.

3. Bias and MSE evaluations of the EB estimator for the Arc-Sin

Transformation

3.1. Bias and MSE approximations of p̂EB
i

Our next objective is to evaluate the asymptotic bias and obtain the second-

order approximation of the MSE of p̂EB
i .

Here, we establish first a theorem for the asymptotic bias and the MSE of

p̂EB
i .

Theorem 1. Under the regularity conditions R1–R3, we have, for large m,

(i) E(p̂EB
i − pi) = O(m−1),

(ii) E[(p̂EB
i − pi)2] = Mi(λ) + o(m−1),

where Mi(λ) = M1i(λ) +M2i(λ), with

M1i(λ) =
1

8
(1− exp(−g1i(A)))(1 + exp(−2A+ g1i(A)) cos(2x′iβ));

M2i(λ) =
1

8
exp(−g1i(A))

{
g2i(A) + g3i(A) +

B4
i

4
VA

}
+

1

8
cos(2x′iβ) exp(−2A+ g1i(A))

{
g2i(A) + g3i(A)− B2

i (Bi − 2)2

4
VA

}
.

In the above, λ = (A, x′iβ) and E[(Â−A)2] = VA +o(m−1). These proofs are

given in Section S2.1 of the Supplementary Material. Note that supiMi tends to

zero when infi ni and m tend to infinity.
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The above result leads to the following corollaries.

Corollary 2.

(a) If we estimate A by ÂPR, then a second-order approximation of the MSE of

p̂EB(ÂPR) (i.e., correct up to order O(m−1)) is obtained by replacing V (A)

and g3i(A) in Mi(λ) with V PR
A (A) and gPR

3i (A), respectively. Recall that

V PR
A (A) and gPR

3i (A) are defined in (2.2).

(b) If we estimate A by ÂRE, then V (A) and g3i(A) in the second-order approxi-

mation Mi are replaced by V DL
A (A) and gDL

3i (A), respectively. Furthermore,

recall that V DL
A (A) and gDL

3i (A) are defined in (2.3).

3.2. MSE estimation

Next, we find an explicit form of the second-order MSE estimator of p̂EB(Â).

The following theorem helps to construct an explicit second-order unbiased MSE

estimator.

Theorem 2. We have, for large m, under regularity conditions R1–R3,

(i) E[M1i(λ̂)−M1i(λ)] = bM (λ) + o(m−1),

(ii) E[M1i(λ̂)− bM (λ̂) +M2i(λ̂)] = Mi(λ) + o(m−1),

provided max(|M̂1i|, |bM (λ̂)|, |M2i(λ̂)|) < Cms, with 0 < s < 1. Otherwise, we

need condition similar to (Das, Jiang and Rao (2004, p.831)), as given after

equation (4.7). In the above, note that

λ = (A, β), E(Â−A) = bA + o(m−1), E[(Â−A)2] = VA + o(m−1)

and

bM (λ) =− 1

8
exp(−g1i(A))

(
g3i(A)− bAB2

i +
B4

i

2
VA

)
− 1

8
exp(−2A+ g1i(A)) cos(2x′iβ){

2g2i(A)

B2
i

+ g3i(A)− bA(B2
i − 2)− (B2

i − 2)2

2
VA

}
− 1

8
exp(−2A) cos(2x′iβ)

(
2VA − 2bA −

2g2i(A)

B2
i

)
. (3.1)

These proofs are deferred to Section S2.2 of the Supplementary Material.

Note too that the regularity conditions R1–R3 are quite standard. See, for ex-

ample, Prasad and Rao (1990) and Datta and Lahiri (2000).



ARC-SIN TRANSFORMATION IN SMALL AREA ESTIMATION 713

Let

M̂0
i (λ̂) = Mi(λ̂)− bM (λ̂), (3.2)

where M̂i(λ) and bM (λ) are given in Theorem 1 and (3.1), respectively. Theorem

2 ensures M̂0
i (λ̂) is second-order unbiased.

The estimator Â can be replaced with other estimators, as mentioned in

Section 2. From the above theorem, we prove the following corollary.

Corollary 3.

(a) If A is estimated by ÂPR given in Prasad and Rao (1990), the explicit form

of the MSE estimator M̂0
i (λ̂) is obtained with Â = ÂPR, bA = 0, VA = V PR

A ,

and g3i(A) = gPR
3i (A), respectively.

(b) If A is estimated by the residual maximum likelihood estimator ÂRE, given in

Datta and Lahiri (2000), then the explicit form of the MSE estimator M̂0
i (λ̂)

is obtained with Â = ÂRE, bA = 0, VA = V DL
A , and g3i(A) = gDL

3i (A).

(c) One may use the adjusted residual maximum likelihood to maintain the strict

positivity of A given in Yoshimori and Lahiri (2014), denoted by ÂY L here-

after. This form of the MSE estimator is the same as that using ÂRE, except

Â = ÂY L.

An alternative adjusted residual maximum likelihood estimator may change

the form of the MSE estimator. For example, if we let ÂHL be the estimator,

as suggested in Hirose and Lahiri (2018), the explicit form of M̂0
i is similar

in form to that of ÂRE, except that Â = ÂHL and bA = 2/{tr[V −2](A+Di)}.

All of these MSE estimators may result in negative estimates. To circumvent

this problem, M̂0
i is replaced with an arbitrary strictly positive value or some

strictly positive estimate M̂∗i when M̂0
i results in negative estimates. As men-

tioned in Das, Jiang and Rao (2004), even for theoretical considerations, one can

use M̂∗i instead when the condition |M̂0
i | < Cms does not hold, with some gen-

eral positive constant value C and a small positive value s. For example, M1i(λ̂)

could be adapted as M∗i because 0 < M̂1i(λ̂) < 1/4 < ∞ holds almost surely

with either ÂY L or ÂHL.

To maintain the strict positivity of the MSE, we suggest the MSE estimator

M̂i such that

M̂i(λ̂) =

{
M̂0

i (λ̂) (0 < M̂0
i (λ̂) < Cms)

M̂∗i (otherwise),
(3.3)

where s is such that 0 < s < 3/5.
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The following theorem ensures that our estimator attains two desired prop-

erties in terms of the MSE estimation, namely, the second-order unbiasedness for

large m and strict positivity.

Theorem 3. Under the regularity conditions, we have for large m,

(i) E[M̂i −Mi] = o(m−1),

(ii) M̂i > 0 with probability one,

provided |M̂i(λ̂)| < Cms, with 0 < s < 3/5 and generic constant C, where

Mi = E[(p̂EB
i − pi)2] + o(m−1).

The proof of Part (i) is given in Section S2.3 of the Supplementary Material.

The proof of part (ii) is trivial.

4. Simulation Study

In this section, we implement two finite-sample simulation studies to evaluate

the performance of several back-transformed EB estimators using a Monte Carlo

simulation under the Fay–Herriot model (2.4).

To assess the effects of the number of small areas and the sample size n within

small areas, with A = 0.125, we set the simulation setting such that m = 15 and

50, and with the following three patterns of sampling variances Ds1–Ds3:

(Ds1) Di = 1/n, for all i, with n = 8;

(Ds2) Di = 1/n, for all i, with n = 16;

(Ds3) Di = 1/n, for all i, with n = 32.

We also considered three patterns of regression coefficients β ∈ {−0.5, 0, 0.5} for

each case with fixed x1i = 1. This setting comes from the fact that the natural

back-transformed empirical predictor (2.7) has bias, even for a large number of

small areas m when x′iβ 6= 0. Therefore, it is also important to investigate the

effect on the bias after changing β with x1i, fixed at one.

4.1. Bias and MSE

We first compare the bias and uncertainty of the following six back-transformed

estimators of pi for each combination of (m,β,Ds), where Ds indicates one of three

patterns of sampling variances:

1) Natural back-transformed EB estimator p̂N.RE
i defined in (2.8) when ÂRE

estimates A (denoted by “NBT.RE”);
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2) Natural back-transformed EB estimator p̂N.Y L
i defined in (2.8) when ÂY L

estimates A (denoted by “NBT.YL”);

3) Slud–Maiti-type bias-corrected estimator p̂SM.RE
i defined in (2.9) when ÂRE

estimates A. (denoted by “SM.RE”);

4) Slud–Maiti-type bias-corrected estimator p̂SM.Y L
i defined in (2.9) when ÂY L

estimates A ( denoted by“SM.YL”);

5) Bias-adjusted EB estimator p̂EB.RE
i suggested in (2.7) when ÂRE estimates

A (denoted by “EB.RE”);

6) Bias-adjusted EB estimator p̂EB.Y L
i suggested in (2.7) when ÂY L estimates A

(denoted by “EB.YL”);

Recall that the REML estimator ÂRE can produce zero estimates. On the other

hand, ÂY L maintains strict positivity, as shown in Yoshimori and Lahiri (2014).

In this simulation study, when the REML solution is negative, we let the REML

estimate be zero.

We evaluate the following simulated biases (SB) and MSEs (SMSE) using

R = 105 replications. We define SB and SMSE as follows:

SB ≡ 1

mR

m∑
i=1

R∑
r=1

(p̂
(r)
i − p

(r)
i ),

SMSE ≡ 1

mR

m∑
i=1

R∑
r=1

(p̂
(r)
i − p

(r)
i )2,

where p
(r)
i = (1+sin(θ

(r)
i ))/2 is constructed using the rth replication under model

(2.4). Furthermore, p̂
(r)
i denotes one of the above six estimators based on the rth

replication.

We display the results of the simulated biases (SB) in Figures 1 and 2 in

the case m = 15 and 50, respectively. Each figure comprises three sub-figures

for the sampling variance patterns Ds1–Ds3, and each x-axis indicates β. These

figures show that all six estimators exhibit good performance in terms of bias in

the setting β = 0, because the simulated biases are all very close to zero. These

results are reasonable, because all six estimators are unbiased when β = 0. In

contrast, for the other setting of β ∈ {−0.5, 0.5}, these figures show that the

natural back-transformed empirical predictors p̂Ni have relatively larger biases.

Although the left side of Figure 1 illustrates similar performance in terms of the
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Figure 1. Simulated biases (SB) of six empirical predictors in the case m = 15; each sub-
figure shows the results for the three sampling variance patterns Ds1(Left), Ds2(Center),
and Ds3(Right), with each x-axis indicating β ∈ {−0.5, 0, 0.5}.

simulated absolute bias, the simulated biases of the bias-corrected estimators 3)–

6) decrease as the sample size ni and the number of areas m increase. These

findings imply that the bias-adjusted EB estimators p̂EB
i and the Slud–Maiti-

type of bias-corrected estimators p̂SMi outperform the natural back-transformed

empirical predictors in terms of bias.

Figures 3 and 4 show the SMSEs against the combinations of β and the

sampling variance patterns Ds in the simulation setting m = 15 and 50. We

can see that these MSEs decrease as the sample size n increases in all situations,

agreeing with one’s intuition. The left sub-figure in Figure 3 indicates the result

for the smallest sizes of n and m in this simulation setting. It demonstrates the

superiority of the EB estimator (especially p̂EB.Y L
i ) in terms of the MSE, whereas

the other cases yield very similar performance for the six estimators.

In summary, the simulation results show that the back-transformed EB esti-

mators p̂EB
i have the best performance of all the candidates in terms of the bias

and MSE. This is especially evident where p̂EB.Y L
i based on ÂY L outperforms

p̂EB.RE
i using the REML method in terms of the MSE.
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Figure 2. Simulated biases (SB) of six empirical predictors in the case m = 50; each sub-
figure shows the results for the three sampling variance patterns Ds1(Left), Ds2(Center),
and Ds3(Right), with each x-axis indicating β ∈ {−0.5, 0, 0.5}.
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Figure 3. Simulated MSEs (SMSE) of six empirical predictors in the case m = 15;
each sub-figure shows the results for the three sampling variance patterns Ds1(Left),
Ds2(Center), and Ds3(Right), with each x-axis indicating β ∈ {−0.5, 0, 0.5}.
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Figure 4. Simulated MSEs (SMSE) of six empirical predictors in the case m = 50;
each sub-figure shows the results for the three sampling variance patterns Ds1(Left),
Ds2(Center), and Ds3(Right), with each x-axis indicating β ∈ {−0.5, 0, 0.5}.

4.2. Assessment of MSE estimation

Next, we evaluate the efficiencies of several estimators of the MSE of the EB

estimators p̂EB.Y L
i .

We set the same nine simulation settings of (β,Ds) for each m = 15 and 50

as in Section 4.1 and reconsider the following six estimators of the MSE of our

estimator p̂EB.Y L
i :

1) A second-order unbiased MSE estimator for untransformed data, based on the

ÂRE estimator: M̂NBT.RE
i ≡ g1i(ÂRE) + g2i(ÂRE) + 2g3i(ÂRE) mentioned

in (2.3) (denoted by “NBT.RE”);

2) A second-order unbiased MSE estimator for untransformed data, based on the

ÂY L estimator: M̂NBT.RE
i ≡ g1i(ÂRE) + g2i(ÂRE) + 2g3i(ÂY L) mentioned

in (2.3) (denoted by “NBT.YL”);

3) A first-order unbiased MSE estimator M̂RE
1i ≡ M1i(λ̂) using ÂRE , where

M1i(λ) is given in Theorem 1 (denoted by “M1.RE”);

4) A first-order unbiased MSE estimator M̂Y L
1i ≡ M1i(λ̂) using ÂY L, where

M1i(λ) is given in Theorem 1 (denoted by “M1.YL”);
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Table 1. Percentage (%) of occurrence of zero estimates when using M̂RE
1i in each com-

bination of (m,β,Ds)

Ds Ds1 Ds2 Ds3
β -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

m 15 19.12 18.89 19.01 6.49 6.58 6.42 0.99 0.99 1.02
50 3.53 3.49 3.65 0.11 0.15 0.14 0 0 0

5) A second-order unbiased MSE estimator M̂RE
i ≡ M̂i(λ̂) using ÂRE , defined

in (3.3) (denoted by “Ms.RE”);

6) A second-order unbiased MSE estimator M̂Y L
i ≡ M̂i(λ̂) using ÂY L, defined

in (3.3) (denoted by “Ms.YL”);

To evaluate these MSE estimators, we calculate the percentage of relative

bias (PRB) and the percentage of relative RMSE (PRRMSE) estimators, with

replication number R = 105. The PRB and PRRMSE are defined as

PRB =
1

mR

m∑
i=1

R∑
r=1

M̂
(r)
i −Mi

Mi
× 100,

PRRMSE =
1

m

m∑
i=1

√
1
R

∑R
r=1(M̂

(r)
i −Mi)2

Mi
× 100,

where M̂
(r)
i is one of the MSE estimators in the above using the rth replication,

and Mi denotes SMSEi of p̂EB based on ÂY L.

We report PRB and PRRMSE in Figures 5–8 to compare the MSE es-

timators (M1.RE,M1.YL,Ms.RE,Ms.YL). Two untransformed MSE estimators

(NBT.RE,NBT.YL) are omitted, owing to their large values (over 300) in all sit-

uations. From these results, in terms of the relative bias and the relative RMSE,

our proposed MSE estimators M̂i(λ̂) outperform their competitors.

In this simulation, there were no negative MSE estimates, and only M̂RE
1i

produced zero estimates. Both of our second-order unbiased MSE estimates al-

ways used M̂0
i in (3.3). Finally, Table 1 shows for the percentage of occurrence

of zero estimates in using M̂RE
1i . The result are the same as the simulated prob-

ability of the REML being zero. Thus, the estimator M̂RE
1i may yield unrealistic

estimates of the MSE.
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Figure 5. Percentage of relative bias (PRB) of six MSE estimators for MSE of EB
estimator p̂EB.Y L

i in the case m = 15; each sub-figure shows the results in the three
sampling variance patterns Ds1(Left), Ds2(Center), and Ds3(Right), with each x-axis
indicating β ∈ {−0.5, 0, 0.5}.
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Figure 6. Percentage of relative bias (PRB) of six MSE estimators for MSE of EB
estimator p̂EB.Y L

i in the case m = 50; each sub-figure shows the results in the three
sampling variance patterns Ds1(Left), Ds2(Center), and Ds3(Right), with each x-axis
indicating β ∈ {−0.5, 0, 0.5}.
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Figure 7. Percentatage of relative RMSE (PRRMSE) of six MSE estimators for MSE of
EB estimator p̂EB.Y L

i in the case m = 15; each sub-figure shows the results in the three
sampling variance patterns Ds1(Left), Ds2(Center), and Ds3(Right), with each x-axis
indicating β ∈ {−0.5, 0, 0.5}
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Figure 8. Percentatage of relative RMSE (PRRMSE) of six MSE estimators for MSE of
EB estimator p̂EB.Y L

i in the case m = 50; each sub-figure shows the results in the three
sampling variance patterns Ds1(Left), Ds2(Center), and Ds3(Right), with each x-axis
indicating β ∈ {−0.5, 0, 0.5}.
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5. Data Analysis

COVID-19 has become a global pandemic since 2020. In this study, we

illustrate our methodology using real COVID-19 data. The purpose of this study

is, as one example, to predict the positive rate in PCR testing for each of the 47

prefectures in Japan.

For this purpose, we use real data on the number of positive cases and the

number of people who have taken the PCR test for each prefecture as at date

of April 21, 2021. The data are obtained from the website of Japan’s Min-

istry of Health, Labour and Welfare (https://www.mhlw.go.jp/stf/covid-19/

open-data.html).

We assume model (2.4) and apply our methodology to these data. Now,

let yi and ni be the direct positive rate of those who took the PCR test and

the number of PCR tests conducted for the ith prefecture in Japan, with i ∈
{1, . . . , 47}. In addition, the real auxiliary variable xi = (1, x2i)

′ is used, where

x1i = 1 represents a dummy variable for the intercept term, and xi2 denotes

Ni× 10−6 with population size Ni. We let Ni be the population size, taken from

the Japanese Census at 2015, which provides the latest open census data. These

data are obtained from the website (https://www.e-stat.go.jp/). From the

model assumption, the sampling variance Di is assumed to be 1/ni for the ith

prefecture. We call the pattern D1, hereafter. Moreover, we tried a hypothetical

setting of sample size n∗i = dni × 10−4e with the real data (yi, x2i), where dne
indicates the smallest integer greater than or equal to n. Here, let D2: Di = 1/n∗i
be the hypothetical pattern of the sampling variance for all 47 prefectures in

Japan. In this case, the range of n∗i becomes 1 to 194. We believe this situation

is also important for prediction in the early stages of the pandemic.

5.1. Predict positive rate in PCR testing

We first compare the six EB estimates of pi, introduced in Section 4.1, with

the direct proportion estimates (Direct). Figure 9 shows the results for two

sampling variance patterns D1 (the left sub-figure) and D2 (the right sub-figure).

In each sub-figure, the x-axis and y-axis indicate the 47 prefectures in Japan

and each prediction, respectively. In addition, the resulting predicted values are

arranged in ascending order of the size ni.

The left sub-figure indicates no large differences between the estimates. On

the other hand, there appear to be considerable differences between the direct

estimates and the other EB estimates when the sample sizes are small, as seen

from the right figure. This may be because of the small sample size at the early

https://www.mhlw.go.jp/stf/covid-19/open-data.html
https://www.mhlw.go.jp/stf/covid-19/open-data.html
https://www.e-stat.go.jp/
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Figure 9. Seven predicted values of positive rates in PCR testing with two sampling
variance patterns D1 : Di = 1/ni (Left) and D2 : Di = 1/n∗i (Right).

stage of the pandemic.

5.2. Estimates of coefficients of variation

Next, in order to more investigate the effect of the MSE estimates based on

several EB estimators, we compare the following six estimators of the coefficient

variation (CV):

1) CV NBT.RE ≡
√
M̂NBT.RE

i /p̂NBT.RE
i × 100, constructed using the natural

back-transformed estimator p̂NBT.RE
i and untransformed MSE estimator

M̂NBT.RE
i , (denoted by “NBT.RE”) ;

2) CV NBT.Y L ≡
√
M̂NBT.Y L

i /p̂NBT.Y L
i × 100, constructed using the natural

back-transformed estimator p̂NBT.Y L
i and untransformed MSE estimator

M̂NBT.Y L
i , (denoted by “NBT.YL”);

3) CV EB.RE.1 ≡
√
M̂RE

1i /p̂EB.RE
i × 100, constructed using the bias-adjusted EB

estimator p̂EB.RE
i and the first-order unbiased MSE estimator M̂RE

1i , (de-

noted by “EB.RE.1”);

4) CV EB.Y L.1 ≡
√
M̂Y L

1i /p̂EB.Y L
i × 100, constructed using the bias-adjusted EB

estimator p̂EB.Y L
i and the first-order unbiased MSE estimator M̂Y L

1i , (de-
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Figure 10. Six estimates of the coefficient of variation (CV) of the positive rate in PCR
testing with two sampling variance patterns, D1 : Di = 1/ni (Left two figures) and
D2 : Di = 1/n∗i (Right two figures); Each top and bottom sub-figure are the same,
except the scale changes on the y-axis.

noted by “EB.YL.1”);

5) CV EB.RE.2 ≡
√
M̂RE

i /p̂EB.RE
i × 100, constructed using the bias-adjusted EB

estimator p̂EB.RE
i and the second-order unbiased MSE estimator M̂RE

i , (de-

noted by “EB.RE.2”);

6) CV EB.Y L.2 ≡
√
M̂Y L

i /p̂EB.Y L
i × 100, constructed using the bias-adjusted EB

estimator p̂EB.Y L
i and the second-order unbiased MSE estimator M̂Y L

i , (de-

noted by “EB.YL.2”).

For the estimators CV EB.RE.2 and CV EB.Y L.2, note that M̂RE
1i and M̂Y L

1i , re-

spectively, are used as M̂∗i in (3.3).

Figure 10 consists of four sub-figures showing the six CV estimates for all

prefectures in two sampling variance patterns D1 (left two sub-figures) and D2

(right two sub-figures). The x-axis and y-axis indicate the 47 prefectures and

each CV estimate, respectively. Each top and bottom sub-figure are the same,

although the scale changes on the y-axis. The resulting estimates are arranged

in ascending order of ni, as in Figure 9.
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The top left sub-figure in the sampling variance pattern D1 shows that the

overall differences of the CV estimates 3)–6) from the two naive CV estimates

1)–2) decrease as the sample size ni increases. The CV estimates 3)–6) do not

show large differences in the sub-figure.

We also report the result for an alternative situation using the pattern D2

in the top right sub-figure in Figure 10. The figure shows that the two naive

CV estimates, CV NBT.RE and CV NBT.Y L, are much larger than the others are.

In contrast, the estimates CV EB.RE.1 and CV EB.Y L.1 provide much smaller esti-

mates for all prefectures. Nevertheless, these CV estimates need to be examined

carefully, owing to the small sample size. There are two reasons: first, the MSE

estimators in the four CV estimators 1)–4) do not have the second-order unbi-

asedness; and second, 2) CV EB.RE.1 produced exactly zero CV estimates for all

prefectures, as seen from the bottom of the right sub-figure. The latter unrealistic

phenomenon is caused by the REML estimate being zero. Furthermore, the bot-

tom of the right sub-figure shows that the CV EB.RE.2 also provides zero estimates

of CV for a few prefectures, although it is constructed using the second-order un-

biased estimator of the MSE. Note that it is not based on our final suggested

MSE estimator in (3.3) because M∗i = MRE
1i may not be strictly positive.

On the other hand, there are no zero estimates of CV EB.Y L.2 in the bot-

tom two figures of Figure 10. That is, in the calculation of CV EB.Y L.2 for all

prefectures, we used M̂0
i as given in (3.3).

From the perspective of both the theoretical and the simulation results, we

believe that CV EB.Y L.2 provides relatively precise and realistic CV estimates.

6. Conclusion

In this study, we focus on arc-sin transformations for binomial sample pro-

portions in the context of small area estimation. This specific variance stabilizing

transformation avoids the important assumption of known sample variances, as

in the Fay–Herriot small area model. We find an explicit EB estimator for such

transformed data, and then evaluate the asymptotic order of its bias. We also

obtain an explicit form of the second-order unbiased MSE estimator for large m,

based on arc-sin transformed data when supi ni is bounded for large m. More-

over, we propose an explicit second-order unbiased MSE estimator that maintains

strict positivity. Simulations show the superiority of our proposed method over

competing methods in terms of efficiency. Furthermore, our methodology is po-

tentially applicable to other research areas, such as epidemiology, meta-analysis,

and others. As an example, we applied our methodology to predict the positive
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rate in PCR testing for each of the 47 prefectures in Japan. Although this is

just one example of using our methodology, it may contribute to quick studies at

an early stage, because the model does not require personal information in the

micro-data or the estimates of the sampling variances, owing to its aggregated

model and variance stabilization, respectively.

Nevertheless, we may also consider a more general model to treat complex

COVID-19 data. In future, we intend to study EB estimation under more general

transformation models.

Supplementary Material

All technical proofs are provided in the online Supplementary Material.
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